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Abstract
Fourth-order B-spline collocation method has been applied for numerical study of Fisher’s equation which represents

several important phenomena such as biological invasions, reaction diffusion in chemical processes and neutron multi-

plication in nuclear reactions, etc. Results are found to be better than second-order B-spline collocation method. It is

observed that when time becomes sufficiently large, local initial disturbance propagates with constant limiting speed.

Proposed method is satisfactorily efficient in terms of accuracy and stability.
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Introduction

Fisher [1] introduced Fisher’s equation to investigate the

propagation of a virile gene in an infinite long habitat. The

equation is found to be consistent with all possible veloc-

ities of advance above a certain lower limit and is repre-

sented as follows:

ut ¼ muxx þ qf ðuðx; tÞÞ; x 2 ð�1;1Þ; t[ 0: ð1Þ

Here, m is the coefficient of diffusion and q is reaction term.

This equation consists of linear diffusion term uxx and

nonlinear multiplication term f(u(x, t)). This equation also

describes the approximate behavior of neutron population

in nuclear reactions [2, 3] in which neutron multiplication

takes place in such a way that it is a nonlinear function of

neutron population. Fisher’s equation is also used to model

flame propagation [4] in any medium. Fisher’s equation is

used to study biological invasion in which we can study

migration and population habits of a variety of biological

species. Fisher’s equation also has applications in auto-

catalytic chemical reactions [5] and branching Brownian

motion processes [6]. It is used to describe Belousov–

Zhabotinsky (BZ) reaction in non-scalar models in

excitable media [7]. The medium represented by (1) has

two homogeneous stationary states, u ¼ 0 and u ¼ 1, and is

referred as bistable medium.

There are a number of methods to solve Fisher’s equa-

tion analytically and numerically. Ablowitz and Zepetella

studied explicit solutions of Fisher’s equation [8]. Al-

Khaled [9] presented a sinc collocation method to study

numerical solutions of nonlinear reaction diffusion Fisher’s

equation. Mittal and Kumar applied wavelet Galerkin

method [10], while Olmos and Shizgal [11] applied

pseudo-spectral method to get numerical solutions of

Fisher’s equation. Some other numerical methods may be

studied in [12–14]. A Petrov–Galerkin finite-element

method has been presented by Tang and Weber [15].

Twizell et al., proposed implicit and explicit finite-differ-

ence algorithms to get numerical solutions of Fisher’s

equation. Gazdag and Canosa [16] applied accurate space

derivative method. An alternating group explicit iterative

method has been applied by Evans and Sahimi [17]. Mittal

and Arora [18] developed an efficient B-spline scheme to

solve Fisher equation.

B-spline functions have emerged as powerful and pop-

ular tools in the field of boundary and initial value prob-

lems, image processing, and approximation theory.

B-splines have been applied to solve linear and nonlinear

partial differential equations. In the proposed fourth-order
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method, B-spline collocation is used to solve Fisher’s

equation. Earlier work on B-spline collocation method uses

second-order approximation for double derivative and

fourth-order approximation for single derivative. In this

work, we have improved approximation for double

derivative by taking one more term in Taylor series

expansion. Therefore, the approximations for single and

double derivatives are of fourth order.

Lots of spline based numerical methods have been

developed to solve partial differential equations. B-spline

differential quadrature method and B-spline collocation

methods have been applied to deal with different kinds of

problems arising in various areas of science and engi-

neering. Cubic B-spline collocation method has been used

by Goh et al. [19] to study one-dimensional heat and

advection diffusion equations. Kadalbajoo and Arora [20]

obtained numerical solutions of singular perturbation

problems using B-spline collocation method. Dag and

Saka [21] applied B-spline collocation method to study

equal width equation. Mittal [22] used B-splines to get

numerical solutions of coupled reaction diffusion systems.

Wave equations have been studied by Mittal and Bha-

tia [23] using modified cubic B-spline functions.

Trigonometric B-splines [24] and exponential cubic

B-splines [25] have been used by Zahra and Dag, respec-

tively, to study different types of partial differential equa-

tions. Korkmaz et al., studied shock waves and sinusoidal

disturbance of Burgers’ equation by quartic B-spline

method [26]. Tamsir et al., applied an algorithm based on

exponential modified cubic B-spline differential quadrature

method for nonlinear Burgers’ equation [27]. Shukla

et al. [28] studied B-spline differential quadrature method

to study three-dimensional problems.
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Fig. 1 Numerical solutions of Example 1 for t ¼ 0:0; 0:05; 0:1; 0:2

-10 -8 -6 -4 -2 0 2 4 6 8 10

x

0

0.2

0.4

0.6

0.8

1

u

Fig. 2 Numerical solutions of Example 1 for t ¼ 0:5 to t ¼ 5:0 with increment in time k ¼ 0:5

Table 1 Absolute errors of Example 3 with N ¼ 101;Dt ¼ 0:1

t q ¼ 1 and m ¼ 1:0 q ¼ 6 and m ¼ 1:0

L1 error L2 error L1error L2 error

10 5.30E-05 4.38E-04 1.78E-06 3.56E-06

20 3.42E-09 6.43E-09 9.54E-07 1.46E-06

30 2.27E-09 3.64E-09 6.18E-07 8.50E-07

40 1.64E-09 2.40E-09 4.39E-07 5.77E-07

50 1.24E-09 1.72E-09 3.28E-07 4.16E-07

100 4.43E-10 5.70E-10 1.10E-07 1.44E-07
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Rest of the paper is framed as follows. B-spline func-

tions and their properties have been discussed in ‘‘Cubic

B-splines and properties’’. ‘‘Implementation of the

method’’ contains description of the numerical method.

Stability of the method is discussed in ‘‘Stability of the

scheme’’ which is followed by ‘‘Results and discussion’’

having four numerical experiments on important problems.

‘‘Conclusion’’ concludes the outcomes and findings of the

research work.

Cubic B-splines and properties

A B-spline is a spline function that has minimal support

with respect to given degree smoothness and domain par-

tition. We consider a uniform partition of the domain

a� x� b by the knots xj, j ¼ 0; 1; 2. . .N, such that xj �
xj�1 ¼ h is the length of each interval. The cubic B-spline

functions are defined as follows:

Table 2 Maximum absolute

errors(L1 error ) of Example 3

with N ¼ 40;Dt ¼ 0:00001 and

q ¼ 2000

t Tamsir et al. [29] Tamsir and Shukla [30] Present method

0.0010 5.18E-03 5.18E-03 5.78E-04

0.0015 2.45E-03 2.45E-03 2.87E-04

0.0020 1.11E-03 1.11E-03 1.33E-04

0.0025 4.92E-04 4.92E-04 6.02E-05

0.0030 2.17E-04 2.17E-04 2.67E-05

0.0035 9.50E-05 9.50E-05 1.80E-05

0.0040 4.15E-05 7.23E-05 1.14E-05
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Fig. 3 Numerical solutions of Example 1 for t ¼ 2:0 to t ¼ 40:0 with increment in time k ¼ 2:0
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Fig. 4 Numerical solutions of Example 2 for t ¼ 0:0 to t ¼ 0:2 with increment in time k ¼ 0:05
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BjðxÞ ¼
1

h3

ðx� xj�2Þ3
x 2 ½xj�2; xj�1Þ;

ðx� xj�2Þ3 � 4ðx� xj�1Þ3; x 2 ½xj�1; xjÞ;
ðxjþ2 � xÞ3 � 4ðxjþ1 � xÞ3; x 2 ½xj; xjþ1Þ;
ðxjþ2 � xÞ3

x 2 ½xjþ1; xjþ2Þ;
0 otherwise

8
>>>>>>><

>>>>>>>:

ð2Þ

where
�
B�1ðxÞ;B0ðxÞ;B1ðxÞ;B2ðxÞ; . . .;BNðxÞ;BNþ1ðxÞ

�

forms a basis over the considered interval.

In cubic B-spline collocation method, we approximate

exact solution u(x, t) by S(x, t) in the form:

Sðx; tÞ ¼
XNþ1

j¼�1

cjðtÞBjðxÞ; ð3Þ

where cjðtÞ’s are time-dependent quantities which we

determine from the boundary conditions and collocation

from the differential equation. We assume that the

approximate solution S(x, t) satisfies following interpola-

tory and boundary conditions:
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Fig. 5 Numerical solutions of Example 2 for t ¼ 0:0 to t ¼ 5:0 with increment in time k ¼ 0:5

-40 -30 -20 -10 0 10 20 30 40

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

u

Fig. 6 Numerical solutions of Example 2 for t ¼ 0:0 to t ¼ 40:0 with increment in time k ¼ 2:0

Table 3 Comparison of

maximum absolute errors (L1
error ) of Example 4

x Present method t ¼ 2 Mittal and Arora [18] Present method t ¼ 4 Mittal and Arora [18]

- 20 1.76E-09 1.52E-06 1.78E-07 1.53E-06

- 16 5.33E-09 4.56E-06 4.67E-07 4.01E-06

- 12 1.78E-08 9.42E-06 1.57E-06 8.86E-06

- 8 5.99E-08 2.39E-07 5.39E-06 7.28E-06

- 4 1.65E-07 4.91E-05 1.70E-06 2.53E-05

2 2.28E-07 1.61E-04 2.74E-06 1.41E-04

6 1.23E-07 2.54E-05 4.40E-05 2.33E-04

10 3.74E-08 3.92E-05 2.08E-05 9.30E-05

14 6.18E-09 9.46E-06 4.86E-06 6.29E-05

18 7.39E-10 1.23E-06 6.88E-07 1.12E-05
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Sðxj; tÞ ¼ uðxj; tÞ; 0� j�N ð4Þ

S
00 ðxj; tÞ ¼ u

00 ðxj; tÞ �
1

12
h2uð4Þðxj; tÞ; j ¼ 0;N: ð5Þ

If u(x, t) is sufficiently smooth and S(x, t) be the unique

cubic spline interpolant satisfying above end conditions

then we have from [31]:

S
0 ðxj; tÞ ¼ u

0 ðxj; tÞ þ Oðh4Þ; 0� j�N ð6Þ

S
00 ðxj; tÞ ¼ u

00 ðxj; tÞ �
1

12
h2uð4Þðxj; tÞ þ Oðh4Þ; 0� j�N

ð7Þ

The approximate values S(x, t) and its first-order deriva-

tives at the knots are defined using finite difference and

Taylor expansions as follows:

uð4Þðxj; tÞ ¼
S

00 ðx0; tÞ � 5S
00 ðx1; tÞ þ 4S

00 ðx2; tÞ � S
00 ðx3; tÞ

h2

þ Oðh2Þ; j ¼ 0

ð8Þ

uð4Þðxj; tÞ ¼
S

00 ðxj�1; tÞ � 2S
00 ðxj; tÞ þ S

00 ðxjþ1; tÞ
h2

þ Oðh2Þ;

1� j�N � 1

ð9Þ

uð4Þðxj; tÞ ¼
S

00 ðxn; tÞ � 5S
00 ðxn�1; tÞ þ 4S

00 ðxn�2; tÞ � S
00 ðxn�3; tÞ

h2

þ Oðh2Þ; j ¼ N:

ð10Þ

Using (8)–(10) in (6)–(7), we get

u
0 ðxj; tÞ ¼ S

0 ðxj; tÞ þ Oðh4Þ; 0� j�N ð11Þ

u
00 ðx0; tÞ ¼

14S
00 ðx0; tÞ � 5S

00 ðx1; tÞ þ 4S
00 ðx2; tÞ � S

00 ðx3; tÞ
12

þ Oðh4Þ; j ¼ 0

ð12Þ

u
00 ðxj; tÞ ¼

S
00 ðxj�1; tÞ þ 10S

00 ðxj; tÞ þ S
00 ðxjþ1; tÞ

12

þ Oðh4Þ; 1� j�N � 1 ð13Þ

u
00 ðxN ; tÞ ¼

14S
00 ðxN ; tÞ � 5S

00 ðxN�1; tÞ þ 4S
00 ðxN�2; tÞ � S

00 ðxN�3; tÞ
12

þ Oðh4Þ; j ¼ N ð14Þ

(12)–(14) can be written asUsing (2)–(3), (15)–(17) can be

further simplified to get
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Fig. 7 Numerical solutions of Example 3 at t ¼ 0:001; 0:0015; 0:002; 0:0025 and 0.003 with N ¼ 120
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Fig. 8 Numerical solutions of Example 3 at t ¼ 1; 2; 3; 4 and 5 with N ¼ 120

Mathematical Sciences (2018) 12:79–89 83

123



u
00 ðx0; tÞ ¼

14c�1 � 33c0 þ 28c1 � 14c2 þ 6c3 � c4

2h2
ð18Þ u

00 ðxj; tÞ ¼
cj�2 þ 8cj�1 � 18cj þ 8cjþ1 þ cjþ2

2h2
ð19Þ
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Fig. 9 Numerical solutions of Example 4 from t ¼ 1 to t ¼ 15

u
00 ðx0; tÞ ¼

14
PNþ1

j¼�1 cjðtÞB
00

j ðx0Þ � 5
PNþ1

j¼�1 cjðtÞB
00

j ðx1Þ þ 4
PNþ1

j¼�1 cjðtÞB
00

j ðx2Þ �
PNþ1

j¼�1 cjðtÞB
00

j ðx3Þ
12

ð15Þ

u
00 ðxj; tÞ ¼

PNþ1
j¼�1 cjðtÞB

00

j ðxj�1Þ þ 10
PNþ1

j¼�1 cjðtÞB
00

j ðxjÞ þ
PNþ1

j¼�1 cjðtÞB
00

j ðxjþ1Þ
12

; 1� j�N � 1 ð16Þ

u
00 ðxN ; tÞ ¼

14
PNþ1

j¼�1 cjðtÞB
00
j ðxnÞ � 5

PNþ1
j¼�1 cjðtÞB

00
j ðxN�1Þ þ 4

PNþ1
j¼�1 cjðtÞB

00
j ðxN�2Þ �

PNþ1
j¼�1 cjðtÞB

00
j ðxN�3Þ

12
; j ¼ N:

ð17Þ
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u
00 ðxN ; tÞ ¼

14cNþ1 � 33cN þ 28cN�1 � 14cN�2 þ 6cN�3 � cN�4

2h2
:

ð20Þ

We will use these formulae in the next section.

Implementation of the method

We discretize Eq. (1) by Crank Nicolson scheme to get

unþ1 � un

Dt
¼ m

unþ1
xx þ unxx

2
þ q

½ððuð1 � uÞðnÞ þ ðuð1 � uÞÞðnþ1Þ�
2

:

ð21Þ

Separating the terms of (n)th and (n ? 1)th time levels, we

get

unþ1 1 � qDt
2

þ qDtuðnÞ
� �

� mDtuðnþ1Þ
xx

2
¼ uðnÞ 1 þ qDt

2

� �

þ mDtuðnÞxx

2
:

ð22Þ

For j ¼ 0

ðcnþ1
�1 þ4cnþ1

0 þ cnþ1
1 Þ 1�qDt

2
þqDtuðnÞ

� �

� mDt
4h2

ð14cnþ1
�1 �33cnþ1

0 þ28cnþ1
1 �14cnþ1

2 þ6cnþ1
3 � cnþ1

4 Þ

¼ ðcn�1 þ4cn0 þ cn1Þ 1þqDt
2

� �

þ mDt
4h2

ð14cn�1 �33cn0 þ28cn1 �14cn2 þ6cn3 � cn4Þ
ð23Þ

we may write s1c
nþ1
�1 þ s2c

nþ1
0 þ s3c

nþ1
1 þ s4c

nþ1
2 þ s5c

nþ1
3

þs6c
nþ1
4 ¼ v1c

n
�1 þ v2c

n
0 þ v3c

n
1 þ v4c

n
2 þ v5c

n
3 þ v6c

n
4: For

1� j�N�1

ðcnþ1
j�1 þ 4cnþ1

j þ cnþ1
jþ1 Þ 1 � qDt

2
þ qDtuðnÞ

� �

� mDt
4h2

ðcnþ1
j�2 þ 8cnþ1

j�1 � 18nþ1cj þ 8cnþ1
jþ1 þ cnþ1

jþ2 Þ

¼ ðcnj�1 þ 4cnj þ cnjþ1Þ 1 þ qDt
2

� �

þ mDt
4h2

ðcnj�2 þ 8cnj�1 � 18cnj þ 8cnjþ1 þ cnjþ2Þ

ð24Þ

�x1c
nþ1
j�2 þ x2c

nþ1
j�1 þ x3c

nþ1
j þ x4c

nþ1
jþ1 � x1c

nþ1
jþ2

¼ x1c
n
j�2 þ x5c

n
j�1 þ x6c

n
j þ x7c

n
jþ1 þ x1c

n
jþ2

ð25Þ

for j ¼ N; we have

ðcnþ1
N�1 þ 4cnþ1

N þ cnþ1
Nþ1Þ 1 � qDt

2
þ qDtuðnÞ

� �

� mDt
4h2

ð14cnþ1
Nþ1 � 33cnþ1

N þ 28cnþ1
N�1 � 14cnþ1

N�2

þ 6cnþ1
N�3 � cnþ1

N�4Þ

¼ ðcnN�1 þ 4cnN þ cnNþ1Þ 1 þ qDt
2

� �

þ mDt
4h2

ðð14cnNþ1 � 33cnN þ 28cnN�1 � 14cnN�2 þ 6cnN�3 � cnN�4Þ

ð26Þ

which gives

t1c
nþ1
N�4 þ t2c

nþ1
N�3 þ t3c

nþ1
N�2 þ t4c

nþ1
N�1 þ t5c

nþ1
N þ t6c

nþ1
Nþ1 ¼ bN :

ð27Þ

Thus, we get the following system:

ACnþ1 ¼ BCn ð28Þ
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Fig. 10 Exact solutions of Example 4 from t ¼ 1 to t ¼ 15
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where C ¼ ½c�1; c0; c1; c2:::cN ; cNþ1�T

A ¼

s1 s2 s3 s4 s5 s6

�x1 x2 x3 x4 � x1

� x1 x2 x3 x4 � x1

:: :: :: :: :: :: ::
� x1 x2 x3 x4 � x1

t1 t2 t3 t4 t5 t6

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

and

B ¼

v1 v2 v3 v4 v5 v6

x1 x5 x6 x7 x1

x1 x5 x6 x7 x1

:: :: :: :: :: :: ::
x1 x5 x6 x7 x1

e1 e2 e3 e4 e5 e6

:

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

We have N þ 1 equations in N þ 3 unknowns. It may be

observed that c�1 and cNþ1 can be eliminated with the help

of Dirichlet or Neumann’s boundary conditions to get N þ
1 equations in N þ 1 unknowns. System obtained on

eliminating c�1 and cNþ1 can be solved at any desired time

level starting with the initial vector

½cð0Þ0 ; c
ð0Þ
1 ; c

ð0Þ
2 . . .c

ð0Þ
N�1; c

ð0Þ
N �T . Initial vector can be deter-

mined using B-spline approximation of initial condition of

the problem.

Stability of the scheme

As discussed earlier, by discretizing Eq. (1), we obtain

following equation:

uðnþ1Þ 1 � qDt
2

þ qDtuðnÞ
� �

� mDtuðnþ1Þ
xx

2
¼

uðnÞ 1 þ qDt
2

� �

þ mDtuðnÞxx

2
:

ð29Þ

Let us assume un ¼ k , 1 � qDt
2
þ qDtuðnÞ ¼ p1 and

1 þ qDt
2
¼ p2,, so that we obtain following:

ðcðnþ1Þ
j�1 þ 4c

ðnþ1Þ
j þ c

ðnþ1Þ
jþ1 Þp1 �

mDt
4h2

ðcðnþ1Þ
j�2

þ 8c
ðnþ1Þ
j�1 � 18c

ðnþ1Þ
j þ 8c

ðnþ1Þ
jþ1 þ c

ðnþ1Þ
jþ2 Þ

¼ p2ðcðnÞj�1 þ 4c
ðnÞ
j þ c

ðnÞ
jþ1Þ þ

mDt
4h2

ðcðnþ1Þ
j�2 þ 8c

ðnÞ
j�1 � 18c

ðnÞ
j

þ 8c
ðnÞ
jþ1 þ c

ðnÞ
jþ2Þ:

ð30Þ

Assume mDt
h2 ¼ L

� L

4
c
ðnþ1Þ
j�2 þ ð�2Lþ p1Þcðnþ1Þ

j�1 þ 9L

2
þ 4p1

� �

c
ðnÞ
j

þ ðp1 � 2LÞcðnþ1Þ
jþ1 � L

4
c
ðnþ1Þ
jþ2

L

4
c
ðnÞ
j�2 þ ð2Lþ p1ÞcðnÞj�1 þ 4p2 �

9L

2

� �

c
ðnÞ
j

þ ðp2 þ 2LÞcðnÞjþ1 þ
L

4
c
ðnÞ
jþ2:

ð31Þ

Simplifying we get, substituting cnj ¼ Annexpðij/hÞ, where

i ¼
ffiffiffiffiffiffiffi
�1

p
, A is amplitude, h is step length, and / is mode

number, we get

n ¼
L
2

cos 2/hþ 2ð2Lþ p2Þ cos/hþ ð4p2 � 9L
2
Þ

� L
2

cos 2/hþ 2ðp1 � 2LÞ cos/hþ 9L
2
þ 4p1

ð33Þ

or

n ¼ A

B
: ð34Þ

For stability of the derived scheme, we must have

jnj\1 ð35Þ

A
B
\1.

) �1\ A
B
\1.

) Aþ B[ 0 and B� A[ 0.

Here, Aþ B ¼ 2ðp1 þ p2Þ cos/hþ 4p1 þ 4p2.

However, p1 þ p2 ¼ 2 þ qDtk which is obviously

positive.

Hence, Aþ B[ 0.

n ¼
L
4
e�2/ih þ ð2Lþ p2Þe�/ih þ ð4p2 � 9L

2
Þ þ ðp2 þ 2LÞe/ih þ L

4
e2/ih

� L
4
e�2/ih þ ð�2Lþ p1Þe�/ih þ ð4p1 þ 9L

2
Þ þ ðp1 � 2LÞe/ih � L

4
e2/ih

ð32Þ
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Now, B� A ¼ �L cos 2/hþ 2ðp1 � p2 � 4LÞ cos

/hþ 9Lþ 4p1 � 4p2.

¼ �2L cos2 /hþ 2

ð�qDt þ qDtk � 4LÞ cos/hþ 10Lþ 4ð�qDt þ qDtkÞ.
We calculate minimum possible value of B� A. For

minimum value, cos/h ¼ 1.

So that B� A ¼ 6qDtðk � 1Þ which is obviously greater

than zero.

Hence, the proposed fourth-order B-spline collocation

method is unconditionally stable.

Results and discussion

We apply cubic B-spline-based method to some well-

known problems taken from the literature. The accuracy of

the method has been measured by finding following error

norms given by

L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

0

juj � Ujj2
v
u
u
t ð36Þ

L1 ¼ maxjuj � Ujj ð37Þ

where uj and Uj denote the exact and numerical solutions,

respectively, at the knot xj.

Example 1 We consider (1) with f ¼ uð1 � uÞ, m ¼ 0:1,

and q ¼ 1:0 with zero boundary conditions and following

initial condition with various domains:

u0ðxÞ ¼ sec h2ð10xÞ: ð38Þ

Initial condition has a sharp peak in the middle. Figure 1

shows the results from t ¼ 0 to t ¼ 0:2 with an increment

of k ¼ 0:05 in time. In the beginning, near x ¼ 0, diffusion

dominates over reaction, and therefore, the peak goes down

and flattens itself. In Fig. 2, contours have been drawn from

t ¼ 0:5 to t ¼ 5:0 with an increment k ¼ 0:5. It may be

noticed that when contour peak attains a lowest level,

reaction dominates over diffusion and peak moves upwards

to attain its original height. Physical behavior of solutions

from t ¼ 2 to t ¼ 404 with k ¼ 2 has been depicted in

Fig. 3. It can be seen from the figure that top of the con-

tours become flatter and flatter.

Example 2 We consider Eq. (1) with

f ¼ uð1 � uÞ, m ¼ 0:1 and q ¼ 0:1. The initial condition is

given by

uðx; 0Þ ¼
e10ðxþ1Þ if x\� 1

1 if � 1� x� 1

e�10ðx�1Þ if x[ 1

8
><

>:
ð39Þ

and boundary conditions are

uða; tÞ ¼ uðb; tÞ ¼ 0 ð40Þ

Development of above initial condition has been depicted

in Figs. 4, 5, and 6. In Fig. 4, middle parts of contours show

that the effects of diffusion and reaction are very small.

Contours get rounded at the edges showing that diffusion

dominates in this part of the domain. Since diffusion takes

place, contours go down a little as in Fig. 5 and then finally

take the limiting form as in the previous example. This

shows that limiting shape of the wavefront does not depend

on initial condition.

Example 3 Consider Fisher’s equation with following

exact solutions:

uðx; tÞ ¼ 1

1 þ exp
ffiffi
q
6

q
x� 5q

6
t

� �� �2
: ð41Þ

Initial and boundary conditions have been taken from exact

solution. This equation has been considered by Olmos and

Shizgal [11] while solving Fisher’s equation by pseudo-

spectral method. Numerical errors for different values of q
and l have been presented in Table 1 at time levels 10, 20,

30, 40, 50, and 100. We can observe that very good results

have been obtained. In Table 2, we have compared our

results with the results obtained by trigonometric cubic

B-spline differential quadrature method [29] and also with

extended modified cubic B-spline differential quadrature

method [29] at different time levels with N ¼ 40 and

q ¼ 2000. Numerical and exact solutions are depicted in

Figs. 7 and 8 with q ¼ 10;000 and N ¼ 120. It may be

noticed that numerical solutions are very close to exact

solutions.

Example 4 Consider the following Fisher’s equation in

½�30; 30�:
ut ¼ cuxx � bu2 þ au: ð42Þ

The exact solution is

uðx; tÞ ¼ � 1

4

a

b

	

sech2

�

�
ffiffiffiffiffiffiffi
a

24c

r

xþ 5at

12

�

� 2tanh

�

�
ffiffiffiffiffiffiffi
a

24c

r

xþ 5at

12

�

� 2




:

ð43Þ

The boundary conditions are taken as

uð�30; tÞ ¼ 0:5; uð30; tÞ ¼ 0 ð44Þ

and initial condition is given by
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uðx; tÞ ¼ � 1

4

a

b

	

sech2

�

�
ffiffiffiffiffiffiffi
a

24c

r

x

�

� 2tanh

�

�
ffiffiffiffiffiffiffi
a

24c

r

x

�

� 2




:

ð45Þ

The amplitude of the wave is proportional to a
b

which

increases with increasing a and also with decreasing

b. Numerical solutions have been presented in Table 3.

Numerical results at t ¼ 2 and t ¼ 4 show that our results

are better than the results obtained using second-order

approximations for the second derivative. Physical behav-

ior of the solutions has been presented in Figs. 9 and 10

which shows a traveling wave front moving through the

medium. We can observe that numerical and exact solution

profiles look similar.

Conclusion

A fourth-order collocation method based on cubic B-spline

functions has been developed to solve Fisher’s reaction

diffusion equation. Proposed method gives good results.

Results have been compared with results obtained by some

earlier methods. Stability analysis shows that method is

unconditionally stable, and hence, the value of Dt needs not

to be taken very small. As a result, solutions have been

calculated for large values of t with very small CPU time.

Method uses very less storage and can be easily extended

to solve higher dimensional problems from practical,

mechanical, physical, and biophysical areas.
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