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Abstract

In this article, we propose a method for the solution of the generalized Burger—Fisher equation. The method is developed using
CAS wavelets in conjunction with quasi-linearization technique. The operational matrices for the CAS wavelets are derived
and constructed. Error analysis and procedure of implementation of the method are provided. We compare the results produce
by present method with some well known results and show that the present method is more accurate, efficient, and applicable.
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Introduction

The Burger—Fisher equation has important applications in
various fields of financial mathematics, gas dynamic, traffic
flow, applied mathematics, and physics. This equation shows a
prototypical model for describing the interaction between the
reaction mechanism, convection effect, and diffusion transport
[1]. Consider the generalized Burger—Fisher equation:

2
al—al+au7’a—u+bu(u3’— 1) =0,

<x<I, t> 1
o o Mo 0<x<t,rzo, (1

subject to the initial and boundary conditions:
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The exact solution is given in Chen and Zhang [2]:

“wi) = (%‘%‘a“h (2(2 ) {x‘ ( Z<Ii(i«/+v>yz>)tD)}"
2)

where a, b, and y are non-zero parameters. Wavelet
analysis is a new development in the area of applied
mathematics. Wavelets are a special kind of functions
which exhibits oscillatory behavior for a short period of
time and then die out. In wavelets, we use a single function
and its dilations and translations to generate a set of
orthonormal basis functions to represent a function. We
define wavelet (mother wavelet) by Radunovic [3]:

1
Vil

where a and b are called scaling and translation parameter,
respectively. If |a| < 1, the wavelet (3) is the compressed ver-
sion (smaller support in time domain) of the mother wavelet and
corresponds to mainly higher frequencies. On the other hand,
when |a| > 1, the wavelet (3) has larger support in time domain
and corresponds to lower frequencies.

l//a,b(x) = lﬁ ()%)7 a, be R7 a 7& 07 (3)

Discretizing the parameters via a = 27% and b = n27*,
we get the discrete wavelets transform as:

V() = 25 (25x = n). (4)

These wavelets for all integers k and n produce an
orthogonal basis of L,(R). It is somewhat surprising that
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among different solution techniques, CAS wavelets method
have received rather less attention. We have found some
papers [4-7] in which CAS method is used for the solution
of integro-differential equations, and CAS wavelets is not
implemented for the solution of nonlinear Lane Emden-
type equation. In Yi et al. [4], CAS wavelet method is
utilized for the solution of integro-differential equations
with a weakly singular kernel of fractional order. In addi-
tion, error analysis of the CAS wavelets is provided. The
CAS wavelets operational matrices are implemented for
the numerical solution of nonlinear Volterra integro-dif-
ferential equations of arbitrary order in Saeedi et al. [5].
CAS wavelet approximation method is presented for the
solution of Fredholm integral equations in Yousefi and
Banifatemi [6]. The operational matrices are utilized to
convert the Fredholm integral equation into a system of
algebraic equations. In Shamooshaky et al. [7], authors
presented a CAS wavelet method for solving boundary
integral equations with logarithmic singular kernels which
occur as reformulations of a boundary value problem for
Laplace’s equation.

The purpose of this article is to propose a numerical
method for solving the generalized Burger—Fisher equation
using CAS wavelets in conjunction with quasi-linearization
technique. The properties of quasi-linearization technique are
used to discretize the nonlinear partial differential equation
and then utilize the properties of CAS wavelets to convert the
obtained discrete partial differential equation into a Sylvester
system. The solution of the obtained system provides the
values of CAS wavelets coefficients which lead to the solu-
tion of the generalized Burger—Fisher equation.

CAS wavelets

The CAS wavelets are defined on interval [0, 1) by Yousefi
and Banifatemi [6]

k k - n
‘//n"m(x>: 22CASm(2x—n+l), ok §x<?,
0, elsewhere,
—-0.7321 -2.0000  2.7321 0 0 0 0 0
0 0 0 -0.7321  -2.0000  2.7321 0 0
0 0 0 0 0 0 -0.7321  -2.0000
0 0 0 0 0 0 0 0
2.0000 2.0000 2.0000 0 0 0 0 0
Wity = 0 0 0 2.0000 2.0000 2.0000 0 0
0 0 0 0 0 0 2.0000 2.0000
0 0 0 0 0 0 0 0
2.7321 —2.0000 -0.7321 0 0 0 0 0
0 0 0 2.7321 -2.0000 -0.7321 0 0
0 0 0 0 0 0 2.7321 —2.0000
0 0 0 0 0 0 0 0

where CAS,,(x) = cos(2mnx) + sin(2mnx) and k=
0,1,2,---,is the level of resolution, n = 0,1,2,---, 2K — 1,
is the translation parameter, m € Z.

CAS wavelets have compact support, that is

SUPP(Y () = {3 : 0 (2) # 0} = {%2_}
Function approximations

We can expand any function y(x) € L*[0, 1) into truncated
CAS wavelet series as:

o0

y(x) = Z Z Cn,mlpn.,m(x)

n=0 meZ
%-1 M

~ Z Z C"A,ml//n,m(x) - CT‘P(X),

n=0 m=—M

(5)

where C and W (x) are i x 1, (i = 2¥(2M + 1)), matrices,
given by: C=[co-m,C0-m+1,--

CILM, - -

5 COM>ClL,—M;Cl,—M+1,5 -+«
3 Cok 1 My Ck 1 —M+15 -+ > C2k—l,M]Ta

Y(x) = [‘pO;M(x)» Yo —m+1 (x), - wO,M(x)v lﬁl,fM(x)a
‘/fl,—M+1 (x), - l//I,M(x)’ S ‘/jzk—l,—M(x), w2"—lﬁ—M+l (x),
ey Yoy ()]". Any function of two variables u(x,1) €
L,[0,1) x [0,1) can be approximated as:

-1 M 2¥-1 M

u(x, t) ~ Z Z Z Z Cnm.,ij'ubn,m(x)l//i.j(t)'

n=0 m=—M i=0 j=—M’

(6)

The collocation points for the CAS wavelets are taken as
x; ==L where i = 1,2,...,m. The CAS wavelets matrix

W5 1S given as:

Wi = [‘l’(iﬂ)‘l‘(%)‘l’(zzm 1” (7)

In particular, we fix k=2, M=1, we have
n=0,1,23;m=-1,0,1 and i =1,2,...,12, the CAS
wavelets matrix is given as:

0 0 0 0
0 0 0 0
2.7321 0 0 0
0 -0.7321  -2.0000  2.7321
0 0 0 0
0 0 0 0
2.0000 0 0 0
0 2.0000 2.0000 2.0000
0 0 0 0
0 0 0 0
—-0.7321 0 0 0
0 27321  -2.0000 -0.7321
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The CAS wavelets operational matrix
of integration

For simplicity, we write (5) as:

Y~ > ()

=1

= C"¥(x), (8)
where ¢; = ¢, ) = W, ,(x). The index [ is determined by
the equation [=MQ2n+1)+(n+m+1) and m=
25(2M + 1). In addition, C = [c1,¢a,...,¢q] . Y(x) =

[V, (%), ¥, (x), - Y, (x)]". Equation (6) can be written as:
ZZCz,p‘ﬁz W, (1) = ¥ (x)C¥(1),
=1 p=1

where C is it x m' coefficient matrix and its entries are
cip = <Yy(x), <u(x,t),,(t) > > . The index [ and p are
determined by the equations I =M(2n+ 1)+ (n+m+ 1)
andp = M'(2i + 1) + (i +j + 1), respectively. In addition,
i =252M + 1) and m’' = 2K (2M' +1).
An arbitrary function u(x,t) € L;[0,1) x
expanded into block-pulse functions [8] as:

m—1m—1

u(x,r) =~

i=0 j=0

[0,1), can be

ai bi(x)b;(r) = B' (x)aB(t),

where q;; are the coefficients of the block-pulse functions
b; and b;. The CAS wavelets can be expanded into m—set
of block-pulse functions as:

¥(x) = WiniB(x). ©)
The gth integral of block-pulse function can be written as:
(Z{B)(x) = Fip nB(x), (10)
where ¢ > 0 and F§,_, is given in Kilicman and Al Zhour
[8] with

P4 o= P FI (W) (11)

The CAS wavelets operational matrix of integration P:lﬁX o of

integer order g are utilize for solving differential equations.
In particular, for k =2, M = 1, g = 2, the CAS wavelet

operational matrix of integration P, ,, is given by:

~0.000847281  —0.0073985  —0.0208942 00240563  —0.0240563
0 0 0 ~0.000847281  —0.0073985
0 0 0 0 0 0
0 0 0 0 0 0
0.00231481 0.0162037 0.0439815 00833333 0.125
- 0 0 0 0.00231481 0.0162037
x12 0 0 0 0 0 0
0 0 0 0 0 0
0.0031621 0.0166578 0.023209 0.0240563 00240563
0 0 0 0.0031621 0.0166578
0 0 0 0 0 0
0 0 0 0 0 0

—0.0240563
—0.0208942

0.166667
0.0439815

0.0240563
0.023209

This phenomena makes calculations fast, because the
operational matrices W,;x,; and P4 . contains many zero
entries.

CAS wavelets operational matrix of integration
for boundary value problems

We need another operational matrix of fractional integra-
tion while solving boundary value problems. In this sub-
section, we drive an operational matrix of integration for
dealing with the boundary conditions while solving
boundary value problem. Let g(x) € L,[0,1] be a given
function, then

1
g( ) llpnm :%0/ q 1 nm(s)ds (12)

Since the CAS wavelets are supported on the intervals
[@ i), therefore

2]( ’21(
2
q g(x)Z% 2 q—1 k
g(x)Ilelpmm(x) = () (1—5)7"CAS,,(2"s —n+1)ds,
nz;kl
=g(x)0f ., (13)

k
where Q7 == 2%

R AU 5)?" ' CAS,, (2ks — n 4 1)ds.

—2]

n—

[
2

Expand the Eq. (13) at the collocation points, x; = 2~

where i = 1,2, ...,m, to obtain

mem Q:Iﬁszlxrha (14)
where Grxm = [g(x1), g(x2), .., 8(%)],
thxl [Qo M?QO —M+1" "7Q8,M7Q(11,—M7 Q?,—Mﬂv T
[117M7 Y QZ"—],—M’ Q2k_11_M+17 Tty ng_l"M]T. In particu-

lar, for k=2, M =1, ¢=2, and g(x) = x*sin(x), we
have

—0.0240563 —0.0240563 —0.0240563 —0.0240563 —0.0240563 —0.0240563
—0.0240563 -0.0240563 —0.0240563 —0.0240563 —0.0240563 -0.0240563
—0.000847281 -0.0073985 —0.0208942 —0.0240563 —0.0240563 —0.0240563
0 0 0 —0.000847281 —0.0073985 -0.0208942
0.208333 0.25 0.291667 0.333333 0.375 0.416667
0.0833333 0.125 0.166667 0.208333 0.25 0.291667
0.00231481 0.0162037 0.0439815 0.0833333 0.125 0.166667
0 0 0 0.00231481 0.0162037 0.0439815
0.0240563 0.0240563 0.0240563 0.0240563 0.0240563 0.0240563
0.0240563 0.0240563 0.0240563 0.0240563 0.0240563 0.0240563
0.0031621 0.0166578 0.023209 0.0240563 0.0240563 0.0240563
0 0 0 0.0031621 0.0166578 0.023209
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—0.0000014387 —0.0000387551 —0.000178591 —0.000486649 -0.0010247 —0.0018491 —0.00300938 —0.00454693 —0.0064938 —0.00887167 —0.0116909 —0.01495

—0.00000143865 —0.0000387537 —0.000178585 —0.000486631 -0.00102466 —0.00184904 -0.00300927 —0.00454676 —0.00649356 —0.00887134 -0.0116905 —0.0149495
—0.0000014387 —0.0000387551 —0.000178591 —0.000486648 —0.0010247 —0.0018491 —0.00300938 —0.00454693 —0.0064938 —0.00887166 —0.0116909 —0.01495

—0.00000143875 —0.0000387565 —0.000178598 —0.000486666 —-0.00102474 —-0.00184917 —-0.00300949 —0.00454709 —0.00649403 —0.00887198 —0.0116914 —0.0149505
0.0000316387 0.000852269 0.00392743 0.010702 0.0225343 0.0406639 0.0661798 0.0999922 0.142806 0.195098 0.257097 0.328768
_ 0.0000225991 0.000608763 0.00280531 0.00764426 0.016096 0.0290457 0.0472713 0.071423 0.102004 0.139356 0.183641 0.234834
12x12 ~ 0.0000135594 0.000365258 0.00168318 0.00458655 0.00965758 0.0174274 0.0283628 0.0428538 0.0612026 0.0836135 0.110184 0.1409

0.00000451981 0.000121753 0.000561061 0.00152885 0.00321919 0.00580913 0.00945426 0.0142846 0.0204009 0.0278712 0.0367282 0.0469668
0.0000014387 0.0000387551 0.000178591 0.000486649 0.0010247 0.0018491 0.00300938 0.00454693 0.0064938 0.00887167 0.0116909 0.01495
0.0000014387 0.0000387551 0.000178591 0.000486649 0.0010247 0.0018491 0.00300938 0.00454693 0.0064938 0.00887167 0.0116909 0.01495
0.0000014387 0.0000387551 0.000178591 0.000486649 0.0010247 0.0018491 0.00300938 0.00454693 0.0064938 0.00887167 0.0116909 0.01495
0.0000014387 0.0000387551 0.000178591 0.000486649 0.0010247 0.0018491 0.00300938 0.00454693 0.0064938 0.00887167 0.0116909 0.01495

Quasi-linearization [9]

The quasi-linearization approach is a generalized Newton—
Raphson technique for functional equations. It converges
quadratically to the exact solution, if there is convergence
at all, and it has monotone convergence.
Quasi-linearization for the nonlinear partial differential
equations is as follows. Given the problem of the form:

=uy +glu,uy), 0O<x<l, t>0, (15)

u
ar
with the initial condition

u(x,0) = h(x),

and boundary conditions of the form:

M(O,I) :fl(t)7 M(l,t) :fZ(t)v

where g is the nonlinear function of u and u,. Quasi-lin-
earization approach for Eq. (15) implies:

aMrJrl
ot

- ur)gu(ur; (ur)x)"f'
r>0,

= (1) + 8(ur, (ur),) + (Uri1

(1), = () )8 (1t (7)),
(16)

with the initial and boundary conditions of the form:
ur+l(x,0) :h(x)a 0<x<17
ur+1(07t) :fl(t)7 ur+1(lat) :fZ([)7

Starting with an initial approximation ug(x, ), we have a
linear equation for each u,;,7 > 0.

t>0.

Procedure of implementation

In this section, the procedure of implementing the method
for nonlinear partial differential equation is explained. The
procedure begins with the conversion of nonlinear partial
differential equation into discretize form by quasi-lin-
earization technique, explained in Sect. 3. Next the dis-
cretized nonlinear partial differential equation is solved by
CAS wavelet operational matrix method.

@ Springer

Consider the following discretized nonlinear partial
differential equation:

62Mr+l a214r+1 a'fir+1
o - a('x) o + b('x) ox + d(x)u)‘+l *f(x7 t)7 r> 07
(17)
with initial and boundary conditions as
a’/lr 1
ur+1(x70) :gl(x)7 a: (xa O) :gZ(x)7 ur+1(07t)

:hl(l‘), ur+1(1,t) :hz(l‘).

Approximate the highest order term by CAS wavelet quasi-
linearization method as:

%1 M X-1 M

=303 ST ST At w0

n=0 m=-M i=0 j=—M'

= W7 (x)C" ().

a ur+l

Applying the integral operator on above equation, we have

L _ (7 () 0) + ()

ry1 (x,1) = (I¥7 (0)C (1) + p(0)x + g (o),

where p(f) and ¢(¢) are

p(t) = (1)

q(t) = h(1).

By putting the values of p(7) and ¢(¢) in u,,(x, 1), we get

1 (3, 1) = (9T () O (1) + (o (1) — b (1))x
— (I W7 (x))C W ()x + ha (2).

= (1) = (I ¥ (x)) €1 (1)

(18)

Equation (17) implies that

2
T (¥ (1)

+ b(x)(ha(t) — b (1)) = b(x

+d() (¥ () ()

—d(x)(I ¥ () C Y (1) +
We make substitution as: G =f(x,1) — d(x)h(¢) — d(x)
(o (1) = hy(2))x — b(x)(ha (1) — b (1)) and G=
W7 (x)M¥(t) for simplification and get

b(x) (¥ (x)C™ (1)
(I, ¥ (x)C ()
()( 2(1) = (1))
X+ d(x)hi (1) = f(x,1).

+

+v

~—
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2
¢ au[z“ —a(x)¥PT (x)CTW (1) + b(x) (I (x))CTT(r)

= b(x)(_ W () CH 1 (1) + d () (I (x)) C (1)
—d(x) (I, 9T (x))C" W (1)x = PT (x)MP(1).

Apply second-order integral on above equation to get

rs1 (x,1) = a(0) ¥ () (P (1)) — () (LW (x)) PP (1)

+b(x) (E_ T (0)CHH (7 (1)) — d(x) (127 (x)) CTH (1P (1))
+d () (Lo YT (0)C I (1)x + YT ()MIT (1) + g2 (%)t
+g1(x).

(19)
Now, by equating Eqgs. (18) and (19) and simplification, it
is
(27 () <2 ¥ (0)(C) — (a(0) ¥ (x) — b(x) ¥ (x)
+ b P (x) = d)IYT (x) + d ()L, ¥ (x)x))
(CR@)(P(0)) = (P OMEE(1)

+g2(x)1 + g1(x) = (1) — ha(0)x — b () (¥ (1) ).

For simplification let k(x,7) = g2(x)f + g1(x) — (ha(t) —
hl(t))x — hy(t) above equation at collocation points x; =
2,,wherez—123 m,j=1,2,3,...,
m' i = 2’<(2M+ 1) and m' = 2’<’(2M' + 1).
(L7 (x) = lzy P () (€)= (al) W7 ()
— b(x,-)I;‘I’T(x,-) + b(x,)l? \PT()CZ') — d(X[)IZ‘PT()Ci)
+d)al_ T ()T () (P () )
= (W (x)MI ¥ (1) + k(xi, 1)) (P (1) 1)

2m

which can be written in matrix form as:

( rzr;;m - m><m’)(C’+l) ((A)lPT B BPrlﬁ;W;’ + BW;}'i”;/
m><m’ + W )Cr+lP12ni<m’ (\Pil) = (\PTMPrzﬁ;rﬂ’ + K) (‘Pil)'
(20)
After simplification, we obtain the sylvester equation:
vQC — C"F'R = v8, (21)
where  v=((A)¥" —BP* _+BW'? —DP* +
X’Z 71 mxm mxm mxm
Dwrﬁxrrl’) ’
_ 2.x _ X2
Q - (mem thxrﬁ’)’
R=P” ¥ !and

mXWL
S = (Y'MP>  +K)(¥),
and, A, B and D are diagonal matrices, which are given
by:

a(xy) 0 0
A 0 a().cz) O |
0 0 a(;cj)
b(x;) 0 0
0 b(xn) 0
B = . :
0 0 b(x,)
and
d(xl) 0 0
0 d(x) 0
D= . :
0 o0 d(x;)

The matrix K is defined as

k(xi,y1)  k(xr,y2) k(xy,yn)

k(xZayl) k(hd’z) k@%)’n)
K= . . .

k(xnayl) k(xnvyZ) k(xn,yn)

From Eq. (21), we get C’*! which is used in Eq. (18) to
get the solution u,, at the collocation points.

Error analysis

Lemma [If the CAS wavelets expansion of a continuous

function u,.(x,t) converges uniformly, then the CAS

wavelets expansion converges to the function u,,1(x,1t).

Proof Let

=D 3) 30 9) BB}

i=0 jeZ m=0 neZ

VH-] X, t (22)

Multiply both sides of Eq. (22) by ¥, ,(¢) and ¥, ((x) , then
integrating from O to 1 with respect to x as well as t, we
obtain (23) using orthonormality of CAS wavelet:

1o
//VH_] X Y, (O, (x )dtdx—c;qurs (23)
00

ThUS, C;:;}’s = <<VV+1 (.X', t)? lrbp,q(x)>7 l//r.s(t)> fOI' p,re N7
q,s € Z. This implies that u,;1(x, 1) = v,41(x, ).

’r @ Springer
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Theorem Assume that u,.(x,1)eL?([0,1] x [0,1]) is a
differentiable function with bounded partial derivative on
([0,1] x [0,1]) that is Ty > 0;V¥ (x,) € ([0,1] x [0,1]) :
|2i;a§‘t | <y. The function u,(x,) is expanded as an infi-
nite sum of the CAS wavelets and the series converges
PIDIPIPD
n=0meZ i=0 jeZ

kk' MM’
r+1 (X t) =

uniformly to u,y1(x,¢), that is wu,1(x,t) =
c:;;lij nm(x)lpij(t)'

Zkzl Z Z Z, c;;;,lij!//n,m(x)lpi,j(t)? we have

n=0 m=-M i=0 j=—M

YI’ " , ,y o0 o0
W el <Y 3
n=2k m=M+
1
(mj)*(n + 13 + 1)
k&' MM

u, converges to u,.(x,?) as k,k',M and M' — oo
and u,.(x, ) converges to u(x, t) as r — 0o.

Furthermore, u

)

ol

K1 M

ZZZZ

n=0 m=—M i=0 j=—M'

Proof Since u

c:;z,lz] nm (X) lpi. j (t) and

kk' . M.M'
r;!» 1 ( )

r+1
Com,ij =

1
/ur+1 X, t n m(x)Wi,j(t)dth
0

n

2k

/ 2222u,+1 x,1)CAS,, (2kx —n + 1)
z_k

\ s T T~-

n—1

2/

CAS;(2¥t — n + 1)dxdr.

=

Table 1 Comparison of the approximate solutions of generalized
Burger-Fisher equation with reduced differential transform method
and variational iteration method

x t ErtpMm [10] Evim [10] Ecas

0.01 0.02 0.4999¢—05 2.5031e—03 1.9435e—07
0.01 0.04 0.4999¢—05 2.5081e—03 2.7604e—07
0.01 0.06 1.4999¢—05 2.5131e—03 3.3814e—07
0.01 0.08 1.9999¢—05 2.5181e—03 3.8724¢—07
0.04 0.02 0.4997e—05 9.9962e—03 7.1200e—07
0.04 0.04 0.9997e—05 1.0001e—02 1.0346e—06
0.04 0.06 1.4997e—05 1.0006e—02 1.2805e—06
0.04 0.08 1.9997e—05 1.0011e—02 1.4781e—06
0.08 0.02 0.4995e—05 1.9979¢—02 1.2555e—06
0.08 0.04 0.9995e—05 1.9984e—02 1.8928e—06
0.08 0.06 1.4995e—05 1.9989¢—02 2.3807¢e—06
0.08 0.08 1.9995e—05 1.9994e—02 2.7727e—06

Y4
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Let 2*x —n+1=p and 21 — i + 1 = ¢ then we have

11

o p+n—1q—|—l—l

Cnm,ij = 2222 ok T ok
00

CAS,,(p)CAS;(q)dpdq,

1 1
o pn—lgti-l
nmt/_ 2k k’ k Zk’
0 0

(cos(2mmp) + sin(2mmp))(cos(2jng) + sin(2jng))dpdg.

Use integration with respect to p to get

ot //6u<p+n—1 q+z—l>
iy 2m7r2 ¥k ¥

(sin(2mmp) — cos(2mmp))(cos(2jng) + sin(2jng))dpdq.

Now, applying integration with respect to g, we obtain

11
ol — // (p+n—1 q+1—1>
" mm) (2jm) 222—0 J pdq 207 2K

(sin(2mmp) — cos(2mnp))(sin(2jng) — cos(2jng))dpdq.

Again, integrating with respect to p and ¢, we obtain

11
ot // u <P+”—1q+l—1)
ey (2m7t) (2jm) 22%2% 0 Pa2 T
0 0

(—cos(2mnp) — sin(2mnp))(—cos(2jng) — sin(2jng))dpdq,

or

Table 2 Comparison of the approximate solution of Burger—Fisher
equation by present method and reduced differential transform
method.

X t Ertpm [10] Ecas

0.01 0.02 4.7133e—06 3.17037e—08
0.01 0.04 9.4271e—06 2.72883e—08
0.01 0.06 1.4142¢—05 2.64518e¢—08
0.01 0.08 1.8855¢—05 2.63137¢e—08
0.04 0.02 4.7117e—06 1.20316e—07
0.04 0.04 9.4260e—06 1.05412e—07
0.04 0.06 1.4140e—05 1.02628e—07
0.04 0.08 1.8854e—05 1.02080e—07
0.08 0.02 4.7104e—06 2.27121e—07
0.08 0.04 9.4241e—06 2.01289¢—07
0.08 0.06 1.4138e—05 1.96390e—07
0.08 0.08 1.8852¢—05 1.95436e—07
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Table 3 Comparison of the approximate solution of Burger—Fisher
equation with solution obtained by present method and Adomian
decomposition method

X t Eapm [11] Ecas

0.1 0.005 9.68763e-06 5.70883e-07
0.1 0.01 1.93752e-05 9.29559e-07
0.5 0.005 9.68691e-06 6.87261e-07
0.5 0.01 1.93738e-05 1.31043e-06
0.9 0.005 9.68619e-06 5.71285e-07
09 0.01 1.93724e-05 9.30207e-07

2
|Cr+] |2 1

nm,ij 5k ~ 5K/

" |(2mn)*(2jn)* 2527

1 . )
// o*u (p+n—1 q+i—1>‘
62p62q bl ’ b3

0 0

|(—cos(2mnp) — sin(2mmp))|?

|(—cos(2jmq) — sin(2jng))|*dp*dg’.

Since

62 62 <7, we have

2
| r+1 | Y
Cmijl = (2mm)*(2jm)* 252

|(—cos(2mmnp) — sin(2mmp))|*dpdg

|(—cos(2jmg) — sin(2jng))|*dpdg.

S o _
S o~ _

By orthogonality of CAS wavelet as fol (CAS,,(x)
CAS,,(x))dx =1, so

r+1

b
Com S Sk ~ 5K/

(2mn) (2jm)*2% 2%

Using above Lemma, the series 2%>pn+1land2¥ >i+1,
we get

Y
(2mm)?(2jm)2(n + 173G + 1)3|

r+1

|Cnm,ij —

o0 o0
Hence, the series Y > > > ¢k is absolutely conver-
n=0 meZ i=0 jeZ

gent. In addition, we can obtain

K1 M

ST comithan@W(0)

n=0 m=—M i=0 j=—M’

2

< XM: Z Z‘Cnmuu‘pnm

n=0 m=-M i=0 j=—M'

)H'pu(t)!

K1 M

M
S 4 Z Z Z |Cnm,ij|

n=0 m=—M =0 j=—M’

I v

as Z Z Z > cnlnjjlpn,m(x)lpi,/’(t) converges to

n=0 m=—M i=0 j=—M'
u,11(x,1), so we have

’ d
My ()

_4 Z Z Z Z C"-,mql'-jl//n,m(x)l//i,j(t)v

n=2k m=M~+1 ;—¥' j=M'+1

or

! !
MMy ()

Iy Y Yy .

3
n=2k m=M+1 j—2K j=M'+1 (m.]) (Vl—|— 1)2( + 1)

(24)

Inequality (24) exhibits that the absolute error at the
(r + 1)th iteration is inversely proportional to k, k', M and

M'. This implies that u**;M

Vil (x, 1) converges to u,y1(x,1)
as k., k', M,M' — oo. Since u,,1(x,t) is obtained at
(r+ 1)th iteration of quasi-linearization technique so
according to the convergence analysis of quasi-lineariza-
tion technique [9] which states that u,(x,¢) converges to
u(x, ) as r — oo, if there is convergence at all. This
suggest that solution by CAS wavelet quasi-linearization

Kk MM

technique u,;

M and r — oo.

(x,1) converges to u(x, 1) when k, k', M

Applications of CAS wavelet quasi-
linearization technique

Consider the generalized Burgers—Fisher equation:

ou O .0 )
- u—i—au’—u—i—bu(u’—

o ety =0,

0<x<1, t>0,
(25)

subject to the initial and boundary conditions:

o0 (o)

’r @ Springer
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Approximate solution at k=k=2, M=M=3, =4

Exact solution

Ahsolute Error

Approximate solution at k=k'=3, M=M=4, =4 Exact solution

075

0.71

Ahsolute Error

Fig. 1 Comparison of the numerical results by present method at r = 4 and different values of k, k', M, M’ with exact solution of generalized

Burger—Fisher equation

w0 Gf%taﬂh(z(lai ) [f (a2 Z(If(S)vz>>tD)%’

(1) = (5= (55 1 - < :5(3)?2))’]))%‘

Implement the CAS wavelet quasi-linearization technique on
Eq. (25), as described in Sect. 4, we get the following results
as given in Tables 1, 2, and 3, and Fig. 1. We consider the
three different forms of Eq. (25) using different values of
a, b and y. Errpm, Evim, Eapm and Ecas represents the
absolute error by reduced differential transform method,
variational iteration method, Adomian decomposition
method, and present method, respectively.

Solution of generalize Burger—Fisher equation for a =

0.001,6 =0.001 and y =1 by present method at M =
M =5 k=k =4andr=4 is given in Table 1. The

* @ Springer

obtained results are compared with the results obtained
from reduced differential transform method (RDTM) [10]
and variational iteration method (VIM) [10].

Table 2 is used to list the results of generalized Burger—
Fisher equation at a = 0.001, » =0.001 and y = 2. We
implement the proposed method at M = M' =7,k =k' =
5 and r = 3. We compared our results with the results
obtained from reduced differential transform method
(RDTM) [10].

Present method at k =k =5 M =M =7, r=4 is
implemented on generalized Burger—Fisher equation with
a =0.001, b =0.001 and y = 1. The obtained results are
listed in Table 3.

Figure 1 is used to plot the exact solution of equation
(1.1) with a = 0.01 5 = 0.01 and y = 2, solution by CAS
wavelet quasi-linearization technique at r = 4 and different
values of k, k', M, and M'.
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Conclusion

We have derived and constructed the CAS wavelets matrix,
W¥,.xii» and the CAS wavelets operational matrix of q’h
order integration, P?ﬁxm’ and CAS wavelets operational
matrix of integration for boundary value problems, W57 ..
These matrices are successfully utilized to solve the gen-
eralized Burger—Fisher equation.

According to Tables 1, 2, and 3, our results are more
accurate as compared to reduced differential transform
method, variational iteration method and Adomian
decomposition method. Figure 1 shows that our results
converge to the exact solution while increasing k, k', M and
M', when r = 4.

It is shown that present method gives excellent results
when applied to generalized Burger-Fisher equation. The
different types of non-linearities can easily be handled by
the present method.
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