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Abstract
An outlier is an observation that appears to deviate from other observations in the sample and outlier detection is one of the

most important tasks in data analysis. One of the fundamental assumptions of most parametric multivariate techniques is

multivariate normality, which implies the absence of multivariate outliers. The basis for multivariate outlier detection is

based on the Mahalanobis distance and outlier detection methods have been suggested for numerous applications in the

literature. In this work, Tietjen–Moore test is generalized for multivariate data. A simulation study is carried out to evaluate

the performance of the multivariate outlier detection methods under various conditions. The results show that the proposed

method gives better results depending on whether or not the data set is multivariate normal.
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Introduction

An outlier is an observation that appears to deviate from

other observations, namely, inconsistent with the reminder

[2, 6]. The detection of outliers in multivariate data is one

of the most important problems in the physical, chemical,

medical and engineering sciences. The interest in outlier

detection procedures has been growing since the

researchers are not only interested in the regular data but

they also wish to find out the irregular data and conse-

quently the source of the data abnormality. Most of the

standard multivariate analysis techniques rely on the

assumption of normality and require the use of estimates

for both the location and scale parameters of the distribu-

tion and most of the statistical techniques are sensitive to

the presence of outliers. Outliers may be univariate or

multivariate. The most common way of identifying multi-

variate outliers in a multivariate normal data set is to

calculate Mahalanobis distance. Moreover, there are robust

and nonrobust procedures to identify outliers in multi-

variate data. Many methods have been proposed for mul-

tivariate outlier detection. Garrett [5] introduced the chi-

square plot, which draws the empirical distribution func-

tion of the robust Mahalanobis distances against the chi-

square distribution. Franklin et al. [4] used Stahel–Donoho

estimators to identify the multivariate outliers. Alameddine

et al. [1] demonstrated a case study to analyze the effec-

tiveness of the minimum covariance determinant MCD, the

minimum volume ellipsoid MVE, and M-estimator. Jack-

son and Chen [8] compared Mahalanobis distances to

minimum volume ellipsoid for identifying outliers for

multivariate data. Dang and Serfling [3] introduced non-

parametric multivariate outlier identifiers based on multi-

variate depth functions. Pena and Prieto [9] presented a

simple multivariate outlier detection procedure and a

robust estimator for the covariance matrix. Reza and Ruhi

[10] studied a new method for outlier detection using

independent component analysis.

This paper generalizes the Tietjen–Moore test for mul-

tivariate data to detect the multivariate outliers. The outline

of the paper is as follows. In Sect. 2, the methodology of

this paper is given. Firstly, Tietjen–Moore test for uni-

variate outliers is explained in Sect. 2.1. Generalized

Tietjen–Moore test for multivariate outliers will be defined

in Sect. 2.3. Moreover, robust minimum covariance

determinant estimator (MCDE) is given in Sect. 2.2.
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Simulation study is given in detail in Sect. 3 to assess the

proposed tests in case of different conditions. The paper

ends with the conclusions in Sect. 4.

Methodology

In this section, Tietjen–Moore test for univariate outliers

and robust MCDE will be given for the motivation purpose.

Generalized Tietjen–Moore test is proposed using MCDE

to detect the multivariate outliers.

Tietjen–Moore test for univariate outliers

The Tietjen–Moore test is used to detect multiple outliers

in an univariate data set [13]. This test assumes that the

underlying distribution follows an approximately normal

distribution. The suspected number of outliers is needed to

be specified exactly to apply the test properly. The Tietjen–

Moore test is defined for the hypothesis:

• H0: There are no outliers in the data set.

• HA: There are exactly k outliers in the data set.

First, n data points are sorted from the smallest to the

largest so that xi denotes the ith largest data value. Then,

the test statistic for the k largest point is

Ek ¼
Pn�k

i¼1 ðxi � �xkÞ2

Pn
i¼1ðxi � �xÞ2

; ð2:1Þ

where �x: sample mean for the full data set, �xk: sample mean

with the largest k points removed. Similarly, the test

statistic for the k smallest point is

Ek ¼
Pn

i¼kþ1ðxi � �xkÞ2

Pn
i¼1ðxi � �xÞ2

; ð2:2Þ

where �yk: sample mean with the smallest k4 points

removed. To test statistic for outliers in both tails, the

absolute residuals are calculated as ri ¼ jxi � �xj where zi
denote the xi values sorted by their absolute residuals in

ascending order. The test statistic can be expressed in terms

of z values as

Ek ¼
Pn�k

i¼1 ðzi � �zkÞ2

Pn
i¼1ðzi � �zÞ2

; ð2:3Þ

with �z denoting the sample mean for the full data set and �zk
denoting the sample mean with the largest k points

removed. The value of the test statistic is between zero and

one. If there are no outliers in the data, the test statistic is

close to 1.

Robust minimum covariance determinant
estimator

The minimum covariance determinant (MCD) is a robust

method in the sense that the estimates are not unduly

influenced by outliers in the data, even if there are many

outliers. The MCD estimator proposed by Rousseeuw [11]

is highly robust and very useful to detect outliers in mul-

tivariate data. Due to the MCD’s robustness, multivariate

outliers can be detected by their large robust distances. The

robust distance is defined like the usual Mahalanobis dis-

tance (MD) that is sensitive to the masking effect. In the

multivariate location and scatter setting, the data are stored

in an n� p data matrix X ¼ ðx1; . . .; xnÞt with xi ¼
ðxi1; . . .; xipÞt the ith observation, n stands for the number of

objects and p for the number of variables. The Mahalanobis

distance MDðxiÞ expresses that how far away xi is from the

center of the cloud, relative to the size of the cloud. The

MD is defined as following:

MDðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� �xÞtS�1ðx� �xÞ
q

; ð2:4Þ

where �x is the sample mean and S the sample covariance

matrix. However, instead of the nonrobust sample mean

and covariance matrix, the robust distance is based on

MCD location estimate and scatter matrix as following:

RDðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� l̂MCDÞ
t
X̂�1

MCD
ðx� l̂MCDÞ

r

; ð2:5Þ

where l̂MCD is the MCD estimate of location given by

l̂MCD ¼
Pn

i¼1 Wðd2
i ÞxiPn

i¼1 Wðd2
i Þ

; ð2:6Þ

and
P̂

MCD is the MCD estimator of covariance given by

^X

MCD
¼ c1

1

n

Xn

i¼1

Wðd2
i Þðxi � l̂MCDÞðxi � l̂MCDÞ

t ð2:7Þ

where di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� l̂0Þ
tP̂�1

0 ðx� l̂0Þ
q

and W an appropriate

function. The constant c1 is a consistency factor [7].

The MCD estimators ðl̂;
P̂

MCDÞ of multivariate location

and scatter have breakdown value ��nðl̂Þ ¼ ��nð
P̂

MCDÞ � n�h
2

.

The MCD has its highest possible breakdown value

(�� ¼ 50%) when h ¼ ½ðnþ pþ lÞ=2�. The MCD estimator

has a bounded influence function [7].

FAST-MCD algorithm of Rousseeuw and Van Driessen

[12] is mainly used to compute efficiently the MCD esti-

mator. MCDCOV computes the MCD estimator of a

multivariate data set. This estimator is given by the subset

of h observations with smallest covariance determinant.

The MCD location estimator is then the mean of those

h points, and the MCD scatter estimator is their covariance
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matrix. The default value of h is roughly 0.75n (where n is

the total number of observations), but the user may choose

each value between n/2 and n. Based on the raw estimates,

weights are assigned to the observation such that outliers

get zero weight. The reweighed MCD estimator is then

given by the mean and covariance matrix of the cases with

non-zero weight [12].

Generalized Tietjen–Moore Test for multivariate
outliers

Numerous methods have been suggested to detect the

multivariate outliers. The most popular one is the method

based on Mahanalobis distance. The presence of multi-

variate outliers may lead to biased estimation of the

parameters and other drawbacks. The basis of Generalized

Tietjen–Moore test is the univariate form of Tietjen–Moore

test. Suppose, we have a set of multivariate data and we

wish to test the multivariate outliers. To test for outliers in

both tails, the absolute residuals are calculated as

rij ¼ jxij � �xjj, where zij denote the xij values sorted by their

absolute residuals in ascending order. Tietjen–Moore test is

generalized for the multivariate data as below:

Ek ¼
Pp

j¼1

Pn�k=p
i¼1 ðzij � �zjkÞ0ðzij � �zjkÞ

Pp
j¼1

Pn
i¼1ðzij � �zjÞ0ðzij � �zjÞ

; ð2:8Þ

where zij: ith observation in the jth, �zjk: jth dimension mean

with k / p points removed, �zj: jth dimension mean for the

full data.

The generalized Tietjen–Moore test is defined for the

below hypothesis:

• H0: There are no outliers in the data set

• HA: There are exactly k outliers in the data set.

The test statistic value is between zero and one. If there are

no outliers in the data, the test statistic is close to 1. If there

are outliers in the data, the test statistic will be closer to

zero. Ek is distributed as Beta-distribution and is not

affected from the number of sample sizes. In the next

section, the simulation study is given to evaluate the per-

formance of the multivariate outlier detection methods

under various conditions.

Simulation study

To evaluate the performance of the proposed test and to

compare it with each other, we conduct a simulation study

with different schemes. We use two pairs of location-

scatter estimators: classical ð�x; SÞ and MCD [12] with an

approximate 25% breakdown point (denoted RMCD25),

which has better efficiency than the one with (maximal)

50% breakdown point.

In the simulation study, we generate multivariate nor-

mally distributed data with and without outliers for

p ¼ 2; 4; 6, the total number of observations is set to N ¼
n � p ¼ 60;240 and the simulation runs M = 1000 times.

The simulation scenarios are defined as below:

• Normal ðp ¼ 2Þ without outliers, N ¼ 60;240 observa-

tions from Nðl1;
P

1Þ, l1 ¼ ½0 12� and
P

1 ¼ diag

[10.3].

• Normal ðp ¼ 4Þ without outliers, N ¼ 60; 240 observa-

tions from Nðl1;
P

1Þ, l1 ¼ ½0 12 0 0� and
P

1 ¼
diag ½1 0:3 1 1�.

• Normal ðp ¼ 6Þ without outliers, N ¼ 60;240 observa-

tions from Nðl1;
P

1Þ, l1 ¼ ½0 12 0 0 3 6� and
P

1 ¼
diag ½1 0:3 1 1 0:5 2�.

• Normal ðp ¼ 2Þ;N ¼ 60; 240; 90% observations from

Nðl1;
P

1Þ, l1 ¼ ½0 12� and
P

1 ¼ diag ½1 0:3� and

plus 10 ðk ¼ 6; 24Þ outlying observations from

Nðl; 0:01 � IÞ, l ¼ ½�2 6�.
• Normal ðp ¼ 2Þ;N ¼ 60; 240; 80% observations from

Nðl1;
P

1Þ, l1 ¼ ½0 12� and
P

1 ¼ diag ½1 0:3� and

plus 20% ðk ¼ 12; 48Þ outlying observations from

Nðl; 0:01 � IÞ, l ¼ ½�2 6�.
• Normal ðp ¼ 4Þ, N ¼ 60; 240, 90% observations from

Nðl1;
P

1Þ, l1 ¼ ½0 12 0 0� and
P

1 ¼ diag

½1 0:3 1 1� and plus 10% ðk ¼ 6; 24Þ outlying obser-

vations from Nðl; 0:01 � IÞ, l ¼ ½�2 6 0 0�.
• Normal ðp ¼ 4Þ;N ¼ 60; 240; 80% observations from

Nðl1;
P

1Þ, l1 ¼ ½0 12 0 0� and
P

1 ¼ diag

½1 0:3 1 1� and plus 20% (k = 12, 48) outlying

observations from Nðl; 0:01 � IÞ, l ¼ ½�2 6 0 0�.
• Normal ðp ¼ 6Þ, N ¼ 60; 240, 90% observations from

Nðl1;
P

1Þ,l1 ¼ ½0 12 0 0 3 6� and
P

1 ¼ diag

½1 0:3 1 1 0:5 2� and plus 10% ðk ¼ 6; 24Þ outlying

observations from Nðl; 0:01 � IÞ,
l ¼ ½�2 6 0 0 3 10�.

• Normal ðp ¼ 6Þ , N ¼ 60; 240, 80% observations from

Nðl1;
P

1Þ, l1 ¼ ½0 12 0 0 3 6� and
P

1 ¼ diag

½1 0:3 1 1 0:5 2� and plus 20% (k=12,48) outlying

observations from Nðl; 0:01 � IÞ,
l ¼ ½�2 6 0 0 3 10�.

In the next step of the simulation study, we generate

multivariate non-normally distributed data with and with-

out outliers for p ¼ 2; 4; 6 and the total number of obser-

vations is set to N ¼ n � p ¼ 60; 240. The simulation

scenarios are defined as below:

• Non-normal ðp ¼ 2Þ without outliers, 20 for N ¼ 60; 80

for N ¼ 240 observations from Nðl1;
P

1Þ, 20 for N ¼
60; 80 for N ¼ 240 observations from Nðl2;

P
2Þ, 20

for N = 60, 80 for N = 240 observations from
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Nðl3;
P

2Þ, l1 ¼ ½0 12�, l2 ¼ ½1:5 6�, l3 ¼ ½0 0�,
P

1 ¼ diag ½1 0:3� and
P

2 ¼ diag ½0:2 9�.
• Non-normal ðp ¼ 4Þ without outliers, 20 for N ¼ 60; 80

for N ¼ 240 observations from Nðl1;
P

1Þ, 20 for N ¼
60; 80 for N ¼ 240 observations from Nðl2;

P
2Þ, 20

for N ¼ 60; 80 for N ¼ 240 observations from

Nðl3;
P

2Þ, l1 ¼ ½0 12 0 0�, l2 ¼ ½1:5 6 0 0�,
l3 ¼ ½0 0 0 0�,

P
1 ¼ diag ½1 0:3 1 1� and

P
2 ¼ diag

½0:2 9 1 1�.
• Non-normal ðp ¼ 6Þ without outliers, 20 for N ¼ 60; 80

for N ¼ 240 observations from Nðl1;
P

1Þ, 20 for N ¼
60; 80 for N = 240 observations from Nðl2;

P
2Þ, 20 for

N ¼ 60; 80 for N = 240 observations fromNðl3;
P

2Þ,
l1 ¼ ½0 12 0 0 3 6�, l2 ¼ ½1:5 6 0 0 1 9� l1 ¼
½0 0 0 0 0 0�,

P
1 ¼ diag ½1 0:3 1 1 0:5 2� and

P
2 ¼

diag ½0:2 9 1 1 0:8 5�.
• Non-normal ðp ¼ 2Þ, 18 for N ¼ 60; 72 for N ¼ 240

observations from Nðl1;
P

1Þ, 18 for N = 60, 72 for N =

240 observations from Nðl2;
P

2Þ, 18 for N ¼ 60; 72

for N = 240 observations from Nðl3;
P

2Þ, l1 ¼ ½0 12�,
l2 ¼ ½1:5 6�, l3 ¼ ½0 0�,

P
1 ¼ diag ½1 0:3� and

P
2 ¼ diag ½0:2 9� and plus 10% ðk ¼ 6; 24Þ outlying

observations from Nðl; 0:01 � IÞ, l ¼ ½�2 6�.
• Non-normal ðp ¼ 4Þ, 18 for N ¼ 60; 72 for N ¼ 240

observations from Nðl1;
P

1Þ, 18 for N ¼ 60; 72 for

N ¼ 240 observations from Nðl2;
P

2Þ, 18 for N ¼
60; 72 for N ¼ 240 observations from Nðl3;

P
2Þ

l1 ¼ ½0 12 0 0�, l2 ¼ ½1:5 6 0 0�, l3 ¼ ½0 0 0 0�,
P

1 ¼ diag½1 0:3 1 1� and
P

2 ¼ diag ½0:2 9 1 1� and

plus 20% (k=6,24) outlying observations from

Nðl; 0:01 � IÞ, l ¼ ½�2 6 0 0�.
• Non-normal ðp ¼ 6Þ, 18 for N ¼ 60; 72 for N ¼ 240

observations from Nðl1;
P

1Þ, 18 for N ¼ 60; 72 for

N ¼ 240 observations from Nðl2;
P

2Þ, 18 for N ¼
60; 72 for N ¼ 240 observations from Nðl3;

P
2Þ,

l1 ¼ ½0 12 0 0 3 6�, l2 ¼ ½1:5 6 0 0 1 9� l3 ¼
½0 0 0 0 0 0�

P
1 ¼ diag ½1 0:3 1 1 0:5 2� and

P
2 ¼

diag ½0:2 9 1 1 0:8 5� and plus 10% ðk ¼ 6; 24Þ outly-

ing observations from Nðl; 0:01 � IÞ,
l ¼ ½�2 6 0 0 3 10�.

• Non-normal ðp ¼ 2Þ, 16 for N ¼ 60; 64 for N ¼ 240

observations from Nðl1;
P

1Þ, 16 for N ¼ 60, 64 for

N ¼ 240 observations from Nðl2;
P

2Þ, 60 observations

from Nðl3;
P

2Þ, l1 ¼ ½0 12�, l2 ¼ ½1:5 6�, l3 ¼ ½0 0�,
P

1 ¼ diag½1 0:3� and
P

2 ¼ diag ½0:2 9� and plus 20%

ðk ¼ 12; 48Þ outlying observations from Nðl; 0:01 � IÞ,
l ¼ ½�2 6�.

• Non-normal ðp ¼ 4Þ , 16 for N ¼ 60; 64 for N ¼ 240

observations from Nðl1;
P

1Þ, 16 for N ¼ 60; 64 for

N ¼ 240 observations from Nðl2;
P

2Þ, 60 observations

from Nðl3;
P

2Þ, l1 ¼ ½0 12 0 0�, l2 ¼ ½1:5 6 0 0�,
l3 ¼ ½0 0 0 0�,

P
1 ¼ diag½1 0:3 1 1� and

P
2 ¼ diag

½0:2 9 1 1� and plus 10% ðk ¼ 12; 48Þ outlying obser-

vations from Nðl; 0:01 � IÞ, l ¼ ½�2 6 0 0�.
• Non-normal ðp ¼ 6Þ, 16 for N ¼ 60; 64 for N ¼ 240

observations from Nðl1;
P

1Þ, 16 for N ¼ 60; 64 for

N ¼ 240 observations from Nðl2;
P

2Þ, 60 observations

from Nðl3;
P

2Þ, l1 ¼ ½0 12 0 0 3 6�, l2 ¼ ½1:5 6 0

0 1 9�, l3 ¼ ½0 0 0 0 0 0�,
P

1 ¼ diag

½1 0:3 1 1 0:5 2� and
P

2 ¼ diag ½0:2 9 1 1� and plus

20% ðk ¼ 12; 48Þ outlying observations from

Nðl; 0:01 � IÞ, l ¼ ½�2 6 0 0 3 10�.

The index-robust distance plots are given in Fig. 1 both

for clean and contaminated data. The horizontal line rep-

resents the number of observation in one dimension. Fig-

ure 1 clearly shows outliers for contaminated data. Figure 2

displays the robust 97.5% tolerance ellipse based on robust

distances for multivariate data with N = 60, 240 and p = 2.

Mahalanobis distances and robust distances for the

multivariate data for p = 2, N = 60,240 are illustrated in

Fig. 3. This illustrates the masking effect: classical esti-

mates can be highly affected by outlying observations. To

get a reliable analysis of multivariate data with outliers,

robust estimators are required that can resist possible

outliers.

The value of the test statistic lies between zero and one.

If there is no outlier in the data, the test statistic is close to

1. If there are outliers in the data, the test statistic will be

closer to zero. The robust test statistics give smaller values,

thus the test statistics are used in the case of contamination.

In Tables 1 and 2: Ek1 gives the Ek values obtained from

the classic residuals based on classic estimators. Ek2 gives

the Ek values obtained from robust residuals based on

MCD estimators. Ek3 gives the Ek values obtained from

weighted residuals based on the MCD estimators.

The results for normal and non-normal multivariate data

in Tables 1 and 2 are similar and can be summarized as

follows:

• For clean sample data, test statistic Ek1 based on classic

estimators is close to 1. So the null-hypothesis (there

are no outliers) is not rejected, as expected. The values

of the robust weighted test statistic Ek3 is also close to 1

under normal distribution. So it can be used as an

alternative to Ek1. Under the non-normal distribution,

the robust test Ek2 also can be used for large sample

size.

• Under the contamination, the test statistic must reject

the null-hypothesis. If there are outliers in the data, the

test statistic is close to 0. Under the 10 and 20%

cFig. 1 Index-robust distance plot for multivariate data N = 60,240 and

p = 2
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Fig. 2 The robust tolerance ellipse for multivariate data with N = 60, 240 and p = 2
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Fig. 3 Mahalanobis distances and robust distances for multivariate data p = 2, N = 60, 240

Mathematical Sciences (2018) 12:7–15 13

123



contamination, Ek3’s performance is better than Ek2.

These two robust test statistics show up the outliers and

so can be used to detect outliers.

• When the contamination amount and sample size

decrease, Ek2 gives better results.

• In the case of contamination, the Ek test statistic based

on classic estimators is deteriorated.

• The weighted robust test statistic has the best

performance.

• The robust test statistic is not affected by the number of

sample sizes.

The MCD estimator is a highly robust estimator of multi-

variate location and scale. Therefore, detection of multi-

variate outlier using MCD estimator could be a good

solution. Results are valid for both normal and non-normal

multivariate cases to detect outliers. The results show that

the proposed method give better results depending on

whether or not the data set is multivariate normal.

From the simulation study, we can conclude that the

proposed method is applicable for the multivariate outlier.

Conclusions

Univariate or multivariate outliers are important because

they change the results of data analysis. Even though the

easiest way to detect the multivariate outliers is multidi-

mensional scatter plot, some methods based on the

Mahalanobis distance or Cooks distance have been sug-

gested in the literature. These distances use estimates of the

location and scatter to identify values that are considerably

far away from the bulk of data. The principal component

might be a good alternative method but its drawback is that

it may fail when the distribution has multi-modal. In this

paper, we generalize the Tietjen–Moore test for multi-

variate data. In the formulation, the robust estimators of the

mean and the covariance matrix are replaced by the clas-

sical estimators to avoid the masking effect. The value of

the test statistic always lies between zero and one. A

simulation study is conducted to evaluate the performance

of the multivariate outlier detection methods under various

conditions. The results reveal that the proposed method

gives better results depending on whether or not the data

set is multivariate normal even though multivariate anal-

yses require checking the multivariate normality.
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