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Abstract We propose a reliable technique based on Ado-

mian decomposition method (ADM) for the numerical

solution of fourth-order boundary value problems for

Volterra integro-differential equations. We use Green’s

function technique to convert boundary value problem into

the integral equation before establishing the recursive

scheme for the solution components of a specific solution.

The advantage of the proposed technique over the standard

ADM or modified ADM is that it provides not only better

numerical results but also avoids solving a sequence of

transcendental equations for unknown constant. Approxi-

mations of the solutions are obtained in the form of series.

Convergence and error analysis is also discussed. The

accuracy and generality of the proposed scheme are

demonstrated by solving some numerical examples.

Keywords Integro-differential equations � Boundary value

problems � Adomian decomposition method � Green’s

function � Approximations
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Introduction

Consider the following class of fourth-order BVPs for

Volterra IDEs [1–5]

yðivÞðxÞ ¼ gðxÞ þ
Zx

0

Kðx; tÞf ðyðtÞÞdt; x 2 ½0; b�; ð1Þ

with the boundary conditions

yð0Þ ¼ a1; y0ð0Þ ¼ a2; yðbÞ ¼ a3; y0ðbÞ ¼ a4; ð2Þ

where ai; i ¼ 1; 2; 3; 4 are any finite real constants,

gðxÞ 2 C½0; b�, and Kðx; tÞ 2 Cð½0; b� � ½0; b�Þ. The IDEs

are often involved in the mathematical formulation of

physical and engineering phenomena [4–6]. In general, the

IDEs with given boundary conditions are difficult to solve

analytically. Therefore, these problems must be solved by

various approximation and numerical methods. The exis-

tence and uniqueness of solutions for such problems can be

found in [1].

There is considerable literature on the numerical-ap-

proximate treatment of the BVPs for IDEs, for example,

the compact finite difference method [7], monotone

iterative methods [7, 8], spline collocation method [9],

the method of upper and lower solution [10], Haar

wavelets [11], and pseudo-spectral method [12]. Though,

these numerical techniques have many advantages, a

huge amount of computational work is involved that

combines some root-finding techniques to obtain an

accurate numerical solution especially for nonlinear

problems.

Recently, some newly developed semi-numerical

methods have also been applied to solve BVPs for IDEs

such as, ADM [3], homotopy perturbation method (HPM)

[4], and homotopy analysis method (HAM) [13]. In [5], the
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variational iteration method (VIM) was also used for

solving the problem (1)–(2). However, in [14] Wazwaz

pointed out that VIM gives good approximations only

when the problem is linear or nonlinear with the weak

nonlinearity of the form (yn; yy0; y0n; . . .Þ, but the VIM

suffers when the nonlinearity is of the form

ðey; ln y; sin y; . . .Þ (for details see [14]).

It is well known that the ADM allows us to solve non-

linear BVPs without restrictive assumptions such as lin-

earization, discretization and perturbation. Many

researchers [14–23] have shown interest to study the ADM

for different scientific models. According to the ADM, we

rewrite the problem (1) in an operator form

Ly ¼ g þ Ny; ð3Þ

where L ¼ d4

dx4 is a fourth-order linear differential operator,

g is a function of x and Ny ¼
R x

0
Kðx; tÞf ðyðtÞÞdt is a non-

linear term. Inverse integral operator is usually defined as

L�1½�� :¼
Zx

0

Zx

0

Zx

0

Zx

0

½��dx dx dx dx: ð4Þ

Operating with L�1 on both sides of (3) and using the

conditions yð0Þ ¼ a1 and y0ð0Þ ¼ a2, we obtain

yðxÞ ¼ a1 þ a2x þ c1x2 þ c2x3 þ L�1½g þ Ny�; ð5Þ

where c1 ¼ y00ð0Þ
2! and c2 ¼ y000ð0Þ

3! are unknown constants to be

determined.

The ADM relies on decomposing y by a series of

components and nonlinear term f(y) by a series of Adomian

polynomials as

y ¼
X1
j¼0

yjðxÞ and f ðyÞ ¼
X1
j¼0

Aj; ð6Þ

where Aj are Adomian’s polynomials [22], which can be

computed as

An ¼ 1

n!

dn

dkn f
X1
k¼0

ykk
k

 !" #

k¼0

; n ¼ 0; 1; 2; . . .; ð7Þ

Several algorithms have also been given to generate the

Adomian polynomial rapidly in [24–26]. Substituting the

series (6) in (5), we get

X1
j¼0

yjðxÞ ¼ a1 þ a2x þ c1x2 þ c2x3 þ L�1½g�

þ L�1

Zx

0

Kðx; tÞ
X1
j¼0

Aj

" #
dt

8<
:

9=
;: ð8Þ

On comparing both sides of equation (8), the ADM is given

by

y0 ¼ a1 þ a2x þ c1x2 þ c2x3 þ L�1ðgÞ;

yj ¼ L�1

Zx

0

Kðx; tÞAj�1dt

8<
:

9=
;; j ¼ 1; 2. . .

9>>>=
>>>;

ð9Þ

Wazwaz [27] suggested a modified ADM (MADM) which

is given by

y0 ¼ a1;

y1 ¼ a2x þ c1x2 þ c2x3 þ L�1½g� þ L�1

Zx

0

Kðx; tÞA0dt

8<
:

9=
;;

yj ¼ L�1

Zx

0

Kðx; tÞAj�1dt

8<
:

9=
;; j ¼ 2; 3; . . .:

9>>>>>>>>>=
>>>>>>>>>;
ð10Þ

Hence, the n-term approximate series solution is obtained

as

/nðx; c1; c2Þ ¼
Xn

j¼0

yjðx; c1; c2Þ: ð11Þ

We note that the series solution /nðx; c1; c2Þ depends on the

unknown constants c1 and c2. These unknown constants

will be determined approximately by imposing the

boundary condition at x ¼ b on /nðx; c1; c2Þ, which leads a

sequence of nonlinear system of equations as

/nðb;c1;c2Þ ¼ a3 and /0
nðb;c1;c2Þ ¼ a4; n ¼ 1;2; . . .:

ð12Þ

To determine the unknown constants c1 and c2, we require

root finding methods such as Newton–Raphson’s method

which requires additional computational work. But solving

the nonlinear equation (12) for c1 and c2 is a difficult task

in general. Moreover, in some cases the unknowns c1 and

c2 may not be uniquely determined. This may be the main

difficulty of the ADM.

In this work, we propose a new recursive scheme which

does not involve any unknown constant to be determined.

In other words, we introduce a modification of the ADM to

overcome the difficulties occurring in ADM or MADM for

solving fourth-order BVPs for IDEs.

The decomposition method with Green’s function

Let us first consider homogeneous version of the problem

(1) and (2) as

uðivÞðxÞ ¼ 0; x 2 ½0;b�;
uð0Þ ¼ a1; u0ð0Þ ¼ a2; uðbÞ ¼ a3; u0ðbÞ ¼ a4:

(
ð13Þ

Solving (13) analytically, we obtain
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uðxÞ ¼ a1 þ a2x � 3a1 þ 2ba2 � 3a3 þ ba4ð Þ
b2

x2

þ 2a1 þ ba2 � 2a3 þ ba4ð Þ
b3

x3:

ð14Þ

We now construct Green’s function of the following

fourth-order boundary value problem

yðivÞðxÞ ¼ hðxÞ; x 2 ½0; b�;
yð0Þ ¼ y0ð0Þ ¼ yðbÞ ¼ y0ðbÞ ¼ 0:

(
ð15Þ

The Green’s function of (15) can be easily constructed and

it is given by

Gðx; nÞ ¼
x3 � 1

6
þ n2

2b2
� n3

3b3

� �
þ x2 n

2
� n2

b
þ n3

2b2

� �
; 0� x� n;

n3 � 1

6
þ x2

2b2
� x3

3b3

� �
þ n2 x

2
� x2

b
þ x3

2b2

� �
; n� x� b:

8>>><
>>>:

ð16Þ

Using (14) and (16), we transform BVPs for IDEs (1) and

(2) into an integral equation as

yðxÞ ¼ uðxÞ þ
Zb

0

Gðx; nÞ gðnÞ þ
Zn

0

Kðn; tÞf ðyðtÞÞdt

8<
:

9=
;dn:

ð17Þ

Substituting the series (6) in (17), we obtain

X1
j¼0

yjðxÞ ¼ uðxÞ þ
Zb

0

Gðx; nÞ gðnÞ þ
Zn

0

Kðn; tÞ
X1
j¼0

Aj

" #
dt

8<
:

9=
;dn:

ð18Þ

Comparing both sides of (18), the decomposition with

Green’s function (DMGF) is given by the following

recursive scheme as

y0 ¼ uðxÞ þ
Zb

0

Gðx; nÞgðnÞdn;

yj ¼
Zb

0

Gðx; nÞ
Zn

0

Kðn; tÞAj�1dt

8<
:

9=
;dn; j ¼ 1; 2; 3. . .

9>>>>>>>=
>>>>>>>;
ð19Þ

and the modified decomposition with Green’s function

(MDMGF) is given by the following recursive scheme as

y0 ¼ u0;

y1 ¼ u1 þ
Zb

0

Gðx;nÞ gðnÞþ
Zn

0

Kðn; tÞA0dt

8<
:

9=
;dn;

yj ¼
Zb

0

Gðx;nÞ
Zn

0

Kðn; tÞAj�1dt

8<
:

9=
;dn; j¼ 2;3. . .

9>>>>>>>>>>=
>>>>>>>>>>;

ð20Þ

where u0 ¼ a1 and u1 ¼ a2x� 3a1þ2ba2�3a3þba4ð Þ
b2 x2þ

2a1þba2�2a3þba4ð Þ
b3 x3. The n-terms truncated series solution is

obtained as

wn ¼
Xn

j¼0

yj: ð21Þ

Convergence and error estimate of the scheme (19)
or (20)

In this section, we shall show that sequence fwng of the

partial sums of series solution defined by (21) converges to

the exact solution y of the problem (1), (2).

Theorem 3.1 (Convergence theorem) Suppose that X ¼
C½0; b� is a Banach space with the norm

kyk ¼ maxx2I¼½0;b� jyðxÞj; y 2 X. Assume that the function

f(y) satisfies the Lipschitz condition such that jf ðyÞ �
f ðy�Þj � ljy � y�j and denote kKk1 ¼ max jKðn; tÞj and

kGk1 ¼ max jGðx; nÞj: Further, we define d as d :¼
lkKk1kGk1b2: Then the sequence fwng converges to the

exact solution whenever d\1 and ky1k\1.

Proof From (19) or (20) and (21), we write

wn ¼ y0 þ
Xn

j¼1

yj ¼ uðxÞ þ
Zb

0

Gðx; nÞgðnÞdn

þ
Xn

j¼1

Zb

0

Gðx; nÞ
Zn

0

Kðn; tÞAj�1dt

8<
:

9=
;dn

2
4

3
5

¼ uðxÞ þ
Zb

0

Gðx; nÞ gðnÞ þ
Zn

0

Kðn; tÞ
Xn

j¼1

Aj�1

" #
dt

8<
:

9=
;dn:

For all n;m 2 N, with n[m, consider

kwn � wmk ¼ max
x2I

Zb

0

Gðx; nÞ
Zn

0

Kðn; tÞ
Xn�1

j¼0

Aj �
Xm�1

j¼0

Aj

" #
dt

8<
:

9=
;dn

������

������:

ð22Þ

Using the relation
Pn

j¼0 Aj � f ðwnÞ (for details see, [28, pp

944–945]) we have

kwn � wmk� max
x2I

Zb

0

Gðx; nÞ
Zn

0

Kðn; tÞ½f ðwn�1Þ � f ðwm�1Þ�dt

8<
:

9=
;dn

������

������

� max jGðx; nÞj
Zb

0

max jKðn; tÞj
Zn

0

ljwn�1 � wm�1jdt

8<
:

9=
;dn

� lkKk1kGk1kwn�1 � wm�1kmax
x2I

Zb

0

Zn

0

dtdn

� lkKk1kGk1b2kwn�1 � wm�1k ¼ dkwn�1 � wm�1k;
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where d ¼ lkKk1kGk1b2.

Setting n ¼ m þ 1 we obtain kwmþ1 � wmk� dkwm �
wm�1k: Thus, we have kwmþ1 � wmk� dkwm � wm�1k�
d2kwm�1 � wm�2k� � � � � dmkw1 � w0k: Using triangle

inequality for any n;m 2 N, with n[m we have

kwn � wmk ¼ kðwn � wn�1Þ þ ðwn�1 � wn�2Þ þ � � � þ ðwmþ1 � wmÞk
� kwn � wn�1k þ kwn�1 � wn�2k þ � � � þ kwmþ1 � wmk
� ½dn�1 þ dn�2 þ � � � þ dm�kw1 � w0k
¼ dm½1 þ dþ d2 þ � � � þ dn�m�1�kw1 � w0k

¼ dm 1 � dn�m

1 � d

� �
ky1k:

Thus, we obtain

kwn � wmk�
dm

1 � d
ky1k; ð23Þ

which converges to zero, i.e., kwn � wmk ! 0, as

m ! 1. This implies that there exits an w such that

limn!1 wn ¼ w. h

In the next theorem, we give the error estimate of the

series solution.

Theorem 3.2 (Error estimate) The maximum absolute

truncation error of the series wm obtained by the scheme

(19) or (20) to problem is given as

ky � wmk�
dmþ1

lð1 � dÞ kA0k1 ð24Þ

where kA0k1 ¼ maxx2I jA0j, A0 ¼ f ðy0Þ.

Proof Fixing m and letting n ! 1 in the estimate (23)

with n�m, we obtain

ky � wmk�
dm

1 � d
ky1k: ð25Þ

From the scheme (19) we have y1 ¼
R b

0
Gðx; nÞ

� R n
0

K

ðn; tÞA0dt
�

dn, and following the steps of theorem (3.1), we

have

ky1k ¼ max
x2I

Zb

0

Gðx; nÞ
Zn

0

Kðn; tÞA0dt

8<
:

9=
;dn

������

������
�kKk1kGk1kA0k1b2:

ð26Þ

But we know that d ¼ lkKk1kGk1b2. Hence, the

inequality (26) becomes

ky1k�
d
l
kA0k1: ð27Þ

Combining the estimates (25) and (27), we get the desired

result. h

Numerical results

To demonstrate the efficiency and accuracy of the proposed

recursive schemes, we consider four fourth-order BVPs for

Volterra IDEs. All symbolic and numerical computations

are performed using ‘Mathematica’ 8.0 software package.

Example 4.1 Consider the following linear fourth-order

BVP for Volterra IDE [2, 3]

yðivÞðxÞ ¼ gðxÞ þ
Z x

0

yðtÞdt; x 2 ½0; 1�

yð0Þ ¼ y0ð0Þ ¼ 1; yð1Þ ¼ 1 þ e; y0ð1Þ ¼ 2e;

9=
; ð28Þ

where gðxÞ ¼ �x þ 5ex � 1, and its exact solution is

yðxÞ ¼ 1 þ xex.

Here, b ¼ 1, a1 ¼ 1, a2 ¼ 1, a3 ¼ 1 þ e, a4 ¼ 2e,

Kðx; tÞ ¼ 1, f ðyÞ ¼ y, and gðnÞ ¼ �nþ 5en � 1. Accord-

ing to the MDMGF (20), the problem (28) is transformed

into the following recursive scheme

y0 ¼ 1;

y1 ¼ x þ ðe � 2Þx2 þ x3 þ
R1
0

Gðx; nÞ gðnÞ þ
Rn
0

Kðn; tÞy0dt

( )
dn;

yj ¼
R1
0

Gðx; nÞ
Rn
0

Kðn; tÞyj�1dt

( )
dn; j ¼ 2; 3; . . .

9>>>>>>=
>>>>>>;

ð29Þ

Gðx; nÞ is given by

Gðx; nÞ ¼
x3 � 1

6
þ n2

2
� n3

3

� �
þ x2 n

2
� n2

1
þ n3

2

� �
; 0� x� n;

n3 � 1

6
þ x2

2
� x3

3

� �
þ n2 x

2
� x2

1
þ x3

2

� �
; n� x� 1:

8>>><
>>>:

ð30Þ

Using (29) and (30), we compute the solution components

yj as

y0 ¼ 1;

y1 ¼ �5 þ 5ex � 4x � 1:5062x2 � 0:325258x3 � 0:0416667x4;

y2 ¼ �5 þ 5ex � 5x � 2:4938x2 � 0:84140x3 � 0:20833x4

� 0:041666x5 � 0:00555x6 þ � � �

..

.

To check the accuracy and efficiency of the proposed

methods, the absolute error function is defined as

EnðxÞ ¼ jwnðxÞ � yðxÞj; n ¼ 1; 2; . . .

where y is the exact solution and wn is the nth-stage

approximation obtained by the proposed (19) or (20).

In Table 1, we list the numerical results of the absolute

errors jwn � yj (obtained by the proposed MDMGF (20) [27])
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and j/n � yj [obtained by the existing MADM (10)] for

n ¼ 1; 2; 3. It is observed that the proposed MDMGF provides

not only better numerical results but also avoids solving a

sequence of transcendental equations for unknown constant.

In Fig. 1, we plot the exact solution y and the approxi-

mate solution w1 ¼ y0 þ y1. We observe that only two-term

approximations w1 ¼ y0 þ y1 coincide with the exact

solution y.

Example 4.2 Consider the following nonlinear fourth-

order BVPs for Volterra IDE [3]

yivðxÞ ¼ gðxÞ þ
Z x

0

e�ty2ðtÞdt; x 2 ½0; 1�;

yð0Þ ¼ y0ð0Þ ¼ 1; yð1Þ ¼ y0ð1Þ ¼ e;

9=
; ð31Þ

where gðxÞ ¼ 1. The exact solution is yðxÞ ¼ ex.

Here, b ¼ 1, a1 ¼ 1, a2 ¼ 1, a3 ¼ e, a4 ¼ e,

Kðx; tÞ ¼ e�t, and f ðyÞ ¼ y2ðtÞ: In view of the MDMGF

(20), we transform the problem (31) into the following

recursive scheme

y0 ¼1;y1 ¼ xþð2e�5Þx2�ðe�3Þx3

þ
Z1

0

Gðx;nÞ gðnÞþ
Zn

0

Kðn;tÞA0dt

8<
:

9=
;dn;

yj ¼
Z1

0

Gðx;nÞ
Zn

0

Kðn;tÞAj�1dt

8<
:

9=
;dn; j¼2;3; . . .

9>>>>>>>>>>=
>>>>>>>>>>;

ð32Þ

where gðnÞ¼1 and Gðx;nÞ is given by the Eq. (30). The

Adomian’s polynomial f ðyÞ¼ y2 are obtained as

A0 ¼ y2
0; A1 ¼ 2y0y1; A2 ¼ y2

1 þ 2y0y2; . . . ð33Þ

Using (32) and (33), we obtain the solution components yj

as

y0 ¼ 1;

y1 ¼ 1 � e�x þ 0:991415x2 þ 0:0114132x3 þ 0:0833333x4;

y2 ¼ 346:216 þ 0:0625e�2x � 184:271x þ 43:4637x2

� 5:66685x3 þ 0:379275x4 þ � � �

..

.

In Table 2, we present the numerical results of the

absolute errors jwn � yj (obtained by the proposed

MDMGF) and j/n � yj (obtained by MADM) for

n ¼ 1; 2; 3. It is observed that the proposed DMGF pro-

vides not only better numerical results but also avoids

solving a sequence of transcendental equations for

unknown constant. In Fig. 2, the exact solution y and the

approximate solution w1 are plotted. From this figure, we

observe that only two-term approximations w1 coincide

with the exact one.

Example 4.3 Consider the following nonlinear fourth-

order BVPs for Volterra IDE

yðivÞðxÞ ¼ gðxÞ þ
Z x

0

eyðtÞdt; x 2 ½0; 1�;

yð0Þ ¼ lnð4Þ; y0ð0Þ ¼ 1

4
; yð1Þ ¼ lnð5Þ; y0ð1Þ ¼ 1

5

9>>=
>>;

ð34Þ

Table 1 The absolute error

jwn � yj and j/n � yj for n ¼
1; 2; 3 of Example 4.1

x MDMGF MADM [27]

jw1 � yj jw2 � yj jw3 � yj j/1 � yj j/2 � yj j/3 � yj

0.1 5.39E-05 3.54E-08 2.29E-11 4.40E-03 4.54E-05 2.29E-08

0.3 3.41E-04 2.23E-07 1.44E-10 8.41E-03 4.23E-05 4.74E-07

0.5 5.66E-04 3.63E-07 2.34E-10 8.66E-03 6.63E-05 3.37E-07

0.7 4.70E-04 2.92E-07 1.88E-10 7.70E-03 6.92E-05 4.78E-07

0.9 1.02E-04 5.97E-08 3.83E-11 2.02E-03 7.97E-06 5.81E-08

Fig. 1 Plots of the exact and the approximate solution of

Example 4.1
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where gðxÞ ¼ � x2

2
� 4x � 6

ðxþ4Þ4. The exact solution is

yðxÞ ¼ lnð4 þ xÞ.

Here, we have b ¼ 1, a1 ¼ lnð4Þ, a2 ¼ 1
4
, a3 ¼ lnð5Þ,

a4 ¼ 1
5

, Kðx; tÞ ¼ 1, and f ðyÞ ¼ eyðtÞ: According to the

MDMGF (20), the problem (34) is transformed into the

following recursive scheme

y0 ¼ lnð4Þ;
y1 ¼ 0:25x�0:030569x2 þ0:0037128x3

þ
R1
0

Gðx;nÞ gðnÞþ
Rn
0

Kðn; tÞA0dt

( )
dn;

yj ¼
R1
0

Gðx;nÞ
Rn
0

Kðn; tÞAj�1dt

( )
dn j¼ 2;3; . . .

9>>>>>>>>=
>>>>>>>>;

ð35Þ

where gðnÞ¼� n2

2
�4n� 6

ðnþ4Þ4 and Gðx;nÞ is given by the

Eq. (30). The Adomian’s polynomials for f ðyÞ¼ eyðxÞ are

calculated as

A0 ¼ ey0 ; A1 ¼ ey0 y1; A2 ¼ 1

2
ey0 y2

1 þ ey0 y2ðxÞ; . . .

ð36Þ

Using (35) and (36), we obtain the components yj as

y0 ¼ lnð4Þ;
y1 ¼ 0:25x � 0:0354167x2 þ 0:010763x3 � 0:000976x4

þ 0:0001953x5 þ � � � ;
y2 ¼ �8:526512 � 10�14 þ 7:680826 � 10�13x

þ 0:003971x2 � 0:005310x3 þ � � � ;

..

.

In Table 3, we present the numerical results of the

absolute errors jwn � yj (obtained by the proposed

MDMGF) and j/n � yj (obtained by MADM) for

n ¼ 1; 2; 3. In this case, we also observe the same trend as

was observed in last two examples that the proposed

MDMGF gives better numerical results. Moreover, the

curves of the exact solution y and the approximate solution

w1 are plotted in Fig. 3. We observe that only two-term

approximations w1 and the exact solution overlap each

other.

Example 4.4 Consider the following nonlinear fourth-

order BVPs for IDEs

Table 2 The absolute error

jwn � yj and j/n � yj for n ¼
1; 2; 3 of Example 4.2

x MDMGF MADM [27]

jw1 � yj jw2 � yj jw3 � yj j/1 � yj j/2 � yj j/3 � yj

0.1 7.44E-05 1.43E-05 4.32E-08 6.44E-04 8.48E-05 2.32E-06

0.3 4.67E-04 9.17E-05 2.75E-07 4.67E-03 9.16E-05 7.72E-05

0.5 7.63E-04 1.56E-04 4.54E-07 6.63E-03 3.66E-04 7.52E-05

0.7 6.22E-04 1.34E-04 3.72E-07 5.22E-03 4.54E-04 4.72E-05

0.9 1.32E-04 3.00E-05 7.61E-08 3.32E-03 3.00E-05 7.61E-06

Fig. 2 Plots of the exact and the approximate solution of

Example 4.2

Table 3 The absolute error

jwn � yj and j/n � yj for n ¼
1; 2; 3 of Example 4.3

x MDMGF MADM [27]

jw1 � yj jw2 � yj jw3 � yj j/1 � yj j/2 � yj j/3 � yj

0.1 3.61E-05 1.71E-06 7.13E-08 5.61E-03 5.71E-04 5.23E-06

0.3 2.26E-04 1.09E-05 4.64E-07 6.56E-03 5.19E-04 3.44E-06

0.5 3.69E-04 1.85E-05 8.02E-07 7.69E-03 3.95E-04 9.41E-06

0.7 3.00E-04 1.57E-05 7.02E-07 5.40E-03 4.07E-04 9.42E-06

0.9 6.31E-05 3.49E-06 1.61E-07 4.31E-04 6.49E-04 5.71E-06
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yðivÞðxÞ ¼ gðxÞ þ
Z x

0

eyðtÞdt; x 2 ½0; 1�;

yð0Þ ¼ 0; y0ð0Þ ¼ 1; yð1Þ ¼ lnð2Þ; y0ð1Þ ¼ 1

2
;

9>>=
>>;
ð37Þ

where gðxÞ ¼ � x2

2
� x � 6

ðxþ1Þ4. The exact solution is

yðxÞ ¼ lnð1 þ xÞ.

Here, b ¼ 1, a1 ¼ 0, a2 ¼ 1, a3 ¼ lnð2Þ, a4 ¼ 1
2
,

Kðx; tÞ ¼ 1, and f ðyÞ ¼ eyðtÞ: According to MDMGF (20),

we transform the problem (37) into the following recursive

scheme as

y0 ¼ 0;
y1 ¼ x � 0:420558x2 þ 0:113706x3

þ
R1
0

Gðx; nÞ gðnÞ þ
R1
0

Kðn; tÞA0dt

� �
dn;

yj ¼
R1
0

Gðx; nÞ
R1
0

Kðn; tÞAj�1dt

� �
dn; j ¼ 2; 3; . . .

9>>>>>>>=
>>>>>>>;

ð38Þ

where gðnÞ ¼ � n2

2
� n� 6

ðnþ1Þ4. Using (36) and (38), we

obtain the solution components yj as

y0 ¼0;

y1 ¼�0:0041666x2þ0:005555x3�0:001388x6þ lnð1þxÞ;
y2 ¼2:5052108�10�8

	
�x
	
332640þ1:355178

�10�6xþ2:7963706�10�6x2

þ2:13444�10�6x3þ759528x4þ66x6�33x7þx10



þ332640ð1þxÞ5
lnð1þxÞ



;

..

.

In Table 4, we present the numerical results of the

absolute errors jwn � yj (obtained by the proposed DMGF)

and j/n � yj (obtained by MADM) for n ¼ 1; 2; 3. We also

plot the curves of the exact y and the approximate solution

w1 for n ¼ 1 in Fig. 4. Like previous examples, it is

observed that only two-term approximations w1 coincide

with the exact solution y.

Conclusions

In this paper, we studied a reliable technique based on the

decomposition method and Green’s function for the

numerical solution of the fourth-order BVPs for Volterra

Fig. 3 Plots of the exact and the approximate solution of

Example 4.3

Table 4 The absolute error

jwn � yj and j/n � yj for n ¼
1; 2; 3 of Example 4.4

x MDMGF MADM [27]

jw1 � yj jw2 � yj jw3 � yj j/1 � yj j/2 � yj j/3 � yj

0.1 3.61E-05 5.39E-06 6.48E-07 5.61E-04 8.39E-05 8.18E-06

0.3 2.26E-04 3.45E-05 4.22E-06 4.96E-03 2.45E-04 7.25E-05

0.5 3.69E-04 5.83E-05 7.29E-06 3.69E-03 3.83E-04 8.20E-05

0.7 3.00E-04 4.93E-05 6.39E-06 5.70E-03 6.93E-04 7.39E-05

0.9 6.31E-05 1.09E-05 1.47E-06 5.31E-04 3.09E-04 4.47E-05

Fig. 4 Plots of the exact and the approximate solution of

Example 4.4
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IDEs. The technique depends on constructing Green’s

function before establishing the recursive scheme for the

solution components. The proposed technique provides a

direct recursive scheme for obtaining the approximations to

the solutions of BVPs. Unlike the existing ADM or the

MADM, the proposed method DMGF or MDMGF avoids

unnecessary evaluation of unknown constants and provides

better numerical solutions. Convergence and error analysis

of the proposed technique have also been discussed. The

performance of the proposed recursive scheme have been

examined by solving four numerical examples. It has been

shown that only two-term series solution is enough to

obtain an accurate approximation to the solution.
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