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Abstract We reformulate the string classical mechanics

by substituting the standard Lagrangian by a non-standard

exponential Lagrangian where higher-order derivative

terms occur naturally in the equations of motion. Our

motivation is based on the accumulating evidence that

higher-order derivatives play a leading role in string field

theories. Since non-standard Lagrangians generate higher-

order derivatives in a usual way, it will be of interest to

explore their roles in classical string field mechanics. It was

observed that replacing standard by non-standard Lagran-

gians gives another possibility to obtain new aspects which

may have interesting physical effects.
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Introduction

String theory is a quantum theory of one-dimensional

objects called strings which come in two different types:

open and closed. Geometrically, open strings are charac-

terized by free endpoints, whereas closed strings are

characterized by connected endpoints [19]. String theory

arise in different forms depending on is associated quantum

field theory. There exist many physical results which make

string theory an appealing approach to describe a number

of fundamental aspects in theoretical physics, mainly the

particle theory and the unification problem as the main aim

of string theory is to unify the standard electroweak model

with a quantum theory of gravity. Some of these results

include: the occurrence of graviton in closed string theo-

ries, the emergence of non-abelian gauge fields and chiral

fermions in open string theories, the appearance of

microscopic black holes at high energy limit, the Einstein–

Hilbert action contained in the perturbative string theory

and so on. From mathematical points of view, string theory

joins algebraic geometry and differential geometry with

theoretical physics and this is quite amazing. However,

there is no clear physical reason why higher-order deriva-

tive curvature terms could not be present in string actions,

yet there are some recent arguments which prove that

higher-derivative terms are fundamentally important [12,

16, 17], i.e. higher-order derivative quantum corrections to

supergravity. In fact, higher-derivative corrections in string

theories are significantly investigated in a number of ways,

e.g. nonlinear sigma model, duality, scattering amplitude

and so on [1, 13, 14 and references therein]. These higher-

order derivative corrections may be also added to the

Einstein–Hilbert action and hence represent an additional

way to describe gravitational string theories. This will help

us to construct a perturbative low-energy effective action

[20]. In fact, the simplest theory which describes the

emergence of gravity in the string theory model is known

as the bosonic string theory, which is formulated by the

Polyakov action that is nothing but the action of the non-

linear sigma model in two-dimensional conformal field

theory [15]. The aim of this paper is to modify string

actions, mainly the Nambu–Goto and the Polyakov actions

by replacing the string standard Lagrangian by a string

non-standard Lagrangian and to derive the corresponding
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equations of motion and study their main consequences.

Our motivation to non-standardize the string Lagrangian

arises from the observation that higher-order derivatives

arise naturally in non-standard Lagrangian (NSL) theories

and not by implementing these later by hand. In fact, NSL

plays an important role in different branches of theoretical

physics and applied mathematics and is in general char-

acterized by a deformed kinetic energy term and a

deformed potential function [2–11, 21, 22, 24, 25]. The

follow-on modified Euler–Lagrange equation that results

from the standard calculus of variations leads to equations

of motion that correspond to physically interesting non-

linear dynamical systems. NSL comes in different forms,

yet in this paper we choose the exponential NSL (ENSL)

and prove that many interesting consequences will arise in

bosonic string theory. We will deal with a bosonic string

embedded in a Minkowskian flat spacetime of signature

ð1;D� 1Þ.
The paper is organized as follows: in ‘‘The modified

Nambu–Goto string action and equations of motion’’, we

introduce basic concepts of the modified Nambu–Goto

string actions and derive the corresponding equations of

motion; in ‘‘The modified Polyakov string action and

equations of motion’’, we discuss the modified Polyakov

string action and the main consequences of NSL formula-

tion; finally conclusions and perspectives are given in

‘‘Conclusions and perspectives’’.

The modified Nambu–Goto string action
and equations of motion

In general, the action for a relativistic string must be a

functional of the string trajectory. When a particle moves

through a spacetime, it traces out a world line, whereas a

string would trace out a surface, the worldsheet. There exist

two different types of strings: the open string which traces

out a flat sheet and the closed string which traces out a

closed tube-like surface. When dealing with action func-

tional, it is notable that the string action is proportional to

the worldsheet proper area, in contrast to the relativistic

particle where the action is proportional to the proper

distance of the world line. The string action is recognized

as the Nambu–Goto action. Usually, the Nambu–Goto

action (NGA) which is proportional to the proper area is

defined as follows [18]: we consider a scalar parameter s
and the following Lagrangian coordinates fXlðrÞ; habðrÞg
assumed to be classical fields in the curved 1 ? 1 world-

sheet geometry V2 spanned by ðr; sÞ and characterized by

the worldsheet pure gauge metric habðr; sÞ. The NGA is

then defined by S ¼ � T
c

R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _X � X0Þ2 � ð _XÞ2ðX0Þ2

q
dsdr;

where the dot refers to the time derivative and the prime

refers to the space derivative. Here, T and c are, respec-

tively, the tension of the string and the celerity of light. In

our approach, the following definition holds:

Definition 2.1 Let XlðrÞ be string coordinates and ðr; sÞ
be coordinates on the worldsheet augmented by the con-

straint _X0ðendpointsÞ 6¼ 0. We define the exponentially

non-standard Nambu–Goto action by

S ¼ � nT
c

Z
ef

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _X�X0Þ2�ð _XÞ2ðX0Þ2

p
dsdr; ð1Þ

where n is a parameter introduced to take into account the

dimensional problem, c is the celerity of light and f is a

constant. The NSL-density along the string is

L ¼ � nT
c
ef

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _X�X0Þ2�ð _XÞ2ðX0Þ2

p
� � nT

c
eL.

Theorem 2.1 The modified Euler–Lagrange equations

which correspond to the action function (1) are:

d

ds
oL

o _Xl

� �

þ d

dr
oL

oX0l

� �

¼�f €X
l oL

o _Xl

� �2

þX00l oL

oX0l

� �2
 !

:

ð2Þ

Proof The variation of the action (1) gives the full set:

dS ¼ � nT
c

Zsfinal

sinitial

Zr1

0

drdse�fL d

ds
dXl oe

fL

o _Xl

� ��

þ d

dr
dXl oe

fL

oX0l

� �

� d

ds
oefL

o _Xl
þ d

dr
oefL

oX0l

� �

dXl

�

;

¼ � nT
c

Zr1

0

drdXl oe
fL

o _Xl

�
�
�
�

sfinal

sinitial

� nT
Zsfinal

sinitial

drdXl oe
fL

oX0l

�
�
�
�

r1

0

þ nT
c

Zsfinal

sinitial

Zr1

0

drdse�nL d

ds
oefL

o _Xl
þ d

dr
oefL

oX0l

� �

dXl:

Using the boundary conditions dXlðsinitial; rÞ ¼
dXlðsfinal; rÞ ¼ 0, the equation of motion for an arbitrarily

parameterized string reads:

d

ds
oefL

o _Xl
þ d

dr
oefL

oX0l ¼ 0:

This equation may be written explicitly as:

d

ds
oL

o _Xl

� �

þ d

dr
oL

oX0l

� �

¼ �f
dL

ds
oL

o _Xl
þ dL

dr
oL

oX0l

� �

:

Using the chain rules

dL

ds
¼ oL

os
þ _Xl oL

oXl
þ €X

l oL

o _Xl
¼ €X

l oL

o _Xl
;

dL

dr
¼ oL

or
þ X0l oL

oXl
þ X00l oL

oX0l ¼ X00l oL

oX0l ;
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dL

dr
¼ oL

or
þ X0l oL

oXl þ X00l oL

oX0l ¼ X00l oL

oX0l ;

the equation of motion reads as:

d

ds
oL

o _Xl

� �

þ d

dr
oL

oX0l

� �

¼�f €X
l oL

o _Xl

� �2

þX00l oL

oX0l

� �2
 !

: h

Remark 2.1 When f ¼ 0, Eq. (2) is reduced to the stan-

dard Nambu–Goto equations of motion. Obviously, in

Eq. (2) higher-order derivative terms appear and these new

terms will modify string dynamics accordingly. These

higher-order derivative terms are coupled to the parameter f.

To simplify the equations of motion, we follow the

standard arguments by using temporal and r-parameteri-

zations in Minkowski spacetime ðcdt; dx; dy; dzÞ [1]. For

the case of temporal parameterization, we set s = t which

is the coordinate time, as it was for the point particle.

In the temporal gauge, we can choose X0l ¼ 0

X0

� �

and

_X
l ¼ c

_X

� �

. We can write Eq. (1) as:

S ¼ � nT
c

Z
ef

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _X�X0Þ2�ð�c2þ _X� _XÞ2ðX0 � _XÞ

p
dtdr:

In the r-parameterization gauge, we can choose s = r,
i.e. arc-length parameterization which gives X0j j ¼ 1. We

can use this to define the transverse component of the string

velocity v? ¼ _X � ð _X � X0ÞX0, where _X ¼ dX=dt and

X0 ¼ dX=ds. Then we can write v2? ¼ _X � _X � ð _X � X0Þ2, i.e.

S ¼ � nT
c

Z
ef

ffiffiffiffiffiffiffiffi
1�v2?

p
dtds:

Corollary 2.1 Consider the boundary condition in this

parameterization, together with our pre-gauge fixed

expression for oL=oXr, then the equations of motion are

given by:

1

c2
1þ f

v2

c2

� �
€X � 1� f 1� v2

c2

� �� �

X00 ¼ 0: ð3Þ

Proof In fact, we have:

oL

o _Xl
¼ � nT

c

ð _X � X0ÞX0
l � ðX0 � X0Þ _Xl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _XlX0

lÞ
2 � ð _Xl _X

lÞ2ðX0 � X0Þ
q ;

oL

oX0l ¼ � nT
c

ð _X � X0Þ _Xl � ð _X � _XÞX0
lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð _XlX0
lÞ

2 � ð _Xl _X
lÞ2ðX0 � X0Þ

q :

Assuming s = t, i.e. static gauge and choosing a r
parameter in a way that _X � X0 ¼ 0, an identification made

on a two-dimensional grid [26], then we can simplify these

later equations respectively to:

oL

o _Xl
¼ nT

c

ðX0 � X0Þ _Xlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 � v2ÞðX0 � X0Þ

p ;

oL

oX0l ¼ � nT
c

ðc2 � v2ÞX0
lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðc2 � v2ÞðX0 � X0Þ
p :

As we have X0
0 ¼ 0, _X0 ¼ �1 and €X0 ¼ 0, the equation

of motion is d

ds
ðnTðX0 � X0Þ

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 � v2ÞðX0 � X0Þ

p
¼ 0, and

for the case of an arc length, we found
ffiffiffiffiffiffiffiffiffiffiffiffiffi
X0 � X0

p

¼ f ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � v2

p .
nT , where f ðrÞ is an arbitrary function

of r.

With the choice f ðrÞ ¼ f0 ¼ nT
c
(a constant), X0 � X0 ¼

1� 1
c2

_X � _X ¼ 1� v2

c2
, oL
o _Xl ¼ nT

c2
_X and oL

oX0l ¼ �nTX0, we find:

1

c2
1þ f

v2

c2

� �
€X � 1� f 1� v2

c2

� �� �

X00 ¼ 0: h

Remark 2.2 This is a modified wave equation which is

reduced to its standard form when f ¼ 0.

Corollary 2.2 In the exponentially non-standard Nambu–

Goto framework, the effective celerity of light c is:

1

c2
¼ 1

c2
1þ f v2

c2

1� f 1� v2

c2

� � : ð4Þ

For f ¼ 1, we find c2 ¼ c2v2

c2þv2, which means that for

v ¼ ac where a is a positive constant, c ¼ acffiffiffiffiffiffiffiffi
1þa2

p \c 8a:
However, for f ¼ �1, we find c2 ¼ c2 2c2�v2

c2�v2 , and for

v ¼ ac, we find c ¼ c

ffiffiffiffiffiffiffiffi
2�a2
1�a2

q
, and hence for 0\a\1, we

find c[ c, i.e. the effective celerity of light is greater than

the celerity of light. For a�
ffiffiffi
2

p
, c\c, but v[ c.

Corollary 2.3 For the case of a rotating string, the

solution of Eq. (3) is given by:

Xðs; rÞ ¼ rfinal
p

cos
pr
rfinal

� �

cos
pct
rfinal

� �

x̂þ sin
pct
rfinal

� �

ŷ

� �

;

� rfinal
p

cos
pr
rfinal

� �

cos
pct
rfinal

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 1� v2

c2

� �

1þ f v2

c2

s !

x̂

 

þ sin
pct
rfinal

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 1� v2

c2

� �

1þ f v2

c2

s !

ŷ

!

;

� Xxðs; rÞx̂þ Xyðs; rÞŷ;
ð5Þ

and the perpendicular velocity which corresponds to the

transverse motion is
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v? ¼
ffiffiffiffiffiffiffiffiffiffi
_X � _X

p
¼ c cos

pr
rfinal

� �

� c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 1� v2

c2

� �

1þ f v2

c2

s

cos
pr
rfinal

� �

: ð6Þ

Proof The proof follows directly from Eq. (3) after con-

sidering a rotating string with constant angular velocity and

assuming a general solution of the motion describing left

and right motion of the form [26]: Xðs; rÞ ¼ bðA cos v
ðc� ctÞþ B cos vðcþ ctÞÞx̂þ bðC sin vðc� ctÞ þ D sin

vðcþ ctÞÞŷ, b; c; v 2 R, where ðA;B;C;DÞ are constants to
be determined from boundary conditions and ðx̂; ŷÞ are unit
vectors. Using the boundary condition X0ðs; r ¼ 0Þ ¼
X0ðs; r ¼ rfinalÞ ¼ 0 gives, respectively, A ¼ B;D ¼ �C

and v ¼ np=rfinal. For n ¼ 1 and using the fact that _X �
X0 ¼ 0 gives C ¼ �A, finally the condition X0 � X0 ¼ 1�
_X � _X

�
c2 gives A ¼ �rfinal=2bp. Consequently, Eq. (5) is

obtained after using Eq. (4). Equation (6) is a straightfor-

ward derivation. h

For f ¼ �1 and v ¼ ac, we have c ¼ c

ffiffiffiffiffiffiffiffi
2�a2
1�a2

q
and then

Eq. (6) takes the form:

v? ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� a2

1� a2

r

cos
pr
rfinal

� �

:

Hence for 0\a\1, the end of the string travels at a speed

larger than the velocity of light in contrast to the case

f ¼ 1 where the end of the string moves at a speed lower

than the velocity of light. These results show the main

differences between the standard Lagrangian and the NSL

approach in string classical mechanics. We plot in Figs. 1

and 2, respectively, the variations of Xxðs; rÞ and Xyðs; rÞ
for f ¼ 1; rfinal ¼ p and v ¼ c ¼ 1(for illustration pur-

pose) and in Figs. 3 and 4, respectively, the variations of

Xxðs; rÞ and Xyðs; rÞ for f ¼ �1; rfinal ¼ p and v ¼ ac for

a ¼ 1
2
.

It is obvious that the dynamics between cases f ¼ 1 and

f ¼ �1 differs. The rotating string oscillates more rapidly

for the case f ¼ �1 than f ¼ 1, which is due to the fact that

the end of the string moves at a velocity larger than the

velocity of light. For f � 1, we find the standard result and

Figs. 5 and 6 illustrate the variations of Xxðs; rÞ and

Xyðs; rÞ.

The modified Polyakov string action and equations
of motion

In the standard approach, the Nambu–Goto action func-

tional is somewhat difficult due to the occurrence of the

square root in the Lagrangian density. However, one way

to remove the square root is to introduce an auxiliary field

in the curved 1 ? 1 worldsheet geometry V2 known as the

pure gauge metric habðr; sÞ [18]. The spacetime is assumed

to be flat with metric g ¼ ðþ;�;�;�Þ and its relation with
the worldsheet geometry is through the constraints:

glmosX
losX

m\0 and glmorX
lorX

m [ 0. These conditions

which correspond, respectively, for space-like and time-

like tangent vectors are accompanied by the initial condi-

tions Xðr; s0Þ ¼ X0ðrÞ and osXðr; s0Þ ¼ Y0ðrÞ. This will

lead to the standard-Polyakov action being defined by

S ¼ � T
2c
glm
R
dr

ffiffiffi
h

p
haboaX

lobX
m; ða; b ¼ 0; 1Þ; ðl; m ¼

0; 1; . . .;DÞ; which is the starting point for the path integral

quantization. Here, h ¼ det hab and ðh�1Þab ¼ hab. In our

approach, the following definition holds.

Definition 3.1 Let XlðrÞ be string coordinates, ðr; sÞ be
coordinates on the worldsheet geometry V2 with pure

Fig. 1 Plot of Xxðs;rÞ for f ¼ 1

Fig. 2 Plot of Xyðs;rÞ for f ¼ 1
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gauge metric habðr; sÞ augmented by the constraints

glmosX
losX

m\0 and glmorX
lorX

m [ 0. We define the

exponentially non-standard-Polyakov action by

S ¼ � nT
2c

glm

Z
ef
ffiffi
h

p
haboaX

lobX
m
dr; ð7Þ

with the Lagrangian density along the string given by

L ¼ � nT
2c
glme

f
ffiffi
h

p
haboaX

lobX
m � � nT

2c
glme

L:

Corollary 3.1 The Lagrangian density for the exponen-

tially non-standard-Polyakov action is written as:

L ¼ � nT
2c

glme
f
ffiffi
h

p
haboaX

lobX
m

¼ � nT
2c

glme
f
ffiffi
h

p
ðhss _XlXmþ2hsr _XlX0mþhrrX0lX0mÞ; ð8Þ

where the dot refers to the time derivative and the prime

refers to the space derivative.

Usually, for the case of ENSL S ¼
R
efLð _x;x;tÞdt, the

Euler–Lagrange equation is modified and oL
ox
� d

dt
ðoL
o _xÞ ¼

f oL
o _x

dL

dt
; where dL

dt
¼ oL

ot
þ _x oL

ox
þ €x oL

o _x is the total derivative

operator [5].

Theorem 3.1 For the case of an explicitly time-inde-

pendent Lagrangian density, the string coordinates XlðrÞ
and the gauge metric habðr; sÞ, respectively, obey the fol-

lowing modified Euler–Lagrange equations:

oL

oXl
� oa

oL

oðoaXlÞ ¼ f
oL

oðoaXlÞ oaX
l oL

oXl
þ oaoaX

l oL

oðoaXlÞ

� �

;

ð9Þ
oL

ohbc
�oa

oL

oðoahbcÞ
¼f

oL

oðoahbcÞ
oah

bc oL

ohbc
þoaoah

bc oL

oðoahbcÞ

� �

:

ð10Þ

Fig. 5 Plot of Xxðs;rÞ for f\\1Fig. 3 Plot of Xxðs;rÞ for f ¼ �1

Fig. 4 Plot of Xyðs;rÞ for f ¼ �1

Fig. 6 Plot of Xyðs;rÞ for f\\1

Math Sci (2015) 9:173–179 177

123



Corollary 3.2 The equations of motion for the action

functional (7) are:

oao
aXl �

1

2
hcdoah

cdoaXl ¼
fnT
c

ffiffiffi
h

p
ðoaXlÞ2oaoaXl; ð11Þ

obX
locXl �

hbc

2
hef oeX

lof Xl ¼ 0: ð12Þ

Proof From Eq. (8), we find that oL

oXl ¼ 0 and
oL

oðoaXlÞ ¼ � nT
c

ffiffiffi
h

p
oaXl. Then from Eq. (9), we find:

oa
ffiffiffi
h

p
oaXl

	 

¼ fnT

c

ffiffiffi
h

p
oaXl

ffiffiffi
h

p
oaXloaoaX

l
	 


:

Using the fact that oað
ffiffiffi
h

p
oaXlÞ ¼

ffiffiffi
h

p
oao

aXlþ
oa

ffiffiffi
h

p
oaXl ¼

ffiffiffi
h

p
oao

aXl � 1
2

ffiffiffi
h

p
hcdoah

cdoaXl, we find:

oao
aXl �

1

2
hcdoah

cdoaXl ¼
fnT
c

ffiffiffi
h

p
ðoaXlÞ2oaoaXl:

Again from Eq. (8), oL

oh
bc ¼ � nT

2c
ðobXlocXl �

hbc
2
hef oeX

lofXlÞ and oL

oðoah
bcÞ

¼ 0. Then Eq. (10) gives:

obX
locXl �

hbc

2
hef oeX

lof Xl ¼ 0: h

Remark 3.1 In the NSL approach, only Eq. (11) which

corresponds to string coordinates is modified. This equa-

tion holds higher-order derivative terms. Equation (12) is

similar to the one derived in the standard approach.

Lemma 3.1 Let Gbc ¼ obX
locXl, then

S ¼ � nT
2c

R
ds
R
dref

ffiffiffi
G

p
:

Equation (12) is equivalent to Gbc ¼ hbc
2
tr Gk k for Gbc ¼

obX
locXl which is written after some algebra as
ffiffiffi
h

p
haboaX

lobXl ¼ 2G [18], and hence we find the require

results. h

In fact, Lemma 3.1 states that ‘‘the exponentially non-

standard Nambu–Goto action is obtained from the expo-

nentially non-standard-Polyakov action using Euler–La-

grange equations for the worldsheet metric’’. However, in

our approach, the equation of motion (11) for the string

coordinates XlðrÞ is different.

Remark 3.2 Using diffeomorphisms and Weyl transfor-

mation [23], one can write in the conformal gauge Eq. (7) as

S ¼ � nT
2c

Z
d2ref X02� 1

c2
_X2

� �
;

and in particular in the Minkowski spacetime after making

the choice hab ¼ gab; where gab is the Minkowski signa-

ture, i.e. conformal gauge and c is the effective celerity of

light defined by Eq. (4).

The corresponding equation of motion for X is then

given by Eq. (2) which is rewritten in that case as:

1

c2
€Xð1� 2f2 _X2Þ � X00ð1þ 2f2X02Þ ¼ 0:

This equation has to be consistent with the equation of

motion (12) for hab, which is Tab ¼ oaXobX �
1
2
gabg

ef oeXof X ¼ 0 and gives T01 ¼ X0 � _X ¼ 0 and

T00 ¼ T11 ¼ 1
2
ð _X2 þ X02Þ ¼ 0, known as the Virasoro

constraints. Accordingly, we can write the equation of

motion as ð1� 2f2 _X2Þð€X � c2X00Þ ¼ 0 and then €X �
c2X00 ¼ 0 or 1� 2f2 _X2 ¼ 0. So the equation of motion

implies a harmonic wave equation €X � c2X00 ¼ 0 or a

solution of the form _X2 ¼ �X02 ¼ 1
�
2f2. This last solution

gives XðrÞ ¼ �
ffiffiffiffiffiffiffiffi
� 1

2f

q
rþ Xr0 and XðsÞ ¼ �

ffiffiffiffi
1
2f

q
sþ Xs0;

where Xr0 and Xs0 are initial solutions. For f\0ð[ 0Þ, we
find a complexified (real) evolution of XðsÞ and a real

(complexified) evolution of XðrÞ. In other words, these

solutions show that we have a complexified linear evolu-

tion in time, which is not realistic unless we perform a

Wick rotation s ! is; i ¼
ffiffiffiffiffiffiffi
�1

p
2 C for f\0, i.e. com-

plexified action. For Xr0 ¼ Xs0 ¼ 0, we have X2ðrÞ �
X2ðsÞ ¼ � 1

2f ðs2 þ r2Þ which means that for f\0ð[ 0Þ,
we have X2ðrÞ � X2ðsÞ[ ð\Þ0 that corresponds, respec-

tively, to stable solutions and unstable solutions.

Conclusions and perspectives

The objective of this work was to discuss the impacts of

exponentially non-standard Lagrangians in string classical

mechanics. In reality, NSL naturally generates higher-order

derivatives in the equations of motion; therefore, our basic

motivation was to explore the main consequences of these

higher-order terms in string theory as there exist many

arguments which proved that these terms played an impor-

tant role in mainly all string theories. To do this, we gave in

this work the basic setups where two exponentially non-

standard-string Lagrangian densities were discussed: the

Nambu–Goto and the Polyakov actions. It was observed that

the non-standard formulation of both fundamental actions

gave some new insights into classical string theory.

For the case of an exponentially non-standard Nambu–

Goto action, the wave equation is characterized by an

effective celerity of light which depends on the sign of the

parameter f. For positive value of f, the effective celerity

of light is lower than c, whereas for the case of a negative

value of f, the effective celerity of light is greater than c

which means that the end of the string moves at a velocity

larger than the celerity of light, in particular when the

velocity of motion is less than the celerity of light, v ¼ ac
with 0\a\1. Moreover, for the case of a rotating string, it
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was observed that the dynamics depends also on the sign of

the parameter f. Oscillations are faster for the negative case
than for the positive case.

For the case of an exponentially non-standard-Polyakov

action, the equation of motion for the string coordinates

differs from the standard case where higher-order deriva-

tive terms occur, whereas it is identical to the standard case

for the gauge metric. However, the exponentially non-s-

tandard Numbu–Goto action may be derived from the

exponentially non-standard-Polyakov action using Euler–

Lagrange equations for the worldsheet metric. Using dif-

feomorphisms and Weyl transformation in the Minkowski

spacetime, we have introduced a new exponentially non-

standard-Polyakov action where the celerity of light is

replaced by an effective one. In that way, the equation of

motion yields the harmonic wave equation characterized as

in the exponentially non-standard Nambu–Goto action by

an effective celerity of light, which depends on the sign of

the parameter f.
These results must be used to explore their main con-

sequences in different string theoretical aspects, mainly

their quantization aspects. Work in this direction is under

progress.
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