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Abstract Using the fixed point and direct methods, we
prove the Hyers—Ulam stability of the following Cauchy-
Jensen functional equation.
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where p,q,d are positive integers, in random normed
spaces.
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Introduction and preliminaries

A classical question in the theory of functional equations is
the following: “When is it true that a function which ap-
proximately satisfies a functional equation must be close to
an exact solution of the equation?”. If the problem accepts
a solution, we say that the equation is stable. The first
stability problem concerning group homomorphisms was
raised by Ulam [32] in 1940. In the next year, Hyers [14]
gave a positive answer to the above question for additive
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groups under the assumption that the groups are Banach
spaces. In 1978, Rassias [25] proved a generalization of
Hyers’s theorem for additive mappings. This new concept
is known as generalized Hyers—Ulam stability or Hyers—
Ulam—Rassias stability of functional equations. Further-
more, in 1994, a generalization of Rassias’s theorem was
obtained by Gévruta [13] by replacing the bound (]| x||” +
[l|”) by a general control function ¢(x,y).

In 1983, a generalized Hyers—Ulam stability problem for
the quadratic functional equation was proved by Skof [31]
for mappings f : X — Y, where X is a normed space and Y
is a Banach space. In 1984, Cholewa [7] noticed that the
theorem of Skof is still true if the relevant domain X is
replaced by an Abelian group and, in 2002, Czerwik [9]
proved the generalized Hyers—Ulam stability of the
quadratic functional equation. The reader is referred to [1-
29] and references therein for detailed information on
stability of functional equations. In the sequel, we adopt the
usual terminology, notions and conventions of the theory of
random normed spaces as in [30].

Throughout this paper, let I'" denote the set of all
probability distribution functions F : R U [—o0, +00] —
[0, 1] such that F is left-continuous and nondecreasing on R
and F(0) = 0,F(+00) = 1. It is clear that the set D" =
{FeT" :I"F(+00) = 1}, where " f(x) = lim,_,- f(¢), is
a subset of I'". The set I'" is partially ordered by the usual
point-wise ordering of functions, that is, F < G if and only
if F(r)<G(t) for all r € R. For any a >0, the element
H,(t) of D" is defined by

0 if
1 if

t<a,

Hin = {

t>a.

We can easily show that the maximal element in I'" is the
distribution function Hy(t).
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’r @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40096-015-0151-z&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40096-015-0151-z&amp;domain=pdf

72

Math Sci (2015) 9:71-78

Definition 1.1 A function T : [0,1]* — [0,1] is a con-
tinuous triangular norm (briefly, a r-norm) if T satisfies the
following conditions:

(a) T is commutative and associative;

(b) T is continuous;

(¢) T(x,1)=xforall xel0,1];

(d) T(x,y)<T(z,w) whenever x<z and y<w for all
x,y,z,w € [0, 1].

Three typical examples of continuous z-norms are as
follows: T(x,y) = xy,T(x,y) = max{a + b — 1,0},
T(x,y) = min(a,b).

Recall that, if 7 is a t-norm and {x,} is a sequence in
[0, 1], then TP ,x; is defined recursively by T ;x; = x; and
T \x; = T(Tl.":’llxi,x,,) for all n>2. T x; is defined by
T3Z X
Definition 1.2 A random normed space (briefly, RN-s-
pace) is a triple (X, u, T), where X is a vector space, T is a

continuous f-norm and p : X — D" is a mapping such that
the following conditions hold:

(@) p.(t) = Ho(r) for all x € X and r > 0 if and only if

x=0;

(b)  p, (1) = (ﬁ) for all o € R with o # 0, x € X and
t>0;

(©)  Hopy(t+5) > T(u(2), uy(s)) for all x,y € X and
t,s >0.

Definition 1.3 Let (X, p, T) be an RN-space.

(a) A sequence {x,} in X is said to be convergent to a
point x€X (write x, —x as n—oo) if
lim,, o0 i, () = 1 for all £ > 0.

(b) A sequence {x,} in X is called a Cauchy sequence in
X if lim, o pt,, . (1) =1 for all £ > 0.

(c) The RN-space (X, u,T) is said to be complete if
every Cauchy sequence in X is convergent.

Theorem 1.4

is a

[30] If (X,u,T) is an RN-space and {x,}
sequence such that then

limn—>90 iux,, (t) = :ux(t)'

Definition 1.5 Let X be a set. A function d: X X X —
[0, 0] is called a generalized metric on X if d satisfies the
following conditions:

Xp — X,

(@) d(x,y) =0 if and only if x =y for all x,y € X;
(b) d(x,y) =d(y,x) for all x,y € X;
(©) d(x,2) <d(x,y)+d(y,z) for all x,y,z € X.

Theorem 1.6 Let (X, d) be a complete generalized metric

space and J : X — X be a strictly contractive mapping with
Lipschitz constant L<1. Then, for all x € X, either

’r @ Springer

d(J"x,J"Mx) = oo

(1.1)

for all nonnegative integers n or there exists a positive
integer ngy such that

(@) d(J"x,J""x) < oo for all ny > ny;

(b)  the sequence {J"x} converges to a fixed point y* of
J;

(c) y* is the unique fixed point of J in the set
Y={yeX:d(J"x,y)<oo};

)  d(y,y") < zd(y,Jy) forally € Y.

In 1996, Hyers et al. [15] were the first to provide ap-
plications of stability theory of functional equations for the
proof of new fixed point theorems with applications. By
using fixed point methods, the stability problems of several
functional equations have been extensively investigated by
a number of authors (see [10, 22-24]).

This paper is organized as follows: In “Stability of the
Cauchy—Jensen functional equation : a directmethod”, us-
ing direct method, we prove the Hyers—Ulam—Rassias
stability of the following functional equation that we call
Cauchy—Jensen mapping

’.77 X + ‘.17 Vi d
2f (Zl—l Z]—l J + ZZk)
k=1

2

q d

- iﬂxi) o) +2 3 fla)

=1 k=1

(1.2)

where x;,y;,zx € X, in random normed space. In “Stability
of the Cauchy-Jensen functional equation a fixed
pointapproach”, using the fixed point method, we prove the
Hyers—Ulam—Rassias stability of the Cauchy—Jensen
functional equation (1.2) in random normed spaces.

Stability of the Cauchy-Jensen functional
equation: a direct method

For a given mapping f : X — Y, we define

o xi q . d
AQf(xvy; Z) = 2f (le i+ Zj:1 Vi + Z Zk)
k=1

2

P q d

- Zf(xi) =D o) =2 ()

i=1 =1 k=1

for all x;,y;,zx € X.

In this section, using direct method, we prove the gen-
eralized Hyers—Ulam—Rassias stability of the Cauchy—
Jensen additive functional equation (1.2) in random space .

Theorem 2.1 Let X be a real linear space (Z, ', min) be
an RN-space and ¢ : XP74*? — Z be a function such that

. 2 . .
there exists 0 <a < ey satisfying
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:u:b ( 2x; 2y; B2

FrataaTaraTe 2

o (1) 2 Koplrs iy () (2.1)

for all x;,y;,zx € X and ¢ > 0 and

/

ony
S <(p+q+2d)>:1
¢ (]1+q+2d)" (p+q+2d ) (p+q+2d)“

for all x;,y;,zx € X and r > 0. Let (¥, u, min) be a complete
RN-space. If f : X — Y be a mapping with f(0) =0 and
satisfying

n LA N B (t) > :u,d)(xl.,\" 2 )(t)
o (%Qﬁz, zk> S =3 o230 S ) -

(2.2)
for all x;,y;,zx € X and t > 0, then the limit

(p+q+2d)"f((p 21y >

L(x) = Ii
(x) = Jim g+ 2d)"

n—00 n

exists for all x € X and defines a unique Cauchy—Jensen
mapping L : X — Y such that

2= (p+q+2d)u)t
By 109 (1) = M, ( 9 (2:3)
for all x € X and ¢t > 0.
Proof Putting x; = y; = zx = x in (2.2), we see that
Hop (22428 (1 g2y (o) (D) 2 Mg, (1) (2.4)

for all x € X and all # > 0. Replacing x by [% in (2.4),

we obtain

(2.5)

’
ﬂf(X%Mf( 2 )(t)2#¢( 2 o 2 )(2t)

2 p+q+2d p+q+2d°p+q+2d> p+q+2d

for all x € X and all # > 0. Replacing x by (p+q+2d a2’ in (2.5)

and using (2.1), we obtain

(1)
'u(n+q+2d)”+ Vo _ontly (ra=2d)" o[ oy
ol J (prqt2d)TT 2T\ (p+q+2d)"

, ontly
> = @
f.ud)( ontly on+ly ontly ) ((p + q + Zd)n>

(p+q+2d)" U (pgr2ayt 17 (p+q+2d>"+‘

, 2n+lt
>
Z Hp(xx,...x) <(P +q+ 2d) oc"“)

and so

CAt(p+q+2d) ok
Mr,mzz ( ) Z 2k+1
f (I\u d)"

k=0

'uz k1l l+q+z.1)k+l k41, (pq+2d)k ok
k=0 (p+g+2d) 2 &\ (praraaf
(5 t(p+q-+2d) !

> o

k=0

ko k+1
>t Hptq+2d) o
= k=0 /'(,W,Azu)“",. okl (p+a+2d)f ok Qk+1
KT\ (pagr2a)ftT &I\ (prqr2af

JensX) (2t)> = ﬂi{)(,‘c,x,,.,,x) (2t)

(2.6)
This implies that
2t
[ ) Z Woten) | S i
B e G R C M S e
(2.7)
Replacing x by m in (2.7), we obtain
K (p+q+2d)"+l,< on-tly ) (p+q+2d)! ,( 2l )(l)
2\ (prgr2ay T oA\ (prgrad)
2.8
N o (2.8)
Z Hoten) | i1 (rrgradfa
k=1 2F
Since
i , 2t -1
L Hoer,.2) nH—1 (prgr2d)fatt |
k=l T2k
it follows that {(erq;M)n f ((p +§"+"2 d>n) }Ql is a Cauchy

sequence in a complete RN-space (Y, 4, min) and so there
exists a point L(x) € Y such that

(p+q+2d) 2"x B
o H(Graaay) =1

Fix x € X and put p = 0 in (2.8). Then we obtain

n—oo on

2t

n—1 (ptq+2d) ok +!
k=0 2%

/
Py, ( " )—foc)(t) Z Ho(x,x,...x)

(p+q+2d)"

and so, for any € > 0,
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B EHOZT ot Ny (L )
(x)=f(x) L)z (”’72:2”)”) (220, ((pﬂz,:m”> —f()

>7( 1 O 2
= L(»‘)*%f‘(wﬁﬁ) sEP(x.x,....x) ZZ;&W# .

(2.9)

Taking n— o0 in (2.9), we get

2t

0o (ptg+2d) s+
k=0~ 2F

M) (E+ €) 2 Koy

(2.10)
Since € is arbitrary, by taking ¢ — 0 in (2.10), we get

- (p+q+2d)oc)t).

o

2"x; 2"y
+q+2d)" ? (p+q+2d)

Replacing x;, y; and zx by G Zy an nd (p+q+2d)n in

(2.2), respectively, we get

H <ﬂ+";24>”4Qf( 2y 2 My )(t)

(p+q+2d)" (p+q+2d) (ptq+2d)"

oy 2y,
(p+gq+2d)"™ (p+q+2d)” (p+q+7d)”

=y ) e )

for all x;,y;,zx € X and t > 0. Since

(o)

we conclude that L satisfies (1.2).

To prove the uniqueness of the additive mapping L,
assume that there exists another mapping M :X — Y
which satisfies (2.3). Then we have

: !
lim p .
n—00 ¢ 2My; 2y i 2r1
(p+q+2d)" (p+q+2d)" (p+q+2d)”

He () —m(x) (2)

= lim t
n—00 'u(ﬂ+q+2d)"y 2y (n+q+2d)’M 2y ( )
“\ (ptrg+2a)” (p+q+2d)7

o7

. . t
> lim minq u (—) ,
n—o00 (p+gq+2d)" ( ony ) (p+q+2(l)"f (( ony ) 2
P

2T N\ (prg+2d)" 21 +q+2d)"

t
K prar2a) [ ony (pq+2d)" 2y 2
)\ g2 2T\ (pgt2d)"

> lim g/
n—oQ (7)

My My .2
(p+q+2d)" (p+q+2d)" (p+q+2d)"

2"2 = (p+q+2d)a)t
X( 2(p+q+2d)" )

> lim ,u¢(

n—oo

( ( —(p+q+2d)<x)t)
,,,,, X) 2(p+q+2d)n06"+] )

Since
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2 (g2
n—oo  2(p + q + 2d)" o1

we get

,}Ln(;lc :ud)(x,x,m,x)( 2<p _|_q + 2d)nan+1 =1L

Therefore, it follows that pi; () (t) = 1 for all # > 0 and
so L(x) = M(x). This completes the proof. O

Corollary 2.2 Let X be a real normed linear space
(Z, /', min) be an RN-space and (Y, u, min) be a complete
RN-space. Let r is a positive real number with 0 <r<1,
20 €Z and f: X — Y be a mapping with f(0) =0 and
satisfying

I PN (1)
of <”+Z ) O DANICOE DN (AR BRINICY

>y (1) (2.11)
(Z,ll bl + 30 I+ nzku")zo

for all x;,y;,zx€X and r>0. Then the limit L(x)=

(p+g+2d)" f 2"y
2" (p+q+2d)

a unique Cauchy—-Jensen mapping L:X—Y such that

QRp+qg+2d) —2"(p+q+ 2d))t>
2"(p+q+d)

lim,, o ) exists for all x€X and defines

By 200 (1) = M (

forall x € X and ¢ > 0.

Proof Let o= (m)r and ¢ :XPTt 7 be a
mapping defined by

b(xi,yjy2) = <Z Jlxi]|” +Z|\yjll +Z||Zk|>

Then, from Theorem 2.1, the conclusion follows. O

Theorem 2.3 Let X be a real linear space (Z, ¢/, min) be
an RN-space and ¢ : XP*4*¢ — Z be a function such that
there exists 0 <o < 2424 satisfying

!/

n ® ((p+¢ﬁ2»2d)Ai,(P*lﬁz’z‘l))'j’(])+qt2n!)zk) (t ) > lu;qﬁ(xhyj,zk) (t )

(2.12)

for all x;,y;,zx € X and ¢ > 0 and

(p+q+2d)"t
lim lu ((p+q+2d " (n+q+2d)")J (p+q 2¢I ) <T =1

n—oo ¢

for all x;, yj, zx € X and r > 0. Let (Y, 4, min) be a complete
RN-space. If f : X — Y be a mapping with f(0) =0 and
satisfying (2.2). Then the limit
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2" (p+q+2d)"x
()—,}W(ﬁ +2d)"f< 2 >

exists for all x € X and defines a unique Cauchy-Jensen
mapping L : X — Y such that

()L (1) = Mg, (P + g + 2d) = 2a)t). (2.13)
for all x € X and ¢ > 0.

Proof By (2.4), we have

B gy ()21 ((pP+g+2d))  (2.14)
for all x € X and all ¢ > 0. Replacing x by M in

(2.14) and using (2.12), we obtain

W ‘v(([r+q+2d)"+]x) o . ((p+q+2d)”x) (t)

(p+q+2a) ont1 g2 7

(p+q+2d)"""t
(p+q+2d) ) om

P

n+1
S (M)

2non

/
- (p+q+2d)"x (p+q+2d)”
¢ (ras2s ea 2 |

The rest of the proof is similar to the proof of Theorem
2.1. O

Corollary 2.4 Let X be a real normed linear space
(Z, 1/, min) be an RN-space and (Y, u, min) be a complete
RN-space. Let r is a positive real number with r > 1, z €
Zandf : X — Y be a mapping with f(0) = 0 and satisfying

(2.11). Then the limit L(x) = lim, e o727 f (("“’;2") ")

exists for all x € X and defines a unique Cauchy—Jensen
mapping L : X — Y such that

((p+q+2d)—2"(p+q+2d)" ")t
(p+q+ad)

Hr() 10 () Z Kz (

for all x € X and r > 0.

1—
Proof Let a= (””T”d) '

mapping defined by

b(xi, yj> 2k) = (Z xi]|” +Z|\y/|| +Z||Zk|>

Then, from Theorem 2.3, the conclusion follows. O

and ¢ :XPT9t 7 be a

Stability of the Cauchy—Jensen functional
equation: a fixed point approach

In the rest of the paper, by ®(x;,y;,zx), we mean that
D(x1, .., X, Y1, Yg,21,- -, Za). Using the fixed point
method, we prove the generalized Hyers—Ulam—Rassias

stability of the functional equation AQy(x,y,z) =0 in
random normed spaces.

Theorem 3.1 Let X be a linear space (Y,u, Ty) be a

complete RN-space and ® be a mapping from X7+t to

D*(®D(x;,yj, z) is denoted by @, ,, - ) such that there exists
2 . .

O<a< STaTad satisfying

@ 2 W 2% (OC[) > (DX: Yi» Zk( )

p+q+2d prq+2d°p+rq+2d

(3.1)

for all x;,y;,zx € X and ¢t > 0. Let f : X — Y be a mapping
with £(0) = 0 and satisfying

(BB ) o
d

X Zf(zk)(t) > (I)x,,y_;,Zk (t)

k=1

(32)

for all x;,y;,zx € X and # > 0. Then the limit
(p+q+24d) ( 2"x )

=L(x

No+graar) =t

exists for all x € X and L: X — Y is a unique mapping
such that

2(1 — o)t
-1 (8) = P, x, .. x (—)
—_————

lim

n—o00o omn

. (3.3)
(p+q+d)—times
for all x € X and t > 0.
Proof Putting x; = y; = zx = x in (2.2), we get
pa+ 1) >0 t
#Zf(TMx)f(erquM)f(x)( ) Z XX, .,X( ) (34)

(p+q-+d)—times

for all x € X. Replacing x by +2 - in (3.4), we obtain

pt+q

Hyp-viaap o ()20 gy 2x n (20
p+q+2dp+q+2d "p+q+2d
(p+q+d)—times

2t
Z(Dx,x,..l,x<—>
—— \ &

(p+q-+d)—times

for all x € X and all t > 0.
Consider the set

S:={h:X—Y; h(0) =0}
and introduce the generalized metric on S:

d(g,h)= inf ){,ug( ) () >®x x, . x (1), VxEX},

ue (0,400
(p+q+d)—times

where, as usual, inf ¢) =+o0. It is easy to show that (S,d) is
complete (see [18]). Now we consider the linear mapping
J:(S,d)—(S,d) such that

Y
ﬁ @ Springer
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p+q+2d
Jg(x) == 5

=)
& +q+2d

for all x € X. First we prove that J is a strictly contractive
mapping with the Lipschitz constant WT”dcx. In fact, Let

g,h € S be given such that d(g,h) <e. Then

for all x € X and all r > 0. Hence

(p + q+2d)oet
R s S

) ((p +4q —; 2d)oc.st>

= ﬂp+z[+zd( 2% ) p+q+2d,< 2x
3 S\prqt2d 2 \prgt2d

= (i) () (%41)
2@ 9y ()
p+q+2d " p+q+2d
(p+q-+d)—times
>y x, ... x(1)
AR
(p+q-+d)—times
for all xeX. So d(gh)<e
d(Jg,Jh) < w. This means that

implies  that

(p+q+2d)a

d(Jg,Jh) < 5

d(g,h)

for all g,h € S.

It follows from (3.5) that d(f,Jf) < 4.

By Theorem 1.6, there exists a mapping L: X — Y
satisfying the following:

(1) L is a fixed point of J, i.e.,

2L _r 2x
pt+q+2d +q+2d

for all x € X. The mapping L is a unique fixed point
of J in the set

M={geS:dh,g)<oo}.

(3.6)

This implies that L is a unique mapping satisfying
(3.6) such that there exists a u € (0, 00) satisfying
Ho(x)—n(x)(ut) > Dx x, ..., x(1)

———

(p+q+d)—times
for all x € X and all ¢ > O;
(2) d(J*f,L) — 0 as n — oo. This implies the equality
. (p+q+24)" < 2"x >
lim =L(x
f (p+q+2d)" (x)

n—o0 on

for all x € X
(3) d(f,L) < y-d(f,Jf), which implies the inequality

Y4
ﬁ @ Springer

o

Hr(0-100) (2(1—oc)> = Pux...(1)

for all x € X and all # > 0. This implies that the
inequalities (3.3) hold. It follows from (3.1) and (3.2)
that

()
M(p+q+2¢1)” AQ My 2ny Mz
n S\ Grar2d pra 20 (prgr2d)”

- ( 2 )
=z 2y 21y; 2z A m
G e g \(P + g + 2d)

2"t
>0, | —
= EXYj Tk ((p+q+2d)"oc”>

for all x;,yj,zx € X and all £ > 0 . Since

2"
lim @y () =1
nmg ((p +q+2d) oc")

for all x;,y;,zx € X and all £ > 0. So

(B D)

‘q L(y;)

oy L)
J

d
—2) Lz)()
k=1
=1
for all x;,y;,zx € X and all t > 0. Hence L: X — Y

is an Cauchy-Jensen mapping and we get desired
results. O

Corollary 3.2 Let X be a real normed space, 6 be a
positive real number and r is a real number with r > 1. Let
f : X — Y be a mapping with f(0) = 0 and satisfying

H ’ Yit q 'j
of <M+ZZ, zk) D ANICIE NI SNICY

> ! ;
e 0(S I+ S Il + S el

(1)

(3.7)

for all x;y;,zx€X and all ¢>0. Then the limit

lim,,_ o (p+q2+n2d)” f ((p +§’:‘2 d)n) =L(x) exists for all x€X and

defines a unique Cauchy—-Jensen mapping L:X—Y such
that

m (> ((p+q+2d)"—2")t
L\ = (0 g 2d) — 2 )i+ 2 1 (p+ g+ d)0|x|]

for all x € X and all r > 0.
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Proof The proof follows from Theorem 2.1 by taking

t
(Dx,.,y,,a(t) = " - 4 - d ,
£+ 0( S0 el + 0 Il + S )

for all x;,y;,zx € X and all > 0. Then we can choose « =

(m)r and we get the desired result. O

Theorem 3.3 Let X be a linear space (Y,u,Ty) be a
complete RN-space and ® be a mapping from X7+ to
D* ( ®(x;,yj,2) is denoted by @, , . ) such that there
exists 0 <a < ;2 satisfying

o 2 W2 (OC[) > q)xivyiszk (t)

p+q+2d°p+q+2dp+q+2d

for all x;,y;,zx €X and all +>0. Let f: X — Y be a
mapping with f(0) = 0 and satisfying (3.2). Then the limit

2" 2d)"
lim - ((p +q+2d) x) = L(x)
LY >

exists for all x € X and L: X — Y is a unique Cauchy—
Jensen additive mapping such that

-1 (1) = Px x, .. x((p + g +2d) (1 — a)t)
———

(p+q-+d)—times

(3.8)

for all x € X.

Proof Let (S,d) be the generalized metric space defined
in the proof of Theorem 2.1.
Now we consider the linear mapping J : (S,d) — (S,d)

such that
Je(r) = 2 g<p+q+2dx)
p+q+2d 2
for all x € X.
It follows from (3.4) that d(f, Jf) < m. By Theorem

1.6, there exists a mapping L:X — Y satisfying the
following:

(1) L is a fixed point of J, i.e.,
(p+q+2d)L_L((p+q+2d)x>

: . (3.9)

for all x € X. The mapping L is a unique fixed point
of J in the set

M={geS:dh,g) <oo}.

This implies that L is a unique mapping satisfying
(3.9) such that there exists a u € (0, 00) satisfying

,ug(x)fh(x) (Mt) > q)x,x,“.‘x(t)

for all x € X and all ¢ > O;
(2) d(J"f,L) — 0 as n — oo. This implies the equality

) 2" (p+q-+ Zd)”x)

lim =L
A+ g2 < 2 (x)
for all x € X;

(3) d(f,L) < 7-d(f,Jf), which implies the inequality
1

d(f,L) <

L)< p+qg+2d)(1—0)

and so

(5 e i) O

Kt () -L(x) prqgt2d)(1—a)) = P0L X

(p+q-+d)—times

for all x € X and all £ > 0. This implies that the
inequalities (3.8) hold. The rest of the proof is
similar to the proof of Theorem 2.1. 0

Corollary 3.4 Let X be a real normed space, 6 be a
positive real number and r be a real number with 0 <r<1.
Let f : X — Y be a mapping with f(0) = 0 and satisfying
(3.7). Then there exists a unique Cauchy—Jensen mapping
L : X — Y such that

M(x)—L(x) (1)
o (P+q+2d)2" —(p+q+2d))
“pHqg+2d) 2 —(p+q+2d) )i +2"(p+q+d)b|x|

for all x € X and all r > 0.

Proof The proof follows from Theorem 3.3 by taking

t
(Dx; 3Yj Tk (t)

- r r d r
t4+ 00 Il + S Il + i el

for all x;,y;,zx € X and all ¢ > 0. Then we can choose o« =

(W%Zd)r and we get the desired result. O
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