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Abstract In present paper, we prove unique fixed point
theorems for contractive maps in N-cone metric spaces.
Our results extend and generalize some well-known results
of (Banach, Fund Math 3:133-181 1992; Chatterjee, Rend
Acad Bulgare Sci 25:727-730 1972; Kannan, Bull Calcutta
Math Soc 60:71-76 1968; Rezapour and Hamlbarani, J
Math Anal Appl 345:719-724 2008) in the setting of N-
cone metric spaces.
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Introduction and preliminaries

The notion of cone metric space was introduced in [7]. In
this paper, Huang and Zhang replace the real numbers by
ordering Banach space and define cone metric space. They
also gave an example of a function which is a contraction
in the category of cone metric but not contraction if con-
sidered over metric spaces and hence by proving fixed
point theorem in cone metric spaces ensured that this map
must have a unique fixed point.
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Subsequently, Rezapour and Hamlbarani [14] omitted
the assumption of normality in cone metric space. After
that a series of articles in cone metric space started to
appear (see, [3, 10, 15, 16]).

Recently, Aage and Salunke [1] introduced a generalized
D*-metric space and Ismat Beg et al. [4] introduced G-cone
metric space. Very recently, Malviya and Fisher [13] in-
troduced the notion of N-cone metric space and proved
fixed point theorems for asymptotically regular maps and
sequence. This new notion generalized the notion of gen-
eralized G-cone metric space [4] and generalized D*-metric
space [1]. In [12], the authors defined expansive maps in N-
cone metric spaces and proved various fixed point theorems.

In present paper, we prove the Banach contraction the-
orem [2] and fixed point theorems of Kannan [11], Chat-
terjee [5] and Rezapour et al. [14] in N-cone metric space.
The examples and application in support of our results are
also given.

Throughout this paper, let E be a real Banach space and
P be a subset of E. P is called a cone, if and only if

(1) P is closed, nonempty and P # 0;

(2) ax+by € P, for all x,y € P and non-negative real
numbers a, b;

3) Pn(—P)={0}.

For a given cone P C E, we can define a partial ordering

< withrespectto Pby x <y, ifand only ify —x € P, x<y

will stand for x <y but x # y, while x < y will stand for

y — x € intP, where intP denotes the interior of P.

The cone P is called normal if there is a number N > 0
such that for all x,y € E, 0<x<y implies |lx|]| <N|y]|.
The least positive number satisfying the above is called the
normal constant of P [7].

The cone P is called regular if every increasing se-
quence which is bounded from above is convergent, that is,
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if {x,},- is a sequence such that x; <x, --- <y for some
y € E, then there is x € E such that lim,_, ||x, — x|| = 0.
Equivalently, the cone P is regular if and only if every
decreasing sequence which is bounded from below is
convergent.

Lemma 1.1 [14] Every regular cone is normal.

Definition 1.1 [13] Let X be a non-empty set. An N-cone
metric on X is a function N : X3 — E, that satisfies the
following conditions: for all x,y,z,a € X

(1) N(x,y,2) >0;

(2) N(x,y,z) =0if and only if x =y = z;

() N(x,y,2) <N(x,x,a) + N(y,y,a) + N(z,z,a).
Then, the function N is called an N-cone metric and the
pair (X,N) is called an N-cone metric space.

Remark 1.1 [13] It is easy to see that every generalized-
D*-metric space is an N-cone metric space but in general,
the converse is not true, see the following example.

Example 1.1 [13] Let E=R’, P={(x,y,2)€
E,x,y,2>0}, X =R,and N : X X X x X — Eis defined by

N(x,y,2) = (a(|y+z—ZXI+Iy—ZI),ﬁ(Ierz—ZXI

+\y—ZI),v(|y+z—2x|+|y—ZI))

where o, f§,y are positive constants. Then, (X,N) is an N-
cone metric space but not a generalized-D*-metric space
because N is not symmetric.

Proposition 1.1 [13] If (X, N) is an N-cone metric space,
then for all x,y,z € X, we have N(x,x,y) = N(y,y,x).

Definition 1.2 [13] Let (X, N) be an N-cone metric space.
Let {x,} be a sequence in X and x € X. If for every ¢ € E
with O < ¢ there is N such that for all »n >N,
N(x, Xy, %) < ¢, then {x,} is said to be convergent, {x,}
converges to x and x is the limit of {x,}. We denote this by
X, — x as (n — 00).

Lemma 1.2 [13] Let (X,N) be an N-cone metric space
and P be a normal cone with normal constant k. Let {x,}
be a sequence in X. If {x,} converges to x and {x,} also
converges to y then x = y. That is the limit of {x, }, if exists,
is unique.

Definition 1.3 [13] Let (X, N) be an N-cone metric space
and {x,} be a sequence in X. If for any ¢ € E with 0 < ¢
there is N such that for all m,n > N, N(x,, X, x») < ¢, then
{xn} is called a Cauchy sequence in X.

Definition 1.4 [13] Let (X, N) be an N-cone metric space.
If every Cauchy sequence in X is convergent in X, then X is
called a complete N-cone metric space.
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Lemma 1.3 [13] Let (X,N) be an N-cone metric space
and {x,} be a sequence in X. If {x,} converges to x, then
{xn} is a Cauchy sequence.

Definition 1.5 [13] Let (X,N) and (X',N’) be N-cone
metric spaces. Then, a function f : X — X’ is said to be
continuous at a point x € X if and only if it is sequentially
continuous at x, that is, whenever {x,} is convergent to x
we have {fx,} is convergent to f(x).

Lemma 1.4 [13] Let (X,N) be an N-cone metric space
and P be a normal cone with normal constant k. Let {x,}
and {y,} be two sequences in X and suppose that x, — x,
Yo —y as n— oo. Then N(Xn,Xn,y,) — N(x,x,y) as
n — oo.

Remark 1.2 [13] If x, — x in an N-cone metric space X,
then every subsequence of {x,} converges to x in X.

Proposition 1.2 [13] Let (X,N) be an N-cone metric
space and P be a cone in a real Banach space E. If u<v,
v < w then u < w.

Lemma 1.5 [13] Let (X, N) be an N-cone metric space, P
be an N-cone in a real Banach space E and
ki, ko, ks, kqyk > 0. If x, > X, yo — ¥, 2, = z and p, — p
in X and

kag klN(xm-xna-x) + kZN(memy) + kSN(ZmZmZ)
+ k4N (P, pu, D), thena = 0.

The following lemmas are often used.

Lemma 1.6 [10] Let P be a cone and {x,} be a sequence
in E. If ¢ € intP and 0 <x, — 0 (as n — ), then there
exists N such that for all n > N, we have x,, < c.

Lemma 1.7 [10] Let x,y,z € E, if x<y and y < z, then
r Lz
Lemma 1.8 [9] Let P be a cone and 0 <u < c for each

c € intP, then u = 0.

Lemma 1.9 [6] Let P be a cone. If u € P and u < ku for
some 0<k<1, then u=0.

Lemma 1.10 [10] Let P be a cone and a < b + ¢ for each
c € intP, then a <b.

Topology of N-cone metric space Let (X, N) be an N-
cone metric space, each N-cone metric N on X generates a
topology Ty on X whose base is the family of open N-balls
defined as

BN(X,C) = {y EX : N(y7y7'x) < C}a

for ¢ € E with 0 < ¢ and for all x € X.
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Definition 1.6 Let (X, N) be an N-cone metric space. A
map f : X — X is said to be a contractive mapping if there
exists a constant 0 <k <1 such that

N(fx,fx,fy) <kN(x,x,y) for all x,y € X.

Example 12 Let E=R) P=/{(x,y,2) €E, x,y,
z>0}and X =Rand N : X X X x X — E is defined by
N(xvyvz) = (O((|)C - Z| + |y - Z|)vﬁ(|x - Z| + ‘y _Z|)7

Pl =2l + 1y —zl)),
where o, 8,y are positive constants. Then (X,N) is an N-

cone metric space. Define a self-map f on X as follows
fx =7 for all x. Clearly, f is a contractive map in X.

Main results

Theorem 2.1 Let (X, N) be a complete N-cone metric space
andthe mapping T : X — X satisfies the contractive condition

N(Tx, Tx, Ty) <kN(x,x,y) (2.1)

forall x,y € X, where k € [0,1) is a constant. Then, T has
a unique fixed point in X. For each x € X, the sequence of
iterates {T"x}, .| converges to the fixed point.

Proof Foreachxy € Xandn>1,setx; = Txp and x,,.1 =
T x.
Then
N(xn, X, Xp1) = N(Txn-1, Toxn—1, Txn)
<KN (Xn—1, Xn—1,Xn)
<IN (-2, X2, Xp—1)

< k"N (x0,X0,X1)
So for m > n,

N (X, Xy Xim) < 2 N (X, Xy Xt 1) + 2N Xy 15 X415 Xn12)

+ o 2N (X2, Xin—2, Xm—1)
+N(xm717xm71)xm)

< 2N (X, Xy Xnt1) + 2N (X1, X1, Xnt2)
+ o+ 2N (X2, Xin—2y Xm—1)
+ 2N(xm_l,xm—laxm)

< K" 42K g g 2f
+ 2K VN (x0, %0, X1 )

= 2K"[1+k+ K+ 4+ k"IN (x0,x0, x1)

n

<
1 -k

N (x0,x0,%1)

Let 0 < ¢ be given. Choose a natural number N; such that
2L N (x0,x0,%1) < ¢ for all n>Ny. Thus, N(x,, Xy, X) <
c for all n > m.

Therefore, {x,},-; is a cauchy sequence in (X,N).
Since (X,N) is a complete N-cone metric space, there
exists x* € X such that x, — x*. Choose a natural number
N, such that N(x*,x*, x,) < 5z and N(x*,x*, x,41) < § for
all n Z N2.

Hence, for all n > N,, we have

N(Tx*, Tx*,x*) <N(Tx*, Tx"*, Tx,) + N(Tx*, Tx*, Tx,)
+ N(x",x", Tx,)
<2N(Tx*,Tx*,Tx,) + N(x*,x*, Tx,)
<2kN(x*,x*, x,) + N(x*, X", X041)

c ¢
e+ =
< k4k+2

=C

for all n>N,. Thus, N(Tx*, Tx*,x*) < & for all m> 1. So
& — N(Tx*,Tx*,x*) € P for all m>1. Since £ — 0 (as
m—oo0) and P is closed, —N(Tx*,Tx*,x*) € P, but
N(Tx*, Tx*,x*) € P. Therefore, N(Tx*, Tx*,x*) = 0 and so
Ix* = x*.

To prove uniqueness, let y* be another fixed point of 7,
then

N(x*,x",y") = N(Tx", Tx", Ty")
<AN(x*,x",y"),

which implies that by Lemma (1.9) N(x*,x*,y*) =0.
Hence the fixed point of T is unique. O

Corollary 2.1 Let (X,N) be a complete N-cone metric
space. Suppose the mapping T : X — X satisfies for some
positive integer n,

N(T"x,T"x,T"y) <k.N(x,x,y),

forall x,y € X, where k € [0,1) is a constant. Then, T has
a unique fixed point in X.

Proof From Theorem (2.1), 7" has a unique fixed point
x*. But T"(Tx*) = T(T"x*) = Tx*. So Tx" is also a fixed
point of 7". Hence Tx* = x*, x* is a fixed point of 7. Since
the fixed point of T is also fixed point of 7", then fixed
point of T is unique. O

Theorem 2.2 Let (X,N) be a complete N-cone metric
space. Suppose the mapping T : X — X satisfies the con-
tractive condition

N(Tx, Tx, Ty) <k[N(Tx, Tx,x) + N(Ty, Ty,y)],

forall x,y € X, where k € [0,%) is a constant. Then, T has
a unique fixed point in X. For each x € X, the iterative
sequence {T"x}, - converges to the fixed point.

Y
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Proof For each xp € X and n>1, set x; = Txp and
X1 = T xg.
Then, we have
N (%, Xn, Xn 1) = N(Txp-1, Txp—1, Txy)
<SKIN(Txn—1, Txn—1,%n—1) + N(Txy, Txy, X, )]
= k[N (X, X, Xp—1) + N (X1, X1, %)
= k[N(xn,xn,xn,l) +N(xn7xn7xn+l)]
[by Proposition 1.1.]

So
k
N(xmxnvxn+1) < 1_kN(xn;xnvxn71)
= hN(x,, Xp,X,—1) where h = 1%

= AN (x,—1,%,—1,%,) [by Proposition 1.1.]

S /’l”N(X(),XQ,xl), (22)

Now using (2.2), we can prove {x,}, is a Cauchy se-
quence as proved in Theorem (2.1).
Since (X,N) is a complete N-cone metric space, there

exists x* € X such that x,, — x*. Choose a natural number

N, such that N (X1, Xpi1, %) < % and N(x*, x*, x,41)

< %, for all n>N,.
Hence, for n> N,, we have
N(Tx*, Tx*,x*) < N(Tx*,Tx"*, Tx,) + N(Tx*, Tx*, Tx,)
+ N(x*x*, Txy,)
= 2N(Tx*, Tx*,Tx,) + N(x*,x*, Tx,)
< 2k[N(Tx", Tx*,x") + N(Txy, Txp, xp)]
+ N(x*x*, Txy).

Thus,
1

N(TX*a TX*a-X*) < [2kN(xn+laxn+l 7-xn) + N(X*7x*7xll+l)}

A
SIS

+=-=c.

oo R

Thus, N(Tx*, Tx*,x*) < < for all m> 1.

So & — N(Tx*,Tx*,x*) € P for all m > 1. Since £ — 0 as
m—oo and P is closed, —N(Tx*, Tx*,x*) € P. But
N(Tx*, Tx*,x*) € P. Therefore, N(Tx*, Tx*,x*) = 0 and so
Ix* = x".

Now, if y* is another fixed point of 7, then
N %, y") = N(Tx", T, Ty7)

SKIN(Tx, Ix",x") + N(Ty", Ty", y")]
= kNG 22T NS YY)
=0 [by Definition 1.1. and by Lemma 1.5]

Hence x* = y*. Therefore, the fixed point of T is unique. [
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Theorem 2.3 Let (X,N) be a complete N-cone metric
space. Suppose the mapping T : X — X satisfies the con-
tractive condition

N(Tx, Tx, Ty) <k[N(Tx, Tx,y) + N(x,x, Ty)],

forall x,y € X, where k € [0,%) is a constant. Then, T has
a unique fixed point in X. For each x € X, the iterative
sequence {T"x}, | converges to the fixed point.

Proof For each xp € X and n>1, set x; = Txg and
X1 = T .
Then, we have
N (X, X Xn1) = N(Txp—1, Txp—1, Txy)
<K[N(Txp—1, Txp—1,%) + N (Xn—1,%0—1,T%,)]
= k[N (X, %0, Xn) + N (X1, %01, %n41)]
= kN (Xp—1,Xn—1,Xn41)
SK[2N (X1, X0 -1,%0) + N (X, Xy X 1)
[by Definition 1.1]

= iN(xn—l,xn—l,xn)
1—-k
= hN(Xy—1,Xp-1,X,) Where, h = T
<H'"N(x0,%0,X1)-
(2.3)

Now using (2.3), we can prove {x,},-; is a Cauchy
sequence as proved in Theorem (2.1).
Since (X,N) is a complete N-cone metric space, there
exists x* € X such that x, — x*.
Now, we have
N(Tx*, Tx*,x") <N(Tx*,Tx*,Tx,) + N(Tx*,Tx", Tx,)
+N(x" X", Tx,)
<2N(Tx*,Tx*,Tx,) +N(x*,x*, Tx,)
S2k[N(Tx*, Tx" X 41) + N(x*,x*, Tx,,)]
+N(x",x", Tx,)
=2kN(Tx",Tx" ,x,) + 2k + 1)N (x*,x", x,41)
=2kN(Tx",Tx",x") + (2k+ 1)N (x*,x",x")

asn— oo

<2kN(Tx*,Tx*,x"),

1
AsO0<k<—
]

which implies that, by Lemma 1.9, N(Tx*, Tx*,x*) = 0.
Hence Tx* = x*.
Now, if y* is another fixed point of T, then

N(x",x*,y*) = N(Tx*, Tx", Ty")
<Kk[N(Tx*,Tx*,y") + N(x*,x*, Ty")]
=k[NE",x",y") + N(x",x",y")]
= 2kN(x",x",y") [by Lemma (1.9)].
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Hence, N(x*,x*,y*) =0 and so x* =y*. Therefore, the
fixed point of T is unique. O

Theorem 2.4 Let (X,N) be a complete N-cone metric
space. Suppose the mapping T : X — X satisfies the con-
tractive condition

N(Tx,Tx,Ty) < kN(x,x,y) +IN(x,x, Ty),

for all x,y € X, where k,1 € [0,1) is a constant. Then, T
has a fixed point in X. Also the fixed point of T is unique
whenever k 4+ 31<1.

Proof For each xp € X and n>1, set x; = Txg and
X1 = T .
N (X, X, Xni1) = N(Txn-1, Toxn—1, Tx)
<N (Xp—1, Xn—1,%n) + IN(Xn—1, Xn—1, Txp,)
= kN (Xy—1,Xn—1, %) + IN(Xn—1, Xn—1,Xn+1)
<N (Xp—1,%n—1, %) + I[N (Xp—1, Xn—1,%,)
+ N (X1, Xn—1,Xn)
+ N(Xnt1,Xnt1,%,)]  [byDefinitionl.1]
KN (Xp—1,Xn—1,Xn) + 12N (Xp—1, Xn—1, X,)

+ N(-xn+1 s Xn+1, -xn)]

So
k+ 21
N(xnaxnaxn+l) S %N(xnflaxnfl ,Xn)
[by Proposition(1.1)] (2.4)
ShN(xnfhxnflyxn)
< h"N(xo,%0,X1),
where h = &2

-1
Now using (2.4), we can prove {x,}, is a Cauchy

sequence as proved in Theorem (2.1).

Since (X,N) is a complete N-cone metric space, there
exists x* € X such that x, — x*. Choose a natural number
N, such that N(x*,x",x,) <z and N(x*,x",x,41)
< m, for all n > N,.

Hence, for n > N,, we have
N(Tx*, Tx*,x*) <N(Tx*, Tx"*, Tx,) + N(Tx*, Tx*, Tx,)

[by Definition 1.1]
+ N(x*x*, Txy,)
<2N(Tx*,Tx",Tx,) + N(x*,x*, Tx,)
= 2kN(x*,x", x,) + 2IN(x*,x", Tx,)
+ N(x*,x", Tx,)
= 2kN(x*, x*, x,) + 2L+ D)N(x*, x*, xp41)

<yl
272 ¢

Thus, N(Tx*, Tx*, x*) < < for all m > 1.

Hence, ¢ — N(Tx*,Tx*,x*) € P for all m > 1. Since & —
0 as m — oo and P is closed, —N(Tx", Tx*,x*) € P, but
N(Tx*, Tx*,x*) € P. Therefore, N(Tx*, Tx*,x*) = 0 and so
Ix* = x*.
Now, if y* is another fixed point of 7T, then
N X7,y = N(T, T, Ty')
<KN(x*,x*,y") + IN(x", x*, Ty")
= (k+ N, x",y")
[by Lemma 1.9 and since k + 3/<1]

Hence, N(x*,x*,y*) =0 and so x* = y*. Therefore, the
fixed point of T is unique. O

Example 2.1 Llet E=R) P={(x,y,2) €E, x,y,
z>0}and X =Rand N : X x X x X — E is defined by

N(x,y,2) = (a(jx — 2| + [y — z]), B(]x — 2
+ 1y —z2), (=2 + |y —z))),

where o, 3,y are positive constants. Then, (X,N) is an N-
cone metric space. Define a self-map 7 on X as follows
Tx :’3‘ for all x. If we take o = %, then the contractive
condition (2.1) holds trivially good and O is the unique
fixed point of the map 7.

Application

In this section, we shall apply Theorem 2.1 to the following
first-order periodic boundary value problem:

W px(r)), with x(0) = ¢, (3.5)

T
where F : [—h, h] x [ — J,& + 0] is a continuous function.

Example 3.1 Consider the boundary value problem (3.5)
with the continuous function F and suppose F(x,y) satis-
fies the local Lipschitz condition, i.e. if |x| <h, y;,y; €
[€ — 0, &+ 0] it induces

|F(x,y1) = F(x,y2)| < Lly1 — y2|
Se.t (3M1: max, , o [5*.5!5*5] |F.(x, y)| Sl.]Ch that 2h<
min[;7, 7], then there exists a unique solution of (3.5).

Proof Let X =E = C([—h,h]) and P ={u € E: u>0}.
Put N: X xX xX — E as

N(x,x,y) = f(1) max_ (|x() = (1) + [x(2) = y(2)])

—h<t<h

— () _max 20x(n) — y(0)

with f : [=h, h] — R such that f(¢) = €.
It is clear that (X, N) is a complete N-cone metric space.
Note that (3.5) is equivalent to the integral equation

Y
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x(t) = f—|—/0 F(t,x(1))dx.
Define a mapping T : C([—h,h]) — R by
Tx(t) = §—|—/O F(t,x(1))dx.

If x(1),y(r) € B(&,0f)={y(1) € C([=h,h]) : N(&, &, ¢h) <
0f }, then we have

N(Tx, Tx,Ty) =f(r) max 2

—h<t<h

[ e [ Pt

= 2f(t) max

—h<t<h

/ 1P (1)) — F(e.y(e))ds

<2hf(t) max |F(z,x(t)) — F(t,y(1))]

—h<t<h
= 2hf(1) _max  Llx(x) = ¥(7)|
S2hLf(1) max |x(z) - y(7)]

= hLN(x, x,y)

and

N(Tx,Tx, &) = 2f(t) max

—h<i<h

/OIF(T,X(T))d‘E

<2hf max |F(t,x(1))|

—h<t<h
< 2hMf
<of

We speculate T : B(&,0f) — B(&,0f) is a contractive
mapping.

Finally, we prove that (B(¢, 0f),N) is complete. In fact,
suppose {x,} is a Cauchy sequence in B(¢, of). Then {x,}
is also a Cauchy sequence in X. Since (X,N) is complete,
there is x € X such that x, — x as n — oco. So for each
c € intP, there exists N;, whenever n > N; we obtain
N(x,x,x,) < 5. Thus, it follows that

N(x,x, &) <N(x,x,x,) + N(x,x,x,) + N(& & xp)
[by Definitionl.1]
<2N(x,x,%,) + N(Txy—1, Txp—1, &)
[by Proposition 1.1 and definition of T in Theorem 2.1]
=c+Jf

and by Lemma (1.10), N(x,x, &) <0f which means
x € B(&, df ), that is, (B(&, of ), N) is complete.

Owing to the above statement, all the conditions of
Theorem 2.1 are satisfied. Hence, 7" has a unique fixed
point x(r) € B(&, 0f). That is to say, there exists a unique
solution of Example (3.1).

We notice that the above-mentioned application of fixed
point theorem in b-cone metric space was given by [§]. [
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Conclusion

In this paper, we define topology in N-cone metric space
and extend various famous results such as Banach con-
traction theorem and Chatterjee’s theorem in this newly
defined space with applications in integral equations.
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