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Abstract The current work highlights the following
issues: a brief survey of the development in the theory of
fractional differential equations has been raised. A very
recent technique based on the generalized Taylor series
called—residual power series (RPS)—is introduced in
detailed manner. The time-fractional foam drainage equa-
tion is considered as a target model to test the validity of
the RPS method. Analysis of the obtained approximate
solution of the fractional foam model reveals that RPS is an
alternative method to be added for the fractional theory and
computations and considered to be a significant method for
exploring nonlinear fractional models.
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Introduction

The last four decades witness fundamental works and
developments on the fractional derivative and fractional
differential equations. Oldham and Spanier [1], Miller and
Ross [2], Samko et al. [3], Podlubny [4], Kilbas et al. [5]
and others [6, 7] are the pioneer in this field; their works
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form an introduction to the theory of fractional differential
equations and provide a systematic understanding of the
fractional calculus such as the existence and the uniqueness
of solutions. Hernandez et al. [8] published a paper on
recent developments in the theory of abstract differential
equations with fractional derivative. Finally, interested
various applications of fractional calculus in the field of
interdisciplinary sciences such as image processing and
control theory have been studied by Magin et al. [9] and
Mainardi [10].

In the literature, there exist no methods that produce an
exact solution for nonlinear fractional differential equa-
tions. Only approximate solutions can be derived using
linearization or successive or perturbation methods. Such
methods are: variational iteration method and multivariate
Pade approximations [11], Iterative Laplace transform
method [12], Adomian decomposition method [13-17],
Homotopy analysis method [18, 19] and Sumudu transform
method [20].

The main objective of this paper is to conduct a new
novel technique called residual power series method to
study the solution of time-fractional Foam drainage model
described by

1
Dfu(x,t) = Eu(x, i (x, 1) — 2u2(x, Huy(x,1) + uz(x, 1),

(1.1)

subject to the initial conditions:
u(x,0) = f(x).

It is a simple model of the flow of liquid through channels
(Plateau borders) and nodes (intersection of four channels)
between the bubbles, driven by gravity and capillarity [21,
22]. Approximate solutions of Egs. (1.1)—(1.2) have been
obtained by different methods; Adomian decomposition

(1.2)
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method [23], the Homotopy analysis method [24] and the
variational iteration method [25]. It should be noted here
that none of the previous studies addressed the accuracy of
such methods.

The pattern of the current paper is as follows: In Sect. 2,
some definitions and theorems regarding Caputo’s deriva-
tive and fractional power series are given. In Sect. 3, we
derive a residual power series solution to the time-frac-
tional foam drainage equation. Graphical results regarding
the foam drainage model are presented in Sect. 4.

Preliminaries

Many definitions and studies of fractional calculus have
been proposed in the literature. These definitions include:
Grunwald-Letnikov, Riemann-Liouville, Weyl, Riesz and
Caputo sense. In the Caputo case, the derivative of a
constant is zero and one can define, properly, the initial
conditions for the fractional differential equations which
can be handled using an analogy with the classical integer
case. For these reasons, researchers prefer to use the Ca-
puto fractional derivative [26] which is defined as

Definition 2.1 For m to be the smallest integer that ex-
ceeds o, the Caputo fractional derivatives of order o > 0
are defined as

0%u(x,1)
D*u(x,t) = :
u(‘x7 ) at:x
1 rt am
m/{) ([—'L')Fnimil%df7 m—l<a<m
o™
7u(x,t)’ a=méeN
atm

Now, we survey some needed definitions and theorems
regarding the fractional power series (RPS) where there is
much theory to be found in [27, 28].

Definition 2.2 A power series expansion of the form

> emlt—10)"™ = o+ cr(t —10)" + eat — 19)™

+-- 0<n—-1<a<n, t<g

is called fractional power series PS about ¢ = £

Theorem 2.1 Suppose that f has a fractional PS rep-
resentation at t = to of the form

) = Z::o em(t — 10)™, 19<t<ty+R.
IfD™f(t), m=0,1,2,...are continuous on (to,ty + R),

— D)
— I'(14+ma)

then c,,
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Definition 2.3 A power series expansion of the form
D o) = 10)"
is called multiple fractional power series PS about # = #,

Theorem 2.2 Suppose that u(x,t) has a multiple frac-
tional PS representation at t = ty of the form

u(r,t) =3 " ful0)t—10)", xel, t<t<n+R.

If DM™u(x,t), m=0,1,2,... are continuous on
_D;Mu(xvt())

I x (l‘o,l() -‘rR), thenfm(x) = Tltm) -

From the last theorem, it is clear that if n + 1-dimen-
sional function has a multiple fractional PS representation
at t = 1y, then it can be derived in the same manner, i.e.

Corollary 2.3 Suppose that u(x,y,t) has a multiple
fractional PS representation at t = ty of the form

o0
M(X,y, t) :Zm:O gm(xvy)(t - t())m“;
(x,y) €L x I, t9y<t<ty+R.
are Ccontinuous on

_ DMu(xyto)
= T(+ma) -

If D™u(x,y,1), m=0,1,2,...
I x I, x (to, to + R), then gy (x,y)

Next, we present in details the derivation of the residual
power series solution to the generalized fractional DSW
system.

Residual power series (RPS) of the foam drainage
model

The aim of this section is to construct power series solution
to the time-fractional Foam drainage model by substituting
its power series (PS) expansion among its truncated resi-
dual function [29, 30]. From the resulting equation, a re-
cursion formula for the computation of the coefficients is
derived, while the coefficients in the fractional PS expan-
sion can be computed recursively by recurrent fractional
differentiation of the truncated residual function.

The RPS method proposes the solution for Egs. (1.1-
1.2) as a fractional PS about the initial point = 0

o0 lJ’lO(
t) = W) =, O0<a<l, 1,
u(x, 1) ;f(x)l"(l+na) <a xe

0<t<R.

(3.1)
Next, we let u;(x,t) to denote the k-th truncated series of
u(x, 1), ie.,

10l

k ;
() = D)

O<a<l, xel, 0<t<R.

(32)
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It is clear that by condition (1.2) the O-th RPS approximate 1 Pad
solutions of u(x, ) is Resu (x,1) = fi(x) =5 (f () +£1(x) m)
= = = /! 1/ t“
e 1) = o(8) = u(x,0) = /1) 33) < (7010 )
Also, Eq. (3.2) can be written as » )
k o + 2 (f(x) +f1 (x) m) (39)
ug(x, 1) = f(x) + ;fn(x)m7 (3.4)

0<a<l1,xel, 0<t<R, k=1,2.3,...

Now, we define the residual functions, Res, for Eq. (1.1)

1
Res,(x,t) = Dlu(x,1) — Eu(x, ity (x, 1)

(3.5)
+ 2% (x, Dy (x, 1) — 1w (x, 1),
and, therefore, the k-th residual function, Res,, is
1 2
Resy i (x,t) = DXuy(x, 1) — 3 ui(x, 1) a2 ug(x, 1)
0 0 2
+ ZMI%(X, f) auk(x, t) — (a 1,¢k<x7 t)) .
(3.6)

As in [29, 30], Res(x,t) =0 and lim_., Resi(x, 1) =
Res(x,1) for all x € I and r> 0. Therefore, D[*Res(x,t) =0
since the fractional derivative of a constant in the Caputo’s
sense is 0. Also, the fractional derivative D;* of Res(x, 1)
and Resi(x,t) is matching at ¢t=0 for each
r=0,1,2,....k

To clarify the RPS technique, we substitute the k-th
truncated series of u(x, ) into Eq. (3.6), find the fractional
derivative formula D,(k_1>0€ of both Res,x(x,1), k=
1,2,3,..., and then solve the obtained algebraic system

ng_l)“RESu"k()ﬂo) :O’ O<O(§1, X GI’ k= 172,3

(3.7)
to get the required coefficients f,(x), n=1,2,3,...,k in
Eq. (3.4). Now, we follow the following steps.

Step 1. To determine f;(x), we consider (k = 1) in (3.6)
2

1
Res, 1 (x,t) = D¥uy(x,t) — Eul(x, l)@ul(x, 1)

2
+ 213 (x, t)%ul(x, 1) — (gul(x, t)) .
(3.8)

But, uy(x, 1) = f(x) + £ (x) ﬁ Therefore,

< (r0 A0 )

—QWHﬂmnﬁ@f

From Eq. (3.7), we deduce that Res, ;(x,0) = 0 and thus,

1
A) = Zf@F" () = 22 ()f (x) +£7(x) (3.10)
Therefore, the 1st RPS approximate solution is
() =109+ (1000 = 2P0 +1°0) )
(3.11)

Step 2. To obtain f>(x), we substitute the 2nd truncated
series u(x, 1) = f(x) +fi(x) rri —i—fz(x)ﬁ into the
2nd residual function Res, »(x,?), i.e.,

o

1
Resyo(x,t) = DXuy(x, 1) — 2 up(x, 1) @ug (x,1)

0 0 2
+ 2u3(x, t)auz()a 1) — (6_u2(x’ t)) .

ﬁm+ﬁwfﬁ}@
1 t29<
3 (f(x) +- +f2(x)m)
20
< () 0 5
20 2
+2<f(x) e +f2(x)l—<1t+2a)>
20
X (f’(x) +- ) m>
t29< 2
- <f/(x)+"'+f2/(x)r(1+2u)> :

(3.12)

Applying D? on both sides of Eq. (3.12) gives

Y
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DYRes,»(x,t) = f

(=5 (A0 +00)

x (f” (x) +

tﬁ
1+ oc))
" 121
R WETT 20())
1

-5 (r0 400

r(lti Za))

)

A%

< () +
+4(f(x)+ ﬁ)
< (70 A0 1

W) (3.13)
x (f’(x) +

, t2ac
ot h) m)

t2,4 2
-+ hx) m)

Fi )

200
- 2(f’(x) +- 4 ) M)

< (0450 )

By the fact that D?Res, »(x,0) = 0 and solving the result-
ing system in (3.13) for the unknown coefficient function
fa(x), we get

+2(f(x)+
() 4200

= PR G) + A () 47 (o) (o) ()
2P A) + 2 )

Step 3. We derive the formula of the coefficient function
f3(x). Substitute the 3rd truncated series uz(x,t) = f(x) +

f1(X) mri l+9< +2(0) 1 1+2a) + f3(x) 1-(1’13“) into the 3rd resi-
dual function Res, 3(x,1). i.e.,

fHax)
(3.14)

2

1 0
Res, 3(x,1) = Dfuz(x, 1) — Sl us(x, )a 5 s (x, t)

d d :
+ 2u3(x, I)&ug(x7 1) — (aug(x, t)) .

o 20
=filx) +f2(x)r(1 ) +Ak) r(1t+ 20)
1 13
3 (f(x) o+ A) m)
, ; P (3.15)

X (f () +-+f (ﬂm)

+2(f(x)+ ~~+ﬁ(x)ﬁ)

< (P + o B0 )

_ <f/(x) e l—(lti: 3a))2‘

\¢
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Now, we apply the operator D** on both sides of Eq. (3.15)

D?Res, 3(x,1)

= D?‘ (D?Resxﬁ (x7 t))

— ) = (£ +

-+ fi(x) m)

200
< (R4 B0 )

7% ( ) (x) +f3(X)r(1t7:a)>

" t3x
i (x) m)
1 t3oc
3 (f(x) +"'+f3(x)m)
(R0 + 10 )
t20< 2
I'(l+ 2rx)>
, [30(
AR )

A0

X (f” (x) +

+4(f1(X)+ )
X (f’(x) +
i)

F(ll:30€))
X(ww+w+ﬁ®rimD
x(um+m+ﬁ@rimQ

3o 2
+2(f(x)+"'+f3(x)m>

+4(f(x)+
(0 400

xQ@+~+ﬂm

y (z’(x) +f§(x)p(%a))
*2(f{(x>+ "*ﬁ(")ﬁy
_2(f’(x)+ "+f3’(x)F(%3a))

< (40
(3.16)

Thus, solving the equation D**Res, 3(x,0) = 0 results in
the following recurrence formula

f(x)

= A () + 5 F W) +
4R () -
8 (W () —

+2(fi(x

/! 1 1/
S ()

4f (x ) 5 (0f" (x)
21%(x)f3 (x)
)) 221 (x)fs (x).

(3.17)
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Fig. 1 The 4th RPS approximate solution of the Foam model when f(x) = —/ctanh(y/cx): a uy(x,t,,0 =0.7), b uy(x,t,0. =0.8), ¢
ug(x, 2,0 =0.9), d us(x, 1,0 = 1), e u(x,r) fora = 1, =5<x<5, 0<r<0.1

* @ Springer
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Table 1 The obtained errors N / Numerical scheme Finally, we follow the same manner as above and solve
|ttexact — Ugppyx| fOT the RPS the equation D>*Res, 4(x,0) = 0 to deduce the following
method 1.0 0.02 6.6627E—06 result
0.04 9.0798E—05 3 3 {
0.06  3.8406E—04 falx) = Efz(x)fl”(x) + Efl (0)fy (x) + §f3 (x)f" (x)
0.08 1.0024E—03 1
3.0 002 7.2440E—10 +5 F0)f (x)
0.04 2.4547E—08 , o
006 1.9773E—07 — 12fi(x)f2 (x?f (x) — 12f] (X)fl/(X)
0.08 8.8589E—07 — 4 (O)fs(x)f"(x) = 8F (x)a (x)f{ (%)
50 002 24314E—13 — 8 (X)) (x) — 2F2(x)f3 (%) + 6f; (0)fs (%)
0.04 8.2420E—12 2 (WA,
0.06 6.6377E—11 (3.18)
0.08 2.9735E—10
(b)a =075

(@) a=0.5

D © a=1 s

Fig. 2 The 4th RPS approximate solution of the Foam model when f(x) =x: a us(x,r,00=0.5), b us(x,t,00 =0.75), ¢ us(x,t,00 = 1),

—4<x<4, 0<r<0.1

* @ Springer
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(b) a=0.75

Fig. 3 The 4th RPS approximate solution of the Foam model when f(x) = sin(x): a ug(x,7,00 = 0.5), b us(x, 2,00 = 0.75), ¢ uy(x,t,0 = 1),

—5<x<5, 0<r<0.1

By the above recurrence relations, we are ready to present
some graphical results regarding the time-fractional Foam
drainage model.

Applications and results

The purpose of this section is to test the derivation of
residual power series solutions of the following time-
fractional foam drainage equation.

1
Dlu(x,t) = Eu(x, Dt (x, 1) — 20 (x, ) (x, 1) + 1> (x, 1),

(4.1)
subject to the initial conditions:
u(x,0) = —y/ctanh(y/cx). (4.2)

Where the exact solution of this model when o =1 is
u(x,t) = —y/ctanh(y/c(x — ct)). Based on the obtained

results from the previous section, we consider only the 4tk
RPS approximate solution. Figure 1 represents the 4th RPS
approximate solution of the function u(x,r) for different
values of the fractional derivative «. To validate the effi-
ciency and accuracy of the analytical scheme, we give
explicit values of x and ¢ and compute the absolute error
compared with the exact solution when o =1 (See
Table 1). Figure 2 represents solutions to the fractional
foam drainage when the initial condition is f(x) = x for
o= 0.5, 1. Finally, Fig. 3 represents solutions to the
fractional foam drainage when the initial condition is
f(x) = sin(x) for « = 0.5, 0.75, 1.

In the theory of fractional calculus, it is obvious that
when the fractional derivative n — 1 <o <n tends to posi-
tive integer n, the approximate solution continuously tends
to the exact solution of the problem with derivative n = 1.
It is also clear from Figs. 1, 2 and 3 that when o is close to
0, the solutions bifurcate and provide wave-like pattern.
But, when « is close to 1, there is no pattern.

w @ Springer
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Conclusions

A new analytical iterative technique based on the residual
power series is proposed to obtain an approximate solution
to a nonlinear time-fractional foam drainage equation.
Three different initial conditions of the Foam model are
considered and accordingly different physical behaviors
are produced. We observed when « is close to 0, the so-
lutions bifurcate and provide wave-like pattern. But, when
o is close to 1, there is no pattern (Figs. 1 and 3). This
bifurcation phenomenon will help the researchers to open
many new avenues to better understanding of time-frac-
tional derivatives and its relation to real-life phenomena.
The accuracy of the proposed method has been tested by
studying the absolute errors of the obtained approximate of
the Foam model (Table 1). The RPS method is a promising
technique based on its simplicity and accuracy. It is to be
considered an additive tool for the field of fractional theory
and computations. As future work, we will extend the RPS
method to handle (2 + 1)-dimensional linear and nonlinear
space- and time-fractional physical models.

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use, dis-
tribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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