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Abstract
Energy, freshwater, and the environment are interrelated features that infuse all human activities. Addressing this nexus in an 
integrated energy conversion system is a big challenge for the research community. Adsorption desalination system, which 
is a good alternative to traditional desalination systems, could solve this problem because it uses eco-friendly working fluids 
and can be powered by renewable energy. Many experimental prototypes for the adsorption desalination cycle were built 
and tested in the last decades. Also, different adsorbent materials were developed and characterized. Therefore, this paper 
reviews adsorbent materials with water vapor utilized in experimental adsorption desalination studies, which is considered 
the first step in constructing an efficient system. After that, the paper comprehensively reviews all previous experimental 
adsorption desalination studies. It focuses on the design of the experimental test rig, the mass of adsorbent material, and 
system performance, such as the specific daily water production, coefficient of performance, and specific cooling power. This 
work also discusses the properties of heat exchangers (i.e., adsorbent beds) employed in adsorption desalination systems.

Keywords  Adsorption cycles · Adsorbents · Desalination · Energy-efficient

Introduction

Energy, freshwater, and the environment are interrelated fea-
tures that infuse all our activities on the earth. Furthermore, 
they are becoming the most significant and common areas 
in recent research fields [1]. World energy consumption is 
projected to increase by 2.6% annually to 2030 [2]. The elec-
trical energy utilization growth rate in Egypt is about 7% 
annually. It would need to increase its current generation 
capacity by a higher rate (more than 7%). The energy rate 
utilized by refrigeration air conditioning systems represents 

30% of the total worldwide consumed energy and 32% in 
Egypt [3].

Due to population growth, desalination is a practical solu-
tion to the water shortage problem [4]. Distillation, mem-
brane, and crystallization are examples of traditional desal-
ination methods. Membrane-based reverse osmosis (RO), 
multi-stage flashing (MSF), and multi-effect distillation 
(MED) are examples of commercial desalination technolo-
gies [5]. Table 1 expresses comparing analysis for almost all 
common desalination technologies [6]. On the other hand, 
traditional desalination technologies have a significant ini-
tial investment and running cost [7, 8]. The energy costs of 
producing unit water by MSF or RO are higher than pro-
ducing potable water from surface and subterranean water 
resources. Desalination costs vary depending on the loca-
tion. The cheapest seawater reverse osmosis cost was 0.5 
US$/m3 in 2016 [9]. Traditional energy-based desalination 
plants consume a lot of natural resources. As a result, solar, 
geothermal, wind, and other pollutant-free renewable energy 
sources are becoming increasingly popular for desalination. 
However, more research is needed to identify the most suit-
able technology for desalination applications [10].
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Adsorption desalination system (ADS) is becoming a 
promising future technology for saving the required fresh-
water [11, 12]. It is based on using porous material that 
could be regenerated via low-grade thermal energy [13, 
14]. The ADS has the advantage of efficiently utilizing low 
heat sources such as waste heat and/or solar energy [15–17]. 
It has some advantages over the commercial desalination 
methods, such as (i) the employment of the low-temperature 
excess or waste heat, (ii) lesser corrosion and fouling, (iii) 
and low maintenance cost. In addition, the ADS has two 
significant outcomes over the current desalination technol-
ogies, namely, (i) removing any “bio-contamination” and 
(ii) decreasing global warming due to the employment of 
excess waste heat [2, 18, 19]. The adsorption system can also 
be driven by renewable energy, reducing global warming 
resulting from carbon dioxide emissions of electricity gen-
eration [20]. The adsorption systems can be utilized for cool-
ing purposes [21, 22]. The idea for utilizing these systems 
in desalination was firstly presented by Zejli et al. [23] in 
2004, in which the earliest ADS simulation was performed. 
Till now, mathematical results [4–6, 24–28] achieved high 
values of specific daily water production (SDWP) and coef-
ficient of performance (COP) of 98 m3/ton.day and 2.1, 
respectively [4]. However, this performance was not proven 
experimentally on either lab-scale, prototype, or pilot scale. 
Experimental measurements are still low as SDWP did not 
increase more than 18 m3/ton.day [29], and COP did not 
increase than 0.77 [30]. This trend shows a research gap 
between the theoretical and experimental studies in this field 
because of the lack of understanding of the effect of heat 
and mass transfer mechanisms on cycle performance. Also, 
many adsorbent materials have been developed in the last 
years, and however, their performance was tested theoreti-
cally without considerable investigation about their thermal 
effect on the system performance [14, 31].

Therefore, the present review presents an innovative 
review focusing on experimental studies of ADS. It also 
discusses the effect of the employed adsorbents' heat and 
mass transfer characteristics on the system efficiency for the 
first time in reviewing ADS. Thus, the paper identifies the 
huge difference in performance between the experimental 
and numerical studies in adsorption desalination. It also 
discusses this technology's future perspective, challenges, 
and outlook to fill the world water demand and supply 

gap. The present review is divided into two main sections 
besides the introduction. The first section explores research 
that expresses experimental adsorbent materials with water 
vapor, which is the first step in constructing an ADS. The 
second section explores experimental investigations for ADS 
with and without evaporator condenser heat recovery. This 
work emphasizes the experimental test rig design, the mass 
of adsorbent material adsorption, and desalination system 
performance as SDWP, COP, and specific cooling power 
(SCP) for each experimental device. This review states the 
properties of utilized heat exchangers of adsorbent beds in 
ADS.

Adsorbent materials used in ADS

Many researchers focused on developing new adsorbent 
material or improving its adsorption uptake to enhance ADS 
effectiveness. Therefore, this section presents adsorption 
materials tested with water vapor as adsorbate.

Silica gel

Silica gel is the common material utilized in the ADS. Silica 
gel is a category of amorphous synthetic silica that consists 
of a rigid and continuous net of colloidal silica associated 
with SiO4 particles. The main advantages of silica gel are 
that it can regenerate with temperatures as low as 100 °C 
and thermal stability. Still, they have low adsorption capac-
ity compared to new adsorbents such as MOF [15]. White 
[32] theoretically illustrated the effect of silica gel granular 
diameter (1, 2, 3 mm) on the water adsorption rate. The 
study showed that reducing granule size raises the adsorp-
tion rate. Table 2 summarizes different types of silica gel and 
their adsorption uptakes.

Zeolite

Zeolite is a crystalline alumina silicate composed of alkali/
alkali soil, namely molecular sieve, and alumina silicate 
skeletal has 0.2–0.5  cm3/g of porosity. The adsorption 
capability of zeolite is related to the proportion between 
aluminum and silicon. The main advantages of zeolite are 
non-toxic, non-flammable, and environmentally friendly. It 

Table 1   Comparing analysis for 
almost common desalination 
technologies [6]

Items MSF MED MED-TVC SWRO MD (MED + AD)

Driving temperature (°C) 90–110 65–70 65–70 Ambient 60–90 65–70
Capital cost ($/m3/day) 1598 2000 1860 1313 1131 2200
Thermal energy (kWhthermal/m3) 53–70 40–65 50–80 – 100 30–40
Electrical energy (kWhelec/m3) 2.5–5.0 2.0–2.5 2.0–2.5 4.0–6.0 1.5–3.65 2.8
Water cost ($/m3) 0.56–1.75 0.52–1.01 1.12–1.50 0.26–0.54 1.17–2.0 0.48
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needs high regeneration temperatures and low adsorption 
capacity compared to new adsorbents such as MOF [36]. 
About 40 types of natural zeolite and around 150 types of 
artificial zeolite regarding a synthesis method [37]. Table 3 
summarizes different types of zeolite and their adsorption 
uptakes.

Metal–organic frameworks (MOFs)

Heat transformation technologies require the creation of 
adsorbent materials. In this regard, new materials appro-
priate to adsorption–desorption working fluid must yet be 
discovered for this technology to be remarkable [41, 42]. 
Metal–organic frameworks (MOFs), also known as porous 
coordination polymers (PCPs), have shown outstanding 
adsorbent properties and were investigated for heat trans-
formation uses. MOFs also comprise hydrophilic and 
hydrophobic moieties, each with adsorption characteris-
tics. Because of their high adsorption capacity for guest 
molecules such as water, MOF materials offer significant 
potential for heat transformation compared to a large range 
of natural and manufactured adsorbents. However, their 
stability and long-time synthesis process are the main chal-
lenges facing this family of nanoporous materials [42, 43]. 
Compared to silica gel, MOFs with hydrophilic characteris-
tics have the preference since they have an unlimited water 

uptake capacity at high pressures. At first, MOFs were dem-
onstrated as adsorbent materials by looking at their abil-
ity to use solid–gas adsorption for energy transformations. 
MOF materials offer a wide range of energy storage and 
heat transformation (cooling/heating) uses. Because water is 
commonly utilized as a working fluid, the examined adsor-
bent materials were evaluated using water adsorption–des-
orption properties. MOFs have also been examined for water 
adsorption studies to investigate structural characteristics 
and adsorption performance. The metal clusters must first 
coordinate water molecules before the poetical condensation 
procedure in the solid adsorbent's pores (MOFs) occurs in 
water adsorption [42, 44]. Therefore, metal groups catego-
rize MOF materials for water adsorption and heat/energy 
transformation applications. In addition, several frameworks 
showed geometric plasticity and reversible structural change 
in guest adsorption. Thus, water adsorption on MOF materi-
als was previously used to estimate their heat transformation 
performance.

MOFs have significantly more promise for this use than 
current adsorbents for heat transformation applications, like 
alumina phosphates or zeolites, owing to their composi-
tion, pore structure, also topology. Furthermore, additional 
improvement of the porosity structure of the MOFs, allow-
ing for tailoring of their adsorption capabilities, modification 
or functionalization of metal clusters/ions, and biological 
linkers are still achievable [42, 45]. This opens up excit-
ing possibilities for MOF production with specified prop-
erties optimized for specific working situations, such as 
heat transformations [42, 43]. Interestingly, development 
in MOF chemistry has progressed. Numerous techniques 
to synthesize and develop water-stable MOFs have paved 
the path for water-sorbent candidates with improved water 
adsorption and associated applications, see Table 4 [46–50]. 
From where water uptake capacity and corresponding rela-
tive pressure at which the pore filling occurs, the adsorption 
capabilities of MOFs are highly variable from a qualitative 
standpoint. Hydrolytically stable porous materials with large 
pore volumes, on the other hand, are likely to have large 
water adsorption capabilities. Hunt for hydrolytically stable 

Table 2   Different types of silica 
gel and their adsorption uptakes

n.d. means no data

Silica gel Max. equilibrium uptake 
(gwater g−1

ads)
BET surface area 
(m2 g−1)

References

Silica gel, type 3A/H2O 0.33 n.d [33]
Silica gel, type A/H2O 0.40 n.d [33]
Silica gel, type A +  + /H2O 0.52 863.6 [33]
Silica gel, type 2560/H2O 0.32 636.4 [33]
Silica gel, type RD/H2O 0.45 838 [34]
Fuji silica gel, type RD/H2O 0.48 780 [35]
Fuji silica gel, type 2060/H2O 0.37 707 [35]

Table 3   Different types of zeolite and their adsorption uptakes

n.d. means no data

Zeolite Max. equilibrium 
uptake (gwa-
ter g−1

ads)

BET surface 
area (m2 g−1)

References

Natural zeolite/H2O 0.12 643 [38]
Zeolite 4A/H2O 0.20 n.d [38]
AQSOA-Z01/H2O 0.21 189.6 [39]
AQSOA-Z02/H2O 0.31 717.8 [39]
AQSOA-Z05/H2O 0.23 187.1 [39]
Zeolite-13X/H2O 0.30 n.d [40]
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and recyclable MOFs with higher total water uptake is a 
major focus of MOF chemistry research [45, 47, 51–53].

Comparison among MOF materials and conventional 
materials

The authors showed and compared various MOF materi-
als that outperform existing porous materials like silica gel 
and zeolites in water adsorption [69, 70], see Fig. 1. The 
water adsorption isotherms of MOF materials are shown 
in Fig. 2. When comparing Figs. 1 and 2, it is clear that the 
MIL-101(Cr) outperformed the typical greatest adsorption 
capacity. For the adsorption (desalination and cooling) pro-
cess, desalinated water and cooling effects are influenced 
by the value of the adsorption capacity of the adsorbent 
material. The available adsorbed amount in water vapor 
adsorption uptake (∆w) at adsorption and adsorption pres-
sures are mainly affected by the available adsorbed amount. 
The ∆w represents the difference between expected mate-
rial concentrations in the adsorption and desorption model 

Table 4   List of possible MOFs and their water adsorption properties

MOFs Metals Uptakea 
(gwa-
ter g−1ads)

Surface 
area 
(m2 g−1)

References

CAU-6 Al 0.485 620 [54]
CAU-10 Al 0.31 635 [55]
CAU-10-H Al 0.382 635 [55]
CAU-10-NH2 Al 0.19 n.d [55]
CAU-10-NO2 Al 0.15 440 [55]
CAU-10-OCH3 Al 0.07 n.d [55]
CAU-10-OH Al 0.27 n.d [55]
DUT-4 Al 0.28 1360 [44]
DUT-67 Zr 0.625 1560 [56]
MIL-100 Cr 0.41 1517 [57]
MIL-100 Fe 0.81 1549 [44]

0.77 1917 [58]
MIL-100 Al 0.50 1814 [58]
MIL-100 Cr 0.40 1330 [59]

1.01 2059 [60]
1.28 3017 [44]
1.40 3124 [61]

MIL-100-DEG Cr 0.33 580 [59]
MIL-100-EG Cr 0.43 710 [59]
MIL-101-NH2 Cr 0.90 2509 [61]

1.06 2690 [62]
MIL-101-NO2 Cr 1.08 2146 [61]

0.44 1245 [62]
MIL-101-pNH2 Cr 1.05 2495 [62]
MIL-101-pNO2 Cr 0.60 2195 [62]
MIL-101-soc Cr 1.95 4549 [53]
MIL-125 Ti 0.36 1160 [45]
MIL-125-NH2 Ti 0.36 830 [45]

0.37 1220 [63]
MIL-53 Al 0.09 1040 [45]

0.09 n.d [64]
MIL-53-NH2 Al 0.05 940 [45]

0.09 n.d [64]
MIL-53-OH Al 0.40 n.d [64]
MIL-53 Ga 0.05 1230 [45]
MIL-53-NH2 Ga 0.02 210 [45]
MIL-53-(COOH)2 Fe 0.16 n.d [64]
MIL-68 In 0.32 1100 [45]
MIL-68-NH2 In 0.32 850 [45]
MOF(NDI-SEt) Zn 0.25 888 [65]
MOF(NDI-SO2Et) Zn 0.25 764 [65]
MOF(NDI-SOEt) Zn 0.30 927 [65]
MOF-199 Cu 0.55 1340 [44]

0.64 921 [66]
0.49 1270 [67]

MOF-74 Co 0.63 1130 [56]
MOF-74 Mg 0.75 1250 [56]

0.62 1400 [67]

Table 4   (continued)

MOFs Metals Uptakea 
(gwa-
ter g−1ads)

Surface 
area 
(m2 g−1)

References

MOF-74 Ni 0.615 1040 [56]
0.48 639 [56]

MOF-801-P Zr 0.45 990 [56]
MOF-801-SC Zr 0.35 690 [56]
MOF-802 Zr 0.11 1290 [56]
MOF-804 Zr 0.29 1145 [56]
MOF-805 Zr 0.415 1230 [56]
MOF-806 Zr 0.425 2220 [56]
MOF-808 Zr 0.735 2060 [56]
MOF-841 Zr 0.64 1390 [56]
PIZOF-2 Zr 0.85 2080 [56]
SIM-1 Zn 0.14 570 [45]
UiO-60 Zr 0.535 1290 [56]

0.40 1032 [63]
0.39 1105 [68]
0.37 1160 [67]

UiO-66–1,4-Naphy1 Zr 0.26 757 [68]
UiO-66–2.5-(OMe)2 Zr 0.42 868 [68]
UiO-66-NH2 Zr 0.38 1328 [63]

0.34 1123 [68]
0.37 1040 [67]

UiO-66-NO2 Zr 0.37 792 [68]
UiO-67 Zr 0.18 2064 [63]
ZIF-8 Zn 0.02 1255 [44]

0.01 1530 [45]

a Adsorption properties of water measured at 25 °C and almost satu-
rated vapor pressure
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(cycle sorption quantity). The adsorbent material with a 
step increase in water vapor uptake before (P/Ps = 0.25) is 
suitable for cooling applications. Some adsorbent materials 
take their most adsorption capacity after P/Ps = 50%, which 
indicates that it is more suitable for desalination than cool-
ing applications. In cooling applications, the evaporator 
pressure could be considered 1 kPa to get a cooling effect 
at around 7 °C, while in the desalination application, the 
evaporator pressure could be higher, around 2.25 kPa to take 
benefit most adsorption capacity of material as ∆w [36]. 
Based on this Figure, MIL-101(Cr), MIL-100(Fe), and alu-
minum fumarate are suitable for applications requiring high 
P/Ps, like desalination [68] or energy storage, whereas CPO-
27(Ni) is better suited for applications requiring low P/Ps 
like energy storage [71], cooling [72] or dual effect desalina-
tion [73, 74]. For more illustration of whether an adsorbent 
is suitable more in desalination or cooling applications, or 
both. This is calculated based on ∆w at evaporation and 
condensation pressures and temperatures using the Gibbs 
energy change (− RT ln(P/Ps)) relationship as illustrated in 

Fig. 3. The figure expresses that the MIL-101(Cr)-UoB has 
the best performance in desalination mode. It is achieved 
∆w (1.22 kg/kg) in desalination application. But it has not 
a good performance in cooling mode as it achieves ∆w 
(0.06 kg/kg) due to its isotherm performance, which has a 
jump in adsorbed vapor uptake after P/Ps = 0.4. The figure 
also expresses that Aluminum fumarate and MIL-100(Fe)-
UoB have the best performance in cooling mode as they 
achieve around ∆w (0.32 kg/kg) in cooling mode.

Enhancing the properties of MOF materials

Because of its huge pore size and high free volume, MIL-
101(Cr) has exceptional features, including exceptionally low 
thermal conductivity. During both adsorption and desorption 
stages, low thermal conductivity makes it difficult for heat 
transfer processes to reach the required operating temperatures 
fast. To enhance the thermal conductivity of parent MIL-101, 
a composite of MIL-101(Cr)/GrO was utilized (Cr) [78]. Two 
approaches were used to create a composite of MIL-101(Cr) 

Fig. 1   Isotherms for water 
adsorption of traditional adsor-
bents like silica gel RD [75], 
SAPO-34 [72], Zeolite Y [76], 
Zeolite 13X [77]and AlPO-18 
[77] at 25 °C

Fig. 2   Isotherm of water 
adsorption for some MOF 
materials like MIL-101(Cr)-
UoB, CPO-27(Ni), Aluminum 
fumarate, and MiL-100(Fe)-
UoB [69] at 25 °C
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and GrO: physically mixing the two components and inte-
grating them into the synthesis process. Owing to the limited 
porosity of GrO, it was discovered that the composites made 
via the physical mixing method had a decreased water uptake. 
In the synthesis process, the 2% GrO synthesis composite 
demonstrated comparable water uptake at low relative pres-
sures and outperformed the pristine material at high relative 
pressures. Because of the crystal structural distortion, 5% GrO 
synthesis composite reduced water uptake [78].

Composite adsorption materials

Many researchers have improved the current adsorbent mate-
rials by the composition method, whether by compositing 
two or more host matrix materials together or by composit-
ing a host matrix with a salt hydrate to improve the per-
formance of systems that use those materials [36]. Table 5 
summarizes the adsorption characteristics of composite 
materials. The table illustrates that composite adsorbent 
materials achieved higher adsorption water capacity than the 
base materials, which expresses that composite materials can 
achieve higher performance as cooling power or desalination 
effect. But these composite adsorbents need to be examined 
experimentally in adsorption desalination/cooling devices 
to realize what can enhance performance.

Experimental adsorption desalination 
systems

This section explores all presented experimental investiga-
tions for ADS separated into two categories. Experimental 
investigation types are ADS with and without evaporator 

condenser heat recovery. This section explores all experi-
mental adsorption desalination (AD) studies; the work 
emphasizes the experimental test rig design, the mass of 
adsorbent material adsorption, and desalination system 
performance as SDWP, COP, and specific cooling power 
(SCP) of each experimental device. This work also reviews 
the properties of the used heat exchangers of adsorbent beds 
in ADS.

Experimental adsorption desalination studies

In this sub-section, experimental investigations of ADS are 
presented. These experimental investigations are for produc-
ing both desalination and cooling effects. The first excre-
mental test rig for ADS was presented by Wang et al. [8], 
as illustrated in Fig. 4. The highest SDWP obtained was 
4.7 m3/ton of silica gel at Tdes = 85 °C and Tcw = 30 °C. This 
study also reported that SDWP yielded from the plant could 
be further boosted by adopting a higher chilled water tem-
perature supply (Tchi) and lowering adsorption cooling water 
(Tcwi). It demonstrated that ADS was also more efficient 
when the heat source temperature was lowered to 65 °C. 
Thu et al. [118] reported ADS performances with two-bed 
and four-bed operational modes. Figure 5 shows the used 
test rig for ADS. The tested results are estimated in terms 
of (i) SDWP, cycle time, and (ii) performance ratio (PR) 
for several driving temperatures (Tdrv). It was found that the 
maximum SDWP is about 10 m3 /tone.day with PR 0.61. 
The study also provided a valuable guideline for the opera-
tional approach of ADS. The study employed four adsorp-
tion units with 36 kg of silica gel per adsorption unit. Wu 
et al. [119] presented ADS as an alternative to traditional 
desalination systems that could be utilized by waste heat 

Fig. 3   Adsorption characteristic 
of MOF [69] at 25 °C
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Table 5   Summary of the adsorption characteristics of composite materials

Composite Uptake (g g−1) BET surface area 
(m2 g−1)

Vpor (cm3 g−1) P/Ps (–) Tads Refs.
(°C)

SG/CaCl2 1  > 0.6 20 [79]
SG 0.4 785 1.31 0.95 23 [80]
SG/CaCl2 0.57 224 1.039
SG/16.7wt.% CaCl2 0.57 886 3.9 0.75 25 [81]
SG/28.9wt.% CaCl2 0.9 640 1.9 0.75
SG/16.6wt.% CaCl2 0.48 276 0.45 0.75
SG/28.9wt.% CaCl2 1.1 200 0.54 0.75
SG/31.6wt.% CaCl2 0.68 152 0.54 0.7
SG 0.16 529 0.806 0.8 30 [82]
SG/10wt.% CaCl2 0.44 0.698
SG/20wt.% CaCl2 0.53 0.567
SG/30wt.% CaCl2 0.6 0.53
SG/40wt.% CaCl2 0.74 0.395
SG 0.1 550 0.43 0.75 [83]
SG/28.6wt.% LiBr (Aerogel) 0.5 520 1.05 0.7 25
SG/28.6wt.% LiBr (Densified) 0.68 351 1.13 0.75
SG/28.0wt.% LiBr (Xerogel) 0.63 324 0.38 0.75
SG/35.5wt.% LiBr (Impregnation) 0.8 262 0.39 0.65
SG/13.5wt.% MgSO4 0.27 25 [84]
SG/24wt.% MgSO4 0.37
SG/38wt.% MgSO4 0.47
KSM SG 600 0.3 [85]
KSM SG/21.7 wt.% CaCl2 0.25 0.7 20
KSK SG 260 1 [86]
KSK SG/45wt.% Ca(NO3)2 0.2–0.3 60 0.24  < 0.7 30
KSK SG 350 1 35 [87]
KSK SG/34.5wt.% LiNO3 0.22
KSK SG 1 20 [88]
KSK SG/42wt.% CaCl2 0.45 0.6–0.64
KSK SG/48wt.% LiBr- 0.39 0.6–0.64
KSK SG/33wt.% MgCl2 0.51 0.6–0.64
KSKG SG 350 1 [89]
KSKG SG/33.7 wt.% CaCl2 0.7–0.75 0.7 20
KSKG SG/32 wt.% LiBr 0.6–1 0.7–0.8 40 [90]
KSKG SG/57 wt.% LiBr
PHTS 0.16–0.65 810 0.705 0.4–0.95 40 [91]
PHTS/4wt.% CaCl2 0.25–0.78 461 0.492
PHTS/10wt.% CaCl2 0.38–1.20 322 0.377
PHTS/20wt.% CaCl2 0.58–2.24 163 0.189
SBA-15 519 0.73 50 [92]
SBA-15/43wt.% CaCl2 0.615 52 0.17 0.4
SBA-15 0.02 554 0.8 0.3 20 [93]
SBA-15/2.80wt.% Al2(SO4)3 0.05 550 0.75
SBA-15/5.32wt.% Al2(SO4)3 0.065 549 0.73
SBA-15/6.77wt.% Al2(SO4)3 0.09 541 0.7
Syloid72FP/Emim-Oms 1.64 0.9 25 [94]
Syloid AL-1FP 0.28 605–740 0.23–0.4 0.9 25 [95]
Syloid AL-1FP/60wt.% Emim-Oms 1.86
Syloid AL-1FP/20wt.% Emim-Ac 0.92
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Table 5   (continued)

Composite Uptake (g g−1) BET surface area 
(m2 g−1)

Vpor (cm3 g−1) P/Ps (–) Tads Refs.
(°C)

Syloid72FP 0.44 340–405 1.2
Syloid72FP/60wt.% Emim-Oms 1
Syloid72FP/60wt.% Emim-Ac 1.32
Syloid AL-1FP/60.0% [Emim][CH3SO3] 0.85 0.9 25 [96]
Syloid AL-1FP/41.7% [Emim][CH3SO3] 0.75
Syloid AL-1FP/17% [Emim][CH3SO3] 0.5
Syloid AL-1FP/1.8% [Emim][CH3SO3] 0.25
AC 0.35 678 2.365 0.94 23 [97]
AC/CaCl2 0.42 224 1.039
AC/38.6wt.% MgCl2 0.941 716 0.3924 0.7 25 [98]
AC/31.2wt.% MgCl2 + 3.2wt.% Ce 1.05 494.8 0.3846
AC 0.19 1117 0.5329 atm 25 [99]
AC + 16wt.%SG 0.244 610 0.2934
AC + 26wt.%SG 0.246 664 0.3121
AC + 19wt.%SG 0.25 682 0.3242
AC + 2wt.%SG/68wt.%CaCl2 0.41 118 0.074
AC + 4wt.%SG/57wt.%CaCl2 0.699 82 0.0449
AC + 3wt.%SG/64wt.%CaCl2 0.805 83 0.0589
AC + 20wt.%SG/11wt.%CaCl2 0.243 602 0.2895
AC + 24wt.%SG/13wt.%CaCl2 0.236 626 0.2975
AC + 22wt.%SG/4wt.%CaCl2 0.264 680 0.327
AC + 22wt.%SG/5wt.%CaCl2 0.412 156 0.0812
AC + 13wt.%SG/21wt.%CaCl2 0.433 160 0.0882
AC + 10wt.%SG/15wt.%CaCl2 0.332 188 0.0958
AC1 1370 0.109 0.4–0.9 [100]
AC1/10wt.% Na2O3Si 0.12–0.52 690 0.095 25
AC2 1300 0.158
AC2/10wt.% Na2O3Si 0.12–0.42 1080 0.048
Carbon Sibunit 450 ± 25 0.9 ± 0.05 [97]
Carbon Sibunit/29wt.% LiBr 0.4–1.1 0.7 30
Expanded graphite 12.3 ± 1.2 3.3 ± 0.1
Expanded graphite/33wt.% LiBr 0.4–1.1 0.7 30
MWCNT 270 3  > 0.4 37 [101]
MWCNT/44wt.% LiCl 1.1 140 1.4
MWCNT/53wt.% CaCl2 0.94 75 0.9
MWCNT 270 5.3 35 [102]
GP(MWCNT/41wt.% LiCl) 1 145 2.7
PB(MWCNT/42wt.% LiCl) 1 124 4.7
PP(MWCNT/41wt.% LiCl) 1 144 2.7
MWCNT/PVA/55wt.% LiCL 0.6 80 0.9 0.2 35 [103]
Zeolite 921 0.374 [104]
Zeolite/15wt.% MgSO4 0.15 400 0.18 0.7 30
Zeolite13X 0.28 468 1.527 0.94 23 [80]
Zeolite13X/CaCl2 0.6 233 1.489
Zeolite13X 0.0761 667 0.32  < 0.3 25 [105]
Zeolite13X/10wt.% CaCl2 0.0914 608 0.34
Zeolite13X/20wt.% CaCl2 0.1592 608 0.36
Zeolite13X/30wt.% CaCl2 0.1953 605 0.36
Zeolite13X/40wt.% CaCl2 0.3953 601 0.34
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Table 5   (continued)

Composite Uptake (g g−1) BET surface area 
(m2 g−1)

Vpor (cm3 g−1) P/Ps (–) Tads Refs.
(°C)

Zeolite13X/46wt.% CaCl2 0.8 622 0.54
Alumina/Zeolite13X 1.16 455 0.283 0.94 20 [106]
Alumina 0.75 20 [92]
IK-02-200 alumina/31wt.% CaCl2 0.3 0.6–0.64
MIL-101 0.18 3402.69 1.59 0.4 25 [107]
MIL-101/LiCl 0.5 2054.03 0.94
MIL-101/NaCl 0.46 2000.66 0.91
MIL-101 1.22 2789 1.32 0.9 25 [108]
MIL-101/2wt.% GO 1.53 3472 1.69
MIL-101/4wt.% GO 1.56 3501 1.77
MIL-101/6wt.% GO 1.58 3522 1.78
MIL-101/8wt.% GO 1.42 3126 1.57
MIL-101(Cr) 0.1–1.35 3354.84 1.73 0.3–0.9 25 [109]
MIL-101(Cr)/3wt.% CaCl2 0.16–1.2 2976.77 1.49
MIL-101(Cr)/4wt.% CaCl2 0.16–1.3 3117.14 1.58
MIL-101(Cr)/5wt.% CaCl2 0.26–1.2 2675.9 1.35
MIL-101(Cr)/6wt.% CaCl2 0.22–1.25 2641.5 1.32
MIL-101(Cr)/8wt.% CaCl2 0.65–1.75 1876.01 0.99
MIL-101(Cr) 0.18–1.05 2824 1.362 0.4–0.9 25 [110]
MIL-101(Cr)/10% CaCl2 0.5–0.88 1977 0.745
MIL-101(Cr)/20% CaCl2 0.53–1.13 1307 0.509
MIL-101(Cr)/30% CaCl2 0.6–1.35 193 0.071
MIL-101(Cr) 0.4 3460 1.753 0.95 25 [78]
MIL-101(Cr)/0.5wt.%GrO (Synthesis) 1.4 3137.8 1.641
MIL-101(Cr)/0.5wt.%GrO (Physical) 1.22 2608.5 1.346
MIL-101(Cr)/1wt.%GrO (Synthesis) 1.45 3028.1 1.619
MIL-101(Cr)/1wt.%GrO (Physical) 1.17 2425.7 1.265
MIL-101(Cr)/2wt.%GrO (Synthesis) 1.55 3674 2.14
MIL-101(Cr)/2wt.%GrO (Physical) 1.32 2077 1.035
MIL-101(Cr)/5wt.%GrO (Synthesis) 1.47 2810 1.879
MIL-101(Cr)/5wt.%GrO (Physical) 1.27 2626 1.33
Vermiculite 0.06 15.1 4.11 0.94 23 [80]
Vermiculite/CaCl2 1.45 10.9 1.491
Vermiculite/MgSO4 0.41 3.6 2.054
Vermiculite/Ca(NO3)2 1.52 2.4 1.274
Vermiculite/Li(NO3)2 1.73 2.4 1.109
Vermiculite/LiBr 1.94 1.9 1.172
Vermiculite/63wt.% LiNO3 0.4–0.5  < 0.5 33 [111]
Vermiculite 0.04 9 1.8 25 [112]
Vermiculite/57.3wt.% CaCl2 1.13 1.55
MCM-41 0.04 1137 1.3 0.3 20 [93]
MCM-41/3wt.% Al2(SO4)3 0.1 1021 1.12
MCM-41/5wt.% Al2(SO4)3 0.15 993 1.12
MCM-41/7wt.% Al2(SO4)3 0.17 941 1.01
MCM-41 1050 1.1 [113]
MCM-41/37.7wt.% CaCl2 0.7–0.75 325 0.7 20
WSS 0.15 111.7 0.309 0.95 25 [114]
WSS/9.6wt.% LiCl 1.1 64.5 262
WSS 0.15 111.7 0.309 0.95 25 [115]
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or solar energy to generate potable. The study investigated 
a practical implementation of theoretical ADS cycles and 
their validity experimentally. As shown in Fig. 6, the study 
employed one adsorption unit with 2.124 kg of silica gel.

Ng et al. [120] analyzed the performance of ADS utilized 
by waste heat for producing desalinated water and cooling 
effect. A theoretical simulation for ADS was preceded. The 
cycle was explored using key performance parameters like 

Table 5   (continued)

Composite Uptake (g g−1) BET surface area 
(m2 g−1)

Vpor (cm3 g−1) P/Ps (–) Tads Refs.
(°C)

WSS/2.2wt.% CaCl2 0.26 100.9 0.29
WSS/13wt.% CaCl2 0.66 49.9 0.209
WSS/22.4wt.% CaCl2 1.12 38.4 0.152
WSS 0.26 149 0.37 0.95 25 [116]
WSS/5wt.% CaCl2 0.31 119 0.33 0.95
WSS/10wt.% CaCl2 0.32 101 0.32 0.75
WSS/5wt.% NaCl 0.35 129 0.33 0.95
WSS/10wt.% NaCl 0.48 128 0.34 0.95
WSS/5wt.% LiCl 0.38 124 0.33 0.95
WSS/10wt.% LiCl 0.57 134 0.35 0.95
SP 1.5 105.3 0.168 0.9 25 [117]
SP/CaCl2 1.33 103.953 0.1657

Fig. 4   Schematic diagram of the ADS used test facility [8]
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(i) SCP, (ii) SDWP, (iii) COP, and (iv) overall conversion 
ratio (OCR). The mathematical results were certified by 

experimental data. Figure 7 expresses the advanced ADS 
cycle with 4 adsorption units with 36 kg silica gel per unit. 
At Twhi = 85 °C, the cycle produced 3.6 m3 of desalinated 
water and 23 Raton at Tcho = 10 °C.

Mitra et  al. [121] evaluated two-stage ADS for both 
cooling-cum-desalination. Figure 8 shows a schematic of the 
experimental facility. The study showed that a single-stage 
ADS system could not be used with an air-cooled condenser 
under tropical conditions, and this was realized by operating 
the system in a 2-stage model. Also, the study expressed a 
developed simulation model that was closer to experimental 
results than the previous one.

Gao et al. [122] investigated an innovative single-stage 
vacuum evaporator to extract saltwater. The system was 
settled to utilize an ultra-low-grade heat source of 50 °C. 
Figure 9 illustrates the investigated system. The adsorbent 
bed comprised 5 arrays of U-shaped aluminum finned tube 
heat-exchanger with 0.8 kg of silica gel (Type A). It was 
conducted that utilizing lower Tcwi enhanced the desorption 
process, which boosted the performance of the developed 
system.

Alsaman et al. [15] proposed and designed a new solar 
ADS for cooling and desalination. The proposed ADS was 
built and tested under Egypt's climate conditions. Figure 10 

Fig. 5   Schematic diagram of used ADS experimental test rig stated in [118]

Fig. 6   One adsorption unit with 2.124 kg of silica gel [119]
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expresses the designed ADS 13.5 kg with silica gel. The 
Adsorption characteristics were also presented for the 
selected material. The theoretical model was close to experi-
mental results. The results showed that SCP was 112 W/kg 
and SDWP was 4 m3/day.ton with COP of 0.45. Dakkama 
et al. [74] investigated MOF development for producing ice 
and freshwater. Figure 11 expresses a schematic diagram of 
the investigated system. The adsorber bed contained 670 g 
of CPO-27 (Ni). Results indicated that the optimal operat-
ing salinity concentration was 35,000 ppm to produce ice 
(8.3 m3/day/ton) with COP 0.9. The SDWP was 1.8 m3/day/
ton.

Youssef et al. [73] explored experimentally using CPO-27 
(Ni) as adsorbent material for ADS applications. Experi-
mental and numerical investigation for utilizing 0.67 kg of 
CPO-27(Ni) with a one-bed ADS system was obtained, as 
expressed in Fig. 12. Results demonstrated that by increas-
ing Teva and reducing Tcond, SCP was improved. The ADS 
created 65 Rton/ton at (Tevap = 20 °C). SDWP was improved 
to 22.8  m3/ton.day at (Tevap = 40  °C, Tcon = 5  °C and 
Tdes = 95 °C). Olkis et al. [123–126] presented three papers 
illustrating the design of an experimental small-scale ADS 
desalinator for producing freshwater. The study introduced 
the world’s smallest ADS with 0.2 kg silica gel, as shown 

in Fig. 12. The system achieved an SDWP of 7.7 kg/kgsg.
day. The ADS demonstrated the profits of heat combination 
between the adsorbent beds to reduce the consumed energy 
by 25% and raise the PR to 0.6.

Elsayed et al. [127] reported that MOF materials were 
recommended to substitute the traditional adsorbents. The 
study presented an experimental test of 0.375 kg aluminum 
fumarate in ADS. The performance of aluminum fumarate 
was higher than that of ADS utilizing silica gel and CPO-
27(Ni) for desalination effect only at high P/Ps. Zhang et al. 
[128] presented a pilot-scale ADS with freshwater produc-
tion of 100 kg/h, as illustrated in Fig. 13. The system was 
constructed based on small-scale system optimization and 
enhancement. The results exhibited that the desalinated 
water was less than 100 kg/h at Thwi = 55 °C. At higher Thwi, 
the desalinated water rate was improved to 191.3 kg/h at 
Thwi = 80 °C.

Advanced experimental desalination investigations

In this section, the advanced adsorption desalination experi-
mental investigations will be expressed. These experimental 
investigations are for only the desalination effect. In these 
systems, a heat recovery between evaporator and condenser 

Fig. 7   Advanced ADS cycle with 4 adsorption units [120]
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was utilized. Thu et  al. [25]expressed the results of an 
investigation advanced AD cycle with internal heat recov-
ery between condenser and evaporator. Figure 14 expresses 
the advanced AD cycle with 4 adsorption units with 36 kg 
silica gel per unit. A mathematically advanced AD cycle 
was developed and validated with experimental results. The 
advanced ADS could yield an SDWP of 9.24 m3/ton daily 
at 70 °C with PR = 0.77. The proposed system could be 
operated at 50 °C Thwi with SDWP 4.3. The advanced cycle 
SDWP was two times that of the traditional AD cycle.

Ma et al. [30] investigated an experimental heat recovery 
between adsorber and desorber beds for ADS with 29.17 kg 

silica gel per adsorption bed, as illustrated in Fig. 15. The 
results showed that the SDWP and PR were 4.69 and 0.766, 
respectively.

This heat recovery employment could not rise SDWP, 
but it could save consuming energy. Kim et al. [129] inves-
tigated the water quality measurements of AD plants. Feed-
water was taken from the Red Sea. Figure 16 expresses the 
schematic AD cycle with 4 adsorption units. Water quality 
was assessed by complying with the Environmental Pro-
tection Agency (EPA) principles with major primary and 
minor inorganic drinking water contaminants and other usu-
ally tested water quality considerations. Desalinated water 

Fig. 8   Schematic of 2-bed two-
stage ADS [121]
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testing ensured the good quality of generated freshwater. 
Test results showed that ADS effectively removes all forms 
of salts to less than 10 ppm. Bai et al. [29] investigated the 
mass recovery between adsorber and desorber beds for ADS 
and the feedwater quality effect on ADS performance. The 
results showed that the SDWP and SCP were 18.08 and 490, 
respectively.

Hybrid adsorption desalination with MED system

There are many studies on hybrid ADS with other systems 
such as RO-AD, AD-MVC, and AD-HDH. Still, many of 
these studies are theoretically investigated. The only experi-
mental hybrid investigation systems were expressed between 
AD and MED. Shahzad et al. [130] presented an experi-
mentally new hybrid “MEDAD” system, a coupling of the 
conventional MED and ADS, as expressed in Fig. 17. The 

main advantage of the MEDAD cycle is that it allowed some 
MED stages to work below ambient temperature, indifferent 
to the conventional MED. The hybrid system significantly 
increases desalinated water to 2.5–3 folds of conventional 
MED.

Son et  al. [131] explored experimentally hybrid 
“MEDAD” desalination, applying synergetic impact for 
utilizing energy to improve the MEDAD performance, as 
expressed in Fig. 18. The MEDAD system significantly 
increased desalinated water up to 2–5 folds of conventional 
MED of the same rating.

Table 6 summarizes the results of previous experimental 
ADS studies. The SDWP for ADS that utilized silica gel 
varied from 3.6 to 14.2 m3/day.ton. This wide range illus-
trates the significant effect of ADS system design and oper-
ating conditions. Therefore, the next section summarizes 

Fig. 9   Schematic of the used 
experimental facility [122]
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the heat exchanger configurations and their effect on ADS 
performance.

Effect of heat transfer of adsorption bed 
on ADS performance

In this section, the effect of heat transfers of adsorption 
bed on ADS performance. The current study expresses all 
adsorption desalination experimental investigations. The 
heat transfer parameters of adsorption beds are expressed 
in Table 7. The following equation illustrates heat transfer 
parameters.

To simplify the computation, the TMinherent of sorbed 
refrigerant was ignored. It is simplified in two ways: (1) 
the computed thermal mass no longer includes the sorb-
ent's equilibrium composition, and (2) the thermal mass 
may be viewed as constant in sorption and desorption 
operations. Neglecting the TM of sorbed refrigerant will 
have a minor influence on TMtotal for many adsorption heat 
exchangers (HXs).

The thermal mass of the adsorption bed is given by

(1)TMtotal = TMinherent + TMdesign

Fig. 10   Schematic diagram of 
the solar ADC test rig [15]
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(2)TMinherent = MadsorbentCpadsorbent

where HTF represents heating thermal fluid.
The specific thermal mass is given by.

Figures 19 and 20 express the effect of bed design rep-
resenting thermal masses of heat exchangers on ADS per-
formance through the previous experimental studies. In the 
previous experimental studies, the STM varied from 1.74 
to 6.58 kJ/kg. Figure 19 illustrates the COP variation by 
changing the adsorption bed's specific thermal mass (STM). 
The COP decreases from 0.766 to 0.36 with STM increas-
ing 1.74–6.05 kJ/kg for silica gel adsorbent duo to increase 
the adsorption bed's thermal mass, which means more heat 
losses in the heating adsorption bed. This heat loss is rep-
resented in the heating of the heat exchanger. Figure 20 
expresses the SDWP variation by changing the adsorption 
bed's specific thermal mass (STM). STM has a significant 
effect on SDWP. The SDWP increases from 3.6 to 18 m3/
day.ton (about 500% increasing) with STM increasing from 
1.74 to 6.58 kJ/kg as a result of increasing the overall heat 
transfer coefficient due to increasing the thermal mass of the 
adsorption bed. This means more adsorbent vapor is released 

(3)TMdesign = �HTFVHTFCPHTF +
∑

MmetalCpmetal

(4)STM =
TMdesign

Madsorbent

Fig. 11   Schematic diagram of ADS for ice making and freshwater 
[74]

Fig. 12   Schematic diagram of 
small-scale ADS desalinator 
[123–125]
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in desorption mode, leading to more desalinated water pro-
duction in the condenser.

Challenges and perspectives

This section expresses the research gap, the required 
research topics in ADS, and future marketing challenges 
of marketing these ADS. Despite the many advantages of 
ADS, as they can be driven by renewable and/or waste 
energy, they still face difficulties in marketing and dissemi-
nation. This is because it suffers from high volume and 
relatively low efficiency compared to traditional devices, 
which decreases the productivity of these systems and 
makes them unattractive. Moreover, the number of experi-
mental researches in this field is still limited compared to 
its importance. From this standpoint, it was necessary to 

show the gap and clarify the deficiency in this area. This 
is what this work is trying to show, as after reviewing 
the published research, it was found that the number of 
devices built to study desalination systems does not exceed 
a dozen. This clearly shows that the field still needs more 
effort, research, and the development of new methods and 
materials to raise the efficiency of this system. Therefore, 
it is recommended to do more experimental research to 
encourage the industrial sector and investors to build AD 
plants. The authors recommend these future researches 
focus on the following:-

1	 Finding new adsorbent materials with a high adsorp-
tion capacity to reduce AD plant volume and increase 
performance in terms of SDWP and COP.

2	 Finding new composite adsorbent materials for higher 
adsorption capacity

Fig. 13   Schematic diagram of 
pilot-scale ADS [76]
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Fig. 14   Advanced ADS cycle with 4 adsorption units [25]

Fig. 15   Schematic diagram for heat recovery between adsorber and desorber beds [30]
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3	 How to increase the COP of the AD cycle by increasing 
the overall heat transfer coefficient of adsorption beds 
and evaporator and condenser.

4	 Applying the recent theoretical research of ADS exper-
imentally to close the gap between theoretical and 
experimental studies. Mathematical results [4–6, 24–28] 
achieved high values of SDWP and COP of 98 m3/ton.
day and 2.1, respectively [4]. However, this performance 
was not proven experimentally on either lab-scale, proto-
type, or pilot scale. Experimental measurements are still 
low as SDWP did not increase more than 18 m3/ton.day, 
and COP did not increase than 0.78.

5	 Applying the theoretical hybridization between ADS and 
RO, HDH, salt hydrate, and absorption system experi-
mentally to realize the benefits of these combinations. 
Also, study new combinations of ADS and other desali-
nation systems.

6	 Establish more pilot plants and scale up adsorption 
desalination plants to encourage the industrial sector to 
invest in these ADS. Finding new adsorbent materials 
with a high adsorption capacity to reduce AD plant vol-
ume and increase performance in terms of SDWP and 
COP.

Conclusions

This review presents a survey about the constructed and 
tested experimental water distillation systems that con-
sider adsorption technology. Not so many systems have 
been found, as less than ten systems were built worldwide 
to take off freshwater from the salty water by adsorp-
tion evaporation technology. One of these few systems 
had been built in Egypt. The majority of these systems 

Fig. 16   schematic ADS cycle with 4 adsorption units [129]
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employed silica gel as an adsorbent material; its compos-
ites and metal–organic framework were also used. The 
amounts of the used adsorbents varied from less than 
1 kg, reaching 1440 kg. Produced amount of pure water 
per day per ton of adsorbent has been varied as well, from 
1.8 m3/ton/day up to 25 m3/ton/day. The whole presented 

system used a fin tube-type heat exchanger. It is clear that 
the technology is still in the cradle, and more experimen-
tal test rigs are required to be built and tested at different 
operating conditions. Also, more adsorbent materials are 
needed to be employed in such systems.

Fig. 17   MEDAD schematic diagram for experimental rig installed in NUS [130]
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Fig. 18   Pictorial view of MED-AD system [131]

Table 6   Comparison between previous experimental ADS studies

Adsorbent material Half cycle 
time (s)

No. of bed Adsorbent 
weight (kg)

Tcw (°C) Thw (°C) SDWP (m3/ton) SCP (W/kg) COP (–) Refs.

Silica gel 180 4 36 30 85 4.7 – 0.28 [8]
Silica gel 650 2 6.75 30 85 4 112 0.45 [15]
Silica gel 600 4 36 30 85 14.2 – 0.74 [25]
Silica gel 900 2 29.17 27 83 4.69 – 0.766 [30]
Silica gel 600 4/2 36 30 85 10 – 0.61 [118]
Silica gel 480 4 36 29.5 85 8 181 – [120]
Silica gel 1200 2 0.2 25 80 7.7 80 0.6 [123–126]
Silica gel 900 2 1440 27 80 3.6 – 0.72 [128]
CPO-27Ni MOF 720 1 0.670 20 110 6.9 200 – [73, 132, 133]
CPO-27Ni MOF 900 1 0.670 24 95 1.8 – 0.48 [74]
Aluminum fumarate 900 2 0.375 30 90 8.5 250 0.13 [127]
Aluminum fumarate 250 2 23.2 25 85 8.66 226 0.5 [134]
Aluminum fumarate 500 1 0.3 30 90 14.4 549.7 0.26 [135]
Montmorillonite/HCl 450 2 2.65 25 85 4.4 110 0.41 [12]
MWCNT embedded 

zeolite13X/CaCl2
542 2 1.1 24 85 18.08 490 0.3 [29]
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Table 7   The heat transfer parameters of adsorption beds for different excremental test rigs

Component 
(section) shape 
of HX

Working pair Heat transfer 
fluid

Sorbent 
mass 
(kg)

HX Mass (kg) TMtotal (kJ/K) msorb/mH.X STM (TM/m 
sorb.)

Refs.

Tube fin HX 
packed

Silica gel/water Water 6.75 25.44 16.2 0.26533 2.4 [15]

Tube fin HX 
packed

Silica gel/water Water 0.21 0.81 0.737 0.259259 3.5 [123–126]

Tube fin HX 
packed

Silica gel/water Water 29.17 60.34 50.83 0.483427 1.74 [30]

Tube fin HX 
packed

Silica gel/water Water 36 – 184.1 – 5.11 [120]

Tube fin HX 
packed

Silica gel/water Water 1440 1293.6 2458.8 1.082251 1.756 [128]

Shell and tube 
HX stage 1

Silica gel/water Water 5.6 25 17.152 0.224 3.06 [121]

Shell and tube 
HX stage 2

Silica gel/water Water 3.2 22 13.5 0.145455 4.22 [121]

Tube fin HX 
packed

Silica gel/water Water 36 – 217.22 – 6.03 [25]

Tube fin HX 
packed

CPO-27Ni 
MOF/water

Water 0.67 29.97 – 0.022356 – [73, 132, 133]

Tube fin HX 
packed

MWCNT 
embedded 
zeolite13X/
CaCl2

Water 1.1 8 7.24 0.137 6.58 [29]

Tube fin HX 
packed

Montmorillon-
ite/HCl

Water 2.65 12.97 8.19 0.204 3.09 [12]
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