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Abstract
Accurate photovoltaic (PV) power prediction is critical for PV power plant safety and stability. The main restrictions influenc-
ing the accuracy of the PV power forecast are the variability and intermittency of solar energy. Therefore, this study proposes 
a hybrid deep learning model for PV power forecast that is successfully developed using the combination of the bidirectional 
long short-term memory (BLSTM) and convolutional neural network (CNN) and is applied to the actual dataset collected in 
the DKASC PV system in Alice Springs, Australia. The proposed architecture is a structure of two major branches. BLSTM 
is used first to extract the bidirectional temporal characteristics of PV power. Next, CNN was used to capture the spatial 
characteristics. The prediction results of the hybrid model are compared with those of the single model LSTM, BLSTM, 
CNN, gated recurrent unit, recurrent neural network (RNN), and the hybrid network (LSTM–CNN, CNN–LSTM) in order 
to demonstrate the higher performance of the proposed hybrid prediction model. By comparing statistical performance 
indicators such as root mean square error (RMSE), mean absolute error (MAE), mean square error (MSE), and coefficient of 
determination (R2 ) values with other existing deep learning models, the performance of the proposed BLSTM–CNN model 
has been demonstrated. The results indicate that the BLSTM–CNN model has the highest precision with the lowest MSE 
of 0.0089, MAE of 0.0531, RMSE of 0.0944, and highest R2 of 0.9993. BLSTM–CNN can enhance forecasting accuracy 
while also accurately capturing the various temporal–spatial characteristics of PV power.

Keywords  Photovoltaic power forecasting · Deep learning · Bidirectional long short-term memory · Convolutional neural 
network

Abbreviations
AI	� Artificial intelligence
ARMA	� Autoregressive and moving average
BLSTM	� Bidirectional long short-term memory
BPNN	� Back propagation neural network
CNN	� Convolutional neural network
DKASC	� Desert Knowledge Australia Solar Centre
ELM	� Extreme learning machine
GA	� Genetic algorithm

GRU​	� Gated recurrent unit
LSTM	� Long short-term memory
MAE	� Mean absolute error
MSE	� Mean square error
NWP	� Numerical weather prediction
PV	� Photovoltaic
RMSE	� Root mean square error
RCC​	� Radiation classification coordinate
RNN	� Recurrent neural network
SVM	� Support vector machine
SDA	� Customized similar day analysis
WPD	� Wavelet packet decomposition

List of symbols
b1
j
	� Bias for the jth feature map

ft	� Output of the forget gate at time t
m	� Index value of the filter
n	� Number of units per window
it	� Output of the input gate at time t
ot	� Output of an LSTM block at time t
R	� Pooling size
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R2	� Coefficient of determination
x	� Input vector for power production
y1
ij
	� Output of the first convolutional layer

W	� Weight parameters of layers

Introduction

Energy is one of the most important factors in the process 
of industrialization and modernization, and it plays a criti-
cal role in technological and economic progress. Further-
more, massive population growth has exacerbated the global 
energy crisis. Electricity demand continues to rise, which 
has a negative influence on the environment [52]. As a 
result, several governments and regions are enacting laws to 
encourage the development of renewable energy [30]. Solar 
energy has become a crucial means of solving environmental 
and energy concerns due to its clean and plentiful properties 
[43]. The randomness and intermittent nature of PV power 
generation, on the other hand, makes integrating it into cur-
rent energy networks extremely difficult [48]. Accurate PV 
power prediction is critical for ensuring the power grid’s 
security and storing alternative energy sources for a reason-
able amount of time [2].

Different prediction approaches have been presented in 
recent years to forecast PV power output, which can be split 
into four groups: Physical method [36], statistical method 
[8], machine learning method [47], and hybrid method [32] 
are four types of PV power predicting techniques that have 
been established based on various forecasting principles.

The physical model forecasts PV power based on geo-
logical variables and meteorological data (i.e., air pressure, 
humidity, solar radiation, cloud volume, etc.) provided by 
the meteorological stations. After that, it creates a physical 
model based on the PV panel parameters, and then directly 
the PV generation power is calculated. The physical model 
is less reliant on previous data, but it is more complex to 
model because there are several unknown parameters [11].

Based on statistical data, time series models predict 
PV power. The impact of meteorological conditions is 
not considered throughout the forecasting phase; just the 
time factor is taken into account. To forecast PV output, a 
range of statistical approaches have been used, for exam-
ple, the Markov Chain method [33, 42], gray theory [55], 
autoregressive and moving average (ARMA) models [6, 
25]. A prior understanding of the PV system’s complicated 
photoelectric conversion link is not required for statistical 
modeling, but only a partial comprehension and realization 
using numerous data analysis approaches. However, the 
statistical approach uses a huge quantity of data to calcu-
late and requires more time. With the rapid growth of arti-
ficial intelligence (AI) in recent years, Machine learning 

models with strong learning capacity and nonlinear map-
ping capability have been widely employed in PV power 
forecasting [18]. Furthermore, machine learning models 
can forecast PV generation power from easily available 
data, eliminating the need for complicated computations 
and other costly expenditures. For example, support vec-
tor machine (SVM) [31], back propagation neural network 
(BPNN) [19], extreme learning machine (ELM) [3] and 
Elman neural network [51]. These approaches forecast 
the generation capacity of PV power plants only based on 
historical data, without requiring any knowledge of PV 
power plants such as the number of panels, panel capac-
ity [34]. Traditional single algorithms frequently neglect 
the fact that output power changes with a wide range of 
meteorological variables, which might lead to inaccu-
rate forecasting [12]. Hybrid methods, which combine 
a variety of effective techniques, are more effective and 
efficient when compared to other ways for PV generation 
forecast [7]. Some examples of hybrid models used in PV 
power prediction are: support vector machine (SVM) and 
ant colony optimization (ACO) [37], convolution neu-
ral network (CNN) and gated recurrent unit (GRU) [40], 
bidirectional LSTM model with a genetic algorithm (GA) 
[58]. (SDA–GA–ELM) based on customized similar day 
analysis (SDA), genetic algorithm, and extreme learning 
machine [59].

The deep learning theory, introduced by Hinton 
et al. [15] has recently gained a lot of traction. With the 
advancement at a rapid pace of artificial intelligence 
techniques, deep learning models have a wider and more 
robust nonlinear network structure than classic machine 
learning models [28]. Some have already produced excel-
lent results in predicting PV power generation, LSTM 
proposed by Hochreiter and Schmidhuber [16] has been 
extensively used to forecast PV power. The LSTM is a 
recursive neural network that can increase the network’s 
storage space and retain historical data for later use, it 
has the advantage of detecting long-term time series 
relationships. Gao et al. [13] proposed an LSTM model 
based on meteorological data to forecast the daily power 
production of PV power plants using weather categoriza-
tion. Chen et al. [4] proposed a new method for very-
short-term PV power prediction that combines similar 
time period collection using RCC (radiation classifica-
tion coordinate) with LSTM. Lee et al. [27] proposed two 
models LSTM and GRU to predict PV power generation 
in a peak zone. The CNN is perfect for processing and 
analyzing high-dimensional data. For time series fore-
casting, some researchers employ CNN. For wind and 
solar energy forecasting, Díaz-Vico et al. [9] employed a 
CNN with input data from a numerical weather prediction 
system (NWP), the CNN’s excellent feature extraction 
capacity is demonstrated by the prediction results. Sabri 
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et al. [41] proposed a new hybrid deep learning model 
(CNN–GRU) to predict the PV power output, the convo-
lutional layer extracts the characteristics of the input data, 
while the GRU maintains the crucial details to improve 
prediction performance.

A new form of LSTM, known as the bidirectional 
LSTM (BLSTM), has recently been used for classifica-
tion and regression problems. By structurally incorporat-
ing two forward and backward LSTM layers, the BLSTM 
can consider data from both the past and the future at 
the same time [24]. The BLSTM network has recently 
been utilized in electricity price forecasting [5], urban 
solid waste forecasting [21], and air pollution forecast-
ing [35]. Aside from developing a time series forecasting 
model with BSLTM, other researchers have attempted to 
enhance BLSTM’s efficiency by combining the advan-
tages of BLSTM and CNN to improve the prediction 
effect. Lawal et al. [26] proposed short-term wind fore-
casting at various elevations above ground level using a 
hybrid of 1D CNN and the BLSTM network. Unal et al. 
[46] proposed a spatiotemporal deep learning architecture 
to forecast energy consumption using the hybrid model 
CNN–BLSTM. Joseph et al. [22] proposed a novel hybrid 
deep learning model based on BLSTM and CNN for pre-
dicting traffic congestion in a smart city.

Weather forecast data has a restricted forecasting 
range, and historical PV power time series are non-peri-
odic and non-stationary making classical AI algorithms 
ineffective. Specifically, to overcome current obstacles 
and attain the objectives of accurate PV power predicting. 
The following considerations contribute to the hypoth-
esis of the proposed method in this paper: According to 
the current study, BLSTM has a high ability to extract 
bidirectional temporal characteristics, CNN can extract 
spatial characteristics. It is found that considering the 
combination of BLSTM and CNN model to predict PV 
power can achieve more accurate results.

Therefore, a new hybrid model of PV power forecast-
ing, the BLSTM–CNN model, is suggested in this study 
based on the mechanistic characteristics of time series 
data. The main research contents of this paper are as 
follows: 

1.	 To get acceptable prediction results, the input dataset is 
placed through a preprocessing step where redundant, 
outlier, or missing values are eliminated.

2.	 A hybrid PV power prediction network is proposed that 
takes into account the temporal–spatial characteristics 
extraction order.

3.	 The bidirectional temporal characteristics of the data 
are extracted first using the BLSTM model and then the 
spatial characteristics of the data are extracted using the 
CNN model while considering the PV data features.

Methods and materials

Convolutional neural network

A major component of a convolutional neural network is 
the convolution layer [23]. Convolution layer C and 
numerous filters are coupled to the input matrix, with each 
filter holding an i × i weight matrix. Find the convolution 
matrix using a filtered scan of the input matrix. The CNN 
layer can extract local features from high-layer inputs and 
send them down to lower layers for more sophisticated 
features [54]. Equation (1) is the result of the vector y1

ij
 

output from the first convolutional layer, where x is the 
input vector for power production, and n is the number of 
units per window. The output vector x of the previous layer 
is used to calculate y. w is the weight of the kernel, � is the 
activation function, b1

j
 represents the bias for the jth fea-

ture map, and m is the index value of the filter. The result 
of Eq. (2) is the vector yl

ij
 output from the lth convolutional 

layer.

The pooling layer is a crucial component of CNN, and it is 
utilized to minimize the convolution matrix’s dimension. Eq. 
(3) represents the max-pooling layer operation. T is the step 
that specifies how far the input data area will be relocated, 
and R is the pooling size that is smaller than y.

Bidirectional long short‑term memory neural 
network

In 1982, Hopfield proposed the recurrent neural network 
(abbreviated as RNN) [17]. Because of its unique network 
structure, which differs from traditional neural networks, 
each component of the RNN maintains the hidden layer 
parameters, allowing the current component to retain the 
memory of the information produced by the pre-order 
components. Figure 1 illustrates a comprehensive over-
view of RNN. Nevertheless, there is a clear disadvantage 
to RNN when the data series is too long, or the time inter-
val is too large. The continuous multiplication impact 
in gradient reverse multiplication causes the vanishing 
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gradient issue, rendering RNNs unable to train effec-
tively. This problem was well handled by Schmidhuber’s 
LSTM network, which he introduced in 1997 [16]. The 
forget gate, output gate, and input gate are used to build a 
memory unit in LSTM [56], which replaces the memory 
unit in RNN.

The process of the three gates specific to the LSTM is 
described in the following details:

Forget gate Unwanted data can be discarded if desired. 
By reading the current moment’s input xt and the previous 
moment’s output ht−1 , and assigning a weight between 0 and 
1 to each data in the cell state Ct−1 at the previous moment, 0 
denotes “all discarded” whereas 1 denotes “all retained.” The 
LSTM network can adjust this weight to improve the model 
through continual feedback learning. The following is the out-
put ft:

Input gate It is used to figure out what data should be saved 
in the cell state. The sigmoid layer defines what value needs 
to be updated, and the output of the input gate is designated 
as it . The tanh layer generates new C̃t , that is, ready-to-add 
information to the cell state:

Then, multiply the cell state at the previous moment by the 
forget gate output function ft , and update the cell state at 
the previous moment. Add the newly generated candidate 
information and calculate the current unit state as follows:

Output gate Filter to ensure that just what is required in the 
cell state is output. It is also split into two layers: The tanh 
layer updates the cell state requirement to a value between 
−1 and 1. The output is designated as ot , and the sigmoid 
layer defines which part of the cell state is output, and finally 
outputs ht:

(4)ft = �(Wf .[ht−1, xt] + bf ).

(5)it =�(Wi.[ht−1, xt] + bi)

(6)C̃t =tanh(Wc.[ht−1, xt] + bc).

(7)Ct = ft ∗ ct−1 + it ∗ C̃t.

where ot , it , ft are the output gate, input gate, and the output 
value of the forget gate, respectively. The bf ,i,o and Wf ,i,o are 
the bias vectors and weight matrices. � is a sigmoid function.

BLSTM stands for bidirectional LSTM and is com-
monly employed for natural language processing. In terms 
of time series forecasting, BLSTM may outperform LSTM. 
BLSTM is made up of two fundamental LSTMs [14]: a for-
ward LSTM that utilizes past information and a backward 
LSTM that utilizes future information, allowing information 
from time t-1 and time t+1 to be utilized at time t. Usually, 
BLSTM is more efficient than LSTM and RNN in general 
since both past and future information may be used.

The calculating equation of the yt :

where h′
t
 and ht is the hidden output of the backward LSTM 

cell and of the forward LSTM cell at time t, respectively, W ′
t
 

is the weight matrix of the backward LSTM cell, Wt is the 
weight matrix of the forward LSTM cell at the time t, b′

t
 is 

the bias vectors of the backward LSTM cell at the time t, bt 
is the bias vectors of the forward LSTM cell at the time t.

BLSTM–CNN hybrid neural networks

Hybrid models, on average, outperform single models. 
Maintaining the utility of BLSTM and CNN in considera-
tion. We leveraged the complementary capabilities of both 
models to construct a new operational temporal and spa-
tial extracting features model to predict PV power genera-
tion more precisely. In this paper, a hybrid approach called 
BLSTM–CNN is suggested to forecast PV power generation 
using a series connection of BLSTM and CNN, as illus-
trated in Fig. 2. The suggested approach excels at pulling 
complex characteristics and patterns from weather factors 
obtained for PV power generation forecasting. The historical 
time series PV power data is initially fed into the BLSTM 
model as an input, and the temporal characteristics of the 
data are extracted utilizing the BLSTM model’s capability 
of processing time series data. The resulting temporal char-
acteristics are then transmitted to the CNN model input layer 
to extract the data’s spatial characteristics. A CNN often 
contains numerous levels of convolutional-pooling layers, 
with many convolution operations conducted at each level 

(8)ot = �(Wo.[ht−1, xt] + bo)

(9)ht = ot ∗ tanh(Ct)

(10)yt = g(Wy[ht; h
�
t
] + by)

(11)ht = f (Wt[ct−1; x] + bt)

(12)h�
t
= f (W �

t
[c�

t−1
; x] + b�

t
)

Fig. 1   General overview of recurrent neural networks [20]
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to capture significant data. CNN applies weights to weather 
factors depending on their effect on PV power. Finally, a 
fully connected layer is employed to gather the data and 
forecast the PV power generation using extracted character-
istics. The dropout layer is also introduced to the model to 
minimize model overfitting.

Dataset description

In this study, the PV data from 1B DKASC, Alice Springs 
PV system was chosen as a case study [10]. For this experi-
ment, data from October 1, 2020, to January 27, 2021, with 
a resolution of 5 min were chosen. The input parameters are 
global horizontal radiation ( W∕m2 × sr ), weather tempera-
ture Celsius ( ◦C ), diffuse horizontal radiation ( W∕m2 × sr ), 
current phase average (A), weather relative humidity ( % ) 
and wind direction ( Âo ), while the output is set to active 
power data (kW). To increase the effectiveness and preci-
sion of the model forecast, the data must be preprocessed 
and filtered before being fed into it. Preprocessing involves 
eliminating abnormal data, completing missing values, and 
normalizing the data. The data is separated into two parts: 
80% for training and 20% for testing. The BLSTM–CNN 
hybrid model has two primary parts. The first one is the 
bidirectional long-term dependencies are learned using the 
temporal modeling tool BLSTM after data preprocessing. 
The second one is 1D CNN, which is applied to extract the 
data’s spatial characteristics. In order to evaluate the effec-
tiveness of the proposed BLSTM–CNN. Five single deep 
learning models CNN, GRU, LSTM, RNN, BLSTM, and 
two hybrid models LSTM–CNN and CNN–LSTM are also 
used as comparison models for predicting the output of 
PV power. The metrics used to measure model prediction 
efficiency and accuracy are RMSE, MSE, MAE, R2 . The 
experimental results were completed in Python 3.7 and a 
personal computer with a 64-bit operating system, Intel (R) 

Core (TM) i7-4600 CPU@2.10GHZ 2.70GHZ and 8.00 GB 
of RAM. The framework of PV power output forecasting is 
shown in Fig. 3.

Model evaluation indexes

To compare the performance of various predictive models, 
we utilize the mean absolute error (MAE), root mean square 
error (RMSE), mean square error (MSE), and coefficient 
of determination (R2 ) [39]. Definitions of these evaluation 
indexes are as follows.

where yi is the real PV power generation value, ỹi predicted 
value and N is the number of yi . ȳi is the average of the real 
PV power generation in the test set.

(13)MAE =
1

N

N∑

i=1

||yi − ỹi
||

(14)MSE =
1

N

N∑
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(yi − ỹi)
2

(15)RMSE =
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√ 1

N

n∑
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2

(16)R2 =1 −
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2

∑N
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2

Fig. 2   The structure of hybrid model BLSTM–CNN [57]
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Modeling results

Results and comparisons

This research proposes a hybrid model (BLSTM–CNN) 
for PV power prediction. The BLSTM model was used to 
extract bidirectional temporal features. Set up two hidden 
layers using the filtered index data in the BLSTM model, 
where Units = 128; Units = 256. The obtained temporal 
characteristics are then sent to the CNN model input layer, 
which uses the convolutional layer and pooling layer to 
extract spatial features of the dataset. In the CNN model, 2 
layers of convolutional layers and 2 layers of pooling layers 
are used, there are 128 and 256 convolution kernels, respec-
tively. In the convolutional layer, the kernel size is 3*3. The 

Fig. 3   Framework of proposed 
model

Table 1   Parameters setting of the proposed method

Type Filter Kernel size Stride

BLSTM (128) – – –
BLSTM (256) – – –
Convolution 128 3 1
Activation (Relu) – – –
Max-pooling – 2 2
Convolution 256 3 1
Activation (Relu) – – –
Max-pooling – 2 2
Dropout (0.2) – – –
Dense (512) – – –
Dense (256) – – –
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dropout layer [44] was also included in the model to avoid 
overfitting issues during training, which could reduce predic-
tion accuracy. The batch size of the proposed model is 500. 
Finally, two layers of the fully connected layer with 512 and 
256 neurons, respectively, output of the PV power genera-
tion forecasting result. The parameters settings of the sug-
gested model in this work are shown in Table 1. Five single 
deep learning models CNN, GRU, LSTM, RNN, BLSTM, 
and two hybrid models LSTM–CNN and CNN–LSTM were 

used as comparison models for PV power output forecasting 
to verify the effectiveness of the suggested BLSTM–CNN 
model in this work. The RMSE, MSE, MAE, and R2 met-
rics are used to evaluate model forecasting accuracy and 
effectiveness.

Table 2 shows the forecasting results of the eight mod-
els. Table 2 shows that the proposed BLSTM–CNN has 
lower values of RMSE, MSE, MAE values, and the highest 
value of R2 than the other seven models. To make the data 
in Table 2 more visible. Figure 4 illustrates the results of 
the various models evaluation criteria. PV power generation 
data for one day in 2021 were chosen randomly as validation 
data to test the efficiency of the BLSTM–CNN model. Fig-
ure 5a shows a comparison of forecasted and actual values. 
For all times in the range, the forecasting curves show high 
consistency with the actual data. As shown in Fig. 5b, the 
error between the forecasted and actual values is illustrated 
by the rose curve.

Subsequently, the suggested forecasting model’s per-
formance and stability are tested in four months to ensure 
the BLSTM–CNN forecasting reliability and efficacy. 
The collected data is separated into four months: October, 

Table 2   The results of the forecasting model

Model RMSE MAE MSE R2

CNN [49] 0.1798 0.1325 0.0323 0.9975
GRU [53] 0.2016 0.1752 0.0406 0.9968
RNN [27] 0.3191 0.2706 0.1018 0.9921
LSTM [13] 0.2812 0.2531 0.0791 0.9938
BLSTM [38] 0.1609 0.1290 0.0259 0.9979
CNN–LSTM [45] 0.1389 0.1064 0.0192 0.9985
LSTM–CNN [50] 0.1102 0.0794 0.0121 0.9990
BLSTM–CNN 0.0944 0.0531 0.0089 0.9993

Fig. 4   The MAE, RMSE, MSE, 
and R2 criterion in different 
models
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November, December, and January. Each month’s data is 
divided into two parts: 80% for training and 20% for testing. 
Table 3 shows the partition of training and testing sets in 
four months.

Table 4 shows the results of various models CNN, GRU, 
RNN, LSTM, BLSTM, CNN–LSTM, LSTM–CNN, and 
BLSTM–CNN for the PV power forecasting in different 
months October, November, December, and January. The 
hybrid models outperform the single models in terms of 
prediction accuracy. In addition, the prediction effect of the 
BLSTM–CNN hybrid model is better than that of the two 
hybrid models (LSTM–CNN and CNN–LSTM). The result 
indicates that BLSTM–CNN outperforms other models in 

terms of prediction accuracy in four months, although vari-
ous models can be used to forecast PV power generation, 
no single model consistently always outperforms the oth-
ers, which confirms the proposed model’s ability to extract 
temporal–spatial features, which allows it to create a com-
plicated relationship between input data and target PV power 
generation. For better visualization, the evaluation criteria 
result in different months of the various models is also illus-
trated in Fig. 6.

A four-day from each month was chosen at random for 
further examination. Figure 7 illustrates the prediction 
results for these sixteen days using the proposed model 
and seven comparable models. It is evident that all the 

Fig. 5   Comparison between model predictions and actual values (a). Error between the forecasted and actual values (b)

Table 3   Statistical values of the 
experimental PV power (KW) 
data

Dataset Samples Numbers Mean Std. Minimum Maximum

October All samples 8928 2.7547 3.5559 −0.0215 10.5396
Training set 7142 2.6843 3.5070 −0.0203 10.5396
Testing set 1786 3.0359 3.7330 −0.0215 10.0366

November All samples 8639 2.8974 3.5440 −0.0199 11.0413
Training set 6911 2.8447 3.5168 −0.0199 11.0413
Testing set 1728 3.1084 3.6440 −0.0184 10.4283

December All samples 8908 2.3949 3.2452 −0.0188 11.6942
Training set 7126 2.2086 3.0685 −0.0187 10.8382
Testing set 1782 3.1400 3.7824 −0.0188 11.6942

January All samples 7658 2.9545 3.6139 −0.0222 11.4737
Training set 6126 3.0698 3.6956 −0.0222 11.4737
Testing set 1532 2.4936 3.2268 −0.0158 10.5551
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models perform well in terms of predictions. The sug-
gested hybrid deep learning model outperforms five sin-
gle models and two hybrid models in terms of prediction 
accuracy. The BLSM-CNN curve and the actual value 
curve are very close and show better prediction perfor-
mance, especially at night and during peak power.

Comparison of the proposed hybrid BLSTM–CNN 
model with state‑of‑the‑art methods

The historical data in this paper comes from the DKASC 
in Australia, Different state-of-the-art methodologies were 
conducted and examined with solar producing plants from 
the DKASC in previous studies. The comparison results 
are shown in Fig. 8.

Chen et al. [4] proposed a simple and efficient RCC-
LSTM model for PV power prediction. The RCC (radia-
tion classification coordinate) method as a tool is used for 
gathering identical time periods, then LSTM is used to 
extract characteristics from time series PV power data. The 
data was gathered from the Yulara in Alice Springs for two 
years (2017-2018) with a resolution of the historical data-
set as 5 min. The average MAE value obtained is 0.587.

Zhou et al. [29] proposed a hybrid deep learning model 
(WPD-LSTM) for short-term PV power forecasting. The 
data was gathered from DKASC, Alice Springs from 
June 1, 2014, to June 12, 2016. The average MAE value 
obtained is 0.2357. Zhou et  al. [59] proposed a hybrid 
model (SDA–GA–ELM) based on extreme learning machine 
(ELM), genetic algorithm (GA), and customized similar day 
analysis (SDA) to forecast hourly PV power generation. The 
dataset was collected from Jan 14, 2017, to Oct 15, 2018, 
with a resolution of 1 h from DKASC. The average MAE 
value obtained is 0.2367.

Wang et al. [50] proposed a hybrid model (LSTM–CNN) 
for PV power forecasting. The data was collected from 1B 
DKASC, Alice Springs PV for half-year data with a resolu-
tion of the historical dataset as 5 min. The average MAE 
value obtained is 0.2210. Zhen et al. [58] proposed a hybrid 
model (GA-BLSTM)) for ultra-short-term PV power pre-
diction. The data was collected from 8 PV plants ranging 
from 2017 to 2019 with resolution of the historical dataset 
as 5 min. The average MAE value obtained is 0.242. Abdel-
Basset et al. [1] proposed a novel deep learning architecture 
namely (PV-Net), to enable efficient extraction of positional 
and temporal features in PV power sequences, the gates of 
the GRU are modified utilizing convolutional layers (named 
Conv-GRU) for forecasting short-term PV energy produc-
tion. The data was collected from 1B DKASC, Alice Springs 
PV throughout five years (2015–2019) with a resolution of 
the historical dataset as 5 min. The average MAE value 
obtained is 0.398.

When the above research’s results are compared, the 
suggested BLSTM–CNN has the minimum MAE value. 
It is obvious that the suggested model outperforms prior 
researches and provides higher PV generation predicting 
performance.

However, the suggested model has a few flaws that must 
be investigated further. For example, in this research, the 
structure and training hyper-parameters of the model were 
found by experimentation, which is time-consuming. As a 
result, automated settings estimation approaches, like heu-
ristic optimization algorithms, will be utilized in our future 
research to pick and improve the parameters of the neural 
network more effectively.

Table 4   Error evaluation results of BLSTM–CNN and other deep 
learning models in four datasets

Dataset Model RMSE MAE MSE R2

October CNN 0.2139 0.1514 0.0457 0.9967
GRU​ 0.1205 0.0803 0.0145 0.9989
RNN 0.1928 0.1335 0.0371 0.9973
LSTM 0.1517 0.1188 0.0230 0.9983
BLSTM 0.1240 0.1085 0.0153 0.9988
CNN–LSTM 0.1083 0.0843 0.0117 0.9991
LSTM–CNN 0.0795 0.0516 0.0063 0.9995
BLSTM–CNN 0.0471 0.0350 0.0022 0.9998

November CNN 0.3123 0.2626 0.0975 0.9926
GRU​ 0.4720 0.3851 0.2228 0.9832
RNN 0.5490 0.4462 0.3014 0.9772
LSTM 0.3941 0.3425 0.1553 0.9882
BLSTM 0.3443 0.3265 0.1185 0.9910
CNN–LSTM 0.1986 0.1844 0.0394 0.9970
LSTM–CNN 0.1524 0.1265 0.0232 0.9982
BLSTM–CNN 0.1333 0.1114 0.0177 0.9986

December CNN 0.1430 0.1268 0.0225 0.9984
GRU​ 0.2656 0.2069 0.0705 0.9950
RNN 0.1696 0.1220 0.0287 0.9979
LSTM 0.3569 0.2846 0.1273 0.9910
BLSTM 0.1896 0.1411 0.0359 0.9974
CNN–LSTM 0.1300 0.1051 0.0169 0.9988
LSTM–CNN 0.1158 0.0797 0.0134 0.9990
BLSTM–CNN 0.0728 0.0591 0.0053 0.9996

January CNN 0.1153 0.0909 0.0133 0.9987
GRU​ 0.4503 0.3246 0.2027 0.9805
RNN 0.4104 0.3155 0.1684 0.9838
LSTM 0.1512 0.1164 0.0228 0.9978
BLSTM 0.1541 0.1042 0.0237 0.9977
CNN–LSTM 0.1020 0.0664 0.0104 0.9989
LSTM–CNN 0.0914 0.0642 0.0083 0.9991
BLSTM–CNN 0.0939 0.0608 0.0088 0.9991
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Fig. 6   Evaluation criteria results of BLSTM–CNN and other popular models in four datasets
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Fig. 7   The forecasting results of the different model and actual PV power in October (a), November (b), December (c), January (d)
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Conclusion

Accurate PV power forecasting plays an important role in the 
maintenance, control, management, and operation of PV power 
generation systems. In this research, a novel hybrid PV power 
generation forecasting model based on a deep learning algorithm 
namely BLSTM–CNN was suggested to increase the accuracy 
and reliability of PV power generation forecasting. More spe-
cifically, BLSTM automatically extracts bidirectional temporal 
correlation characteristics of PV data and CNN extracts spatial 
correlation characteristics of PV data to produce the final PV 
power forecasting results. Four evaluation measures and five sin-
gle deep learning (CNN, GRU, RNN, LSTM, BLSTM) and two 
hybrid models (LSTM–CNN, CNN–LSTM) were employed for 
the experimental study to validate the proposed model’s predict-
ing performance. The BLSTM–CNN model is proposed and 
used in a novel way in the field of PV power forecasting with the 
highest R2 value of 0.9993, the lowest RMSE value of 0.0944, 
MAE value of 0.0531, MSE value of 0.0089. In terms of fore-
casting accuracy, the results indicate that the proposed model 
outperforms other traditional classical models. In the next study, 
the hybrid model will be combined with more sophisticated 
deep learning models to extract temporal and spatial features 
separately, resulting in more precise PV power forecast results. 
Moreover, the proposed model can also be enhanced and used 
in other domains, such as wind speed forecasting and residential 
load forecasting.
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