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Abstract
This study analyzes the wind speed characteristics, compares the six different methods (graphical, method of moment, 
wind energy pattern factor, empirical method of Justus and Lysen, and maximum likelihood method) of estimating Weibull 
parameters and calculates wind power density using daily mean wind speed data collected, at a height of 2 m, over a period 
of seven and eight years for Jumla and Okhaldhunga, respectively. Wind data were estimated at a height of 50 m to calcu-
late average wind speed, Weibull parameters, and wind power density. Based on the results, Jumla has an average monthly 
maximum wind speed of 9.78 m/s in June and minimum wind speed of 6.71 m/s in December, whereas Okhaldhunga has an 
average monthly maximum wind speed of 10.95 m/s in April and minimum wind speed of 4.52 m/s in October. Jumla has 
an average annual wind speed of 8.11 m/s while Okhaldhunga has an average annual wind speed of 6.89 m/s. The accuracy 
of estimation methods was statistically tested using root mean square error and coefficient of determination. The empirical 
method of Justus and Lysen was found to be the best performing while the graphical method performed the poorest. By 
using the best method, an average wind power density has been estimated as 336.07 W/m2 and 326.73 W/m2 for Jumla and 
Okhaldhunga, respectively, indicating that both locations belong to wind power class III and have a moderate potential for 
wind energy harvesting.
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Introduction

Fossil fuels like, petroleum products, coal, and natural gas 
make a significant portion of non-renewable energy sources 
and account for 84.3 % of worldwide energy usage [1]. 
When these are burned, large amount of greenhouse gases 
are released into the atmosphere causing serious health and 
environmental consequences. Hence, alternative sources of 
energy such as solar, wind, hydropower, geothermal, tidal, 
and biomass energy have become imperative now more than 
ever. The world energy scenario today has seen a growing 
investment in renewable energy sector, ranging from small 
household-based projects to large utility-scale power plants. 

As a result, the contribution of renewable energy in global 
electricity generation grew from 27% in 2019 to 29% in 2020 
and is projected to supply more than half of the increase in 
global electricity supply in 2021 with solar and wind energy 
predicted to account for two-thirds of the growth [2]. The 
total installed wind energy capacity saw a major growth 
from 622 GW in 2019 to 733 GW in 2020 [3]. In fact, year 
2020 saw the largest year-over-year growth of 53% [4], and 
the generation is further projected to grow by 17% in 2021 
[2].

The potential of harnessing a wind energy in any location 
depends on the site specific Wind Power Density (WPD). 
Furthermore, the system design requirement entails an 
understanding of the averaged wind speed and its distri-
bution characteristics throughout a year. To date, several 
techniques have been established to model the wind speed 
distribution for better understanding the local wind charac-
teristics and estimating the wind power density as accurately 
as possible. In the literature, Weibull and Rayleigh’s distri-
butions are two of the most commonly utilized probability 
distribution functions [5–8].
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Fyrippis et al. [6] applied both Weibull and Rayleigh dis-
tributions to study the wind energy potential of the Greeek 
island of Naxos. They found an average wind power density 
of 420 W/m2 and a yearly average wind speed of 7.4 m/s. 
Statistical tests to assess the performance of the distributions 
showed the Weibull distribution to be a better fit to the actual 
data. Similar research was conducted by Ucar and Balo 
[9] in two locations of Turkey; Ankara, and Polati, using 
Weibull and Rayleigh distribution to understand the wind 
characteristics and its potential. Hourly wind speed data col-
lected from the year 2000 to 2006 was used to determine the 
fluctuation in wind power density over the course of a year. 
The maximum wind power density value was estimated to 
be 42.40 W/m2 in Ankara during the winter season, and 41 
W/m2 in Polati during the summer season. Another study 
[10] in Bishkek, Kyrgyzstan, modeled the average daily 
wind speed data spanning over three years, with Weibull 
and Rayleigh distributions to estimate maximum wind power 
density, whose value was found to be 4.04 W/m2 . This low 
value demonstrates the region’s poor wind power potential. 
To determine the wind power density, Soulouknga et al. [11] 
used data on wind speed obtained for eighteen years and 
modeled it adopting the Weibull distribution to obtain the 
annual power density of 343.31 W/m2 . Numerous studies 
have reported the superior performance of Weibull distribu-
tion compared to Rayleigh distribution [6, 7, 12].

The majority of the authors have preferred Weibull dis-
tributions, and various techniques are described in the lit-
erature for the estimation of Weibull parameters in different 
areas across the world. Chang [13] in his quest to identify 
the best estimation method compared six methods of esti-
mation: method of moment, graphical method, energy pat-
tern factor, method empirical method, maximum likelihood 
method, and modified maximum likelihood method for three 
different stations in Taiwan. A Monte-Carlo simulation was 
then performed so that the performance of each method 
could be assessed with respect to real wind speed data, by 
using different statistical tests. Results revealed the supe-
rior performance when using maximum likelihood method. 
Rocha et al. [14] compared seven different approaches to 
calculate the Weibull parameters in the Brazilian coastline 
region. The evaluation of the accuracy of the procedures was 
done with chi-square and RMSE (Root Mean Square Error) 
as statistical tools. The Equivalent Energy Method (EEM) 
matched the real wind distribution with best fit, while the 
Wind Energy Pattern Factor (WEPF) and graphical method 
were the worst fit. In Halabja, Iraq, Ahmed [15] performed 
statistical analysis on four years of monthly time series wind 
data to measure the accuracy of four different estimation 
methods, namely power density method, rank regression 
methods, mean-standard deviation method, and maximum 
likelihood method. The actual wind data were best fitted by 
the power density method. Werapun et al. [16] examined the 

efficiency of five different methods of estimation for Phagan 
island in Thailand. The energy pattern factor matched excel-
lently with the data whereas the graphical method approach 
provided the worst fit. In recent research, Weibull parameters 
were evaluated using a variety of methods by Shaban et al. 
[17] and Ben et al. [18] in Nigeria and AL-Najaf, respec-
tively. In their study, Shaban et al. [17] applied six evalu-
ation methods to estimate the Weibull parameters and dis-
covered that the EEM outperformed the rest of the methods. 
Ben et al. [18] analyzed wind speed data for a period of ten 
years at thirteen different cities in Nigeria using six estima-
tion methods. Interpretation of the results on the basis of 
goodness of fit tests revealed the maximum likelihood tech-
nique to be the best performing while the graphical method 
produced the worst fit.

Wind energy is set to become one of the major genera-
tion sources and is projected to generate about 35 % of the 
total electricity demand by 2050 [19]. The boost in wind 
energy supply is also assisted by the decreasing cost of 
wind energy production. The Levelized Cost of Electricity 
(LCOE) for offshore wind power generation decreased from 
USD 0.162/kWh in 2010 to USD 0.084/kWh in 2020 [20], 
and this decreasing trend will help to drive the world toward 
fulfilling the net zero emissions target by 2050 set by inter-
national communities after Paris Agreement. However, the 
massive establishment of wind power plants is limited by the 
unavailability of time series wind maps or wind data mostly 
in the developing countries. As for Nepal, there are very few 
studies on estimating the wind power potential resulting few 
micro wind projects for distributed community electrifica-
tion in the country. As steep topography and rough terrain 
pose a challenge for mainline electrification of numerous 
isolated rural areas in higher elevations, independent energy 
projects capable of sustaining an entire locality are getting 
more and more accentuated. In line with this, the Govern-
ment of Nepal, assisted by ADB (Asian Development Bank), 
established a 20 kW combined wind-solar power system 
to electrify a village in the Sindhuli district [21]. Existing 
researches conducted by Dhakal et al. [22] and Parajuli [5], 
have focused on estimating the wind energy potential of a 
single location but they have not done detail performance 
analysis using Weibull parameter estimation methods.

The present study carries out a comparative analysis of 
six different approaches to estimate the Weibull parameters 
at two selected locations (Jumla and Okhaldhunga) in Nepal 
based on daily mean wind speed data collected and recorded 
over a period of seven and eight years, respectively. Along 
with that, a wind resource evaluation is also conducted by 
using the best-performing method to estimate the Wind 
Power Density (WPD) for both locations. The output of the 
study is expected to help during choosing the best methods 
under the availability of primary wind data at low height 
(2 m) for establishing the wind energy potential in Nepal 
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and other part of the world with similar geographical and 
climatic conditions.

Methodology

Description of the study site

Both the sites, Jumla and Okhaldhunga, situated in the mid-
hills of Nepal, ranging from an altitude of 610 m to 4800 m, 
are characterized by elevated flatlands and hills. The hilly 
region mainly consists of rough terrain with steep hills and 
lowland valleys. Measuring stations in Jumla and Okhald-
hunga are located at an elevation of 2300 m in Western part 
and 1720 m in Eastern part of Nepal, respectively. Okhald-
hunga experiences strong wind in the months from March 
to May whereas Jumla experiences more stable wind condi-
tions throughout the year.

Figure 1 shows the study site marked with dots within 
the elevation map of the districts inside the map of Nepal. 
It is to note that both the measuring stations are of synoptic 
type. The density of air is calculated using the equation [11]:

where Hm denotes the elevation of sites in meters. Table 1 
shows latitude and longitude along with the density of air 
calculated at the locations.

Wind speed data collection

Daily mean wind speed data, measured and recorded 
through the synoptic stations located 2 m above the ground 
surface, were obtained from the Department of Hydrology 

(1)� = �o − 1.194 × 10−4Hm

and Meteorology under the Ministry of Energy, Water 
Resources and Irrigation, Government of Nepal. For Jumla, 
the study data span a seven-year cycle (2011–2018) exclud-
ing the year 2012 due to non-availability of data whereas, 
for Okhaldhunga, the wind speed during an eight-year 
period (2011–2018) was analyzed. A total of 72 (Jumla) 
and 67 (Okhaldhunga) wind speed data were missing for 
the locations, giving the data recovery rate of 97.70% and 
97.18%, respectively. Since majority of wind turbines can’t 
be installed at the height of 2 m, the wind speed is extrapo-
lated to a height of 50 m to assess the wind potential at the 
turbine’s hub height. This extrapolation from a lower height 
of 2 m was carried out using the power rule as followed by 
Rahman and Chattopadhyay [23] and Ben et al. [18] which 
is expressed as:

Here, V 1 denotes the velocity of wind measured by a meas-
uring station at height H 1 . V 2 is the speed to be calculated 
at the hub height, H 2 . The coefficient 

�
 is friction coefficient 

or Hellman exponent determined by the topography of a 
location and varies numerically from 0.1 to 0.4. “The value 
0.1 is for lakes, oceans, and smooth hard ground to 0.40 for 
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Fig. 1  Map of individual districts showing the study site

Table 1  Location details

S.N Location Latitude Longitude Air 
density 
(kg∕m3)

1 Jumla 29
◦
17

′
82

◦
10

′ 0.944
2 Okhaldhunga 27

◦
19

′
86

◦
30

′ 1.0136
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a city with tall buildings” [24]. Since both the stations are 
surrounded by structures resembling shrubs and hedges, the 
value of � was taken as 0.2 for both of them.

Weibull distribution and parameter estimation 
methods

Various methods are used to model the actual wind speed 
data in terms of probability distribution or speed frequency 
distribution. These give insights into the probability of a cer-
tain wind speed occurring or the most frequent wind speed. 
Additionally, determining the wind power output requires a 
thorough understanding of the speed frequency distribution. 
Weibull distribution, which requires two parameters i.e., k, 
a non-dimensional shape factor, and c, a scale factor, is a 
regularly used mathematical technique to define the wind 
frequency distribution. Higher values of k show a sharper 
peak or narrow frequency distribution and indicate less vari-
ation in the speed of wind.

The probability density function i.e., the probability that 
the speed will fall in a bin for a Weibull distribution is given 
by Eq. (3) and can be written as [6, 9]:

where v denotes the wind speed. Equation (3) can be inte-
grated to determine the cumulative function, F(v) of the 
velocity which measures the likelihood of wind speed occur-
ring in a certain wind speed range and is given by following 
expression [6, 9]:

Parameter estimation methods

Various approaches to estimating the Weibull parameters, 
k and c, have been presented in the literature. Among the 
widely used methods, this study assess the performance of 
six methods, which are briefly described below. 

1. Graphical Method The Graphical method uses measured 
data to generate a cumulative distribution function that 
is plotted as a nearly straight line in the form of Eq. 
(5). After some computation, k and c can be calculated. 
Equation (5) is obtained by taking natural log twice on 
Eq. (4) and then rearranging as [13] : 

 where ln(v) and ln [− ln [1 − F(v)]] are plotted along the 
x-axis and y-axis, respectively. The resulting graph is a 
straight line having slope k and intercept −kln(c).

(3)f (v) =
k

c

(

v

c

)(k−1)

e
−
(

v

c

)k

(4)F(v) = P(v < vx) = ∫
vx

0

f (v)dv = 1 − e
−
(

vx

C

)k

.

(5)ln [− ln [1 − F(v)]] = k ln(v) − k ln(c)

2. Method of Moment (MOM) The Method of Moment has 
been proposed as a substitute to the maximum likelihood 
method.The parameters k and c can be determined using 
the equations [14]: 

 where v is the average wind speed calculated as: 

 and � is the standard deviation of wind speed for a cer-
tain time duration given by: 

 From Eqs. (6) and (7), the shape parameter can be deter-
mined by [25]: 

 and Γ(x) is the gamma function written as: 

3. Empirical Method of Justus (EMJ) Justus et al. [26] 
established the empirical method of Justus, where the 
shape parameter (k) and scale parameter (c) are calcu-
lated as: 

4. Empirical Method of Lysen (EML) The empirical 
method of Lysen calculates the shape parameter (k) by 
using Eq. (12) same as the Justus method. The scale 
parameter (c) is evaluated by the following expression 
[27]: 

(6)c =
v

Γ
(
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1
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)
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5. Wind Energy Pattern Factor (WEPF) Method The 
energy pattern factor, Epf  , is used in this method to esti-
mate the scale and shape parameters. This method is 
simple and requires less computation. Epf  for a specific 
duration is calculated as a ratio of the cube of the mean 
wind speed to the mean of cubic wind speed and deter-
mined by the Eq. (15) [28] : 

 The Weibull shape factor (k) and scale factor (c) may 
be computed after calculating the energy pattern factor, 
using the expressions below [28]: 

6. Maximum Likelihood Method (MLM) This method 
is a frequently used technique to estimate the Weibull 
parameters. The likelihood function of Weibull prob-
ability density function in Eq. (3) can be written as [17]: 

 where k and c denote the shape and scale parameters, 
respectively, and vi is the wind speed value in time step 
i. n represents total non-zero wind speed values in the 
sample. Taking logarithm of both sides, a log-likelihood 
function is obtained as: 

 Equation (19) is differentiated with respect to k and c 
and equated to zero to obtain the following expressions 
for the parameters [17]: 
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 Equation (20) was solved with the help of an iterative 
procedure. After the shape parameter was determined, 
Eq. (21) was used to calculate the scale parameter.

Evaluation of Weibull parameter estimation methods

The correctness of the projected wind speed distribution 
resulting from the aforementioned methods is validated 
using two tests: Root mean square error (RMSE) and Coef-
ficient of determination (R2 ) [15, 29]. 

1. Root mean square error (RMSE) This method examines 
the goodness of fit between the actual measured val-
ues and the predicted values of the model. In this study, 
it is used to estimate the accuracy between the values 
achieved by Weibull functions, obtained using different 
approaches, with the actual measured data. RMSE value 
is always non-negative and smaller RMSE values mean 
better model efficiency. The measurement depends on 
the scale of the number used [30]. RMSE is calculated 
from the following equation: 

 where xi and yi represent the actual data measured and 
the data predicted from Weibull distribution, respec-
tively, and n represents the number of wind speed data-
set (bins).

2. Coefficient of determination (R2 ) It is another statistical 
tool to explain the relationship between the two vari-
ables. Its value lies between 0 and 1. Values nearer to 1 
indicate that the model explains much of the proportion 
of variance in the dependent variables. The R 2 value can 
be expressed as [31]: 

 where Xi represents the recorded wind data frequency 
in the wind speed bin, (X̄) represents the average of Xi 
values, xi represents the frequency estimated from the 
Weibull distribution, and n represents the number of 
bins.

Calculation of wind power density (WPD)

The calculation of WPD is done in order to approximate 
the power potential that can be derived from Wind Turbine 
Generator. It relies upon the kinetic energy of the air mass 
and hence is proportional to the cube of the wind speed. The 
kinetic energy of air mass can be written as:

(22)RMSE =

�

∑n

i=1
(yi − xi)

2

n

(23)R2 =

∑n

i=1
(Xi − X)2 −

∑n

i=1
(Xi − xi)

2

∑n

i=1
(Xi − X)2
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where � represents the density of air, A denotes the normal 
section of the area of the rotor, and t represents the time 
period at a constant wind speed v. The expression for wind 
power (P) is obtained by dividing Eq.

(24) by the rotor area per second:

Equation (25) is an expression for wind power at a constant 
speed. In fact, the wind speed is constantly changing. To 
incorporate this effect, the wind power density equation is 
derived using the mean speed expression from the Weibull 
distribution curve. The mean speed of wind can be expressed 
as:

Substituting the value of vavg in Eq. (25), we get,

Equation (27) is an expression for Weibull Wind Power 
Density (WPD). The air density corresponding to standard 
conditions i.e., at the sea level (0 m.a.s.l.) 15oC is 1.225 
kg∕m3 [32]. For a more accurate prediction of wind potential, 
the corrected density is to be calculated at the turbine’s hub 
height. This can be calculated through a simple expression 
shown in Eq. (1).

Results and discussion

In order to understand the wind characteristics, monthly and 
annual mean wind speed was calculated over a period of 
seven years (2011, 2013–2018) for Jumla and over a period 
of eight years (2011–2018) for Okhaldhunga. Six different 
numerical methods were used to estimate Weibull param-
eters and consequently the wind power density. A perfor-
mance evaluation was conducted to find out a method pro-
viding a best fit to the actual data.

Wind speed characteristics

Monthly wind speed variation

The average monthly wind speed during a seven-year 
period (2011-2018) excluding 2012 for Jumla and a period 
of eight years (2011-2018) for Okhaldhunga is plotted in 
Fig.2. Wind speed increases in both locations beginning 
in January. However, compared to Jumla, the wind speed 

(24)K.E =
1

2
�v3At

(25)P =
1

2
�v3

avg
.

(26)vavg = cΓ
(

1 +
1

k

)

.

(27)P =
1

2
�c3Γ

(

1 +
3

k

)

.

in Okhaldhunga then subsides to lower values in the fol-
lowing months until August. The wind characteristic vari-
ations on both locations are result of the differences in 
geography, temperature, rainfall, and other parameters.

Based on the evaluation of the data, Jumla was observed 
to have minimum wind speed in December and January. 
Beginning in January, the wind speed rose gradually and 
reached its maximum value of 9.78 m/s in June. Thereaf-
ter, the wind speed continued to decline until August. This 
may be attributed to the monsoon rainfall prevailing from 
the month of June till the end of August. The wind distri-
bution pattern shows that the wind speed picked up again 
and had a relatively higher value for September and Octo-
ber. From then on, the wind speed decreases and reaches 
6.71 m/s in December which is the minimum.

The monthly wind speed variation in Okhaldhunga 
can be understood by dividing the year into two distinct 
phases. The first one is the warmer season between April 
and October, and the second one is the colder months of 
November to March. A maximum mean wind speed of 
10.95 m/s was observed in April. The wind speed then 
showed a decreasing trend reaching its lowest value of 
4.52 m/s in October. This is due to the gain in significant 
rainfall after April to October in Okhaldhunga. After Octo-
ber, the wind speed rose again until April. The maximum 
mean wind speed is twice the value of minimum wind 
speed. The range of mean wind speed for Okhaldhunga is 
greater than that of Jumla.

Both locations experienced higher wind speed in the 
months of March, April, and May. This may be credited to 
the seasonal transition from winter to summer. The air in the 
tropic region starts to warm up as the Northern hemisphere 
gets more sunlight. This warm low-pressure air moves 

Fig. 2  Monthly wind speed variation at height of 50 m
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northward to meet cold high-pressure air in the artic and cre-
ates a pressure gradient which results in higher wind speed.

Annual variation of wind speed parameters

Since wind speed is affected by various weather phenom-
ena, reliable wind resource assessment demands the study 
of year-to-year variation. To get a basic notion of such varia-
tions, general wind speed parameters, annual values of mean 
speed ( vm ), maximum speed ( vmax ), and minimum speed 
( vmin ) are calculated and listed in Table 2.

Throughout the years of study, Jumla shows a more con-
sistent mean wind speed while Okhaldhunga experiences 
fairly steady values only in the last few years of study. If the 
last three years (2015-2018) of study are taken into account, 
Okhaldhunga has an average wind speed value of 8.56 m/s, 
which is slightly higher than that of Jumla with a value of 
7.96 m/s.

However, calculations for the entire study period indicate 
the average wind speed of Jumla to be greater than that of 
Okhaldhunga by a margin of 1.22 m/s. But Okhaldhunga 
shows higher values of maximum wind speed in a majority 
of years along with the average ones, showing that it sus-
tains greater wind speed values but for a relatively shorter 
duration. Even though Okhaldhunga has a higher maximum 

value of wind, Jumla has a fairly constant wind speed value 
and does not fluctuate as much as Okhaldhunga which has 
much importance in wind energy generation.

Wind availability analysis

Generally, a wind speed of 3 m/s is taken as cut-in speed for 
the wind turbine to generate energy and wind speed greater 
than 6 m/s is considered to have appreciable energy produc-
tion [33]. For Jumla, 96.79% of the wind speed data were 
greater than 3 m/s, and 78.80% of data were greater than 
6 m/s, indicating that 96.79% of the time throughout the 
year wind energy can be produced and appreciable energy 
production for 78.80% of the time. In the case of Okhald-
hunga, 85.70% of the wind speed data was greater than 3 
m/s indicating that 85.70% of the time throughout the year 
energy generation can be feasible, and 56.63% of the time 
wind speed was greater than 6 m/s. Both locations have good 
potential for wind energy generation.

Weibull parameters and performance evaluation

Tables 3 and 4 list the values of k and c obtained after each 
estimation method was applied to the annual wind speed 
data set.

Table 2  Yearly trend for wind 
speed parameters

Location Wind speed 
parameters

2011 2012 2013 2014 2015 2016 2017 2018 Average

Jumla v
m

7.94 – 8.24 8.00 8.66 8.11 7.72 8.07 8.11
v
max

17.13 – 17.70 17.13 19.04 19.80 15.99 16.75 17.65
v
min

1.52 – 1.52 0.76 1.33 1.52 0.76 1.52 1.28
Okhaldhunga v

m
3.80 6.45 7.59 5.93 5.69 8.84 8.75 8.11 6.89

v
max

17.51 19.80 20.18 20.18 18.08 19.99 19.42 18.28 19.18
v
min

0.19 0.62 0.38 0.19 0.48 0.95 2.28 1.33 0.80

Table 3  Yearly Weibull 
parameters of Jumla

Method Parameter Year

2011 2012 2013 2014 2015 2016 2017 2018

EML k 3.22279 – 3.31407 3.09377 3.35980 3.40298 3.35206 3.54006
c 8.85844 – 9.18444 8.95012 9.63729 9.02376 8.60172 8.95884

EMJ k 3.22279 – 3.31407 3.09377 3.35980 3.40298 3.35206 3.54006
c 8.86044 – 9.18686 8.95162 9.64000 9.02645 8.60411 8.96194

MOM k 3.22062 – 3.31289 3.09026 3.35912 3.40552 3.35130 3.54144
c 8.86073 – 9.18702 8.95209 9.64010 9.03270 8.60421 8.96175

MLM k 3.20164 – 3.22282 3.08877 3.32601 3.34077 3.37446 3.54751
c 8.85640 – 9.18226 8.94120 9.62102 9.00647 8.59017 8.95496

WEPF k 3.01514 – 3.04675 2.94481 3.11011 3.12491 3.11949 3.21283
c 8.88807 – 9.22399 8.97128 9.67656 9.07125 8.63451 9.00660

Graphical k 3.10273 – 3.17011 2.86349 2.89181 2.99798 2.99670 3.41902
c 8.95377 – 9.39159 8.87142 9.61950 9.16903 8.58010 8.97646
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The shape of a Weibull distribution is dependent on the 
value of k. Lower values of this parameter relate to a wider 
Weibull curve which in turn infers that the wind speed falls 
upon a larger range whereas greater values designate a nar-
row Weibull curve indicating that the speed falls upon a 
smaller range. The other parameter, c, correlates with the 
average wind speed and represents the magnitude of wind 
speed in the site.

In terms of shape parameter k, it is observed that it’s 
value ranges from 2.863–3.547 for Jumla, while Okhald-
hunga presents values ranging from 1.211–3.574 inferring 
that the wind speed in Jumla is more consistent. The shape 
parameter in Okhaldhunga shows an increasing trend over 
the study period indicating more steadiness in the wind 
speed in recent years. Scale parameter for Jumla ranges from 
8.590–9.640 m/s while Okhaldhunga shows c values rang-
ing from 4.051–10.590 m/s. Similar to the shape parameter, 
the scale parameter for Okhaldhunga also shows an increas-
ing trend during the study period, suggesting an increasing 
potential for producing wind energy. The shape and scale 
factor in conjunction offer an approximation of the wind 
turbine’s operating range of speed.

Weibull distributions in Fig. 3 are the results of the plot 
between probability density function and wind speed data 
collected annually for the study period using the parameters 
calculated from six different numerical methods as listed in 
Tables 3 and 4. The Graphical method used a bin size of 1 
m/s in the calculation of the parameters. Only years 2011 
and 2018 are included here for a general insights.

The curves created by different methods shown in Fig.3 
appear to be either underestimating or overestimating the 
wind speed data for both study stations. For Jumla 2018, 
all methods underestimated the speed in 2-4 m/s, 5 m/s, 
9-10 m/s, 12-14 m/s, and 16 m/s ranges whereas overesti-
mation was observed in 1 m/s, 6-8 m/s, 11 m/s, 15 m/s, and 
17 m/s ranges with WEPF method resulting in the largest 

error of overestimation and underestimation of 3.07% at 
5 m/s and 3.94% at 8 m/s, respectively. For Okhaldhunga 
2018, all the methods overestimated the wind speed in the 
1-5 m/s and 10-15 m/s ranges, while underestimation was 
observed in the 6-9 m/s and 16-19 m/s ranges, with graphi-
cal method resulting in the largest error of overestimation 
and underestimation of 8.03% at 11 m/s and 9.03% at 7 
m/s speed, respectively.

The distributions aid in the visualization of the match 
between the Weibull probability density curve and the 
actual wind speed data collected, providing insights into 
the methods performing the best. Graphically, Fig.3 dem-
onstrates that all estimation methods produced a good 
curve fit to the histogram of actual wind speed data. How-
ever, the aforementioned statistical tests are carried out to 
further analyze the six methods of estimation, the results 
of which are shown in Tables 5 and 6.

From the statistical analysis of methods shown in 
Tables 5 and 6, it is evident that all the considered methods 
provide acceptable effectiveness in estimating the Weibull 
distribution parameter for data under consideration. Sta-
tistical testing parameters, RMSE and R 2 have been used 
collectively to accurately decide the best method.

As shown in Table 7, all of the methods were ranked 
to determine the best estimating model by choosing the 
model with the least value of RMSE and the highest R 2 
value. In case of Jumla, EMJ has been ranked first fol-
lowed by EML, MOM, MLM, WEPF, and Graphical, 
respectively. EMJ and EML shared a slight variation. For 
Okhaldhunga, both EMJ and EML performed equally well 
followed by MOM, MLM, WEPF, and Graphical method. 
EMJ performed better based on RMSE and EML per-
formed better in R 2 . Therefore, based on these statistical 
rankings, EMJ and EML provided the best accuracy esti-
mation models, whereas the Graphical method provided 
the worst fit for Jumla and Okhaldhunga.

Table 4  Yearly Weibull 
parameters of Okhaldhunga

Method Parameter Year

2011 2012 2013 2014 2015 2016 2017 2018

EML k 1.26537 1.55374 2.25852 1.60868 2.11679 2.64060 3.24234 3.26280
c 4.09365 7.17904 8.56834 6.61926 6.42888 9.95018 9.76466 9.04353

EMJ k 1.26537 1.55374 2.25852 1.60868 2.11679 2.64060 3.24234 3.26280
c 4.09141 7.17311 8.56523 6.61384 6.42581 9.94933 9.76694 9.04573

MOM k 1.25120 1.53992 2.24793 1.59500 2.10532 2.63288 3.24038 3.26106
c 4.08113 7.16627 8.56555 6.60867 6.42562 9.95025 9.76723 9.04597

MLM k 1.26275 1.54702 2.23407 1.64382 2.09935 2.57520 3.05871 3.27125
c 4.09200 7.17936 8.56491 6.65478 6.42974 9.96644 9.77832 9.17095

WEPF k 1.2684 1.53989 2.22026 1.55772 2.05109 2.49828 2.93460 2.92932
c 4.09356 7.16625 8.56619 6.59330 6.42410 9.96485 9.81181 9.09080

Graphical k 1.21162 1.54519 2.21596 1.69217 2.11726 2.87490 3.61312 3.57488
c 4.05126 7.21796 8.74919 6.92088 6.74750 10.59026 10.47175 9.86509
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Fig. 3  Profiles of Weibull distribution for Jumla and Okhaldhunga in 2011 and 2018

Table 5  Coeff. of Determination 
and RMSE along different years 
at Jumla

Method Parameter Year

2011 2012 2013 2014 2015 2016 2017 2018

EML R2 0.92536 – 0.91318 0.96303 0.89501 0.89925 0.88085 0.95172
RMSE 0.01452 – 0.01635 0.00918 0.01697 0.01829 0.01968 0.01222

EMJ R2 0.92536 – 0.91305 0.96303 0.89496 0.89917 0.88096 0.95155
RMSE 0.01452 – 0.01637 0.00918 0.01698 0.01831 0.01968 0.01223

MOM R2 0.92522 – 0.91298 0.96298 0.89491 0.89913 0.88090 0.95157
RMSE 0.01454 – 0.01637 0.00919 0.01699 0.01831 0.01969 0.01222

MLM R2 0.92390 – 0.90830 0.96289 0.89240 0.89545 0.88212 0.95172
RMSE 0.01470 – 0.01707 0.00920 0.01724 0.01880 0.01955 0.01219

WEPF R2 0.90722 – 0.88380 0.95909 0.86421 0.86484 0.86151 0.93206
RMSE 0.01656 – 0.01903 0.00996 0.01960 0.02139 0.02187 0.01485

Graphical R2 0.91636 – 0.89106 0.95239 0.84142 0.86200 0.84303 0.94894
RMSE 0.01575 – 0.01894 0.01084 0.02234 0.02339 0.02341 0.01287
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It was clear that among the six methods studied, the EMJ 
and EML offered the best accuracy, with very close results 
from MOM, whereas the graphical method appeared to be 
the worst-performing. The EMJ providing the best accuracy 
for a height of 50 m is mentioned by Rocha et al. [14]. Addi-
tionally, EMJ and EML performing the best among others is 
observed by Teyabeen et al. [34]. Poor performance of the 
graphical method against other methods is also observed by 
Werapun et al. [16], Ben et al. [18], and Mohammadi et al. 
[27].

Estimation of wind power potential

Wind Power Densities (WPD) calculated using the values 
of k and c from the Empirical Method of Lysen for a height 
of 50 m during the study period for Jumla and Okhaldhunga 
are shown in Table 8.

Results show that Jumla has a consistent wind potential 
throughout the years with a mean WPD of 336.07 W/m2 . 
The lowest potential of value 288.52 W/m2 was observed 
in the year 2017 which is still promising indicating a mar-
ginal potential for harnessing wind energy [35]. The year 
2015 experienced the highest value of 405.49 W/m2.

Meanwhile, Okhaldhunga shows a larger variation in 
WPD ranging from a minimum value of 100.49 W/m2 in 
2011 to a maximum of 531.95 W/m2 in 2016. The mean 
WPD is obtained to be 326.73 W/m2 which is slightly 
lower than that of Jumla. Based on the mean values, it 
can be concluded that both the locations belong to wind 
resource of Class 3 and have a good potential for wind 
energy generation [35]. Therefore, a wind turbine having 
capacity of around 100 kW and low operating wind speed 
could be considered for installation [36].

Table 6  Coeff. of Determination 
and RMSE along different years 
at Okhaldhunga

Method Parameter Year

2011 2012 2013 2014 2015 2016 2017 2018

EML R2 0.94874 0.86086 0.89595 0.85443 0.93827 0.75086 0.76410 0.79303
RMSE 0.01370 0.01419 0.01328 0.01811 0.01423 0.02388 0.02805 0.02929

EMJ R2 0.94874 0.86101 0.89598 0.85457 0.93839 0.75096 0.76378 0.79269
RMSE 0.01370 0.01419 0.01328 0.01809 0.01422 0.02388 0.02807 0.02932

MOM R2 0.94884 0.86035 0.89587 0.85311 0.93737 0.75096 0.76376 0.79261
RMSE 0.01369 0.01423 0.01331 0.01821 0.01437 0.02391 0.02807 0.02933

MLM R2 0.94879 0.86052 0.89566 0.85602 0.93668 0.74976 0.76162 0.77197
RMSE 0.01369 0.01422 0.01334 0.01797 0.01448 0.02418 0.02873 0.03064

WEPF R2 0.94866 0.86035 0.89536 0.84758 0.93171 0.74933 0.75521 0.77288
RMSE 0.01371 0.01423 0.01338 0.01859 0.01520 0.02452 0.02957 0.03189

Graphical R2 0.94672 0.85952 0.89253 0.84246 0.91974 0.63341 0.60469 0.59787
RMSE 0.01396 0.01429 0.01372 0.01892 0.01671 0.02836 0.03572 0.03956

Table 7  Rank of different 
estimation methods

 Methods Jumla Okhaldhunga

R2 Rank RMSE Rank R2 Rank RMSE Rank

EML 0.91832 1 0.01530 1 0.85078 1 0.01935 2
EMJ 0.91830 2 0.01532 2 0.85076 2 0.01934 1
MOM 0.91824 3 0.01533 3 0.85036 3 0.01939 3
MLM 0.91668 4 0.01554 4 0.84763 4 0.01966 4
WEPF 0.89610 5 0.01761 5 0.84514 5 0.02014 5
Graphical 0.89360 6 0.01822 6 0.78712 6 0.02266 6

Table 8  Wind power density 
estimations

Year 2011 2012 2013 2014 2015 2016 2017 2018 Average

Jumla 319.29 – 352.51 334.34 405.49 331.56 288.52 320.81 336.07
Okhaldhunga 100.49 352.20 378.43 260.47 169.19 531.95 458.04 363.09 326.73
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Conclusions

With the growing demand for cleaner energy sources, 
Nepal has emphasized to promote wind energy where 
ever possible to improve energy mix and supply security 
within the country. This study explores the preliminary 
steps for determining the wind energy potential in Jumla 
and Okhaldhunga districts of the country. It conducted 
the analysis of various Weibull estimation methods and 
determined the best option for assessment of wind energy 
potential for Jumla and Okhaldhunga. Daily wind speed 
data of Jumla and Okhaldhunga for 7 years and 8 years, 
respectively, at a height of 2 m were collected and extrapo-
lation was carried to a height of 50 m using the power-
index law for further analysis.

The average wind speed of Jumla is observed to be 8.11 
m/s with a maximum average wind speed of 9.89 m/s in 
June and a minimum average wind speed of 6.74 m/s in 
December. Similarly, the average wind speed of Okhald-
hunga is observed to be 6.89 m/s with a maximum average 
wind speed of 10.98 m/s in April and a minimum aver-
age wind speed of 4.52 m/s in October. At 50-m-height, 
the annual average of the Weibull shape parameter k for 
Jumla and Okhaldhunga are 3.327 and 2.244, respectively, 
and the scale parameter c for Jumla and Okhaldhunga are 
9.033 m/s and 7.704 m/s, respectively. This shows that 
wind is more uniform and steady in Jumla in comparison 
to Okhaldhunga. Wind power density is calculated using 
the EML for both locations, and Jumla seems to have a 
similar WPD for the seven years study period with an aver-
age of 336.07 W/m2 . However, in the case of Okhaldhunga 
WPD seems to be varying with recent data showing good 
wind potential. Eight years average WPD for Okhaldhunga 
is 326.73 W/m2 . The study shows that both Jumla and 
Okhaldhunga lie in wind class 3 suggesting that both loca-
tions have moderate suitability for wind energy harvesting. 
From the analysis of RMSE and coefficient of determina-
tion for the six Weibull parameters estimation methods, 
the Empirical method of Justus was observed to be the 
best fit for Jumla whereas EMJ and EML ranked equally 
for Okhaldhunga. The Graphical method gave the worst 
fit. Further, Empirical, MOM, and MLM techniques all 
provided similar results.
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