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Abstract
The precise estimation of solar radiation data is substantial in the long-term evaluation for the techno-economic performance 
of solar energy conversion systems (e.g., concentrated solar thermal collectors and photovoltaic plants) for each site around 
the world, particularly, direct normal irradiance which is utilized commonly in designing solar concentrated collectors. 
However, the lack of direct normal irradiance data comparing to global and diffuse horizontal irradiance data and the high 
cost of measurement equipment represent significant challenges for exploiting and managing solar energy. Consequently, 
this study was performed to develop two hierarchical methodologies by using various models, empirical correlations and 
regression equations to estimate hourly solar irradiance data for various worldwide locations (using new correlation coef-
ficients) and different sky conditions (using cloud cover range). Additionally, the preliminary assessment for the potential of 
solar energy in the selected region was carried out by developing a comprehensive analysis for the solar irradiance data and 
the clearness index to make a proper decision for the capability of utilizing solar energy technologies. A case study for the 
San Antonio region in Texas was selected to demonstrate the accuracy of the proposed methodologies for estimating hourly 
direct normal irradiance and monthly average hourly direct normal irradiance data at this region. The estimated data show a 
good accuracy comparing with measured solar data by using locally adjusted coefficients and different statistical indicators. 
Furthermore, the obtained results show that the selected region is unequivocally amenable to harnessing solar energy as the 
prime source of energy by utilizing concentrating and non-concentrating solar energy systems.

Keywords  Solar irradiance · Direct normal irradiance · Concentrated solar collectors · Photovoltaic · Parametric models · 
Decomposition models · Hierarchical methodologies · Clearness index

List of symbols
H̄d	� Monthly average daily diffuse irradiance 

(kWh/m2)
H̄G	� Monthly average daily global irradiance 

on a horizontal surface (kWh/m2)
H̄o	� Monthly average daily extraterrestrial 

solar irradiance on a horizontal surface 
(kW/m2)

ĪDNI,H	� Monthly average hourly direct solar irra-
diance on a horizontal surface (kW/m2)

ĪDNI	� Monthly average hourly direct solar 
irradiance (kW/m2)

Īd	� Monthly average hourly diffuse irradi-
ance (kW/m2)

ĪG	� Monthly average hourly global irradi-
ance on a horizontal surface (kW/m2)

K̄T	� Monthly mean clearness index
S̄o	� Maximum possible monthly average 

daily length (h)
a1 , a2 , a3 , a4 , a5	� Transmission functions
aw	� Water vapor absorptance
H̄	� Monthly average daily global radiation 

on a horizontal surface (kWh/m2)
Hsc	� Solar constant (W/m2)
IGcc

	� Hourly global solar radiation on a hori-
zontal surface under cloud cover condi-
tion (kW/m2)

IGcs
	� Hourly global solar radiation on a hori-

zontal surface under cloudless sky (kW/
m2)
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Ical	� Calculated value
Id	� Hourly diffuse radiation on a horizontal 

surface (kW/m2)
IDNI,KC	� Direct normal irradiance (DNI) under 

different sky conditions (kW/m2)
IDNI	� Direct normal irradiance (W/m2)
Imeas,avg	� Average of measured data
Imeas	� Measured value
Io	� Solar constant (W/m2)
IoN	� Extraterrestrial radiation measured on 

the plane normal to the radiation (W/m2)
Lao	� Aerosol optical depth (cm)
Lst , Lloc	� Standard meridian for local time zone 

and longitude
mair,KUM	� A specific air mass
mair	� Air mass at actual pressure
me	� Air mass corrected for elevation
mr,ABW	� A specific air mass
mr	� Air mass at standard pressure
po	� Standard pressure (mbar)
rd	� Ratio of monthly average hourly diffuse 

irradiance to monthly average daily dif-
fuse irradiance

rt	� Ratio of monthly average hourly global 
irradiance to monthly average daily 
global irradiance

S̄	� Monthly average daily sunshine hours 
(hr)

Tamb	� Ambient temperature (K)
Tdew	� Dew point temperature (C)
TLTF	� Linke turbidity factor
To	� Temperature at zero altitude (K)
U1	� Pressure-corrected relative optical-path 

length of precipitable water (cm)
U3	� Ozone’s relative optical-path length (cm)
W ′	� Precipitable water vapor thickness under 

the actual condition
Xo	� Total amount of ozone in a slanted path
Xw	� Total amount of precipitable water in a 

slanted path
Nj	� Number of the day (from 1 on 1 January 

to 365 on 31 December)
aaa , baa , caa	� Constants
A, B	� Site climate-related constants
a, b, c, d, e, f	� Empirical coefficients
A, B, C, D	� Empirical coefficients
E	� Time equation
H	� Site elevation (m)
L	� Latitude (m)
N	� Cloud cover number (Oktas)
N	� Number of observations
P	� Actual pressure (mbar)
R	� Relative humidity (%)

SDT	� Standard time (h)
ST	� Solar time (h)
T	� Average maximum temperature (°C)

Subscript and superscript symbols
Amb	� Ambient
Ao	� Aerosol optical
Avg	� Average
Cal	� Calculated
CC	� Cloud cover
D	� Diffuse
Dew	� Dew point
DNI	� Direct normal Irradiance
E	� Elevation
G	� Global
H	� Horizontal
Loc	� Local
LTF	� Linke turbidity
Meas	� Measured
N	� Normal
SC	� Solar constant
St	� Standard
W	� Water

Greek symbols
�z	� Zenith angle (°)
�1, �2	� Angstrom exponent and Angstrom tur-

bidity coefficient, respectively
�h	� Solar hour angle (°)
�hs	� Sunset hour angle (o)
��	� Declination angle
�aa	� Atmospheric attenuation
�as	� Aerosol scattering transmittance
�at	� Aerosol transmittance
�bulk	� Bulk atmospheric transmittance
�gt	� Gas transmittance
�md	� Direct transmittance of all molecular 

effects except water vapor for Atwater
�ot	� Ozone transmittance
�rt	� Air transmittance
�w	� Precipitable water transmittance
�wt	� Water transmittance
�o	� Ozone transmittance
�w	� Water vapor absorption

Introduction

Renewable energy sources have taken increasingly sig-
nificant attention these days. Particularly, solar energy that 
could contribute efficiently to attain the proper solution for 
the rapid growth problem in energy demand. The short-term 
solution can be through offering the sustainable system 
design via hybridizing solar energy with fossil fuel to sustain 
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the existing energy resources, while the long-term solution 
can be the entirely replacing for the conventional energy 
sources to compensate the shortage in these resources. The 
depletion of fossil fuel resources (oil, natural gas, coal) 
approximately would be up to 2042, except coal which will 
last after 2042 [1].

The primary assessment of the potential of solar energy 
at a specific site is essential for selecting and designing 
solar energy systems (e.g., photovoltaic systems and solar 
concentrated collectors). However, the substantial impact 
of uncertainty of the solar irradiance forecast (especially, 
direct normal irradiance) on the solar power plants output 
and their profitability over time should be addressed. Moreo-
ver, much attention should been paid to the significance of 
acquiring hour-ahead or day-ahead forecasts of solar irradi-
ance [2]. Accordingly, most recent studies have emphasized 
on attaining the best forecast accuracy based on high-quality 
solar irradiance data to reduce the effect of the intermit-
tency nature of solar energy on the uncertainty in the opti-
mal design parameters and the errors in all modeling and 
measurements [3–5].

The solar radiation that travels through the sky until 
reaching the earth’s surface can obtain various forms: direct 
(beam), diffuse, and reflected (scattered) radiation based on 
the distance traveled through the atmosphere, the cloudi-
ness amount, the ozone layer intensity, the concentration of 
haze in the air (water vapor, dust particles, pollutants, etc.), 
and types of ground surface [6]. Indeed, the most relevant 
component of solar radiation for concentrated solar power 
technologies (including parabolic trough, central receiver, 
linear Fresnel reflector, and parabolic dish) is the direct nor-
mal irradiance (DNI). Thus, the performance of the previ-
ous technologies reduces dramatically with growing cloud 
cover; whereas, photovoltaics can generate electric power 
from diffuse irradiation. Therefore, the long-term evaluation 
for the technical and economic performance of solar energy 
technologies is based on the availability of solar radiation 
data and their accuracy. To move successfully from the 
investment in small to large-scale solar projects, accurate 
solar radiation data are essential because small uncertainty 
in the measured and estimated quantity of solar radiation 
may jeopardize the economic feasibility of proposed solar 
projects [7]. Solar radiation measuring instruments (e.g., 
pyranometer and pyrheliometer) are utilized to obtain reli-
able solar radiation data over various periods of time [6]. 
However, the measured data may not available or easily 
accessible due to the high cost of instruments which used in 
measuring stations and the technical difficulties to calibrate 
these instruments, especially in developing countries.

The lack of measured DNI data at the most solar project’s 
sites is a challenging task for researchers and workers in the 
field of solar energy applications. Despite the availability 
of global a horizontal irradiance (GHI) and diffuse (DHI) 

a horizontal irradiance data that can be used to obtain DNI 
values, there is still a need to model the solar resource in 
most cases. Consequently, most researchers in this field have 
formulated various models, regression equations, and empir-
ical correlations to predict solar radiation based on the divi-
sion basis of the time period (e.g., hourly, daily, monthly) 
and on the meteorological and geographic parameters. These 
parameters are maximum and minimum temperature, rela-
tive humidity, sunshine duration, cleanness index, cloud 
cover, geographical site, etc. [7]. The estimated datasets 
from various models, regression equations, and empirical 
correlations require precise validation via comparing with 
high-quality measured datasets. For large-scale solar pro-
jects, the importance of the mutual relationship between a 
lower uncertainty in solar radiation data, minimal financial 
risks, and profitability has been discussed in [5].

Existing models and methods

The significance of solar radiation modeling emerged 
through presenting numerous literature which include devel-
oping various models, regression equations, and empiri-
cal correlations to estimate solar radiation. However, the 
considerable abundance of models that use for obtaining 
the solar radiation data sets requires assessing their valid-
ity and performance. Therefore, the “Existing models and 
methods” of this work is allocated for introducing a compre-
hensive overview of the existing models and methods which 
included in the various literature. The two categories of solar 
radiation models: parametric and decomposition are used 
to predict beam (direct), diffuse, and global components of 
irradiance based on the availability of other measured or 
calculated quantities. The parametric (broadband) models 
have been formulated based on astronomical, atmospheric 
and geographic parameters to predict the solar irradiance 
precisely. Additionally, these models are the better choice 
than decomposition models when meteorological data are 
not obtainable [6, 8–10]. First models have been formulated 
and tested to estimate the amount of clear-sky direct and 
diffuse solar radiation on a horizontal surfaces under vari-
ous climate conditions [11–13]. The attenuation influence 
of a large range of atmospheric constituents on the DNI has 
been studied. This study demonstrated that the major attenu-
ation was occurred by effecting of constituents, molecular 
scattering, and water vapor absorption, respectively, while 
the ozone layer and CO2 have a minor effect. The tested 
models have shown a reasonable agreement with small 
values of the zenith angle [14, 15]. The availability of the 
input parameters (aerosol optical depth or Link turbidity) 
and implementation simplicity were used as the selection 
criteria for a number of clear-sky solar irradiance models 
and to evaluate their accuracy. The parameters, which are 
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measured locally, were more recommended than climatic 
data sets to avoid underestimated values of the direct and 
global irradiance [16]. Several simple clear and cloudy sky 
models of solar global irradiance that do not need mete-
orological data as inputs have been evaluated. The models 
can be used to predict the global irradiance for the next few 
hours or might be for the next day. In addition, the clear-
sky model can be used for partially cloudy days and the 
estimated total cloud amount is crucial for the cloudy sky 
model [17]. Three types of analyses have been used to assess 
the validity, limitations, and performance of many clear-sky 
solar irradiance models. These analyses were carried out 
based on studying the effect of atmospheric effects (e.g., 
water vapor absorption, aerosol extinction), statistical evalu-
ation, and comparison with a large number of calculated 
and measured data [18]. The performance of broadband 
models has been evaluated to identify their accuracy to pre-
dict clear-sky direct normal irradiance (DNI) by comparing 
with high-quality measurements along with a large range 
of conditions that were selected carefully. Furthermore, the 
uncertainty in the predicted values of DNI increase point-
edly with air mass and they were more sensitive to errors 
in values of turbidity and precipitable water, which are the 
two substantial inputs of the parametric models [9, 19]. The 
evaluation procedure, which consists of 42 stages, has been 
created to test 54 parametric models through the sensitivity 
analysis. These models can be used to compute global and 
diffuse irradiance on a horizontal surface. The input data 
for the models have been adopted from satellite measure-
ments including ground meteorological data and atmos-
pheric column integrated data [20]. The significant review 
for eighteen clear-sky models has been carried out to assess 
their performance by comparison between predicted values 
and measured values under various climate conditions. The 
high-quality input data were collected from five locations. 
The selected models can be applied to set up solar datasets, 
solar resource maps, and large-scale applications. All mod-
els were ranked based on their accuracy that determined by 
four statistical indicators. It has also been found that there is 
complexity in the prediction of DNI, the prediction of DHI 
is less accurate, and the number of the model input may not 
have that obvious influence on its performance and precise 
[21]. To select a suitable site to install the concentrating 
solar power plant, seventeen clear-sky models have been 
studied to verify which model can be used for predicting 
the more precise values of direct normal irradiance. The 
performance and accuracy of the models have been tested 
by comparing their predictions with measured irradiance 
of a specific site along with using the statistical accuracy 
indicators. The parametric models have been classified into 
two groups: simple models that are included less than three 
inputs (astronomical and geographical parameters) such as 
ASHRAE, Meinel, HLJ, etc., and complex models that are 

based on various parameters (the air mass, the ozone layer, 
aerosols, precipitable water and Linke turbidity factor) such 
as Bird family models. It is worth noting that simpler models 
can offer more accurate DNI data than complex models, in 
other words, an increase in the number of model inputs (e.g., 
atmospheric parameters) may not necessarily enhance the 
accuracy and performance of a model [22].

Based on the above-mentioned, the clear-sky models 
(parametric models) have been developed to estimate the 
clear-sky irradiation (in the absence of clouds). Hence, they 
cannot be used to predicate direct normal irradiance (DNI) 
under cloudy conditions. Consequently, decomposition mod-
els are based on the phenomenon of fitting the historical 
experimental data through empirical correlations, which are 
typically utilized to calculate direct normal radiation and 
diffuse radiation on a horizontal surface from global solar 
radiation data [23]. It is axiomatic that the availability of 
solar radiation at the earth’s surface is considerably influ-
enced by cloudy sky condition. The direct normal irradiance 
is attenuated significantly with increasing cloud cover and 
its value may be reached to zero. In contrast, once the value 
of cloud cover attains intermediate range values, the diffuse 
solar irradiance (sky radiation) starts growing in the sky 
until mounting to a maximum value at high range values 
of cloud cover, or fading to zero at the overcast sky con-
dition [24]. Because of that, the sky state study, based on 
the temporal and spatial distribution modeling of clouds, is 
crucial to estimate the availability of all radiation types at a 
specific site [25]. The various concepts of cloud detection 
and classification have been discussed, various techniques 
were developed for cloud classification based on instruments 
(ground-based, satellite integrated) that used to determine 
the state of the sky [26–28].

Numerous types of cloud cover-based models have devel-
oped to estimate hourly and daily solar radiation using cloud 
cover data [2, 29–31]. The cloud-cover radiation model 
(CRM) is widely used to obtain hourly global solar irradi-
ance forecast based on the cloud cover, which is measured 
in Oktas and ranging from zero Oktas (an entirely clear sky) 
through eight Oktas (an entirely overcast sky). The CRM 
was developed by Kasten and Czeplak using 10 years of 
hourly cloud amount data [32]. Many researchers have tested 
the Kasten–Czeplak model (CRM) using the dataset of vari-
ous sites around the world, and to improve the model’s accu-
racy, the locally fitted coefficients for each of the selected 
locations were determined by regression analysis [25, 27, 
29, 30, 32–36].

In order to obtain average hourly solar radiation values 
from long-term daily values, global solar radiation decompo-
sition models can be used to transform daily solar radiation 
values into hourly solar radiation values [37]. The existing 
models can be divided into three categories based on param-
eters, physical significance, and constructing methods: the 
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first group of models entails the time factor like solar time, 
day length, solar hour angle, etc. The most widely used mod-
els are the Whillier model [38], Liu and Jordan model [39], 
and Collares-Pereira and Rabl model [40, 41], the second 
group of models is developed in the Gaussian function form 
such as Jain model 1 [42], Jain model 2 [43], Shazly model 
[44], and Baig et al. model [45]. Newell model [46] is the 
most known model of the third group of models, which is 
modified from the Collares-Pereira and Rabl model [8, 36, 
47].

Other empirical models have been developed by correlat-
ing the clearness index, diffuse fraction, and meteorological 
parameters based on using the measured data of selected 
sites to estimate the global and diffuse solar irradiation. The 
meteorological parameters consist of sunshine period, cloud 
cover, minimum and maximum temperature, relative humid-
ity, and geographical location.

The clearness index is a random parameter which can 
sense the meteorological stochastic effects (e.g., atmospheric 
aerosols, cloudiness, temperature, etc.) on the solar radiation 
for a time of the day, a season of the year, and a geographical 
site [48]. It should be noted that the clearness index is sensi-
tive to the short-term effects (atmospheric influences which 
are described by statistics and the long-term effects (Earth’s 
movement which is described by astronomy) [49]. In gen-
eral, it represents the ratio of the global solar irradiance on 
a terrestrial a horizontal surface (which is a stochastic quan-
tity) to the global solar irradiance on an extraterrestrial a 
horizontal surface (which is a deterministic quantity) for 
the same time and site [6, 50]. In this context, the concepts 
of long-term of solar radiation data (either daily or monthly 
average daily) and short-term of solar radiation data (either 
hourly or monthly average hourly) can be utilized to esti-
mate the cleanness index [6]. As already stated, the clearness 
index and diffuse fraction are essential factors for evaluat-
ing the impacts of cloud on extraterrestrial radiation. There-
fore, they both should be considered as random variables 
to construct probability functions (PDF and CDF) through 
studying the statistical distribution of their past occurrence 
to predict their future values within a precise range. Based 
on that, several investigators have used probability function, 
which depends on local conditions, in modeling clearness 
index to predict terrestrial solar radiation and to classify the 
level of the sky clearness [10, 39, 49, 51–55].

The sunshine duration is another key indicator for speci-
fying the different sky conditions along with the clearness 
index and cloud cover. It is the ratio of the actual (bright) 
hours of sunshine (which is a stochastic value) to the aver-
age daylight hours (which is a deterministic value). When 
the sky is completely cloudless, the bright sunshine hours 
will be equal to the average daylight hours and the ratio 
will be 1 and the majority of radiations that gained by the 
solar energy systems are direct normal irradiance (DNI). In 

contrast, on a completely or partially cloudy day, the bright 
sunshine hours may reach zero, thus diffuse radiation will 
dominate the working of solar energy systems during the 
time of spreading scattered thin clouds in the sky [36]. When 
the sunshine duration fraction is approximately 0.3–0.5, the 
highest diffuse radiation values typically is obtained [23]. 
However, the uncertainty influence of scattered clouds and 
their movement in the sky is still representing a great obsta-
cle in estimating a nature and quantity of received radia-
tions on the earth surface [56]. The estimation of sunshine 
duration data from cloud cover by developing an empirical 
correlation is quite useful to calculate global solar radiation 
on a horizontal surface [57]. In the same context, a simple 
theoretical model has been presented that represents the 
interrelation of sunshine duration and cloud cover fraction 
to predict cloud cover fraction that can be further used to 
calculate global solar radiation on a horizontal surface (GHI) 
under different sky conditions [56].

Thus, the Angstrom–Prescott correlation, which repre-
sents the simple, linear, and pioneering relationship between 
clearness index and relative sunshine, was established by 
Angstrom and then was modified by Prescott [58, 59]. Over 
the last decades, there were considerable endeavors for 
evaluating and interpreting the Angstrom–Prescott equa-
tion [60]. New formulations (either linear or non-linear) of 
the Angstrom–Prescott equation were proposed by many 
researchers using clearness index against sunshine fraction 
[8, 36, 47, 57, 61–69], ambient temperature [8, 47, 62, 67, 
69, 70], relative humidity [8, 47, 69], precipitation [47, 62, 
71, 72], cloud cover [47, 57, 61, 73], and multi-parameters 
[47, 60, 67, 69, 74].

It is obvious that the performance evaluation of solar 
energy systems (solar photovoltaics and solar thermal appli-
cations) and selecting their optimized design depends on 
the availability of solar radiation data and its components. 
The diffuse radiation is undoubtedly a significant compo-
nent besides direct normal irradiance for assessing the solar 
radiation quality. Hence, numerous empirical correlations 
have been developed to predict diffuse radiation or monthly 
average daily diffuse solar radiation using clearness index, 
relative sunshine duration, and cloud cover data [10]. The 
first correlation developed by Liu and Jordan [39] to estimate 
hourly diffuse radiation on a horizontal surface from global 
solar radiation, and based on the same concept, many cor-
relations have been modified by researchers using a large 
amount of data from different locations over a period of 
years [75–79]. Other models have been developed for calcu-
lating monthly average diffuse solar radiation by employing 
regression analysis to correlate diffuse fraction with clear-
ness index and relative sunshine duration [39, 80–82]. To 
enhance the accuracy of models for estimating diffuse solar 
radiation or monthly average daily diffuse solar radiation, 
several researchers have demonstrated the importance of 
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adding more variables such as ambient temperature, relative 
humidity, cloud cover, etc. [83]. The prediction of hourly, 
daily, and monthly global solar radiation and its components 
on inclined surfaces were discussed in [48, 84, 85] because 
the maximum amount of incident solar radiation is received 
on inclined surfaces.

Although the quite abundant of models and evaluation 
methods for them that were presented by the existing lit-
erature over a few decades ago, it is rarely, in the current 
literature, finding proper methodologies that can be easily 
followed by researchers, engineers, and workers in the field 
of designing solar energy systems to create solar radiation 
datasets and to evaluate solar energy availability under dif-
ferent sky conditions for assorted solar radiations. Conse-
quently, the aim of this study is to develop two hierarchi-
cal calculation methodologies for estimating hourly solar 
irradiance using various models, empirical correlations 
and regression equations. Specifically, hourly direct normal 
irradiance data are utilized for designing solar concentrated 
collectors. Additionally, the preliminary evaluation for the 
potential of solar energy in the selected region is carried 
out by performing a comprehensive analysis of the solar 
irradiance data and the clearness index to make a proper 
decision for the capability of utilizing solar energy tech-
nologies. The validation and performance evaluation of the 
proposed approaches for estimating solar data are carried 
out by using various statistical indicators while comparing 
with measured solar data.

Theoretical analysis

The design and operation of various solar energy technolo-
gies and their applications such as photovoltaic systems and 
concentrated solar thermal energy systems require obtaining 
high-quality solar irradiance data for a specific site at any 
time of a day and a year to make the long-term evaluation 
for the techno-economic performance for these technologies. 
Thus, various existing models, empirical correlations and 
regression equations, which have been discussed in detail in 
“Existing models and methods”, will be investigated along 
with developing some regression equations in this work 
to predict different solar radiation types based on the time 
period and the meteorological and geographic parameters.

Estimation of hourly direct normal irradiance

Parametric (broadband) models

A large number of parametric models are selected and 
then tested for accuracy fit by using statistical indica-
tors. The existing models, which are formulated based on 

astronomical, atmospheric and geographic parameters, 
are used to predict direct normal irradiance ( IDNI ) under 
clear-sky condition. The performance of 22 models can be 
assessed by comparing their results with the measured high-
quality datasets through statistical indictors. These models 
are summarized in Table 1.

Based on the above-mentioned description of parametric 
models, they can be classified: a simple group, and complex 
group. The simple models are developed by using the zenith 
angle in addition to a few atmospheric parameters such as 
temperature, pressure and relative humidity such as Mei-
nel Laue, Kasten and Czeplak, etc., whereas, various input 
atmospheric parameters such as aerosols, ozone layer and 
perceptible water are included in models that account as a 
complex group such as Davies and Hay, Hoyt (Iqbal B), etc. 
Table 2 is the summary of various astronomical and atmos-
pheric parameters which are used to develop the models.

Cloud cover model (CRM)

In order to predict direct normal irradiance (DNI) under 
different sky conditions, the cloud-cover radiation model 
(CRM), which represents a regression-type model and 
described in detail in “Existing models and methods” can be 
used. The performance of this model is evaluated against the 
dataset extracted from a selected site. The first step toward 
determining DNI from the Kasten–Czeplak model (CRM) 
is to estimate the hourly global solar radiation (IGcs

) on a 
horizontal surface under a cloudless sky. The obtained value 
is used along with cloud cover range (measured in Oktas) to 
find the hourly global radiation (IGcc

) on a horizontal surface 
under cloud cover condition. Several instruments (ground-
based, satellite integrated) are utilized to determine the sky 
conditions. Next, the hourly diffuse radiation (Id) is deter-
mined to obtain the value of hourly DNI (IDNI) under differ-
ent sky conditions as described in the following formulas 
that are summarized in Table 3.

A hierarchical calculation methodology

Accordingly, the hourly direct normal irradiance under vari-
ous sky conditions for different geographical locations can 
be estimated based on the previous equations, which may 
contribute to compensate for lack of the solar dataset for a 
certain site. It should be noted that the availability of DNI 
dataset is essential to the design and operation of concen-
trated solar power technologies including central receiver, 
linear Fresnel, dish sterling and parabolic trough collector, 
particularly if the expected contribution of these technolo-
gies in the total renewable energy production would be 
about 50.34% by 2030 [22]. The hierarchical methodology is 
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Table 1   Summary of selected parametric models

Equation Description

IDNI,FR = IoN�
me

bulk
(1) Fu and Rich model [9]

IDNI,ASH = Aexp
[

−B

cos �z

]

A, B from table [8, 47]

(2) ASHRAE model [8, 9]

IDNI,HLJ = IoN�aa

�aa = aaa + baaexp
[
−

caa

cos �z

]

aaa , baa , caa are constants [13, 22]

(3) HLJ model [22]

IDNI,KUM = 0.56IoN[exp(−0.65mair) + exp(−0.095mair,KUM)]

mair = mrp∕po

mr = {[1229 +
(
614 cos �z

)2
]0.5 − 614 cos �z}

(4) Kumer model [9]

IDNI,HS1 = IoN exp(−mair�TLTF)

� = 1∕
(
6.62960 + 1.7513mair − 0.1202m2

air
+ 0.0065m3

air
− 0.00013m4

air

)

mair = mrp∕po
mr = 1∕ cos �z
TLTF : Linke turbidity factor [22]

(5) Heliosat-1 model [9]

IDNI,ESRA = IoN exp(−mair�TLTF)

mair = mrp∕po
mr = 35∕[(1224cos2�z) + 1]0.5

(6) ESRA model [9]

IDNI,Bird = 0.9662IoN�total
�total = �rt�ot�gt�wt�at

�rt = exp
[
−0.0903m0.84

air

(
1 + mair − m1.01

air

)]

�ot = 1 − [0.1611U3(1 + 139.48U3)
−0.3035 − 0.002715U3

(
1 + 0.044U3 + 0.0003U2

3
)−1

]

�gt = exp(−0.0127m0.26
air

)

�wt = 1 − 2.4959U1[1 + 79.034U1)
0.6828 + 6.385U1]

−1

�at = exp
[
−L0.873

ao

(
1 + Lao − L0.7808

ao

)
m0.9108

air

]

mair = mrp∕po

mr = 35∕[(1224cos2�z) + 1]0.5

Lao = f
(
�1, �2

)

(7) Bird model [12, 22]

IDNI,Hoyt = Io

�

1 −
5∑

i=1

ai

�

�as�r

mair = mrp∕po

mr = 35∕[(1224cos2�z) + 1]0.5

mr = [cos �z + 0.15(93.885 − �z)
−1.253]−1

a1 , a2 , a3 , a4,a5 = f
(
U1,U3,mr,ma, �ot, �as

)

(8) Hoyt (Iqbal B) model [10, 12]

IDNI,MET = 0.9751IoN�total
All transmittances (�total) are similar to Bird model except aerosol transmittance, 
�at = exp

(
−mairLao

)

mair = mrp∕po

mr = 35∕[(1224cos2�z) + 1]0.5

(9) METSTAT model [9]

IDNI,CSR = CCSRIoN�total

CCSR =

[

50 +
||
||
cos

(
Nj

325

)||
||

]

∕49.25

All transmittances (�total) are similar to Bird model except aerosol transmittance, 
�at = exp

(
−mairLao

)

mair = mrp∕po

mr = 35∕[(1224cos2�z) + 1]0.5

(10) CSR model [22]
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summarized in Fig. 1, which can be used to predict DNI val-
ues in this work through testing fit accuracy of the selected 
models using statistical indicators and high-quality meas-
ured datasets.

Estimation of monthly average hourly direct solar 
irradiance from daily data

Daily global solar radiation (decomposition models)

The decomposition models can be utilized to transform 
daily values (long-term data) of solar radiation into hourly 

Table 1   (continued)

Equation Description

IDNI,IqbalC = 0.9751IoN �total
All transmittances ( �total ) are similar to Bird model

(11) Iqbal model C [10]

IDNI,MIqbalC = 0.9751IoN�total

�at =
(
0.12445�1 − 0.0162

)
+
(
1.003 − 0.125�2

)
exp

[
−mair�1

(
1.089�2 + 0.5123

)]

�w = 1 − 2.4959U1[1 + 79.034U1)
0.6828 + 6.385U1]

−1

U1 = W �mr

W � = 0.1 exp
(
2.2572 + 0.05454Tdew

)
= Won’sequation

mair = mrp∕po

mr = 35∕[(1224cos2�z) + 1]0.5

(12) Modified Iqbal model C [22]

IDNI,AWB = Io
(
�md − aw

)
�at

�md = 1.041 − 0.16[mr(949 × 10−6p + 0.051)]0.5

aw = 0.077(U1mair)
0.3

U1 = Wmr

W = W �

(
p

po

)0.75

(To∕Tamb)
0.5

W � = 0.1 exp
(
2.2572 + 0.05454Tdew

)
= Won’sequation

mair = mrp∕po

mr = 35∕[(1224cos2�z) + 1]0.5

(13) Atwater and Ball model. (The model can be 
used for clear and cloudy sky)

[9, 12]

IDNI,DH = Io
(
�o�rt − �w

)
�A

�o =

{[
(1−0.02118Xo)

(1+0.042Xo+0.000323X
2
o)

]
− [(1.082Xo)∕(1 + 138.6Xo)

0.805] − [(0.0658Xo)∕(1 + (103.6Xo))
3
}

�w = 2.9Xw∕[(1 + 141.5Xw)
0.635 + 5.925Xw)]

�A = (0.12445� − 0.0162) + (1.003 − 0.125�)exp
[
−�mair(1.089� + 0.5123)

]

Xo = U3mr

Xw = U1mr

mair = mrp∕po

mr = 35∕[(1224cos2�z) + 1]0.5

(14) Davies and Hay model [12]

IDNI,DPP = 950.2
{
1 − exp

[
−0.075

(
90◦ − �z

)]}
(15) Daneshyar–Paltridge–Proctor (DPP) model [8]

IDNI,Meinel = IoN0.7
m0.678

air

mair = mrp∕po

mr = 1∕ cos �z

(16) Meinel model [8]

IDNI,Laue = IoN

[
(1 − 0.14L)0.7m

0.678
air + 0.14L

]

mair = mrp∕po
mr = 1∕ cos �z

(17) Laue model [8]

IDNI,Haw = 1098 cos �z exp[−0.057∕ cos �z] (18) Haurwitz model [86]
IDNI,BD = 0.70IoN cos �z (19) Berger and Duffie model [86]
IDNI,ABCG = 951.39(cos �z)

1.15 (20) Adnot, Bourges, Campana and Gicquel model [86]
IDNI,KC = 910 cos �z − 30 (21) Kasten and Czeplak model [86]
IDNI,RS = 1159.24{(cos �z)

1.179 exp[−0.0019(90 − �z)]} (22) Robledo and Sole model [86]



185International Journal of Energy and Environmental Engineering (2020) 11:177–205	

1 3

values (short-term data). The two frequently used correla-
tions for this purpose were chosen. The Collares-Pereira 
and Rabl correlation represents the ratio of monthly aver-
age hourly global irradiance (ĪG) to monthly average daily 
global irradiance (H̄G) , whereas, the Liu and Jordan cor-
relation represents the ratio of monthly average hourly dif-
fuse irradiance (Īd) to monthly average daily diffuse irradi-
ance (H̄d) [6], as illustrated in Table 4.

Angstrom–Prescott correlation

A number of formulations (linear and non-linear) of the 
Angstrom–Prescott correlation were selected for the estima-
tion of the monthly average daily global solar radiation on a 
horizontal surface (H̄G) using clearness index (K̄T) against 
sunshine fraction ( S̄

S̄o
 ), ambient temperature (T), relative 

humidity (R) latitude (L), site elevation (H), cloud cover, and 
multi-parameters. Four of regression equations have been 
utilized that developed by modifying the Angstrom–Prescott 
correlation as given in Table 5.

Table 2   Summary of astronomical and atmospheric parameters

Equation Parameters name Parameters type

cos �z = sinL sin �� + cos L cos �� cos �h (23) Solar zenith angle Astronomical [6]

�� = 23.45 sin
[
360

365
(284 + Nj)

]
(24) Declination angle Astronomical [6]

�h = 15◦(ST − 12) (25) Solar angle Astronomical [6]
ST = SDT + 4

(
Lst − Lloc

)
+ E

E = 229.2 (75 × 10−6 + 186 × 10−6 sinB

−0.032207 sinB − 0.014615 sin 2B − 0.04089 sin 2B)

B = (Nj − 1)
360

365

(26) Solar time
Time equation

Astronomical [22]

IoN = Io

[
1 + 0.033 cos

(
360Nj

365

)]
(27) Extraterrestrial radiation measured on 

the plane normal to the radiation
Astronomical [6]

me = exp
(
−0.000118 h − 1638 × 10−9h2

)
∕ cos �z (28) Air mass corrected for elevation Atmospheric [22]

mr = {[1229 + (614 cos �z)
2]0.5 − 614 cos �z} (29) A specific air mass Atmospheric [22]

mair = mrp∕po (30) Air mass at actual pressure Atmospheric [9]
mr = 1∕ cos �z (31) Air mass at standard pressure Atmospheric [9]
mair,MIqbalC = mr exp (−0.001184h) (32) Actual air mass value depends on alti-

tude and relative air mass at standard 
pressure

Atmospheric [22]

mr = 35∕[(1224cos2�z) + 1]0.5 (33) Air mass at standard pressure Atmospheric [12]
mr = [cos �z + 0.15(93.885 − �z)

−1.253]−1 (34) Air mass at standard pressure Atmospheric [22]

Table 3   Cloud-cover radiation model (CRM)

Equation Description

IGcs
= A sin �� − B

sin �� = cos �z = sin L sin �� + cos L cos �� cos �h

sin �h =
sin ��−sin �� sin L

cos �� cos L

A, B: empirical coefficients

(35) Hourly global solar radiation on a horizontal surface under 
cloudless sky

[30]

IGcc
= IGcs

[

1 − C
(

N

8

)D
]

N = cloud cover (Oktas); [0(clear sky) − 8(completely overcast sky)]

C, D: empirical coefficients

(36) Hourly global solar radiation on a horizontal surface under 
cloud cover condition

[29, 32]

Id = IGcc

[

0.3 − 0.7
(

N

8

)2
]

(37) Hourly diffuse radiation on a horizontal surface [30]

IDNI,KC =
(
IGcc

− Id
)
∕ cos �z (38) Direct normal irradiance (DNI) under different sky conditions
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Empirical models

Decomposition models were developed to estimate hourly 
global and diffuse irradiance that have an essential role in 
solar energy engineering applications. Such models are for-
mulated based on the correlations between the diffuse frac-
tion 

(
H̄d

H̄G

)
 , cleanness index 

(
H̄G

H̄o

)
 , and sunshine fraction 

(
S̄

S̄o

)
 . Four representative models were selected which are 

expressed as the ratio of diffuse (H̄d) to global irradiance 
(H̄G) on a horizontal surface. These are described as in 
Table 6.

A hierarchical calculation methodology

The implementation of calculating monthly average hourly 
direct solar irradiance ( (ĪDNI) from daily data requires 
using a hierarchical calculation methodology that consists 
of multiple sequences steps as described in Fig. 2. The first 
step in a proposed approach is to estimate geographical 
and astronomical parameters (L, �� , �hs, T ,R,H) based on 
a selected site and period of time through using Eqs. (35, 
39). In order to estimate monthly average daily global 
irradiance on a horizontal surface ( H̄G ) from equations 
of Table 5 and monthly average daily diffuse ( H̄d ) on a 
horizontal surface from equations of Table 6, the estimated 
values of monthly average daily extraterrestrial irradiance 

Ho (from Eq. 48) and maximum possible monthly average 
daily length So (from Eq. 49) should be determined. Next, 
the obtained daily irradiance data can be transformed to 
the hourly irradiance data by utilizing Eq. (39) to esti-
mate the value of monthly average hourly global irradi-
ance on a horizontal surface ( ̄IG ), and Eq. (40) to estimate 
monthly average hourly diffuse irradiance on a horizontal 
surface ( ̄Id ). Once, the values of ( ̄IG ) and ( ̄Id ) are obtained, 
monthly average hourly direct solar irradiance (ĪDNI) can 
be estimated from Eqs. (41) and (42). Eventually, to dem-
onstrate the capability of the proposed methodology and 
used equations, the statistical indicators can be utilized 
for comparing estimated irradiance values with measured 
irradiance datasets.

Site description and data collection

In order to demonstrate validation of proposed methodolo-
gies and selected models to estimate reliable and high-
quality solar radiation data for different sites in Texas or 
other locations around the world, San Antonio city (29.42° 
N, 98.49° W) was chosen as a case study as depicted 
in Fig. 3 [87], which represents one of the significant 

Fig. 1   A hierarchical methodology of predicting DNI
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hotspots in the United States due to various activities 
of water–energy–food nexus [88] such as shale oil and 
gas production [89–91], agricultural production [92, 93], 
etc. The solar data for San Antonio is obtained from the 
National Solar Radiation Data Base (NSRDB) between 
1991 and 2010 are: hourly global solar irradiance, hourly 
direct solar irradiance, hourly diffuse solar irradiance, 

hourly solar incidence angle, hourly dry bulk temperature, 
hourly wet bulk temperature, and relative humidity.

Statistical methods of model evaluation

The performance of proposed methodologies and selected 
models have been tested through comparison between 
their estimated data and measured data by using various 

Table 4   Two decomposition models

Equation Description

rt =
ĪG

H̄G

=
𝜋

24

(
a + b cos 𝜃h

)
[

cos 𝜃h−cos 𝜃hs

sin 𝜃hs−
(

𝜋𝜃hs

180

)
cos 𝜃hs

]

�hs = cos−1
[
− tan L ⋅ tan ��

]

�h = ±0.25(number of minutes from local solar noon)

a = 0.4090 + 0.5016 sin(�hs − 60)

b = 0.6609 − 0.4767 sin(�hs − 60)

(39) Collares-Pereira and Rabl correlation (ratio of monthly average hourly 
global irradiance to monthly average daily global irradiance)

[6]

rd =
Īd

Hd

=
𝜋

24

[
cos 𝜃h−cos 𝜃hs

sin 𝜃hs−
(

𝜋𝜃hs

180

)
cos 𝜃hs

]
(40) Liu and Jordan correlation (ratio of monthly average hourly diffuse 

irradiance to monthly average daily diffuse irradiance)
[6]

ĪDNI,H = ĪG − Īd (41) Monthly average hourly direct solar irradiance on a horizontal surface
ĪDNI = ĪDNI,H∕ cos 𝜃z (42) Monthly average hourly direct solar irradiance

Table 5   Regression equations of Angstrom–Prescott model

Equation Description

H̄G

H̄o

= a + b
S̄

S̄o

(43) Linear model [60]

H̄G

H̄o

= a + b
S̄

S̄o
+ c

(
S̄

S̄o

)2 (44) Quadratic model [47]

H̄G

H̄o

= a + b
S̄

S̄o
+ cT + dR (45) Multi-parameters model [47]

H̄G

H̄o

= a + b cos L + cH + d
S̄

S̄o
+ eT + fR (46) Gopinathan’s model [74]

K̄T =
H̄G

H̄o

(47) Monthly mean clearness index [6]

Ho =
24

�
Hsc

[
1 + 0.033 cos

(
360Nj

365

)][
cos L cos �� sin �hs +

�

180
�hs sin L sin ��

]
(48) Monthly average daily extraterrestrial solar irradi-

ance on a horizontal surface
[6]

So = 2�hs∕15 (49) Maximum possible monthly average daily length (h) [6]

Table 6   Summary of empirical models

Equation Description

H̄d

H̄G

= 1.39 − 4.027
(

H̄G

H̄o

)
+ 5.5310

(
H̄G

H̄o

)2

− 3.108
(

H̄G

H̄o

)3 (50) Liu and Jordan model [82]

H̄d

H̄G

= 1.2547 − 1.2547
(

S̄

S̄o

)
(51) Iqbal model [82]

H̄d

H̄G

= 1.194 − 0.838
(

H̄G

H̄o

)
− 0.0446

(
S̄

S̄o

)
(52) Gopinathan model [82]

H̄d

H̄G

= 0.775 + 0.00606
(
𝜃hs − 90

)
−
[
0.505 + 0.00455

(
𝜃hs − 90

)]
cos

(
115

(
H̄G

H̄o

)
− 103

)
(53) Collares-Pereira and Rabl [6]
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statistical indicators. For this purpose, five statistical indi-
cators were applied including mean bias error (MBE), 
root mean square error (RMSE), absolute percent error 
(MAPE), coefficient of determination (R2), t statistic 
method (tstat), and the percentage error (e  %), as given 
in Table 7.

Results and discussion

In this study, the monthly average daily global irradiance 
data on a horizontal surface, which was measured in San 
Antonio, Texas, during the time period 1991–2010, was 
analyzed to calculate the monthly average clearness index 
( K̄T ). This index is the ratio between monthly average daily 
total radiation on a terrestrial horizontal surface ( H̄ ) and 
monthly average daily total radiation on an extraterrestrial 
horizontal surface ( H̄o ), as defined in Eq. (47). The com-
parison between the obtained values from calculating ( K̄T ) 
in e time interval 1991–2010 and the values of ( K̄T ) that 
provided by Solar Energy Information Data Bank (SEIDB) 
[94] in the time interval 1952–1975 was carried out and 
its result has shown a responsible agreement, as shown in 
Fig. 4. Similarly, the monthly average hourly clearness index 

( kt ) values are calculated and reported in Table 8, which is 
the ratio of the global solar irradiance on a horizontal sur-
face (I) to the hourly extraterrestrial solar irradiance on a 
horizontal surface (Io), as given in Eq. (60).  

The daily clearness index can be utilized to partition days 
throughout the year according to the sky condition (Sunny, 
partly cloudy and cloudy) that dominates transmission of the 
extraterrestrial irradiance to the earth surface in the chosen 
site, as shown in Fig. 5.

In addition, the solar irradiance may be subjected to the 
atmospheric attenuation (absorption, diffusion) during pass-
ing through the earth atmosphere due to air pollution, cloudy 
conditions, and other influencing parameters. Therefore, the 
hourly clearness index ( kt ), which is considered as a stochas-
tic parameter because it is a function of a period of year, 
seasons, climatic conditions and geographic site, can be used 
to predict the influence of these parameters by calculating 
the average daily sunshine (bright) hours based on the clas-
sification of clearness index level, as follows:

(60)kt =
I

Io

Cloudy ∶ kt < 0.3,

Fig. 2   A hierarchical methodology of predicting monthly average hourly direct solar irradiance
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The analysis of the monthly average hourly clearness 
index through the classification of the clearness index level 
shows that more than 80% of the days can be defined as 
either sunny or partly cloudy and less than 20% of the days 
are classified as cloudy. It has been also noted that the indi-
vidual monthly sky conditions percentage of sunny daytime 
hours exceed 40% from April through September, while the 
percentage of cloudy daytime hours do not exceed about 
20%, as shown in Fig. 6.

It is apparent from the above-mentioned comprehensive 
analysis of the irradiance data and the clearness index, the 

Partly cloudy ∶ 0.3 ≤ kt ≤ 0.5,

Sunny ∶ kt > 0.5.

selected region is characterized by a relatively high value 
of the monthly average percentage for sunny and partly 
cloudy days, which can be more than 80% throughout the 
year. Furthermore, the monthly average percentage of sunny 
daytime hours exceeds more than 50% in the interval time 
June–October along with a relatively high ( kt > 0.5). Conse-
quently, the San Antonio region in Texas is unequivocally 
amenable to harnessing solar energy as the prime source 
of energy by utilizing concentrating and non-concentrating 
solar energy systems.

In addition to collecting the measured solar irradiance 
data for the implementation of the proposed methodologies 
and models, the average daily sunshine hour, average daily 
length of sunshine hours, ambient temperature and rela-
tive humidity are also essential for this purpose, as given 
in Table 9.

The performance of the selected parametric models (22 
models) was tested by comparing its estimations with meas-
ured data. The obtained results from implementing the clear-
sky models on specific days for 12 months are visualized in 
Fig. 7a–l. It can be seen that the estimated values of hourly 
direct normal irradiance for most models are in favorable 
agreement with the measured values for all the months of 
the year. However, the accuracy and quality evaluation of 
models’ performance require statistical tests for selecting 
the most precise models under the San Antonio climate 
conditions.

The results of testing the performance of 22 parametric 
models through using statistical indicators were tabulated 
in Appendix 1 (Tables 11, 12, 13, 14, 15, 16, 17, 18, 19, 
20, 21, 22). In addition to more complicated models that 
consist of a large number of atmospheric parameters such as 
Davies–Hay, Hoyt (Iqbal B) models, some simpler models 
like Meinel and Laue have shown a good fit accuracy for 
all months during the year. Also, the models can be clas-
sified into two groups based on their performance during 
the months of summer and winter seasons. The first group, 
which includes simple models with a few parameters (less 
than three geographic and astronomical parameters) such 

Fig. 3   The location map of a case study in Texas [87]

Table 7   Statistical indicators

Equation Description

MBE =

∑n

i=1 (Ical−Imeas)
n

(54) Mean bias error

RMSE =

�∑n

i=1
(Ical−Imeas)

2

n

(55) Root mean square error

MPAPE =
100

n

n∑

i=1

(Ical−Imeas)
Imeas

(56) Absolute percent error

R2 = 1 −
∑n

i=1
(Ical−Imeas)

2

∑n

i=1
(Imeas−Imeas,avg)

2

(57) Coefficient of determination

tstat =
[

(n−1)MBE2

RMSE2−MBE2

]1∕2 (58) t Statistic method

e% =
Ical−Imeas

Imeas

(59) Percentage error
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Fig. 4   Monthly average clearness index
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as Meinel, Laue, Haurwitz, Berger–Duffie, ABCG, Kas-
ten–Czeplak, Robledo–Sole, ASHRAE, Kumer and HLJ, 
can provide relatively accurate DNI values. While the 
second group, which comprises more sophisticated (com-
plex) models such as Bird, Iqbal C, METSTAT, Modified 
Iqbal C, CSR, Atwater–Ball, ESRA, Hoyt (Iqbal B), Helio-
sat-1, Davies–Hay and Iqbal A models, have shown more 
accuracy in estimating DNI values during winter months 
(October–March) than summer months (April–September). 
Thus, precise values of DNI that are essential for selecting 
a proper location to install solar energy conversion systems 
and calculating the harvested amount of solar irradiance on 
the earth surface may be estimated using simpler parametric 
models.

The impact of cloud amount on the estimation of solar 
irradiance on a specific month (November is chosen as a 
study paradigm) under the climate conditions of San Anto-
nio, Texas, was studied by using the cloud-cover radiation 
model (CRM). The cloud amount utilized in this model is 
evaluated in Oktas, ranging from 0 to 8, and the regression 
coefficients of the model were obtained from [85]. It can 
be observed the significant influence of cloud amount on 
reducing the intensity of global solar irradiation as shown 
in Fig. 8, specifically DNI, whereas the amount of diffuse 
irradiance increases in the atmosphere until reaching zero 
under an overcast sky.

To elucidate the capability of the hierarchical calcula-
tion methodology proposed in “A hierarchical calculation 
methodology” for estimating DNI precisely, four formula-
tions of the Angstrom–Prescott correlation were developed 
through regression analysis to determine their coefficients as 
shown in Table 10. The correlations accuracy was tested by 

Table 8   Monthly average 
hourly and daily values for the 
clearness index

Month Hour

7 8 9 10 11 12 13 14 15 16 17 18 19 20 Daily

January 0.23 0.34 0.40 0.45 0.48 0.50 0.50 0.49 0.47 0.42 0.32 0.462
February 0.24 0.34 0.41 0.45 0.48 0.51 0.52 0.52 0.50 0.46 0.37 0.476
March 0.03 0.23 0.34 0.40 0.46 0.50 0.52 0.54 0.55 0.55 0.50 0.42 0.478
April 0.16 0.29 0.37 0.44 0.49 0.53 0.55 0.58 0.58 0.57 0.54 0.46 0.33 0.502
May 0.02 0.21 0.31 0.40 0.46 0.50 0.54 0.57 0.59 0.60 0.60 0.58 0.51 0.517
June 0.05 0.24 0.33 0.45 0.51 0.57 0.61 0.65 0.65 0.65 0.64 0.62 0.56 0.44 0.568
July 0.01 0.23 0.34 0.46 0.54 0.59 0.61 0.65 0.65 0.65 0.65 0.61 0.56 0.44 0.582
August 0.20 0.36 0.49 0.57 0.61 0.63 0.64 0.66 0.64 0.64 0.61 0.53 0.39 0.590
September 0.14 0.33 0.45 0.51 0.57 0.59 0.62 0.62 0.62 0.61 0.56 0.46 0.558
October 0.27 0.39 0.47 0.52 0.56 0.58 0.59 0.60 0.57 0.50 0.37 0.522
November 0.21 0.34 0.42 0.48 0.51 0.54 0.54 0.54 0.50 0.43 0.30 0.479
December 0.13 0.31 0.40 0.45 0.49 0.51 0.52 0.51 0.49 0.42 0.29 0.462
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Fig. 5   Monthly average daily global radiation according to the sky 
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comparing the estimated values of the monthly average daily 
global solar radiation on a horizontal surface with measured 
data (which represents monthly average daily solar radiation 
for 30-year in San Antonio, Texas, offering by [95, 96], the 
National Solar Radiation Data Base (NSRDB), and Solar 
Energy Information Data Bank (SEIDB) [94] using sta-
tistical indicators, as given in Table 10. It is obvious from 
Figs. 9, 10, 11, 12 and 13 that the estimated values obtaining 
from correlations show a good agreement with measured 
data from different sources.     

In addition to the significance of monthly average daily 
global solar irradiance in calculating monthly average hourly 
direct solar irradiance on a horizontal surface by using two 
decompositions models that transform daily solar irradiance 
data to hourly solar irradiance, monthly average daily diffuse 
solar irradiance values are essential for the same purpose. 
Therefore, the validation of four selected empirical mod-
els was performed by comparing their estimated values of 
monthly average daily diffuse solar irradiance against the 
measured data. Clearly, the estimated values, which were 
obtained from three models including Collares-Pereira and 
Rabl, Liu and Jordan, Gopinathan models, are in good agree-
ment with the measured data [95] except for Iqbal model that 
shows less consent with measured data, as shown in Figs. 14, 
15, 16 and 17.   

Based on the previously estimated values of monthly 
average daily global (by linear model) and diffuse (Liu 
and Jordan model) solar irradiance and two decomposi-
tion models. The estimated values of monthly average 
hourly direct solar irradiance on a horizontal surface were 
calculated to attain monthly average DNI values through 
utilizing zenith angle for this purpose. Scatter plot of the 

estimated values and measured data (extracted from the 
National Solar Radiation Database (NSRDB) and [95]) 
is demonstrated in Fig.  18, which exhibits a relative 
agreement between these values because original coeffi-
cients, which are used in Liu and Jordan model and two 
decomposition models, were not reconsidered for fitting 
locally as in Angstrom–Prescott correlation (linear model) 
coefficients. Therefore, an agreement value between the 
estimated values and measured data may be enhanced by 
obtaining locally fitted coefficients for used models.

Conclusions

The significant challenge for exploiting and managing solar 
energy is the lack of solar radiation datasets and the high 
cost of measurement equipment in most locations around 
the world. Consequently, there are quite abundant of models 
and evaluation methods for them that were presented by the 
existing literature over a few decades ago, it is rarely, in the 
current literature, finding proper methodologies that can be 
easily followed by researchers, engineers, and workers in 
the field of designing and operation solar energy systems 
to obtain required solar radiation datasets and to evaluate 
solar energy availability under different sky conditions for 
assorted solar radiations. In this study, two hierarchical 
calculation approaches were developed by using various 
models, empirical correlations and regression equations to 
estimate hourly DNI and monthly average hourly DNI data 
under different sky conditions. The calculation processes 
can be performed along with the presence or absence of 
measured solar irradiance data. Additionally, the preliminary 
assessment for the potential of solar energy was carried out 
to make a proper decision for installing concentrated solar 
collectors at the selected site. A case study for the San Anto-
nio region in Texas was solved to demonstrate the accuracy 
of the proposed approaches for estimating hourly solar irra-
diance, which is utilized for designing solar concentrated 
collectors. The obtained results from the study are presented 
as follows:

•	 Based on the preliminary assessment for the potential 
of solar energy for the selected location by performing 
the comprehensive analysis. The San Antonio region 
in Texas is unequivocally amenable to harnessing solar 
energy as the prime source of energy by utilizing con-
centrating and non-concentrating solar energy systems 
because the analysis of the monthly average hourly 
clearness index through the classification of the clear-
ness index level shows that more than 80% of the days 

Table 9   Ambient temperature, relative humidity and daily sunshine 
ratio for San Antonio region

Month T (°K) RH% S̄

S̄o

January 16 62 0.194
February 18.7 60 0.283
March 23.1 54 0.349
April 26.8 54 0.451
May 29.6 57 0.476
June 33.2 54 0.573
July 35 50 0.603
August 35.2 49 0.676
September 31.8 53 0.605
October 27.6 53 0.528
November 22.2 54 0.351
December 17.5 59 0.278
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Fig. 7   a Measured and estimated DNI by 22 models for January. b 
Measured and estimated DNI by 22 models for February. c Measured 
and estimated DNI by 22 models for March. d Measured and esti-
mated DNI by 22 models for April. e Measured and estimated DNI 
by 22 models for May. f Measured and estimated DNI by 22 mod-
els for June. g Measured and estimated DNI by 22 models for July. h 

Measured and estimated DNI by 22 models for August. i Measured 
and estimated DNI by 22 models for September. j Measured and esti-
mated DNI by 22 models for October. k Measured and estimated DNI 
by 22 models for November. l Measured and estimated DNI by 22 
models for December
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can be defined as either sunny ( kt > 0.5) or partly cloudy 
(0.3 ≤ kt ≤ 0.5) and less than 20% of the days are classi-
fied as cloudy ( kt < 0.3).

•	 Based on five statistical indictors, most estimated val-
ues of hourly direct normal irradiance for 22 parametric 
models are in favorable agreement with the measured 
values for all the months of the year.

•	 Some simple parametric models that have a few param-
eters (less than three geographic and astronomical 
parameters) such as Meinel and Laue have shown a 
good fit accuracy for most months during the year with 
the values of R2 are in the range of 0.93–0.99. While 
some values were not consistent perfectly with the 
measured data.

•	 More sophisticated (complex) parametric models such as 
Bird, Iqbal C, METSTAT, Modified Iqbal C, CSR, Atwa-
ter–Ball, ESRA, Hoyt (Iqbal B), Heliosat-1, Davies–Hay 
and Iqbal A models have shown more accuracy in esti-
mating DNI values during winter months (October–
March) with the values R2 are in the range of 0.87–0.99 
than summer months (April–September) with the values 
of R2 are in the range of 0.33–0.96.
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Fig. 8   Estimated global solar irradiance values (by cloud-cover radia-
tion model) for San Antonio, Texas

Table 10   Regression coefficients and statistical indictors of correlations

Equation Description MBE RMSE MAPE e  % R2

H̄G

H̄o

= 0.3841 + 0.2946
S̄

S̄o

Linear model − 0.11 0.17 − 3.4 3.7 0.98

H̄G

H̄o

= 0.4656 − 0.1235
S̄

S̄o
+ 0.4767

(
S̄

S̄o

)2 Quadratic model − 0.11 0.18 − 3.3 4.2 0.98

H̄G

H̄o

= 0.235 + 0.179
S̄

S̄o
+ 0.0036T + 0.0019R Multi-parameters model − 0.10 0.17 − 3.4 3.8 0.98

H̄G

H̄o

= 0.801 − 0.378 cos L + 0.0128H

+0.316
S̄

S̄o

− 1.214 × 10−3T − 1.049 × 10−3R

Gopinathan’s model − 0.02 0.14 − 1.4 2.8 0.99

Fig. 9   Comparison between 
estimated (by four models) 
and measured (from different 
sources) values of monthly aver-
age daily global solar irradiance 
for San Antonio, Texas
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•	 The significant influence of cloud amount on reducing 
the intensity of global solar radiation, specifically DNI, 
was studied by using the cloud-cover radiation model 
(CRM) and the cloud amount indicator in Oktas, rang-
ing from 0 to 8. For illustrate, the global solar radiation 
intensity has been attenuated from 765 W/m2 (0 Oktas, 
clear sky) to 213 W/m2 (8 Oktas, overcast sky). While the 

amount of diffuse irradiance increases in the atmosphere 
with growing the cloud amount until reaching zero under 
the overcast sky.

•	 The estimated values of the monthly average daily global 
solar radiation on a horizontal surface obtaining from 
four formulations of the Angstrom–Prescott correlation, 
which were developed through regression analysis to 
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Fig. 10   Estimated (by linear model) and measured values of monthly 
average daily global solar irradiance for San Antonio, Texas
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Fig. 11   Estimated (by quadratic model) and measured values of 
monthly average daily global solar irradiance for San Antonio, Texas
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Fig. 12   Estimated (by multi-parameters model) and measured val-
ues of monthly average daily global solar irradiance for San Antonio, 
Texas
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Fig. 13   Estimated (by Gopinathan’s model) and measured values of 
monthly average daily global solar irradiance for San Antonio, Texas
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Fig. 14   Estimated (by Collares-Pereira and Rabl model) and meas-
ured values of monthly average daily diffuse solar irradiance for San 
Antonio, Texas
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Fig. 15   Estimated (by Liu and Jordan model) and measured values of 
monthly average daily diffuse solar irradiance for San Antonio, Texas
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determine their local coefficients, show a good agree-
ment with measured data from different databases with 
the values of R2 are in the range of 0.98–0.99.

•	 The validation of four selected empirical models was per-
formed by comparing their estimated values of monthly 
average daily diffuse solar irradiance against the meas-
ured data. Clearly, the estimated values, which were 
obtained from three models including Collares-Pereira 
and Rabl, Liu and Jordan, Gopinathan models, are in 
good agreement with the measured data with the val-
ues of R2 are ranging from 0.94 to 0.98 except for Iqbal 
model that shows less consent with measured data with 
the R2 value is 0.65.

•	 The estimated values of monthly average hourly direct 
solar irradiance on a horizontal surface, which were cal-
culated to attain monthly average DNI values through 
utilizing the Angstrom–Prescott correlation (linear 
model), the empirical model (Liu and Jordan model), 
two decomposition models, and zenith angle, showed a 
relative agreement (R2 = 0.82) with the measured data 
because some used models require obtaining locally fit-
ted coefficients.

•	 It is obvious that the proposed methodologies have 
offered a reasonably good estimation for the hourly solar 
radiation values and they can be implemented for other 
locations around the world by creating new locally fitted 
coefficients for empirical and regression correlations. 
However, it is worth noting that the estimated solar data 
(by solar radiation modeling) can never substitute the 
measured solar data (by measurement equipment).

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

Appendix 1

The results of testing the performance of 22 parametric 
models through using statistical indicators are shown in 
Tables 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 and 22.
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Fig. 16   Estimated (by Gopinathan model) and measured values of 
monthly average daily diffuse solar irradiance for San Antonio, Texas
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Fig. 17   Estimated (by Iqbal model) and measured values of monthly 
average daily diffuse solar irradiance for San Antonio, Texas
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Table 11   January Model MBE RMSE MAPE R2 t-statistics

Fu and Rich − 223.1 344.7 − 29.5 0.61 4.0
DPP − 13.7 44.3 − 2.2 0.99 1.5
Meinel − 57.1 93.2 − 7.8 0.97 3.7
Laue − 47.4 80.7 − 6.5 0.97 3.4
Haurwitz − 162.1 252.2 − 21.8 0.79 4.0
Berger and Duffie − 166.2 258.6 − 22.1 0.78 4.0
ABCG − 180.8 280.6 − 24.0 0.74 4.0
Kasten and Czeplak − 183.4 283.1 − 24.3 0.73 4.1
Robledo and Sole − 162.3 253.2 − 21.8 0.79 4.0
ASHRAE 8.8 53.1 0.56 0.99 0.8
Kumer − 23.9 59.0 − 3.6 0.98 2.12
HLJ 23.8 73.2 2.4 0.98 1.65
Bird − 13.9 55.0 − 2.2 0.99 1.2
Iqbal model C − 11.0 52.9 − 1.8 0.99 1.0
METSTAT​ 0.98 49.5 − 0.26 0.99 0.09
Modified Iqbal model C 15.6 57.0 1.7 0.98 1.3
CSR 21.3 55.0 2.3 0.99 2.0
Atwater and Ball − 104.0 192.6 − 15.6 0.87 3.07
ESRA − 13.8 49.6 − 2.2 0.90 1.3
Hoyt (Iqbal model B) − 52.0 89.1 − 7.4 0.97 3.4
Heliosat-1 − 14.7 50.0 − 2.3 0.99 1.4
Davies and Hay (Iqbal model A) − 71.9 137.9 − 11.3 0.93 2.9

Table 12   February Model MBE RMSE MAPE R2 t-statistics

Fu and Rich − 176.4 267.2 − 24.2 0.51 4.2
DPP 39.5 69.5 4.9 0.96 3.3
Meinel − 2.6 35.6 − 0.14 0.99 0.36
Laue 7.34 40.4 0.95 0.98 0.88
Haurwitz − 101.3 157.5 − 14.2 0.83 4.0
Berger and Duffie − 110.2 172.1 − 15.4 0.79 3.9
ABCG − 124.8 192.9 − 17.3 0.74 4.0
Kasten and Czeplak − 130.6 199.5 − 17.8 0.72 4.15
Robledo and Sole − 102.2 160.2 − 14.5 0.82 3.9
ASHRAE 59.1 93.1 8.6 0.94 3.9
Kumer 36.4 59.2 4.1 0.97 3.7
HLJ 83.7 138.3 8.8 0.86 3.6
Bird 44.2 87.3 4.7 0.94 2.8
Iqbal model C 47.5 89.9 5.2 0.94 2.9
METSTAT​ 60.5 140.7 6.8 0.92 3.3
Modified Iqbal model C 74.7 126.0 8.5 0.89 3.5
CSR 83.9 129.5 9.8 0.88 4.0
Atwater and Ball − 35.5 99.2 − 6.4 0.93 1.8
ESRA 50.8 86.2 5.8 0.94 3.5
Hoyt (Iqbal model B) 11.5 30.2 1.7 0.99 1.9
Heliosat-1 45.2 79.4 5.1 0.95 3.3
Davies and Hay (Iqbal model A) − 4.8 57.3 − 0.9 0.97 0.4
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Table 13   March Model MBE RMSE MAPE R2 t-statistics

Fu and Rich 193.2 281.5 − 21.6 0.53 4.5
DPP 18.2 41.6 1.3 0.98 2.3
Meinel − 8.6 22.8 − 0.9 0.99 0.9
Laue 2.5 24.0 − 0.1 0.99 0.5
Haurwitz − 111.7 172.0 − 12.5 0.82 4.0
Berger and Duffie − 115.3 175.0 − 13.2 0.81 4.2
ABCG − 138.6 207.7 − 15.7 0.74 4.2
Kasten and Czeplak − 147.2 216.9 − 16.5 0.72 4.4
Robledo and Sole − 113.5 174.6 − 12.9 0.82 4.1
ASHRAE 21.2 36.8 2.7 0.99 3.3
Kumer 37.4 55.9 3.4 0.89 4.3
HLJ 9.3 141.7 6.6 0.88 3.9
Bird 41.8 83.0 2.3 0.95 2.8
Iqbal model C 45.6 85.5 2.8 0.95 3.0
METSTAT​ 59.9 101.2 4.1 0.93 3.5
Modified Iqbal model C 75.8 123.5 5.4 0.91 3.7
CSR 86.4 127.6 6.9 0.90 4.4
Atwater and Ball − 37.3 107.0 − 3.1 0.93 1.7
ESRA 93.2 61.4 3.2 0.97 3.9
Hoyt (Iqbal model B) − 13.4 21.9 − 1.2 0.99 3.7
Heliosat-1 37.0 58.9 3.1 0.97 3.8
Davies and Hay (Iqbal model A) − 28.3 81.6 − 1.5 0.96 1.7

Table 14   April Model MBE RMSE MAPE R2 t-statistics

Fu and Rich − 91.8 155.5 − 13.4 0.82 3.5
Meinel 95.8 172.0 9.0 0.78 3.2
Laue 108.3 183.8 9.9 0.75 3.4
Haurwitz 20.3 81.9 0.3 0.95 1.2
Berger and Duffie 1.7 81.6 − 2.4 0.95 0.1
ABCG − 12.0 83.5 − 4.0 0.95 0.6
Kasten and Czeplak − 28.3 91.9 − 5.6 0.93 1.5
Robledo and Sole 15.2 79.6 − 0.4 0.95 0.9
ASHRAE 103.8 181.1 10.6 0.76 3.3
Kumer 154.5 226.5 15.5 0.63 4.4
HLJ 178.5 270.5 15.0 0.47 4.6
Bird 143.1 227.0 10.4 0.63 3.8
Iqbal model C 147.3 230.6 10.9 0.62 3.9
METSTAT​ 126.9 248.3 12.3 0.56 4.1
Modified Iqbal model C 181.1 271.5 13.9 0.47 4.2
CSR 188.5 272.8 15.2 0.47 4.5
Atwater and Ball 60.5 114.5 7.0 0.90 2.9
ESRA − 46.8 155.6 − 9.8 0.82 1.5
Hoyt (Iqbal model B) 65.9 135.0 6.1 0.87 2.6
Heliosat-1 123.4 202.9 11.7 0.70 3.6
Davies and Hay (Iqbal model A) 62.8 128.3 7.5 0.88 2.6
DDP 128.7 215.6 12.5 0.66 3.5
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Table 15   May Model MBE RMSE MAPE R2 t-statistics

Fu and Rich − 76.1 137.2 − 7.1 0.82 3.1
DPP 158.7 233.3 22.1 0.49 4.4
Meinel 113.9 182.2 17.2 0.96 3.8
Laue 125.6 193.0 18.2 0.65 4.1
Haurwitz 48.9 135.5 10.1 0.82 1.8
Berger and Duffie 22.5 103.3 5.5 0.9 1.1
ABCG 15.4 108.9 4.8 0.88 0.6
Kasten and Czeplak − 1.5 97.9 2.6 0.91 0.1
Robledo and Sole 43.1 125.5 9.0 0.85 1.7
ASHRAE 106.1 177.2 17.1 0.70 3.5
Kumer 174.1 246.5 24.9 0.43 4.7
HLJ 198.0 271.6 23.8 0.31 5.1
Bird 145.6 212.7 18.3 0.57 4.5
Iqbal model C 149.7 217.1 18.8 0.56 4.5
METSTAT​ 163.9 133.5 20.4 0.49 4.7
Modified Iqbal model C 182.8 256.7 22.1 0.38 4.8
CSR 192.1 256.1 24.2 0.34 5.0
Atwater and Ball 72.3 171.9 16.4 0.72 2.2
ESRA − 69.1 143.7 − 6.8 0.80 2.6
Hoyt (Iqbal model B) 87.2 156.1 15.2 0.77 3.2
Heliosat-1 144.4 210.5 20.0 0.58 4.5
Davies and Hay (Iqbal model A) 83.6 174.2 17.4 0.71 2.6

Table 16   June Model MBE RMSE MAPE R2 t-statistics

Fu and Rich − 116.1 170.8 − 11.7 0.77 4.4
DPP 115.9 162.6 9.3 0.79 4.8
Meinel 85.0 126.5 7.4 0.87 4.3
Laue 96.7 138.8 8.2 0.84 4.6
Haurwitz 5.8 115.6 2.0 0.89 0.2
Berger and Duffie − 10.7 96.9 − 0.6 0.92 0.5
ABCG − 28.6 111.4 − 2.2 0.90 1.2
Kasten and Czeplak − 46.0 108.4 − 4.3 0.90 2.2
Robledo and Sole − 0.79 107.4 1.0 0.90 0.1
ASHRAE 48.8 89.6 4.3 0.93 3.1
Kumer 147.7 199.1 13.9 0.69 5.3
HLJ 166.9 223.3 12.6 0.61 5.3
Bird 110.6 157.5 7.7 0.80 4.7
Iqbal model C 114.9 162.0 8.1 0.79 4.8
METSTAT​ 129.4 179.1 9.3 0.74 5.1
Modified Iqbal model C 149.8 205.4 10.8 0.67 5.1
CSR 158.5 212.8 12.4 0.64 5.4
Atwater and Ball 33.7 131.8 7.1 0.86 1.2
ESRA − 182.9 225.9 20.3 0.48 4.9
Hoyt (Iqbal model B) 35.1 75.6 3.7 0.95 2.5
Heliosat-1 112.2 154.3 9.3 0.81 5.1
Davies and Hay (Iqbal model A) 38.2 92.4 5.7 0.93 2.1
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Table 17   July Model MBE RMSE MAPE R2 t-statistics

Fu and Rich − 91.5 146.1 0 0.81 3.8
DPP 136.7 184.4 13.0 0.70 5.2
Meinel 108.3 151.2 11.2 0.80 4.9
Laue 120.2 164.2 12.0 0.76 5.1
Haurwitz 27.4 125.7 4.9 0.86 1.1
Berger and Duffie 12.7 102.2 2.2 0.90 0.6
ABCG 6.6 111.0 0.3 0.98 0.2
Kasten and Czeplak − 23.9 100.0 − 1.8 0.91 1.2
Robledo and Sole 21.1 115.5 3.8 0.88 0.8
ASHRAE 86.3 102.9 7.4 0.90 4.2
Kumer 170.4 227.5 18.1 0.55 5.4
HLJ 192.6 251.9 16.8 0.45 5.6
Bird 136.9 184.4 11.6 0.70 5.3
Iqbal model C 141.2 189.3 12.1 0.69 5.3
METSTAT​ 155.9 207.2 13.4 0.62 5.4
Modified Iqbal model C 176.2 233.7 15.0 0.52 5.5
CSR 184.6 240.8 16.7 0.49 5.7
Atwater and Ball 59.8 141.9 − 1.4 0.82 2.2
ESRA − 137 201.3 − 16.1 0.64 4.4
Hoyt (Iqbal model B) 85.6 93.7 7.1 0.92 3.8
Heliosat-1 143.7 181.1 13.4 0.71 5.3
Davies and Hay (Iqbal model A) 59.6 111.3 9.3 0.89 3.1

Table 18   August Model MBE RMSE MAPE R2 t-statistics

Fu and Rich − 70.6 173.1 16.1 0.74 2.1
DPP 156.4 264.4 93.0 0.41 3.5
Meinel 114.6 219.4 78.9 0.59 2.9
Laue 125.1 228.6 81.4 0.56 3.1
Haurwitz 47.6 169.7 46.5 0.75 1.4
Berger and Duffie 22.5 149.6 40.6 0.81 0.7
ABCG 15.0 151.3 36.6 0.80 0.4
Kasten and Czeplak 0.3 146.0 34.5 0.82 0
Robledo and Sole 42.4 163.3 45.1 0.77 1.3
ASHRAE 104.0 212.6 87.0 0.62 2.6
Kumer 170.4 273.3 92.3 0.37 3.8
HLJ 187.5 291.3 95.2 0.28 4.0
Bird 139.1 242.5 83.1 0.50 3.3
Iqbal model C 143.0 246.2 84.3 0.49 3.4
METSTAT​ 156.4 260.3 88.1 0.43 3.6
Modified Iqbal model C 174.5 281.0 93.1 0.33 3.8
CSR 182.1 286.1 95.7 0.30 3.9
Atwater and Ball 73.9 198.0 66.6 0.67 1.9
ESRA − 106.7 216.2 8.8 0.60 2.7
Hoyt (Iqbal model B) 82.6 194.0 70.4 0.68 2.2
Heliosat-1 137.6 239.8 84.0 0.51 3.3
Davies and Hay (Iqbal model A) 82.6 202.8 72.9 0.65 2.1
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Table 19   September Model MBE RMSE MAPE R2 t-statistics

Fu and Rich − 130.9 191.6 − 16.4 0.71 4.5
DPP 81.4 114.6 9.2 0.89 4.8
Meinel 58.6 82.9 7.1 0.94 4.8
Laue 69.3 96.4 8.1 0.92 4.9
Haurwitz − 42.3 96.6 − 5.3 0.92 2.3
Berger and Duffie − 45.8 90.3 − 6.1 0.93 2.8
ABCG − 71.1 120.4 − 9.2 0.88 3.5
Kasten and Czeplak − 81.8 127.2 − 10.4 0.87 4.3
Robledo and Sole − 44.9 96.6 − 5.8 0.92 2.5
ASHRAE 59.1 89.4 7.8 0.93 4.2
Kumer 111.9 155.7 13.0 0.81 4.9
HLJ 130.7 182.5 13.4 0.73 4.9
Bird 86.7 123.1 8.9 0.88 4.7
Iqbal model C 90.5 127.7 9.4 0.87 4.8
METSTAT​ 103.8 145.6 10.9 0.83 4.8
Modified Iqbal model C 181.8 171.1 12.7 0.77 4.8
CSR 128.3 176.7 13.9 0.75 5.0
Atwater and Ball 12.5 112.2 2.3 0.90 0.5
ESRA − 89.3 143.4 − 11.6 0.85 4.2
Hoyt (Iqbal model B) 10.8 38.6 2.1 0.98 1.4
Heliosat-1 88.4 121.7 9.8 0.88 5.0
Davies and Hay (Iqbal model A) 12.8 66.8 2.5 0.96 0.94

Table 20   October Model MBE RMSE MAPE R2 t-statistics

Fu and Rich − 207.1 301.3 − 22.9 0.45 4.5
DPP 13.7 26.8 0.8 0.99 2.8
Meinel − 31.4 46.1 − 3.5 0.98 4.4
Laue − 20.7 35.3 − 2.6 0.99 3.4
Haurwitz − 117.5 184.1 − 13.0 0.79 3.9
Berger and Duffie − 132.9 200.3 14.9 0.76 4.2
ABCG − 144.1 217.4 − 16.1 0.71 4.2
Kasten and Czeplak − 152.9 225.6 − 16.9 0.69 4.4
Robledo and Sole − 119.1 186.2 − 13.3 0.79 3.9
ASHRAE 17.7 35.0 2.2 0.99 2.8
Kumer 17.3 38.0 1.2 0.99 2.4
HLJ 63.4 112.5 3.9 0.92 3.2
Bird 4.7 58.4 − 1.2 0.97 0.4
Iqbal model C 8.2 57.7 − 0.8 0.98 0.7
METSTAT​ 121.1 36.5 0.4 0.97 1.6
Modified Iqbal model C 37.5 80.0 1.9 0.69 2.5
CSR 43.4 75.9 2.7 0.96 3.3
Atwater and Ball − 74.8 153.5 − 7.8 0.85 2.6
ESRA − 95.1 144.4 − 11.0 0.87 0.1
Hoyt (Iqbal model B) − 47.4 71.0 − 4.9 0.96 4.3
Heliosat-1 2.8 31.4 − 0.6 0.99 0.4
Davies and Hay (Iqbal model A) − 54.6 112.9 − 6.0 0.92 2.6
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Table 21   November Model MBE RMSE MAPE R2 t-statistics

Fu and Rich 179.1 286.9 − 27.2 0.43 3.8
DPP 24.4 66.7 4.0 0.96 1.8
Meinel − 1.7 50.7 − 1.5 0.98 0.1
Laue 9.2 55.1 0.6 0.97 0.8
Haurwitz − 122.2 201.4 − 19.4 0.72 3.6
Berger and Duffie − 116.9 196.2 − 17.8 0.73 3.5
ABCG − 142.1 233.1 − 21.6 0.62 3.6
Kasten and Czeplak − 145.1 236.1 − 22.3 0.61 3.7
Robledo and Sole − 122.7 203.7 − 19.1 0.71 3.6
ASHRAE 39.4 71.2 2.8 0.96 3.1
Kumer 43.9 75.2 5.0 0.96 2.5
HLJ 82.2 142.7 17.8 0.86 3.3
Bird 39.2 91.2 8.5 0.94 2.2
Iqbal model C 42.3 93.4 8.9 0.94 2.4
METSTAT​ 55.0 106.8 11.2 0.92 2.8
Modified Iqbal model C 71.0 129.1 14.5 0.88 3.1
CSR 94.2 126.6 14.1 0.89 3.4
Atwater and Ball − 50.3 122.2 − 11.3 0.89 2.1
ESRA 28.0 80.4 5.4 0.95 1.7
Hoyt (Iqbal model B) − 20.1 57.4 − 5.7 0.97 1.8
Heliosat-1 39.1 48.5 7.2 0.95 2.5
Davies and Hay (Iqbal model A) − 37.3 87.5 − 9.0 0.95 2.5

Table 22   December Model MBE RMSE MAPE R2 t-statistics

Fu and Rich − 167.9 277.9 − 27.6 0.34 3.9
DPP 26.6 59.1 3.5 0.97 2.4
Meinel − 0.7 49.1 − 1.2 0.97 0.1
Laue 9.6 48.6 0.6 0.98 0.9
Haurwitz − 123.5 198.3 − 19.8 0.66 3.8
Berger and Duffie − 116.9 188.6 − 18.4 0.70 3.7
ABCG − 141.4 224.1 − 22.1 0.57 3.8
Kasten and Czeplak − 134.7 225.8 − 22.5 0.57 3.9
Robledo and Sole − 123.5 198.8 − 19.6 0.67 3.8
ASHRAE 48.4 98.8 5.6 0.91 2.7
Kumer 32.8 57.7 4.2 0.95 2.3
HLJ 86.3 138.6 14.0 0.83 3.8
Bird 43.3 76.9 6.8 0.95 3.2
Iqbal model C 46.3 80.6 7.3 0.94 3.4
METSTAT​ 59.1 96.6 9.3 0.92 3.7
Modified Iqbal model C 75.7 118.8 12.2 0.88 3.9
CSR 77.1 121.3 12.0 0.87 3.9
Atwater and Ball − 58.0 165.3 − 11.7 0.77 1.8
ESRA 36.4 69.7 5.6 0.95 2.9
Hoyt (Iqbal model B) − 17.8 61.4 − 4.1 0.96 1.4
Heliosat-1 41.6 76.0 6.2 0.95 3.1
Davies and Hay (Iqbal model A) − 37.6 112.7 − 8.3 0.89 1.7
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