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Abstract
This paper proposes a novel energy hub model for areas using both heat and cold demands that arise due to the major changes 
in environmental temperature in different periods of the year. The energy demand and the electrical price in a competitive 
electricity market are uncertain with stochastic values which are usually performed by a probability distribution function. 
Therefore, a stochastic mathematical model representing an optimal operation of energy hub is based on the objective function 
of minimization of energy costs (including electricity and gas). Several constraints such as energy balance, limited capacity 
of the transformer, air conditioners, gas boilers, absorption chillers, combined heat, and power and battery energy storage 
system are also incorporated into the model to guarantee the required specifications. The high-level algebraic modeling 
software, general algebraic modeling system has been employed to undertake calculations. Finally, numerical results have 
illustrated the efficiency and capability of the proposed models.
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Introduction

The energy internet covering all popular forms of energy 
(electric, thermal and gas energy) is an indispensable model 
in future. The model has been studied significantly and con-
tinued to be developed, because it offers many benefits such 
as high-energy efficiency and lower energy supply costs. 
The concept of the Energy Hub (EH) has been introduced 
in this model [1]. The power center is derived by the con-
nection between the source and the load through the mixture 
of inputs and outputs of energy. The types of energy sources 
and storage devices are described in the form of matrices. 
This concept has promoted many effects on the planning and 
optimization process of the operation of the energy system 
[2].

Studies on EH in the energy internet in recent years 
are quite abundant with particular attention to the optimal 
operation of the EH in the energy network [3]. The primary 

applications of the EH model are residential load [4] and 
industrial load [5]. The EH model is developed primarily by 
a Combined, Heat and Power (CHP) architecture. CHP uses 
primary energy as less polluting energy, providing high-
efficiency electrical and thermal loads. The current CHP 
model has been developed strongly all around the world. It 
is predicted that by 2023, total capacity will reach 483.7 GW 
[6]. CHP with various technologies has been introduced such 
as diesel engine, natural gas engine, steam turbine, gas tur-
bine, micro-turbine, and fuel cells with efficiency up to 90%. 
In particular, the gas turbine and micro-turbine have many 
advantages such as less space, low noise, flexibility in con-
trol, high efficiency, and reduced environmental pollution 
and it should be used widely [7, 8]. Consequently, more 
researches on CHP applications in energy systems have been 
conducted. CHP enables the energy systems to improve their 
efficiency such as reducing energy purchase costs, improving 
energy efficiency and reducing environmental pollution [9, 
10]. At a higher level, the combined cooling, heat and power 
(CCHP) model was introduced in [11–13] with the aim of 
supplementing the additional cooling demand of the system 
air conditioner (AC) or absorption chiller (ACh).

Over the past decades, the electricity sector has made 
tremendous changes in business and administration. One of 
them is the process of restructuring the electricity market 
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from the monopoly model to the competitive electricity 
market (CEM) model [14]. In CEM, customers can choose 
suppliers and prices which vary in terms of time and market 
rather than fixed price over time [15]. It has a great impact 
on the planning, design, and operation of power systems [16, 
17]. Indeed, CEM has opened up the opportunity to intro-
duce and adopt new approaches to increase the efficiency of 
energy systems. In particular, the energy price mechanism is 
one of the primary constraints in the optimal management of 
energy use [18]. In [19], a survey of 1000 households using 
a heat pump to optimize the demand for switching between 
electricity and heat, derived from fixed gas prices and elec-
tricity prices vary from time to time. The results show that in 
multi-energy systems, the household can be supplied with-
out having to adjust the demand manually. Similarly, [19] 
establishes a mechanism for minimizing the cost of energy 
use based on the electricity price factor through the CCHP 
model, thereby optimizing the need for heating in winter and 
cooling in summer of the system. Power pricing uses the 
time of use (TOU) schedule and the typical load characteris-
tics of the load in terms of time are used. The EH model with 
random wind, electricity, and power tariffs is also presented 
in [21, 22] with a minimal objective function of daytime run-
ning costs as well as technical constraints of the EH.

The load is a factor that is of a random nature, changes 
over time and the need to use it. Hence, there have been 
many studies on the random characteristic of loads through 
the Probability Distribution Functions (PDF) [23–25]. These 
studies mainly focus on solving the problem of operation 
and planning of the power grid considering the randomness 
of the load while assessing their impact on the economic 
and technical criteria of the power network. However, when 
considering the electrical power grid, especially the opti-
mal operation problem, many studies have not mentioned 
this problem yet. A number of recent studies, such as [26], 
present a new perspective on the ability to exploit multi-
energy systems through EH, and the paper also extends 
some concepts of the uncertainty of the load and electric-
ity price thus helping to regulate available energy sources 
within the allowable limits. Reference [27] examines some 
uncertainties then proceeded to optimize the energy output 
of dispersed sources and storage systems with the smallest 
total cost of the objective function. Although these studies 
have mentioned in detail the randomness of the load, it only 
considers electricity and heat loads, there are no studies to 
solve the optimal operations of the EH model while consid-
ering the randomness of all three types of load (electricity, 
heat, and cold).

At present, optimizations and optimization methods are 
widely applied in many fields to effectively optimize the 
practical problems. Recent studies on the optimal opera-
tion of EH are approached in many directions with different 
objective and constraints. Tools used in computations are 

also varied, often using the advanced programming lan-
guage like MATLAB, Fortran, Delphi, C++ [4]. In recent 
times, the General Algebraic Modeling System (GAMS) 
programming language has been developed and has wide-
spread applications in the EH optimization problem. GAMS 
is capable of successfully solving optimal problems by solv-
ing algorithms built into the program [28]. Therefore, this 
study uses the GAMS programming language to solve the 
optimal operation problem of the proposed EH model.

From the above analysis, this study mainly solves the 
optimal operation problem of the EH model in the electric-
ity market, taking into account the randomness of electricity 
and load factors to contribute to the improvement of the 
research perspective about the study on the optimal energy 
use problem in the energy grid, bringing the computational 
model closer to reality. In particular, the EH model is pro-
posed with the ability to provide simultaneous electricity, 
heat, and cold for the loads. The model is capable of linking 
and exchanging between different forms of energy to select 
the optimum energy flow with minimum operating cost. 
The approach and problem solving are as follows: Firstly, 
the proposed EH model is based on the demand for elec-
tricity, heating, and cooling of the load. The structure and 
operational principles of the model will be introduced in 
Sect. 2. The randomness of the load, electricity price, and 
mathematical description will be introduced in Sect. 3. The 
optimal operation of the proposed EH model consists of the 
minimal objective function of the total energy cost of the 
system; the mathematical constraints which include input/
output power balancing of the EH model, equipment conver-
sion limits, power capacity limits of the system, and energy 
tariffs will be introduced in Sect. 4. The optimal operation 
problem using the GAMS programming languages solved 
in simulation result section. The optimal operation problem 
is considered in four specific cases to evaluate the random 
effect of the load and energy prices on the performance 
of the EH model. Finally, conclusions and future research 
directions are given in Sect. 6.

Modeling under energy hub approach

Introduction about EH model

An integrated system, in which the energy can be converted, 
conditioned and stored, is referred to as the EH. Figure 1 
illustrates different levels of a general EH. In an EH, differ-
ent forms of energy are received at the input ports connected 
to the energy infrastructures and the energy services in the 
form of electricity, heating, and cooling is delivered at the 
output ports [29]. Within an EH, different forms of energy 
are converted and conditioned using converter technologies 
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such as transformers, AC, CHP technology, heat exchangers, 
and absorption chillers.

The EH model is mathematically described in matrix—
vector as follows:

where cij is the connecting factor that indicates the relation-
ship between the input power at i button and output energy 
at the j button. P(1,…m) is the power input, and PL(1,…n) is the 
converted power output.

Proposed EH model

Today, the rapid pace of social development has led to a 
growing and varied demand for energy. A model that uses 
only one form of electrical energy is also less efficient. The 
demand for energy today is clearly different often designed in 
a systematic way and is mainly used which are in three forms: 
electricity, heating, and cooling. The demand for each type of 
energy varies widely during the day and is incidental. In addi-
tion, in the competitive electricity market, electricity prices 
often change over time, thus optimizing the energy purchase 
cost from the market by optimizing the energy flow supplied 
to the loads in EH. Therefore, this study calculates the opti-
mum performance of the EH model, as shown in Fig. 2. Input 
energy includes natural gas and electricity, these two types 
of energy are converted through the devices in the model to 
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supply for load including electricity, heating, and cooling. In 
particular, the electrical power has been supplied by the CHP 
and the electrical system via transformer (T), and heat sup-
plied by CHP and GB; cold can be supplied by the AC with 
the electricity input or ACh with the heat input.

In addition, to improve the efficiency of the system, the 
model uses energy storage system battery (BESS). BESS is 
a fundamental solution to improve power supply reliability 
[30]. In fact, this storage system has been used extensively 
in operations and planning to reduce investment costs, and 
reduce the cost of purchasing power from the system with 
the goal of improving economic efficiency by adjusting the 
load graph (stored power during off-peak hours and release 
to the grid at peak hours [31]).

Uncertainty modeling of energy prices 
and demands

Electrical and gas prices

At present, electricity prices often use TOU prices to 
encourage electricity savings and reduce peak power, lead-
ing to reduced capital investment and transmission costs 
[31]. However, CEM in recent times has made significant 
changes, mainly aimed at ensuring energy supply and reduc-
ing costs. At that time, the electricity price was real-time 
price (RTP) depending on the market and the incidental [32]. 
Uncertainty in electricity prices is usually expressed by the 
normal PDF [33–35], as shown in Eq. (2) and Fig. 3:
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Fig. 1   General structure of an energy hub
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Fig. 2   Proposed energy hub
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where σ is the standard deviation and μ is the average 
value of the electricity variable x.

Because the PDF is the continuous function, the electric-
ity prices are multi-state parameters. Therefore, the clustering 
technique is utilized to divide into states in each time segment. 
The different states of the electricity prices are determined for 
each time segment; thus, there is a specific value for the price 
at each state with the related probability.

A number of states in each PDF function are chosen in 
accordance with the methods and calculation algorithms. 
Because a small number of states affects accuracy, while a 
large number increase the complexity of computations. The 
natural gas price is constant as expressed by [4, 13, 24].

Electrical, heating, and cooling demands

In general, the demand for electricity in residential areas often 
changes drastically during the day and is incidental. Therefore, 
the system peak load will be assumed to follow the hourly 
load shape of the IEEE-RTS (reliability test system). Based on 
this assumption, the load will be divided into ten levels using 
a clustering technique, utilizing the centroid sorting process, 
developed in [37], which verifies that ten chosen equivalent 
load levels, with different probabilities, provides a reasonable 
trade-off between accuracy and fast numerical evaluation [38, 
39]. In addition, recent studies demonstrate the characteristics 
of the load according to standard deviation function similar to 
electricity prices, with the advantages of being closer to the 
value of actual load when using previous survey data [40].

Similarly, the uncertainty of heating and cooling demand 
is also expressed in the normal PDF, as introduced in [21]. 
Therefore, this study uses the load model of electrical, heat-
ing, and cooling as a normal PDF as follows.

Combined model of price and demands of heating, 
cooling, and electrical

The stochastic of parameters leading to each state will 
have different values and probabilities. Therefore, 

assume that the state of the electricity price per time 
period (h) distributed as a function of the PDF is n�e

s
 . 

Similarly, the number of states of electrical load, heat-
ing, and cooling is ne

s
, nh

s
, nc

s
 , respectively. In each state, 

the probabilities of loads and prices are determined 
from the PDF function with probability of the load, 
heating, cooling, and electricity prices in the states 
are denoted as �e

s
{Pe

L
},�h

s
{Ph

L
}, �c

s
{Pc

L
} ,  and ��e

s
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respectively.
The concept of a hybrid model of different param-

eters  was introduced in [37].  In par t icular,  the 
parameters of the elements (electricity and gas price, 
the load factor of heating, cooling, and electr ical) 
in each state are obtained by enumerating all com-
binations of their states according to the following 
matrix M:

where Cs is the matrix that enumerates the possible values of 
electricity prices and loads (heating, cooling, and electrical); 
�
s
{Cs} is a one-column matrix that represents the probability 

of any combination of loads and electricity prices deter-
mined by the mathematical formulas (4); and Ns is the sum 
of the individual states of the matrix M and is computed by 
the product of the possible states of the load components 
and the electricity price as expressed by the mathematical 
expression (5):
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,Ph
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 , and Pc
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 , respectively, and expressed 

through parameters of the additional charge ke
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 , and 

kc
s
 (these coefficients will receive values from 0 to 1) as 

represent in (6):

Similarly, electricity prices �e
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 are also expressed by the 
coefficient k�e

s
 at hour h in equation (7):

Choosing the number of states is very important as it 
affects the accuracy of the results and the ability to calcu-
late. If the number of states is too small, it will cause the 
large error. If the number of states is too large, the number 
of calculations is also very large. Therefore, a number of 
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Fig. 3   Characteristics of the normal PDF function



355International Journal of Energy and Environmental Engineering (2018) 9:351–362	

1 3

states in each time segment are chosen in accordance with 
the methods and calculation algorithms.

The researches [34, 37] utilized technique choosing num-
ber of states depending on maximum and minimum values of 
parameters. The minimum value is considered to be the first 
state and maximum value is considered to be the last state. In 
this study, the above method is also used and it is assumed that 
the coefficient of loads (heating, cooling, and electrical) var-
ies from 0 to 1. The step is adjusted to be 0.1 for coefficient of 
loads. Similarly, 0.1 also is utilized to be the step adjusted for 
the factor of electricity price compared with maximum price. 
Therefore, a number of maximum states in each component 
(electrical, heat, cold and electricity price) are 10. Thus, the 
maximum number of computational states per hour h will be 
104 states.

Mathematical model

The objective function

The goal of the problem is to optimize EH operating costs. 
Therefore, the minimum objective function of the cost of buy-
ing energy from the market each day consisting of electricity 
and gas as expressed in Eq. (8) with Pe

h,s
, P

g

h,s
 are the amount of 

electricity and natural gas purchased from the market in each 
state s at hour h being considered:

where �e
h,s

 is the electricity price at hour h at states; �g
h
 is 

the constant natural gas price; and Nh is the total number of 
hours a day (24 h).

The constraints

To ensure the ability to work and power the equipment in the 
EH model, the mathematical model should consider the fol-
lowing constraints:

Energy balance constraints of EH model

Based on the structure of the EH model presented in Fig. 2, 
and the matrix representing the energy balance relation of 
the model in Eq. (1), the energy balance constraint is defined 
according to the following expression:

(8)EPC = Min
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where Pch
BE.h

 and Pdis
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 are the charge and discharge power 
of BESS at hour h, respectively; �AC.h,s , �CHP.h,s , and �ACh.h,s 
are the dispatch ratios of electricity, natural gas, and heat 
conversion at hour h, respectively; �ge
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 and �gh

CHP
 are the gas-

to-electricity and heat conversion efficiency of the CHP; �T , 
�GB , and �BE are efficiency of transformers, GB, and BESS, 
respectively. �

AC
 and �

ACh
 are efficiency of AC and Ach 

which usually are calculated based on coefficient of perfor-
mance (COP) in the following equation [29]:

where COPAC, COPACh are the coefficient of performance 
for AC and Ach, respectively.

The energy balance, charging, and discharging 
constraints of BESS

The characteristics of electricity prices and electricity sur-
charge graphs vary with a 1-day, 24-h cycle. The electricity 
price is high at peak hours and vice versa. Therefore, the 
total energy stored and transmitted back to the system must 
be balanced by Eq. (11). The chosen calculation cycle is 
24-h cycle to reduce investment costs of BESS. Hence, the 
constraint on energy balance in calculation cycle of BESS is 
expressed as such. In general, BESS can work in charge or 
discharge mode and can be charged from system depending 
on the model operation. The charge/discharge of BESS can 
be expressed through two binary variables �dis
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 and �ch
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:
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The power and capacity constraints of BESS

The limits of BESS include maximum power and storage 
capacity. Therefore, the charge/discharge of BESS must 
ensure the limits as Eq. (12) with the maximum power of 
BESS, Pmax

BE
:

Similarly, the total storage capacity of BESS must be less 
than the maximum capacity of BESS,Emax

BE
 , with constraints 

as in (13):

The constraint of power purchased from market

The supply capacity of the system is limited by the capac-
ity and energy stored. Consequently, the constraint is uti-
lized as expression (14):

where Pmax
e

 and Pmax
g

 are the maximum allowable power 
of electrical energy and natural gas.

The total energy purchased from the electricity and nat-
ural gas system within a day of the EH is limited by the 
energy that can be supplied from the two systems above 
by the formula (15):

where Ee
max, E

g

max are the limits of power that can be sup-
plied from the electrical system and natural gas.

The constraints of power flow

The optimal operation of the EH model is based on the 
ability to control the power flow of AC, ACh, T, GB, 
BESS, and CHP devices. Therefore, the conversion limits 
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of the above devices at time h and stage s are represent in 
Eq. (16):

They are considered as state variables that show con-
verted energy values through the corresponding devices 
from time to time. The controllable flow devices are not 
allowed to operate over limited value.

The optimization problem with targeted function and 
binds was based on a programming language of GAMS/
BONMIN solver [28].

Results and discussion

To clarify the advantages of residential EH in CEM with 
the mathematical model proposed in Sect. 4, the optimiza-
tion of input power and energy costs of EH for each day is 
calculated. The effect of the uncertainties of loads, elec-
tricity prices, and the involvement of BESS is also com-
pared in four computational cases, as shown in Table 1.

(16)

0 ≤ �AC.h,s ≤ 1

0 ≤ �CHP.h,s ≤ 1

0 ≤ �ACh.h,s ≤ 1.

Table 1   Calculated cases

Case Model Certainty Uncertainty BESS

1 EH ×
2 EH × ×
3 EH ×
4 EH × ×
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Fig. 4   Electrical, heat, and cooling demand
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Assumptions and databases in analysis

Electrical, heating, and cooling demand

Energy loads in residential areas often change drastically 
during the day-to-day operations. Therefore, this research 
assumed that typical daily electrical, heating, and cool-
ing load characteristic is shown in Fig. 4. Where, the 
maximum load power at 7PM with the power capacity 
of 5.5 MW and the minimum load power at 3AM with 
the power capacity of only 1.5 MW, corresponding to the 
proportion of 27% when reaching the max. Heating and 
cooling loads are relatively small with power capacities 
of 2.38 and 0.72 MW, respectively.

In each hour h, the uncertainty of energy demand is 
discussed in Sect. 2. From the energy demand survey, 
the power capacity of the loads corresponding to the 
probability of the normal PDF function is calculate. In 
every hour h, assume that the normal PDF function of 
the electricity price has five states (s) with an average 
load factor of μ = 0.8 and standard deviation of σ = 0.1, 
as shown in Table 2 [21, 34, 39]. Where, the power factor 

and the probability of the loads in state s are ke
L.s

 and �e
s
 , 

respectively. Similarly, the heating load, probability, and 
power factor for the heat demand are �h

s
 and kh

L.s
 , for cool 

demand, that are kc
L.s

 and �c
s
.

The state with maximum probability, the state 2, is 
52.5% corresponding to a power factor of 0.8. In contrast, 
states 1 and 5 have the minimum probability of 4.5%.

Electrical and gas energy price

Currently, gas prices changed a little in the short term, 
so in a typical day, it is an instant and is about 5.5¢/kWh 
[4, 40]. Electricity prices also vary widely over time and 
depend on the market. In this study, the largest electricity 
price per hour is shown in Fig. 5 [41–43]. The uncertainty 
of price is determined by the normal PDF from the hypo-
thetical survey data which is similar to a part with the 
probability of ��e

s
 corresponding to the max price of k�e

L.s
.

The equipment parameters and limits of system

The efficiency of energy conversion equipments is quite 
high, as shown in Table 3. The total conversion efficiency 
of CHP is 0.85 with 40% converted to electricity and 50% 
converted to heat [4, 13]. The efficiency of AC and Ach 
is calculated as Eq. (10) with coefficient of performance 
COPAC and COPACh, respectively. COPAC and COPAch are 
equal with value 1.5. Therefore, efficiency AC and Ach is 
the lowest and equals 60%; on the contrary, the highest effi-
ciency is 95% of transformer.

The power limits of the equipment as well as the capacity 
of BESS and the system to ensure the proper operation of 
the equipment and its ability to supply the system is shown 
in Table 4.

Table 2   Normal PDF states for electrical, heat, and cool demand

No State Mean value Probability, %

1 s1 μ − 2σ 4.5
2 s2 μ − 1σ 19.25
3 s3 μ 52.5
4 s4 μ + 2σ 19.25
5 s5 μ + 2σ 4.5
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Table 3   Efficiency data of 
equipments

�T �
AC �

ge

CHP �
gh

CHP

�
GB

�
ACh

�
BE

0.95 0.6 0.4 0.45 0.9 0.6 0.9

Table 4   Limit capacity data of equipments and system

No Parameter Value No Parameter Value

1 Ee
max

 (MWh) 100 6 Pmax
AC

 (MW) 5
2 E

g
max(MWh) 50 7 Pmax

ACh
 (MW) 5

3 Pe
max

 (MW) 10 8 Pmax
BE

 (MW) 0.15
4 P

g
max (MW) 5 9 Emax

BE
 (MWh) 0.5

5 Pmax
GB

 (MW) 5
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Analysis results and discussion

The proposed model is calculated with the hypothetical 
parameters assumed above. The calculated results determine 
the energy flow in the devices in all operating states s and 
all hours of the day. Energy flow during minimum load is 
the 3rd hour (the electricity reaches 1.5 MW, the heat load is 
1.13 MW and the cooling load 0.23 MW), and the maximum 
load is the 19th hour (the electricity load reaches 5.5 MW, 
the heat load is 2.0 MW, and the cooling load is 0.6 MW) in 
case 1 and case 2, as shown in Fig. 6.

The optimal energy flow was chosen when the load is 
minimum, CHP operating at 1.66 MW, and the power capac-
ity of GB is 0.42 MW to supply for 1.13 MW heat load in 
case 1. Power bought from the electrical system is 1.12 MW 
along with the received power capacity from CHP to provide 
1.5 MW for the electricity load. At the same time, all the 
cooling loads, supplied from AC due to very low price, are 
only 6.5 cent/kWh. Similarly, at the time of low electric-
ity price, the amount of power received from the system 
increased by 0.15 MW corresponding to 13.39% to charge 
for BESS in case 2. The energy flow which through the 
remaining devices similar to case 1.

At the time of the peak load, CHP was chosen to operate 
with a high capacity of 4.0 MW in both cases to provide 
additional load, because the electricity price then reached 
13 cent/kWh and the gas price was only 5.5 cent/kWh. 
Transmission capacity through GB also reached 1.0 MW. 
All the cooling loads are supplied from the ACh through the 

heat generated by CHP and GB due to the peak electricity 
price at this time. Power received from the system in case 
2 decreased by 0.16 MW or 3.69% compared to case 1 due 
to the support of BESS during high electricity price hours.

Thus, in every operating state of EH, the energy flow in 
each electrical device to optimize the energy flow of EH 
always is determined. BESS storing electricity during low 
electricity price hours and transmitting at high electricity 
prices has reduced energy costs of EH. However, the above 
calculations with the load parameters and the electricity 
price assumed to be constant in each working hour have 
led to the errors, because loads are random quantities, as 
introduced in Sect. 3.

When the uncertainty of load and electricity price is con-
sidered in case 3 and case 4, the load capacity varies in each 
computing state; hence, the energy flow in each device also 
changes. The energy flow in the operating state with a mini-
mum load is the state 1 in the 3rd hour when the maximum 
load is the state 256 in the 19th hour, as presented in Fig. 7. 
In state 1, the power consumed by the loads drops compared 
to the calculated maximum values in case 1, so the energy 
flow through the devices also decreases. The capacity of 
CHP is only 0.4 MW, the operating capacity of the GB is 
0.11 MW, and the power purchased from the system reaches 
0.86 MW. The entire demand for cooling is provided by AC 
due to low electricity price, which is similar to case 1. When 
considering the involvement of both BESS and the uncer-
tainty of the demand and electricity prices in case 4, overall 
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demand for cooling is still provided by AC, but the capacity 
received from the systems increases to charge BESS with 
the capacity of 0.15 MW in this period, corresponding to 
17.44%.

At peak load, the state 256 at 7PM, electricity price 
reached the maximum, so all the cooling in case 3 and case 
4 are both supplied by ACh through the heat with a capac-
ity of 1.28 MW. The energy flow through CHP and GB is 
similar in both cases that are 4.0 MW 1.1 MW, respectively. 
Power capacity received from the system in case 4 decreases 
0.15 MW due to the support of BESS.

The calculation results also determine the charge and 
discharge capacity of BESS in both cases in each operat-
ing hour, as shown in Fig. 8. During the lower electricity 
price hours (from 1AM to 3AM, from 10AM to 1PM, 3PM 
and 11PM, 12PM), BESS charges with a maximum power 
0.15 MW corresponding to the maximum capacity. During 
the high electricity price hours (at 5 AM, 7 AM, 9 AM 
and from 5 PM to 10 PM), BESS discharges 0.15 MW 
back to the system. Due to the loss in BESS, the total 
power charged/discharged dropped by 0.15 MW, so the 
total power consumed in case 2 and case 4 increases com-
pared to case 1 and case 3, respectively. The energy flow 
in GB, CHP also changes depending on the operating state 
as analyzed above.

The calculations in all states s, 24 h, in each day deter-
mine the energy required to purchase from the system in 
each hour for four cases, as shown in Fig. 9. In all four cases, 
the amount of gas purchased from the system increased dur-
ing high electricity price hours such as from 7AM to 9AM 
and from 5PM to 10PM. Conversely, during the low elec-
tricity price hours, it can compete with gas, so the amount 
of gas purchased from the system is reduced and electricity 
increased.

Comparison of calculated results in Fig. 9a and c shows 
that energy purchased from the systems considering the 

uncertainties in case 3 always decreases compared to case 1, 
a minimum of 6.3% at the 6th hour and maximum of 11.3% 
at the 9th hour. In addition, the rate of electrical power in 
total energy input of case 3 always increases from 1.24 to 
22% due to the impact of randomness of electricity prices.
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When BESS used in case 2 and case 4, it changes the 
energy flow received from the system in each operating hour 
compared to case 1 and case 3, as shown in Fig. 9b, d. In 
both cases, with the involvement of BESS, the power capac-
ity received from the system increases during the off-peak 
hours and decreases during the peak hours to reduce the 
costs of electricity prices purchased from the systems of 
the EH. In addition, the maximum transmission capacity in 
the distributed system decreases due to the ability to adjust 
the load graph of BESS which may lead to delay in upgrad-
ing electrical equipment. The efficiency of BESS in adjust-
ing the energy flow in case 4 is smaller than case 2 when 
the minimum loading capacity is only 3.33% compared to 
3.71%.

The total energy received from the system in all cases 
is also determined, as shown in Fig. 10. In case 1, it is 
147.7 MW with the electrical power of 58.27% correspond-
ing to 86.03 MW. When considering the uncertainty of the 
demand and the electricity price in case 3, the total energy 
received from the system is reduced to 133.4 MW due to 
the decrease in actual demand and the optimization of the 
power flow in all states. As a result, total energy has fallen 
by 14.3 MW (9.66%), with electricity falling by 23.2% and 
gas increasing by 9.0%. It shows that, given the uncertainty 

of the parameters, the total energy received from the system 
decreases compared between case 3 and case 1; this result 
is closer to the practical conditions.

When BESS participates in the optimal operation of EH, 
optimizing of the energy flow of CHP, AC, ACh, and BESS 
is achieved, the total energy purchased of the EH decreases. 
However, the performance of BESS gaining only 0.9, total 
energy consumption in both markets increased by 0.2%.

The calculation result of total operating costs of the EH 
shown in Fig. 11 implies that the randomness of param-
eters and BESS has a great influence on the performance of 
BESS. The EH optimizes the energy flow and energy types 
in all four cases. The operating costs in case 1 is 10492.6$. 
When considering the uncertainty of demand and energy 
prices in case 3, the total costs of energy purchased fell 
sharply to 1205.4$ or 11.5% compared to case 1.

The BESS stores electricity energy at low electric-
ity price hours and generates back to the systems during 
high peak hours, thus reducing operating costs in both 
cases. The total EH operating costs fell 0.4% or 45.52$ 
compared to case 1. The effectiveness of BESS increased 
sharply when considering the effect of the randomness of 
parameters and fell 1251.6$ or 11.9% in case 4. Therefore, 
the total operating costs of the EH, in this case, is only 
9241.0$ per calculation cycle, 24 h.

The test results show that the proposed model allows 
optimizing of energy flow in EH, thus reducing operating 
costs. Moreover, considering the uncertainty of the load 
and the electricity price, the net real demand of the sys-
tem decreases, resulting in energy flow, the efficiency of 
the EH changes, and the response results are closer to the 
actual conditions.

Conclusions

This study addresses the following key issues:

1.	 A more suitable model of EH with the diversity of the 
load is proposed. The model takes into account the 
BESS to increase operational flexibility and efficiency. 
Hence, the economic and technical aspects of the EH 
also are improved.

2.	 The optimal operation schedules of the EH are calcu-
lated with the objective minimum of energy cost pur-
chased from the system considering the uncertainties 
of the energy demand and electricity price. The math-
ematical model represents the uncertainties of three load 
types (electricity, heating, cooling) and electricity price. 
Two study scenarios have been proposed to specifically 
compare the differences considering the uncertainties 
in the model. The results obtained from hypothetical 
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parameters show that the energy flow is optimized in 
all cases, states at the same time the technique require-
ments of the equipment also are ensured. The demand 
and total energy purchased from the system are reduced 
when uncertainties are considered. Therefore, the cal-
culation error decreases and results are more suitable 
for real-world problems. The BESS incorporated in EH 
reduces the electrical energy purchased from the system 
and decreases operational costs of the EH.

In this research, the EH model with uncertainties of 
the loads (electricity, heating and cooling) and electricity 
price is introduced to optimize energy cost. However, the 
renewable sources with stochastic characteristics (photo-
voltaic and wind generators) and investment cost of equip-
ments are not considered. Hence, the above aspects should 
be further investigated in problems optimal planning and 
operation for EH.
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