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Abstract Wind energy is increasingly being utilized

globally, in part as it is a renewable and environmental-

friendly energy source. The uncertainty caused by the

discontinuous nature of wind energy affects the power grid.

Hence, forecasting wind behavior (e.g., wind speed) is

important for energy managers and electricity traders, to

overcome the risks of unpredictability when using wind

energy. Forecasted wind values can be utilized in various

applications, such as evaluating wind energy potential,

designing wind farms, performing wind turbine predictive

control, and wind power planning. In this study, four

methods of forecasting using artificial intelligence (artifi-

cial neural networks with radial basis function, adaptive

neuro-fuzzy inference system, artificial neural network-

genetic algorithm hybrid and artificial neural network-

particle swarm optimization) are utilized to accurately

forecast short-term wind speed data for Tehran, Iran. A

large set of wind speed data measured at 1-h intervals,

provided by the Iran Renewable Energy Organization

(SUNA), is utilized as input in algorithm development.

Comparisons of statistical indices for both predicted and

actual test data indicate that the artificial neural network-

particle swarm optimization hybrid model with the lowest

root mean square error and mean square error values out-

performs other methods. Nonetheless, all of the models can

be used to predict wind speed with reasonable accuracy.

Keywords Wind energy � Wind speed forecasting �
Artificial neural networks with radial basis function �
Adaptive neuro-fuzzy inference system � Artificial neural
network-genetic algorithm � Artificial neural network-
particle swarm optimization hybrid

Introduction

In recent decades, worldwide reductions of conventional

energy reserves and rapidly growing energy demand have

become serious public concerns. Furthermore, the use of

non-renewable energy sources like fossil fuels has led to

environmental concerns such as air pollution, global

warming, and ozone depletion [1, 2]. To address these

concerns, significant efforts have been expended to find

ways to meet growing energy demands while addressing

environmental concerns, leading to renewable energy

sources attracting much attention globally [2].

Renewable energy sources are almost unlimited and less

environmentally intrusive than hydrocarbons fuels. Only

16 % of world energy demand was supplied by renewable

energy sources in 2009. Most developed and some devel-

oping countries are putting forth efforts to increase the rate

of renewable energy use. Wind energy has played a sig-

nificant role in renewable electricity generation and has

attracted increasing attention as a clean energy form [3, 4].

The capacity of wind energy systems increased about 24 %

in 2009 and total worldwide capacity by the end of that

year reached approximately to 198 GW. During 2010,

global wind power capacity reached 39 GW, triple the

value of 2005 (see Fig. 1). In 2010, the total installed wind

generation capacity increased in over 50 countries, and

wind power achieved commercial use in 83 countries.
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From 2005 to 2010, wind power capacity increased by

about 27 % per year.

Figure 2 shows the wind energy capacity of selected

countries in 2010 [3]. More generally, the global installed

capacity of wind power rose from 6.1 GW in 1996 to about

238 GW in 2011 [5]. Wind energy is sometimes cost-ef-

fective, making the implementation of sizable wind energy

projects feasible in many regions around the world, e.g.,

China has an installed wind farm capacity of about

25.8 GW [6, 7].

Wind power data provided by the Renewable Energy

Organization of Iran (SUNA) [8] indicate that, in Iran as of

March 20, 2013, the total capacity of installed wind power

plants was 109.4 MW and the total electricity generation

capacity of installed wind power plants was 109.4 MWh.

Table 1 shows the amount of wind power produced by

wind turbines with a nominal power of 660 kW at various

sites in Iran, from the beginning of operation until February

18, 2013. For instance, the monthly amounts of wind

power produced by the Manjil power plant and the Binalud

power plant, respectively, are approximately 583 and 104

GWh.

The uncertainty caused by the intermittent nature of

renewable energy resources is a significant challenge to

electrical grid reliability and electricity generation

scheduling. Also, operational challenges exist because the

harvestable wind energy density in a given region depends

on meteorological condition [9]. The development of the

wind energy industry requires reasonably accurate fore-

casting of wind resource characteristics, to facilitate system
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Fig. 1 Growth in global wind

power capacity for 1996–2010

Adapted from [3]
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Fig. 2 Wind power capacity in

selected countries in 2009 and

2010 Adapted from [3]

Table 1 Wind power produced by wind turbines with a nominal

power of 660 kW at various sites in Iran from the beginning of their

operation until February 18, 2013

Site Wind power electricity

generation (MWh)

Tabriz 7816

Mahshahr 535

Shiraz 1122

Zabol 2223

Esfahan 573

Ardabil 666

Data source Renewable Energy Organization of Iran (SUNA) [6]
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planning and dynamic control of wind turbines [10, 11].

Forecasting methods allow enhanced scheduling by pre-

dicting the amount of energy that will be generated,

determining the power storage capacity, and assessing the

electricity market for supplying and using grid electricity

[12]. Forecasting systems are often divided into four time-

scale categories: very short term, short term, medium term,

and long term. This classification is shown in Table 2 with

the relevant time ranges and forecasting purposes [6, 13].

As shown in Table 2, a very short-term forecast focuses on

wind speed or power forecasting in a time frame of a few

seconds to 30 min. Short-term forecasting of wind speed

focuses on time frames of 30 min to 48 h, while long-term

forecasting predicts wind speeds for periods of 1 week to

1 year or more. Previously employed methods to predict

wind characteristics generally are of three types: statistical,

physical, and hybrid [13]. Physical methods combine

multiple physical considerations to predict wind speed

whereas statistical methods forecast on the basis of

observed wind speed time series. Additionally, these

methods can be combined, with the results from physical

models used as input data to statistical methods. Moreover,

several robust artificial intelligent techniques exist, such as

artificial neural networks (ANNs), fuzzy logic [11] and

adaptive network based fuzzy interface systems (ANFISs),

which exhibit advantages in forecasting wind power and

speed.

In Ref. [14], a novel technique for wind speed fore-

casting using fuzzy logic and artificial neural networks is

presented. That technique outperforms the older technique

from two points of view: first it uses a fuzzy approach that

provides less of a rule base and the second it attains

increased accuracy in estimating wind speed. The results

indicate that the approach requires less computational time

and outperforms the older method for wind speed fore-

casting performance. Shi and Li utilized an ANN model for

forecasting wind speed over 1 h based on wind data from

two locations in North Dakota, and showed that input data,

learning rates and model mechanisms affect prediction

accuracy [12]. The enhanced methods led to improvements

of about 20 % in some assessment metrics, although

instability problems had to be overcome to attain a robust

method of merging forecasts from various ANN models

[12]. Mabel and Fernandez applied ANN models via

MATLAB toolbox for evaluating wind energy data in

Muppandal, Tamil Nadu, India, using data collected at

seven locations from 2002 to 2005, and showed that the

predictions were to a great extent similar to actual evalu-

ated data [15]. ANN models have also been successfully

used for predicting wind speed at Nigerian sites without

monitoring stations [16]. Reference [17] presents a model

that is based on risk and reliability analysis to attain the

resistance–load scenario using prior data for wind load.

The model is presented and the results are compared with

real data from a 12-MW wind farm. Mohandes et al. [11]

used ANFIS to evaluate wind speed for various high

heights on the basis of the wind speed information at low

heights in Saudi Arabia and obtained mean absolute error

percentages of 3 %, demonstrating the reliability of the

ANFIS method. In Ref. [18], the Kalman filter was applied

to wind speed forecasting in the eastern Liguria, Italy. The

results indicate that the model is able to improve fore-

casting results with respect to the wind speed model direct

output. In this model, Kalman-filtered wind speed data

were utilized to predict the wind power of Varese Ligure.

The error percent between simulated and measured wind

power values was low.

The objective of this paper is to utilize and assess sev-

eral ANN methods: artificial neural networks using a radial

basis function (ANN-RBF), adaptive neuro-fuzzy inference

system (ANFIS) and an artificial neural network-particle

swarm optimization (ANN-PSO) method for short-term

wind speed prediction for the city of Tehran, Iran. We also

evaluate and compare the performances of these methods

for the region of Tehran. These models are developed and

applied for forecasting wind speed of Tehran for the first

time. In this article, methods of forecasting wind properties

are reviewed, a methodology is developed that incorporates

the general principles of ANN-RBF, ANFIS and ANN-

PSO models, and the methodology is applied to a case

Table 2 Time frames and typical applications for categories of wind power forecasting methods (adapted from [12, 13])

Category Time frame Typical application

Very short term Few seconds to 30 min Electricity market clarification

Controlling wind turbines

Short term 30 min to 48 h Economic load dispatch scheduling

Load increase/decrease decision-making

Medium term 48 h to 1 week Generator online/offline decision-making (maintenance planning)

Unit commitment decision-making

Long term 1 week to 1 year or more Maintenance planning to optimize costs

Performing feasibility studies and planning for wind farms
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study using wind speed data as an input, and the results

obtained with the models and their error analyses are

discussed.

Methodology

Artificial neural network (ANN)

Artificial neural networks (ANNs) are computing systems

that mimic natural neural systems. They process input data

and information to learn and obtain knowledge for use in

other experiences. The problem-solving parts of these

systems are processing elements called neurons. A network

of connected artificial neurons can be designed, and a

learning algorithm applied to train it [19, 20]. In an ANN, a

tiny section of the central neural system can be simulated

as a basic mathematical model of the natural neural system.

Input data are passed to the correlative neurons and the

electrochemical signals are modified by weights. Then the

weighted sum is operated upon by an activation function,

and output data are conveyed to other neurons. The acti-

vation values are either exported as the final output data or

passed to other models. The weights are continually altered

while training to improve accuracy and generalize abilities

[21].

RBF neural network

An artificial neural network with a radial basis function

(RBF) is a type of neural network in which the activation

functions are radial basis functions [19]. RBF neural net-

works generally consist of three layers: an input layer, a

hidden layer with nonlinear RBF activation functions, and

a linear output layer [19].

In ANN-RBF model, the input vector is X = [x1, x2,…,

xn], the radial basis vector is u = [u1, u2,…,un] and the

output vector is Y = [y1, y2,…,yn]. The output of the jth

hidden layer (uj) is described as

uj ¼ exp � jjX � Cjjj2

2r2j

 !
j ¼ 1; 2; 3; . . .; k ð1Þ

Where Cj = [Cj1, Cj2,…,Cjk]
T is the center vector of the jth

neuron, and r = [r1, r2,…,rk]
T is the basis width (spread)

vector, which is usually obtained experimentally. Also,

X � Cj

�� �� is the norm of (X � Cj) and can be estimated as

follows [13]:

jjX � Cjjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � Cj1Þ2 þ ðx2 � Cj2Þ2 þ � � � þ ðxn � CjnÞ2:

q
ð2Þ

The ith output of the RBF neural network is given by

yi ¼
Xk
p¼1

Wipup; ð3Þ

where Wip is the weight of the pth hidden neuron to the ith

output.

The RBF neural network is trained using the following

algorithm [19]. First, all weights are initialized randomly.

Second, each element of the output vector Y is evaluated

with Eq. 3. Third, the error ei of neurons in the output layer

is calculated, for use in training and reweighting, as

follows:

ei ¼ yi � ŷi i ¼ 1; 2; 3; . . .;m; ð4Þ

where ŷi is desired output of the ith neuron in the output

layer. Fourth, the weights are updated as follows:

Wij nþ 1ð Þ ¼ Wij nð Þ þ aei nð Þuj i ¼ 1; 2; 3; . . .;m

j ¼ 1; 2; 3; . . .;K;
ð5Þ

where n is the iteration number and a is the learning rate

[18]. Fifth, the total error eT is evaluated as

eT ¼
XK
n¼1

XK
j¼1

yj nð Þ � ŷj nð Þ
� �2 ð6Þ

The last step involves returning to the third step and

repeating the calculations until eT is less than the desired

error.

Adaptive neuro-fuzzy inference system (ANFIS)

A fuzzy inference system [11] can be added to an artificial

neural network (ANN) to enhance its performance, forming

an ANFIS [11]. An ANFIS uses the estimation and

instructive capability of an ANN and deduction charac-

teristics of fuzzy logic, which include expertise in infer-

ence, to make decisions [11]. An ANFIS model contains

two input data, x and y [11]. A neuro-fuzzy system, on the

other hand, contains input and output layers and three

hidden layers that represent membership functions and

fuzzy rules [11]. ANFIS includes fuzzy if–then rules and

modifies the membership function based on input and

output data sets [11]. ANFIS modeling is often carried out

according to the Sugeno model [22]:

if X1 ¼ Ai and Xn ¼ Bj then fi ¼ PiXi þ qiXn þ ri ð7Þ

In the first or input layer, every neuron has a linguistic

label and transfers outside crisp signals precisely to the

other layer [23, 24]. That is,

OL1i ¼ lAiðX1Þ ð8Þ

Each node in layer 2 calculates the firing strength of a

rule, which can be calculated as [14]:

380 Int J Energy Environ Eng (2016) 7:377–390

123



OL2i ¼ lAi X1ð Þ � lBjðXnÞ ð9Þ

In layer 3 each node represents the following proportion:

OL3i ¼ wi ¼
wiPi
j¼1 wi

ð10Þ

The result obtained from layer 4 is

OL4i ¼ wifi ¼ wiðpiX1 þ qiXn þ riÞ ð11Þ

The last layer calculates the total output as follows:

OL5i ¼
Xj

i¼1

wifi ¼
P

i wifiP
i wi

ð12Þ

After using a weighted average process, the output data

are defuzzified. For optimizing the items of the member-

ship functions, a back propagation training technique is

employed, and a least squares process is used for mini-

mizing the error between input and output data [24].

Consequently, the hybrid learning algorithm combines

gradient descent and the least squares estimator.

Artificial neural network: genetic algorithm hybrid

model

An artificial neural network is a network of connected

artificial neurons that are trained using a learning algo-

rithm. In this method, a genetic algorithm is used as a

learning algorithm to train the ANN in order to optimize

the forecasting method. The genetic algorithm is a non-

linear global optimization method that can be used with

other methods for optimizing the approach. The learning

algorithm for the genetic algorithm is described in Fig. 3.

An optimization genetic algorithm is applied in this method

to optimize the performance of the ANN by population of

random strings of data indicating several design vectors.

The amount of data is fixed. Each data string is evaluated to

find its fitness value. The dataset is operated by three

operators—reproduction, crossover, and mutation—to

produce a new dataset. The new dataset is further evaluated

to find the fitness values and tested for the convergence of

the process. If the convergence criterion is not satisfied, the

population is iteratively operated by the three operators and

the resulting new population is evaluated for the fitness

values. The procedure is continued through several gen-

erations until the convergence criterion is satisfied and the

process is terminated. Training datasets are given to the

GA, and the reproduction or selection operator selects

above-average strings among others and insert their mul-

tiple copies in the mating pool based on a probabilistic

procedure. Probability for selecting the ith string for the

mating pool is given by:

Pi ¼
FiPn
j¼1 Fj

; i ¼ 1; 2; . . .; n ð13Þ

Here Fi is the fitness of the ith string in the population of

size n.

It can be inferred from Eq. 13 that the sum of the

probabilities of the strings is one. The selection process is

made by a roulette wheel with its radius divided into seg-

ments, one for each string of the population, with the

segment lengths proportional to the fitness of the strings as

shown in Fig. 4. By turning around the roulette wheel

n times (n being the population size) and selecting, each

time, the string selected by the roulette wheel, we obtain a

mating pool of size n. Since the segments of the radius of

the wheel are marked according to the fitness of the various

strings of the original population, the roulette wheel pro-

cess is expected to select Fi/F copies of the ith string for

the mating pool, where F indicates the average fitness of

the population.

After reproduction, the crossover operator is used. In

this case, two individual strings are selected randomly from

Return the data

Generate new data

Crossover and muta�on 

Produc�on of next genera�on 

Calcula�on of fitness of the selected data

Itera�on process

Random selec�on of  wind speed data

Fig. 3 The process of using a genetic algorithm (GA) as a learning

algorithm

12% 

4% 

16% 

8% 

36% 

24% 

1 2 3 4 5 6

pointer 

Roulette wheel 

Fitness value 

String numbers 

Fig. 4 The selection process made by a roulette wheel in ANN-GA

model
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the mating pool and some portions of the strings are

exchanged between the strings. In the process, known as a

single-point crossover operator, a crossover site is selected

randomly along the string length, and the binary digits

lying on the right side of the crossover site are exchanged

between the two strings.

Afterward the mutation process generates a string (de-

sign point) in the neighborhood of the current string,

thereby achieving a local search around the present solu-

tion, to protect against a premature loss of important

genetic material at a particular position, and to maintain

variety in the population.

Artificial neural network-particle swarm

optimization hybrid

In an artificial neural network-particle swarm optimization

approach (abbreviated as ANN-PSO model), a PSO algo-

rithm is used as a learning algorithm to train the ANN for

wind speed data of Tehran, Iran. The ANN model is

combined with PSO to optimize the forecasting model.

Particle swarm optimization performs on the basis of the

behavior of a colony or swarm of insects like bees. The

particles in the swarm are distributed and then they behave

using their own intelligence to find a good pathway to the

objective function value. After finding a good pathway,

they can share their information with other particles using

group intelligence of the swarm [25]. In this article, the

particle swarm optimization algorithm is applied to

enhance and optimize the ANN performance. Training

datasets are given to the PSO algorithm to attain the best

objective function value.

The key parameters for the presented models are kept

the same to compare them fairly. The parameters employed

are as follows:

• Number of input neurons, Ni: 8712.

• Iteration number, n: 100.

• Learning rate, a: 0.7.
• Validation rate: 29.5 %.

• Testing rate: 0.5 %.

Performance evaluation and statistical indicators

To evaluate and compare the performances of the utilized

approaches in forecasting unknown time series data, sta-

tistical indicators are applied with both forecasted values

and actual observed data. The most commonly used sta-

tistical indices from previous studies include root mean

square error (RMSE), determination coefficient (R2) and

mean square error (MSE) [26]. In this study, these statis-

tical indices are utilized for evaluation of the predictor

systems. The statistical indicators utilized and their rele-

vant mathematical expressions are presented in Table 3,

where n is the number of wind samples and Vest is the

estimated wind speed at a particular height.

Region assessed and data

Tehran features a semi-arid, continental climate and is

located at latitude of 35�4104600N and a longitude of

51�2502300E. Wind speed data obtained at 1-h intervals are

utilized (see Fig. 3). The input data are provided by the

Iran Renewable Energy Organization (SUNA) and col-

lected from the Latman park meteorological station west of

Tehran, at an altitude of 1800 m above the sea level. The

input data were collected at a height of 30 m above ground

level over 1 year. First the total wind speed data set is

arranged in two dimensional matrices. In the matrices,

rows represent the number of days in a year and columns

the hours in a given day; each element inside the matrices

represents the wind speed at a given hour of a particular

day in the year. Then wind speed data are shown in an

image-like model. Figure 5 is a one-dimensional plot of

hourly wind speed data during a year.

Results and discussion

The results of the applied models are obtained in this

article using MATLAB� software. In this section, the

considered models are analyzed to demonstrate their

capabilities in terms of wind speed prediction. Also, their

performances are compared.

Results with RBF model

In the RBF model, wind speed data collected at 1 h

intervals over 1 year are utilized as inputs. Figure 6 shows

that the prior and predicted data agree with each other to a

large extent, suggesting in part that the training process has

been successful. Figure 7 shows the determination

Table 3 Mathematical expressions of the utilized statistical indices

Indicator Mathematical expression

MSE 1
n

Pn
i¼1

Vest � Vð Þ2

RMSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1

Vest � Vð Þ2
s

R2 Pn

i¼1
Vest�Vest;avrð Þ�ðV�VavrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
Vest�Vest;avrð Þ2

� �
�
Pn

i¼1
V�Vavrð Þ2½ �

q
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coefficient R2, which indicates the goodness of fit of the

model, to be 0.85. The magnitude of the determination

coefficient shows that observed outcomes are replicated

well by the model. Figure 8 shows the MSE and RMSE

values for the data, which illustrate the mean error and

variance. The wind speed forecast error functions mono-

tonically decrease with distance from the center, as shown

in Fig. 9, following a normal distribution function; the

parameter r shows the amount of variation or dispersion

from the average and the parameter l represents the

expectation of the distribution. The results for the RBF

model are shown in Table 4 for a large amount of input

data and 100 neurons in the input layer. According to

Table 4, the mean square error, the coefficient of deter-

mination and the root mean square error, respectively, are

0.36, 0.86 and 0.60 for the RBF model.

Figure 10 presents the testing datasets and provides a

term-by-term comparison of the predicted wind speed data

via the RBF model and the actual data (target data). The

predicted data pattern is observed to follow the actual data

pattern closely, with little disagreement. The presented

RBF model thus provides a good prediction of wind speed

in Tehran.

Results with ANFIS model

The ANFIS model structure consists of three layers: input,

hidden and output. Figure 11 shows the ANFIS approach

for a four-input single-output problem using sixteen fuzzy

rules. In Fig. 12, it is observed that the prediction of wind

speed (output data) with the ANFIS model agrees well with

the target data and that the magnitude of the disagreement

between the predicted and actual wind speed data is small

(see error histogram). Figure 13 is a check-error diagram

that contains an array of root mean square errors repre-

senting the training data and the checking-data error sig-

nals. The function only returns to check errors when

‘‘check data’’ is supplied as an input argument. The error

curves in Fig. 13 converge, suggesting that the error values

are equal.

Fig. 5 Measured hourly wind

speed data over 1 year

Fig. 6 Prior and predicted data

for Tehran, Iran
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Fig. 7 Values of determination

coefficient

Fig. 8 Mean square error and

root mean square error values

for data for Tehran

Fig. 9 Wind speed forecast

error function for data for

Tehran

Table 4 Test values of

statistical indices for ANN-

hybrid models

Model MSE (test) MSE (train) R2 (test) R2 (train) RMSE (test) RMSE (train)

ANN-RBF 0.3619 1.453 0.86 0.85 0.6016 1.205

ANFIS 0.3088 1.431 0.88 0.86 0.5559 1.196

ANN-GA 0.0022 0.004 0.95 0.91 0.0469 0.0632

ANN-PSO 0.1127 0.1315 0.89 0.87 0.3626 0.73
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To map the non-fuzzy input values to fuzzy linguistic

terms and vice versa, membership functions are used in the

fuzzification and defuzzification steps. A membership

function is used to quantify a linguistic term. In Fig. 14, for

instance, membership functions of the study for the

linguistic terms of the wind speed variable are plotted.

Note that the significant characteristic of fuzzy logic is that

a numerical value does not have to be fuzzified using only

one membership function. Nonetheless, a value can belong

to multiple sets at the same time. Figure 15 compares the

predicted wind speed data and the target data obtained with

the ANFIS model. The predicted values are seen to follow

the measured values relatively well, with low magnitudes

of disagreement. As listed in Table 4, the mean square

error, the coefficient of determination, and the root mean

square error are 0.31, 0.88 and 0.55, respectively. Note by

comparison of Figs. 10 and 15 that both models accurately

forecast the wind speed. However, it is clear that ANFIS

model is superior to ANN-RBF model.

Results of artificial neural network-genetic

algorithm hybrid model (ANN-GA)

The ANN-GA model is trained by a genetic algorithm with

Tehran’s wind speed data as input data. The ANN model is

combined with a genetic algorithm to optimize the

Fig. 10 Comparison of

forecasted and measured values

of wind speed for the ANN-RBF

approach

Fig. 11 ANFIS for a four-input single-output problem using 16 fuzzy

sets on each input domain

Fig. 12 Output data of wind

speed prediction compared with

target data (top), and the

corresponding error diagram

(bottom)
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forecasting model. As seen in Fig. 16, the training data and

the network training data, the data obtained from network,

agree to a large extent. Therefore, the training process is

completed adequately in this model. Figure 17 indicates

that the testing process is performed well. Figure 18 shows

that the training data converge to a line, suggesting that

training process has been carried out successfully. The

MSE and RMSE values of training are, respectively,

0.0040 and 0.0632. According to Fig. 19 test data in the

ANN-GA model converge to a line; therefore, the testing

process has been successful. The MSE and RMSE values

of testing are, respectively, 0.0022 and 0.0469. According

to Table 4, ANN-GA model outperforms three other

obtained models.

Results with ANN-PSO model

In an ANN-PSO model, the particle swarm optimization

method is applied to the main structure of the model (ar-

tificial neural network) to enhance its performance. The

Fig. 13 Array of root mean

square errors representing the

error signals for the training

data and the checking data

Fig. 14 Membership functions for various input data, showing degree of membership in terms of membership functions 1 and 2 for: a input 1,

b input 2, c input 3, and d input 4
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input data (hourly mean wind speed data of Tehran) is

applied to the ANN-PSO hybrid algorithm. The mean

square error for training and testing datasets and the root

mean square error, respectively, are 0.1315, 0.1127 and

0.3626. Figure 20 provides diagrams related to the ANN-

PSO hybrid model. Figure 20a shows the normalized

absolute average error (%) of training data per normalized

forecasting length (h). Figure 20b shows the divergence

between training data and network training data. It is clear

from diagrams (a) and (b) indicates that the training pro-

cess is done perfectly. Figure 20c shows the normalized

absolute average error (%) of test data per normalized

forecasting length (h). Figure 20d shows the divergence

between test data and network test data. Figure 20c, d

Fig. 15 Comparison of

forecasted and measured values

of wind speed for the ANFIS

approach

Fig. 16 Comparison of training

data and network training data

for the ANN-GA method

Fig. 17 Comparison of test

data and network test data for

the ANN-GA model
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indicate that the testing process is done perfectly.

According to Table 4, the ANN-PSO model outperforms

the ANN-RBF, and ANFIS models. As it is clear from

Table 4, the mean square error for the training and testing

datasets and the root mean square errors for the ANN-PSO

model are lower than the corresponding values for the

ANN-RBF, and ANFIS models. Moreover the determina-

tion coefficient R2 for the ANN-PSO model exceeds the

corresponding value for the ANN-RBF and ANFIS models,

proving its superiority.

Conclusion

Using wind energy effectively for electrical power gener-

ation requires good predictions of wind speed, and the

intermittent nature of wind makes such predictions

challenging. In this study, four accurate models are suc-

cessfully developed for forecasting wind speed in Tehran,

Iran. The performances of the ANN-RBF, ANFIS, ANN-

GA, and ANN-PSO models for short-term wind speed

forecasting are compared using a comprehensive wind

database. The mean square error, the coefficient of deter-

mination and the root mean square error, respectively, are

0.36, 0.86 and 0.60 for the RBF model, are 0.31, 0.88 and

0.55 for the ANFIS model, are 0.11, 0.89 and 0.36 for the

ANN-PSO model, and are 0.002, 0.95 and 0.046 for the

ANN-GA model. As mentioned above, the mean square

error and root mean square error amounts for the ANN-GA

model is lower than others and the determination coeffi-

cient R2 exceeds the corresponding value for the other

models. Therefore, we can conclude that the best method

which can be used for short-term forecasting of wind speed

in Tehran is ANN-GA model. However, it must be taken

Fig. 18 Training data

Fig. 19 Test data (Tehran)
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into consideration that all the presented models have the

accurate result and can be used for short-term forecasting

of wind speed in Tehran.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea
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