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Abstract
The paper discusses the possibility of detecting local damages in complex structures typical of civil engineering, as mul-
tispan beams and trusses. Namely, it describes a procedure to identify localised cracks in structures in the elastic range of 
behaviour using only the values of natural frequencies in the intact configuration and in the damaged one evaluated by means 
of dynamic tests. The error minimisation procedure described in the paper selects the solution within a set of finite element 
models that simulate a range of positions and levels of damage, by identifying the damaged configuration as the one whose 
modal frequencies minimise the least-square difference with the measured data. The accuracy of the method is first investi-
gated by applying it to the damage detection of a two-span steel beam, whose modal frequencies were obtained by means of 
experimental tests. To explore the accuracy of the proposed procedure, numerically simulated data with random noise were 
also generated for several positions and levels of damage and for different values of the random noise. The procedure was 
then extended, by means of numerical simulations, to the case of a beam with two localised damages. Finally, the procedure 
proposed for multispan beams is adapted to the damage identification of plane truss structures.
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Introduction

The last decades have witnessed an increasing attention to 
health monitoring of civil structures, above all in case of 
existing buildings, for which retrofitting interventions are 
often required to guarantee prescribed performances during 
the time. A first step in this direction is the definition of an 
accurate numerical model of the structure in its actual condi-
tions, including the identification of possible damages. To 
this respect, the identification of modal properties, as natural 
frequencies, modal damping coefficients and mode shapes 

in a linear elastic structure can be used to verify the corre-
spondence of a Finite Element (FE) model of the structure to 
its real behaviour, updating the numerical model on the base 
of experimental tests (D’Ambrisi et al. 2012; Diaferio et al. 
2015, 2018; Gentile and Saisi 2010; Potenza et al. 2015; 
Ivorra et al. 2016; Antonacci et al. 2012; Sepe et al. 2005a, 
b, 2017; Valente et al. 2016; Bedon et al. 2016). Moreover, 
the experimental modal analysis techniques are able to high-
light some peculiarities of the structural response that are 
usually neglected or that are difficult to be evaluated in the 
design process (as the influence of the non-structural ele-
ments on the dynamical response of the building, the pres-
ence of inhomogeneities, etc.).

On the other side, the remarkable progress in the resolu-
tion and sensitivity of the measurement devices for struc-
tural response acquirement, the possibility of implementing 
wireless acquisition chains (laptop, electronic acquisition 
board, accelerometers, etc.) and the continuously improved 
efficiency of the software for the treatment of experimen-
tal data, make realistic the possibility to monitor existing 
structures, even for ordinary buildings, through the evalua-
tion of their dynamical parameters at different times (Cerri 
and Vestroni 2003; Greco et al. 2007; Sepe and Bellizzotti 

 *	 Mariella Diaferio 
	 mariella.diaferio@poliba.it

	 Vincenzo Sepe 
	 v.sepe@unich.it

1	 Department of Sciences in Civil Engineering 
and Architecture, Politecnico di Bari, Via Re David 100, 
70125 Bari, Italy

2	 Department of Engineering and Geology, University 
“G. D’Annunzio” of Chieti-Pescara, Viale Pindaro 42, 
65127 Pescara, Italy

3	 Pescara, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s40091-019-00243-9&domain=pdf


422	 International Journal of Advanced Structural Engineering (2019) 11:421–437

1 3

2009; Rahai et al. 2007; Moaveni et al. 2008, 2009; Ramos 
et al. 2010; Amani et al. 2007). The importance of this tool 
is also confirmed by the recent development of new modal 
identification procedures (Pioldi et al. 2017) which make use 
of short duration and non-stationary data related to heavy 
structural damping. These techniques pave the way for dam-
age detection in any forcing conditions.

In case of a damage localised in small parts of a linear 
elastic structure, e.g., in few sections of a beam or in a rod of 
a truss, as considered in this paper, the comparison between 
dynamical parameters of the damaged and undamaged struc-
tures should, therefore, allow to identify at least the main 
characteristics of the damage, as location and severity.

However, the occurrence of damage is usually associated 
with small variations of the modal parameters which can 
be also due to other sources, as environmental temperature 
modifications; as a consequence, many authors are cautious 
about the possibility of detecting the damage through the 
analysis of the variations of these parameters. Nevertheless, 
many methods that use such parameters have been proposed.

In Xia and Hao (2000), a method to select the measure-
ment points and the modes to be used in model updating for 
damage identification is discussed; in Lee and Shin (2002) 
a frequency-domain method of structural damage identifica-
tion for beam structures is presented. In Amani et al. (2007), 
the damage is estimated by means of SSI-Cov method and a 
modal analysis of the structural ambient vibrations.

In Rahai et al. (2007), an algorithm for damage detection 
is proposed that utilises incomplete measured mode shapes 
and natural frequencies. The algorithm proceeds solving the 
damage equations, which are written using the incomplete 
measured mode shapes, through an optimization method.

Amongst the others, Moaveni et al. (2008, 2009), Ramos 
et al. (2010) provide experimental validation of damage 
identification procedures in the frequency and time domains.

The aforementioned procedures have been applied mainly 
to detect the damage in beam-like structures, i.e. structures 
whose main behaviour is flexural. Differently from damage 
identification in beams or frames, the damage identification 
in truss structures has instead received a limited attention in 
the scientific literature. However, the typical characteristics 
of these structures, dominated by extensional behaviour, do 
not allow to simply extend to them the procedures developed 
for beams and frames, i.e. structures dominated by flexural 
behaviour.

In Liu (1995), the damage is detected by minimising the 
error norm of the eigen-equation of the truss which is writ-
ten in accordance with the finite element approach and intro-
ducing the experimental modal parameters.

In Liu and Chen (1996), the transient response of the truss 
is used for identifying its element properties; in detail, the 
spectral finite element method is adopted to formulate the 
equilibrium equation and the unknown truss properties are 

estimated by minimising the error function that is defined 
in terms of unbalanced forces of the equilibrium equations. 
Finally, the damage is detected by comparing the identi-
fied element properties with the ones of the undamaged 
configuration.

In the damage detection method proposed in Castello 
et al. (2002), the eigen-problem for the FE model of the 
examined structure is written and then the model is updated 
by introducing the modal properties experimentally evalu-
ated. In fact, the FE model is defined as a function of a 
damage parameter that represents the updating parameter 
and that is evaluated by minimising a global error derived 
from the dynamic residue vectors. The method is applied for 
the damage detection of beam-like and truss-like structures.

Liu and Yang (2006) proposed a method based on a FE 
model of the original structure and on the experimental fre-
quency values and mode shapes. As a first step, the method 
proceeds establishing the number of the damaged elements 
which is assumed equal to the number of nonzero eigenval-
ues of the damage matrix, defined as the product of the mode 
shape matrix and the residual force matrix; subsequently, the 
position and the level of damage are evaluated by means of 
a damage localization matrix.

In Kopsaftopoulos and Fassois (2010), the effectiveness 
of statistical time series methods is discussed with regard to 
the estimation of damage in a lightweight aluminium truss 
structure.

The present paper investigates such issue both from an 
experimental and a numerical point of view. Namely, it 
describes situations of increasing complexity for multispan 
beams and truss structures.

In Sect.  2, the main features of the procedure are 
discussed.

Section 3 describes the tests conducted on a steel beam 
which is supported at both ends and in correspondence of the 
central cross section; in this way, two spans with the same 
length are obtained (Bellizzotti 2009). Moreover, a cross 
section of the beam was partially cut to simulate a localised 
damage. The dynamic tests have been carried out by apply-
ing an impulsive force by means of a hammer, and the sub-
sequent results of the dynamic identification have been uti-
lised for applying a procedure which identifies the place and 
the level of damage by minimising an error function which 
depends on the numerical and experimental natural frequen-
cies. As it will be described in the following, to evaluate 
this function, several finite element (FE) models have been 
defined by varying the location and the depth of the notch 
in a given range; to automatise minimization procedure, the 
modal frequencies in the damaged cases are collected into 
a data-base characterised by three different indexes: the 
mode number, the damage position, and the level of damage. 
The construction of such data base allows to establish how 
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the natural frequencies and the modes order number vary 
depending on the position and severity of damage.

Section 4 shows how the procedure developed for a multi-
span beam characterised by flexural behaviour (Sect. 3) can 
be extended to truss structures, whose dynamic behaviour is 
mainly due to axial deformations. For this kind of structure, 
a wide numerical investigation on a sample case shows the 
applicability and efficacy of the proposed procedure.

Damage detection based on experimental 
and numerical frequency values

Damage

In the present study, the damage in the beam is considered 
due to a notch which reduces the transversal section for the 
whole width and for a depth p, and it is assumed that the 
structural mass does not change. In these hypotheses, the 
damaged section can be modelled through a rotational spring 
whose flexural stiffness can be expressed in accordance with 
the formulation proposed by Chondros and Dimarogonas 
(1998) as follow:

where E is the elastic modulus of the beam, I is the area 
moment of inertia, ν is the Poisson coefficient, h is the thick-
ness of the beam and �1 is a non-dimensional coefficient 
which can be expressed, according to Chondros and Dima-
rogonas (1998), as

where � is the ratio between the depth of the cut p and the 
beam thickness h.

For a truss, whose dynamical behaviour is dominated by 
axial effects (Sect. 4), the damage is instead modelled in 
the following by means of a reduction (denoted by r) of the 
axial stiffness.

The damage identification procedure

The identification procedure discussed in this paper turns 
out the position and level of damage by minimising an error 
function that includes the measured values of the natural 
frequencies of the structure, both in the undamaged and 
damaged configurations (see also Cerri and Vestroni 2003; 
Greco et al. 2007 for other kinds and complexity of struc-
tures). The damage modifies in fact the natural frequencies, 

(1)k =
EI

6�(1 − �2)h�1

,

(2)
�1 = 0.6272�2 − 1.04533�3 + 4.5948�4 − 9.9736�5

+ 20.2948�6 − 33.0351�7 + 47.1063�8

− 40.7556�9 + 19.6�10,

depending on its position and level. As a consequence, if a 
database is built of all the values of the natural frequencies 
of the structure obtained varying the position and the level 
of damage in a realistic interval, the actual state of damage 
can be detected as the one for which the difference between 
numerical and experimental frequency values is minimum.

The damage detection, i.e. position s and damage level p 
for a beam, element number # and stiffness reduction r for 
a truss, is performed by an error function which is defined 
as the square difference between the non-dimensional vari-
ation of the natural frequencies experimentally evaluated 
and the one obtained through the finite element model of the 
examined structure. Two different functions are introduced, 
G(s, p) and G(#, r) for the damage detection of a beam and 
of a truss, respectively:

where N is the number of the experimentally identified 
natural modes, �U

i
 is the measured undamaged ith natural 

frequency, �D

i
 denotes the damaged ith natural frequency, 

while �U

i,FE
 is the ith frequency of the undamaged FE model; 

for a beam, �D

i,FE
(s, p) denotes the ith frequency of the FE 

model with a damage at position s and with level p, while 
for a truss �D

i,FE
(#, r) denotes the ith frequency of the FE 

model with a damage in the element number # and with a 
stiffness reduction r.

It must be underlined that the error functions have been 
defined as the least squared error between the percentage 
variation of the frequencies of the real structure and the one 
of the numerical models. In this way, the influence of pos-
sible differences between the FE model and the structure 
may be significantly reduced.

As discussed in Sect. 3.2, the accuracy of the identifica-
tion procedure is related to the number of natural frequencies 
taken into account in the Eq. (3).

Cerri and Vestroni (2003) and Greco et al. (2007) have 
taken the first three natural frequencies into account; while 
for the cases here considered, it is shown that, due to the 
presence of noise in the data, the accuracy of the procedure 
requires a higher number of modes.

A good criterion is, therefore, to choose the widest set of 
reliable experimental modal frequencies; some of the avail-
able frequencies may in fact be not relevant on the identifica-
tion problem (e.g., a crack in the inflection point of a given 
mode does not produce any variation of its frequency value). 
Moreover, increasing the number of the considered natural 
frequencies, the effects of noise can also be reduced.
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Two‑span beam

Damage detection for a multispan beam

To verify the accuracy of the described technique, the case 
of a two-span beam is considered. Namely, the beam has a 
rectangular transversal section 40 mm × 8 mm and a length 
of 100 cm for each span.

As a first step, it has been studied the accuracy of the 
procedure with regard to the number and combination of the 
natural modes included in the error function G; this analysis 
has been performed on pseudo-experimental (i.e. numeri-
cally simulated) data, that are discussed in Sect. 3.2.

The validation of the procedure by means of experimental 
tests is illustrated in Sect. 3.3.

Finally, the procedure has been extended, by means of a 
numerical investigation, to a damage configuration charac-
terised by two notches localised in two different sections of 
the beam (see Sect. 3.4).

The experimental investigation (see for further details in 
Bellizzotti 2009) has been performed in the Material Testing 
Laboratory of the Department of Engineering and Geology 
of the University “G. D’Annunzio” of Chieti-Pescara; a steel 
model of a two-span simply supported beam has been tested, 
with a total length of 2200 mm and a rectangular cross sec-
tion of 8-mm thick and 40-mm wide (see Figs. 1, 2). 

The vibrations of the beam have been recorded by means 
of 12 accelerometers, with ± 2g full scale range, installed in 
the points denoted as 1, 3, 4, 5, 6, 8, 11, 14, 15, 17, 18, 19 in 
Fig. 2; masses equivalent  to those of the accelerometers (16 
g each)  have been added in the other 7 measurement points, 
so to have an almost uniform mass distribution. The time-
histories of accelerations have been sampled at 1000 Hz.

The beam has been forced by applying impulsive loads 
with a hammer.

After dynamical tests on the undamaged beam, a dam-
aged configuration has been obtained by cutting with a disk 
saw a notch deep p = 4.2 mm at 501 mm from one of the 
beam ends.

The elastic linear finite element model (FEM) of the 
steel beam consists of 109 beam elements with a length of 
20 mm each. The elastic modulus E = 2.032 × 105 N/m2 has 
been selected to minimise the difference between numerical 
and measured frequencies of the first six FEM modes in the 
undamaged configuration, with assumed values of 7813 kg/
m3 for the mass density and 0.3 for the Poisson coefficient.

Starting from the aforementioned FE model and assuming 
that the notch is cut in a single section of the beam, it was 
chosen to discretize the beam with a step equal to 20 mm, 
thus obtaining 109 cross sections. Regarding the damage 
level, it was assumed that its depth may vary between 2 and 
7 mm (70 steps). On such basis, 7630 different damaged 
configurations have been considered in the data base of FE 
models.

Fig. 1   Experimental setup: a two-span beam and cutting of the notch; b detail of the notch; c, d zoom of the two spans of the beam equipped 
with accelerometers
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In accordance with Sect. 3.1, in each FE model, the dam-
aged section was substituted by a rotational spring whose 
stiffness is given by Eqs. (1) and (2); the frequency values 
of the first six natural modes in the damaged configurations 
were then estimated. Consequently, each element of the fre-
quency database is characterised by three indices: number of 
the natural mode, damage position and notch depth.

The FE model has also been used to generate the pseudo-
experimental data (i.e. numerically simulated).

The natural frequencies to be included in the error func-
tion have been evaluated, both in the experimental test and in 
the pseudo-experimental simulation, by means of an impul-
sive force applied in a single section.

The accuracy of the damage detection procedure

The influence of noise and of the errors connected with the 
operational modal analysis makes reasonable to perform the 
damage identification procedure considering 5–6 modes, 
even if, from a theoretical point of view, fewer modes may 
be sufficient for a good estimation of the damage, as it is also 
confirmed in this paragraph.

To verify the influence of the number and combination of 
the modes included in the error function, a numerical simu-
lation of the damaged case with s = 420 mm and p = 4.2 mm 
has been performed; to simulate the effects of a random 
measurement noise, the frequency values for the examined 
damaged case have been modified introducing an error rang-
ing between − 20% and 20% of the difference between dam-
aged and undamaged frequencies.

The damage detection has been performed varying the 
number of natural modes in Eq. (3) between 3 and 6, chosen 
among the lowest natural modes, as they are the ones that 
can be better identified by means of dynamical tests. The 
results of this analysis are shown in Table 1.

It can be observed that in the range of modes between 3 
and 5, the detection of the damage position is quite accurate 
and lightly influenced by the combination of the consid-
ered modes, with the highest error around 1.85% of the span 
length. On the contrary, the natural modes selected to be 
included in the error function G can highly influence the 

estimation of the damage level that, in fact, can even reach 
an error of about the 17% of the notch depth.

Quite obviously, the accuracy level is strictly connected 
to the value of the random noise. In fact, considering the 
same damaged configuration (s = 420 mm and p = 4.2 mm) 
and the same number and combination of natural modes, 
the damage estimation varies with the maximum value of 
the random noise.

In detail, three different cases have been considered: the 
case A in which the random noise ranges between − 20% 
and 20% of the difference between damaged and undamaged 
frequencies, the case B in which the random noise ranges 
between − 25% and 25%, and the case C in which the ran-
dom noise ranges between − 30% and 30% (see Table 2). As 
shown in Table 2, when the random noise value increases, 
the accuracy of the procedure decreases even when six natu-
ral modes have been considered. In this sense, the procedure 
could give good results only considering a higher number 
of natural modes, or repeating several times the dynamical 
tests and assuming as frequency values the mean ones, so to 
filter out the effects of random noise.

Experimental validation of the procedure

As it has been previously explained, the procedure has been 
validated detecting the damage in the aforementioned two-
span beam; in particular, the damage was obtained by cut-
ting the transversal section at s = 501 mm from the left end 
and considering two different cut depths, p = 3.2 mm and 
p = 3.8 mm, respectively.

To increase the visibility of the error function minima, in 
Fig. 3, the level curves of the dimensionless error function 
are plotted, obtained by dividing the error function G (see 
Eq. (3)) by its minimum value Gmin. As expected, in Fig. 3 
they are visible two minima which are symmetric respect to 
the internal support. The damage identification procedure 
of Sect. 2 is able to identify with good accuracy the dam-
age position (s = 500 mm, exact), while it overestimates the 
notch depth (p = 3.4 mm and 3.9 mm in Fig. 3b, d, respec-
tively, corresponding to an error of about 3–6%).

Fig. 2   Two-span beam: the possible positions of the accelerometers are shown by red points (measures in mm)
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Multiple damage

From a theoretical point of view, the abovementioned 
approach can be extended for detecting damage at multiple 
sites, even if the computational effort, due to the large num-
ber of the FE models related to the different combinations 
of position and level of damage, will be unacceptable for 
practical applications. As intermediate step, the two-span 
beam of Fig. 2 has been examined considering the damage 
localised into two different transversal sections.

In this case, the error function G is the natural extension 
of the one defined in Eq. (3), and it is obtained considering 

its dependence on four parameters: the two damage posi-
tions s̄1, s̄2 and the two damage levels p̄1, p̄2 . The mini-
mization procedure is performed through two steps: in the 
first step, for each s1, s2 pair, the domain G∗(s1, s2) of the 
minima of G for all the possible combinations of p1, p2 is 
built; in the second step, the two positions of damage s̄1, s̄2 
are detected evaluating the absolute minimum of G∗(s1, s2) . 
Once evaluated the positions s̄1, s̄2 of damage, the depths of 
the notches p̄1, p̄2 are estimated by minimising the function 
G(s̄1, s̄2, ., .) . To verify the performance of the proposed pro-
cedure, a numerical simulation of the two-span beam affected 

Table 1   Data obtained by 
considering the FE model of 
the damaged configuration 
s = 420 mm and p = 4.2 mm 
and random noise of ± 20% 
of the difference between 
damaged and undamaged 
frequencies. Results of the 
damage identification for 
different choices of the number 
and combination of the 
examined natural modes. The 
presence of a bullet indicates 
that the correspondent 
frequency has been included 
in the evaluation of the error 
function G, see Eq. (3) 

Considered frequencies in Eq. (3) Identified damage Error

N f1 f2 f3 f4 f5 f6 s (mm) p (mm) Δs/L (%) Δp (%)

6 • • • • • • 420 4.20 0.00 0.00
5 • • • • • 420 4.20 0.00 0.00
5 • • • • • 420 4.10 0.00 − 2.38
5 • • • • • 420 4.10 0.00 − 2.38
5 • • • • • 400 4.30 − 0.91 2.38
5 • • • • • 380 3.50 − 1.82 − 16.67
5 • • • • • 380 3.80 − 1.82 − 9.52
4 • • • • 420 4.20 0.00 0.00
4 • • • • 440 4.10 0.91 − 2.38
4 • • • • 420 4.10 0.00 − 2.38
4 • • • • 400 4.30 − 0.91 2.38
4 • • • • 400 4.30 − 0.91 2.38
4 • • • • 380 4.40 − 1.82 4.76
4 • • • • 380 3.80 − 1.82 − 9.52
4 • • • • 400 4.40 − 0.91 4.76
4 • • • • 380 4.00 − 1.82 − 4.76
4 • • • • 400 3.90 − 0.91 − 7.14
3 • • • 440 4.20 0.91 0.00
3 • • • 380 4.00 − 1.82 − 4.76
3 • • • 380 3.80 − 1.82 − 9.52
3 • • • 380 4.40 − 1.82 4.76

Table 2   Pseudo-experimental data, generated through the FE model 
with s = 420 mm and p = 4.2 mm and three different values of random 
noise: case A, ± 20% of the difference between damaged and undam-
aged frequencies; case B ± 25%; case C ± 30%. Results of the damage 

identification for different choices of the number and combination of 
the examined natural modes. The presence of a bullet indicates that 
the correspondent frequency has been  included in the evaluation of 
the error function G, see Eq. (3)

Case Considered frequencies in Eq. (3) Identified damage Error

N f1 f2 f3 f4 f5 f6 s (mm) p (mm) Δs/L (%) Δp (%)

A 6 • • • • • • 420 4.20 0.00 0.00
A 5 • • • • • 420 4.20 0.00 0.00
B 6 • • • • • • 420 4.20 0.00 0.00
B 5 • • • • • 420 4.30 0.00 2.38
C 6 • • • • • • 420 4.30 0.00 2.38
C 5 • • • • • 420 4.30 0.00 2.38
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by a double damage (s1= 960 mm, p1= 3.2 mm, s2= 620 mm, 
p2= 4.2 mm) has been performed, and the results have been 
plotted in Fig. 4.

Nevertheless, the described step-by-step approach to the 
minimization procedure cannot guarantee, from a theoreti-
cal point of view, that the estimated damage parameters 
s̄1, s̄2 , p̄1, p̄2 correspond to the absolute minimum of the 
error function G. The global minimum has, therefore, to be 
checked in the neighbourhood of the point G(s̄1, s̄2, p̄1, p̄2) , 
taking into account all the possible combinations of the dam-
age parameters; in all the examined cases, the results of the 
abovementioned procedure have been confirmed.

To evaluate the influence of the random noise, the 
frequency values of the 6 natural modes have then been 
contaminated with ± 0.3% error, which is about a quarter 

of the mean differences between the undamaged and dam-
aged frequency values. As Fig. 4 shows, in the examined 
damaged configuration, this approach is able to give an 
accurate estimation of the damage, and this seems a quite 
promising result for the application of the proposed pro-
cedure to multiple damage configurations.

In Table 3, the results of the damage detection for the 
double damaged configuration s1= 1240 mm, p1= 3.2 mm, 
s2= 620 mm, p2= 4.2 mm are shown for three different lev-
els of the random noise: (1) exact pseudo-experimental 
frequencies; (2) pseudo-experimental frequencies with a 
± 0.10% error; (3) pseudo-experimental frequencies with 
a ± 0.25% error, which is about a quarter of the mean dif-
ferences between the undamaged and damaged frequency 
values.
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Fig. 3   Level curves of the error function G. Experimental data, 
damage at the location s = 501 mm with two different notch depths 
p. For each case, G(s,  p) is normalised to its minimum value. 

a p = 3.2  mm; b zoom at the local minimum s = 500   mm and 
p = 3.4 mm; c p = 3.8 mm; d zoom at the local minimum s = 500 mm 
and p = 3.9 mm
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Fig. 4   Double damaged 
configuration (s1 = 960 mm, 
p1 = 3.2 mm, s2 = 620 mm, 
p2 = 4.2 mm); pseudo-exper-
imental frequencies contami-
nated with ± 0.3% error, due 
to possible noise in experi-
mental data; detected damage 
configuration: s1 = 950 mm, 
p1 = 4.0 mm, s2 = 630 mm, 
p2 = 3.7 mm
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Table 3   Double damaged configuration (s1 = 1240 mm, p1 = 3.2 mm, 
s2 = 620  mm, p2 = 4.2  mm) and identified damage configuration for 
three cases: case A pseudo-experimental frequencies; case B pseudo-

experimental frequencies contaminated with ± 0.10% error; case C 
pseudo-experimental frequencies contaminated with ± 0.25% error

Identified damage

s1 (mm) p1 (mm) s2 (mm) p2 (mm)

(A) Pseudo-experimental data 1240 3.20 620 4.20
(B) Pseudo-experimental data ± 0.10% error 1240 3.20 620 3.20
(C) Pseudo-experimental data ± 0.25% error 1220 3.20 600 3.20

Fig. 5   Simply supported steel plane truss
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Numerical investigation on trusses

For plane trusses consisting of rods connected to each 
other by hinges, as the one in Fig. 5, global and local 
modes can be distinguished, with extensional or flexural 
deformations, respectively.

For the simply supported steel plane truss in Fig. 5, 
Table 4 reports cross-sectional characteristics of the rods; 
elastic modulus E = 200000 MPa and density ρ = 7850 kg/
m3 have been also assumed.

In the following it will be assumed a damage in one 
truss element, that both modifies the extensional and flex-
ural stiffness, and therefore affects both global and local 
modes.

Different sensors distributions are required to evaluate the 
experimental modal frequencies of global and local modes. 
While the structural response in the nodal points allows 
to obtain the frequencies of global modes (i.e. the modal 
properties used in the procedure described here) and their 
modal shapes (not used in the procedure described here, but 
included in other techniques based on modal properties (Liu 
1995; Liu and Yang 2006)), the experimental evaluation of 
local modes requires a more close distribution of measure-
ment sensors, including sensors in intermediate points of 
the truss elements. In fact, although all natural modes (both 
global and local ones) contribute from a theoretical point of 
view to the structural response and can, therefore, be both 
revealed by sensors in nodal points of the truss, in the writ-
ers’ experience, the small contribution of local modes to the 
frequency spectrum identified from measured response in 
nodal points can be (and is) in practice masked by measur-
ing errors or noise.

Therefore, it has been assumed here that only global fre-
quencies (Fig. 6) are available both in the damaged and in 
the undamaged cases, derived by nodal time-histories of the 
response.

Table 4   Cross-sectional characteristics of plane truss in Fig. 5

# Truss member Section type A (m2)

1–8 IPE 360 7.27 × 10−3

9–24 2L120 × 12 5.508 × 10−3

25–31 IPE 360 7.27 × 10−3

Fig. 6   First 12 natural modes of the plane truss in Fig. 5 (undamaged case)
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Following a procedure analogous to the one described 
in Sect. 2 for beams, an undamaged FE model (denoted as 
reference model) and a database of damaged FE models have 
been considered. In particular, 248 FE models have been 
built, obtained considering the damage localised in each 
one of the 31 truss elements (the symmetry of the structure 
has been taken into account, see Fig. 5) and varying the 
extensional stiffness reduction in the range 5–40% with a 
step equal to 5% (8 different damage levels). The database 
is composed by 2976 elements (the first 12 frequencies for 
each damaged configuration).

For the reasons already discussed, the numerical investi-
gation described in the following simulates an experimental 
campaign based on measuring sensors located in the nodes 
of the truss, that allow to identify—with classical procedures 
in the frequency domain—the global modes of the truss, i.e. 
those modes related to extensional behaviour of the truss 
elements.

According to the measuring setup assumed, on the other 
hand, the frequency variation of local modes is considered 
here as unidentifiable, and therefore, no reduction is consid-
ered for the flexural stiffness of the damaged truss element. 
The frequency variations in the examined damaged configu-
rations relative to the undamaged state are plotted in Fig. 7.

As a sample case, a stiffness reduction of 35% is con-
sidered in the truss element #15, i.e. the fourth diagonal 
member from the left end of the truss (Fig. 5).

To simulate a realistic experimental result, the undam-
aged and damaged “measured” natural frequencies have 
been obtained by adding to the exact undamaged and 

damaged frequencies a random error up to ± 0.2 Hz, and ten 
different realisations of such an error have been considered 
in the following.

According to the procedure already discussed in Sect. 2, 
the following error function is assumed

that includes the undamaged ( �U

i
 ) and damaged ( �D

i
 ) natural 

frequencies of the first 12 global modes for any simulated set 
of “measures” (here numerically simulated, as said before, 
by adding a sample realisation of the random error to the 
exact damaged and undamaged frequencies); the difference 
between such frequencies is compared, in the error function, 
with the difference between the corresponding exact values 
of undamaged ( �U

i,FE
 ) and damaged frequencies ( �D

i,FE
(#, r) ) 

in a database of FE models, representing all possible dam-
aged configurations in a realistic range (one truss element 
at a time, extensional stiffness reduction between 5 and 40% 
with an increment step of 5% in the numerical investigation 
here reported).

As shown by the error function plotted in Figs. 8, 9, 10, 
11, 12, 13 and 14, for this kind of structures, the proposed 
procedure is quite sensitive to measuring errors.      

While an exact knowledge of both undamaged ( �U

i
 ) and 

damaged ( �D

i
 ) natural frequencies—here discussed only 

as an ideal target and reported in Fig. 8—allows an exact 
identification of the damaged truss element (#15) and of the 
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Fig. 7   Variations of the frequency values relative to the undamaged state, normalised to the undamaged frequency. The frequencies have been 
evaluated by means of the FE models for each possible damaged configuration (# truss element and r stiffness reduction)
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damage level (reduction of extensional stiffness r = 35%), 
the presence of “measuring” errors influences the identified 
solution, as shown for the sample case in Fig. 9, correspond-
ing to measuring errors on the first 12 frequencies ranging 
between ± 0.2 Hz, i.e. for accurate but realistic experimen-
tal data. In this sample case, the error function shows in 
fact several local minima, that cannot allow to confine the 
region of the truss that includes the damaged element; more 

generally, it has been found that the damage detection based 
on a single set of simulated frequencies (i.e. a sample case 
of random error added to the exact frequencies) can be less 
or more accurate depending on the specific “noise” of that 
realisation, and therefore it is not reliable.

Quite obviously, the damage is better identified for 
smaller “measuring” errors (see Fig. 10, where the errors 
added to natural frequencies have been halved), while larger 

Fig. 8   35% of stiffness reduction r in the truss element #15. Error function G(#, r) evaluated considering the exact pseudo-experimental data, 
both for undamaged and damaged configurations (no random noise). The exact minimum (#15 with r = 35%) is of course identified
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“measuring” errors imply an even worse identification of 
damage (see Fig. 11, where the errors added to natural fre-
quencies have been increased).

To overcome this inconvenience, the statistical approach 
discussed in the following has been proven to be effective; it 
uses, both in the undamaged and in the damaged case, multi-
ple experimental measures (namely “pseudoexperimental”, 
i.e. numerically generated, in the cases discussed here).

For the same case of Fig. 9 (“measuring” errors rang-
ing between ± 0.2 Hz), ten different random sequences 
of “noise” have been considered both for the undamaged 
and damaged frequencies, evaluating for each of them the 
error function for all the damaged frequencies in the FEM 
database.

Although, as already discussed, the error function for 
a single pseudo-experimental “measure” does not allow 
an accurate damage identification, the random nature of 

Fig. 9   35% of stiffness reduction r in the truss element #15. Error 
function G(#, r) normalised to its minimum value and evaluated con-
sidering “pseudo-experimental” data, both for undamaged and dam-
aged configurations, contaminated with an error of maximum value 

± 0.2  Hz (random noise). Several minima can be observed (#13 
with r = 30–35%, #15 with r = 25–35%, #16 with r = 40%, #19 with 
r = 20–30%), including the exact one (#15 with r = 35%)
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measuring errors allows to filter out such uncertainties when 
a mean error function is considered, obtained as an aver-
age of the error functions evaluated for each random noise 
sequence.

As shown in Fig. 12, in fact, the damage identification 
is in this case quite accurate (compare with Fig. 9) for 

measuring errors ranging between ± 0.2 Hz, and keeps 
maintaining an acceptable accuracy also for larger ran-
dom errors, when the identification based on a sample case 
may be completely unreliable (e.g. Fig. 13, with measuring 
errors ranging between ± 0.3 Hz; compare with Fig. 11).

Fig. 10   35% of stiffness reduction r in the truss element #15. Error 
function G(#, r) normalised to its minimum value and evaluated con-
sidering “pseudo-experimental” data, both for undamaged and dam-

aged configurations, contaminated with an error of maximum value 
± 0.1 Hz (random noise). Several minima can be observed (#15 with 
r = 30–35%) around the exact value

Fig. 11   35% of stiffness reduction r in the truss element #15. Error 
function G(#, r) normalised to its minimum value and evaluated con-
sidering pseudo-experimental data, both for undamaged and dam-
aged configurations, contaminated with an error of maximum value 

± 0.3 Hz (random noise). Several minima can be observed (e.g. #13 
with r = 25–40%, #16 with r = 40%, #19 with r = 15–30%, and so on), 
not including the exact one (#15 with r = 35%)
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On the other hand, systematic errors on the measured 
frequencies (i.e. all in excess or in fault of a given quan-
tity) do not imply relevant effects on the damage location, 
while of course they affect the identified damage level. 
An example is shown in Fig. 14, where the frequencies 
evaluated by means of the FE model with a damage in 
the diagonal element #15 and with a reduction stiffness 
of 35% have been contaminated with a systematic error 
of + 0.1 Hz: as expected by observing the structure of the 
error function (Eq. 4), the damage location is correctly 

found (diagonal element #15), while the procedure obvi-
ously underestimates the damage level as a consequence 
of systematic frequencies overestimation.

Although the numerical results discussed so far cannot 
yet be considered as general, as they need to be validated 
by means of a wider numerical and experimental analy-
sis, in the writer’s opinion, they confirm the possibility 
of extending to truss structures the proposed procedure, 
already experimentally validated for multispan beams 
(Sect. 3).

Fig. 12   35% of stiffness reduction r in the truss element #15. Mean 
error function G(#, r) normalised to its minimum value and evaluated 
considering ten sample cases of pseudo-experimental data, both for 

undamaged and damaged configurations, contaminated with an error 
of maximum value ± 0.2  Hz (random noise). The exact minimum 
(#15 with r = 35%) is identified
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Conclusions

The paper deals with the identification of localised damage 
in linear elastic structures through measured dynamical 
parameters.

It analyses from a numerical and an experimental point 
of view multispan beams and trusses. The damage detec-
tion considers the possibility to monitor such structures by 
performing dynamic tests at the initial service conditions, 
i.e. intact structure, and during the time when the damage 
may occur. In this way, the natural frequencies at different 

Fig. 13   35% of stiffness reduction r in the truss element #15. Mean 
error function G(#, r) normalised to its minimum value and evaluated 
considering ten sample cases of “pseudo-experimental” data, both for 

undamaged and damaged configurations, contaminated with an error 
of maximum value ± 0.3 Hz (random noise). Several minima can be 
observed (#15 with r = 30–40%) around the exact value (r = 35%)

Fig. 14   35% of stiffness reduction r in the truss element #15. Error 
function G(#, r) normalised to its minimum value and evaluated con-
sidering pseudo-experimental data, both for undamaged and damaged 

configurations, contaminated with a systematic error of + 0.1 Hz. The 
damaged element (#15) is correctly identified, while the damage level 
is underestimated (r = 25–30%, instead of 35%)
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times may be evaluated and utilised to identify the occur-
rence of damage.

To verify the accuracy and the limits of the procedure, 
dynamic tests have been carried out on a steel beam with 
three simple supports, two at the ends and one at the mid-
dle section. In detail, the model was loaded by the impact 
of a hammer (Bellizzotti 2009). The beam was considered 
damaged in a single transversal section, such condition was 
described in the FE model of the structure by a spring whose 
rotational stiffness was evaluated in accordance with Eqs. (1) 
and (2); in the experimental tests described in Sect. 3, the 
notch is obtained with a disk saw.

Location and severity of damage are found (see Sect. 2.2) 
by minimising (in the least squares sense) an error func-
tion that considers the difference of some modal frequencies 
between the undamaged and damaged configurations (six 
in the sample case of Sect. 3) and compares them with the 
frequency variations for a wide set of damaged configura-
tions, which are obtained varying the location and severity 
of the damage. Based on experimental results, Sect. 3 also 
discusses the possible extension of the proposed procedure 
to multiple damages, in the perspective of a future research 
activity.

Section 4 deals with the application of such procedure 
to truss-like structures, dominated by axial deformations. 
The accuracy of the damage detection procedure is analysed 
by applying it to a single bay simply supported plane truss 
and by considering pseudo-experimental data contaminated 
with errors of different levels, introduced to simulate random 
noise.

As shown in other papers of the writers’, such procedure 
can also be extended to multispan and multi-floor framed 
structures, where only higher-order modes are signifi-
cantly affected by local damage, by means of a substructure 
approach (Bellizzotti 2009; Sepe and Bellizzotti 2009; Sepe 
et al. 2009; Diaferio and Sepe 2016). In Sepe and Bellizzotti 
(2009), the possibility of applying such a procedure when 
the damaged span of a multispan beam is not directly acces-
sible is also discussed.
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