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Abstract
The ideal performance of seismic isolating systems during the past earthquakes has proved them to be very useful in protect‑
ing structures against earthquakes. The cyclic loading experimental tests are an important part in the process of completing 
the design of the isolators, yet they are very expensive and time consuming. Using the accurate analytical modeling of hys‑
teresis tests and knowing the limitations and the amount of error of the finite elements model and its effect on designing the 
isolated structure make it possible to reduce the financial and time expenses involved in designing seismic isolators along 
with experimental tests. In the present study, the cyclic loading of two different isolating systems, namely, the high damping 
rubber bearing (HDRB) and lead rubber bearing (LRB) have been modeled and analyzed in ABAQUS and the outcomes were 
compared with the experimental results attained by other researchers. Regarding the fact that the most important and compli‑
cated component of the elastomeric isolating system is rubber, it was modeled using various strain energy functions. Other 
factors affecting the finite elements models of elastomeric isolators were also studied. After comparing the effective stiffness 
of the experimental sample with the analytical model of HDRB, the Yeoh function had the best performance in determining 
the effective stiffness of the isolating system with an error of less than 7%. In studying LRBs, too, three types of bearings 
with different dimensions and lateral strain values were studied; the polynomial function in shear strain value of 150% had 
the best performance in estimating effective stiffness and damping with errors of less than 3% and 18%, respectively.

Keywords  Cyclic loading test · High damping rubber bearing · Lead rubber bearing · Finite element analysis · Strain 
energy function · Analytical modeling

Introduction

To design an elastomeric isolating system, first the size and 
characteristics of the isolator such as its stiffness and effec‑
tive damping are determined based on the type and features 
of the structure as well as the instructions in related codes 
and the tables suggested by the manufacturers. Afterwards, 
the first sample of isolators is produced by the manufac‑
turer. Regarding the importance of proper performance of 
these bearings, they must undergo some cyclic loading tests 
so that their force–displacement behavior can be acquired. 

Among the most important factors that should be reported in 
the results of such tests are (Naeim and Kelly 1999):

•	 design displacement;
•	 effective stiffness in the design displacement;
•	 amount of energy damping in each cycle at the design 

displacement.

After delivering the accurate values from lab tests, the 
isolator and the structure’s design are modified. These 
tests, although having lots of significant advantages, are 
very expensive. Moreover, during the communication cycle 
between the lab and the designers before reaching accept‑
able results, a lot of time and money is spent. In the present 
study, we tried to examine high damping rubber bearings 
(HDRBs) and lead rubber bearings (LRBs) using the finite 
element software (ABAQUS) to:
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1.	 Investigate the possibility of reducing the expenses of 
manufacturing isolators through modeling the hysteresis 
cycle tests.

2.	 Exactly know the effective factors in the resulting error 
and the contribution of each of them in that.

3.	 Learn about the performance of seismic isolating sys‑
tems before running experimental tests.

4.	 Control the future experimental tests.
5.	 Have the ability to build some new seismic isolators and 

model their tests using the results of the present study.

In the past, researchers have used numerical methods as 
a seismic isolator analysis tool. In all of these researches, 
the main goal was to obtain precise and inexpensive models 
for the analysis of isolators by numerical methods (Asl et al. 
2014; Ohsaki et al. 2015; Mishra et al. 2013; Talaeitaba et al. 
2019).

Finite element modeling

Modeling the seismic isolators using the finite element soft‑
ware program is generally done in two ways. In the first, 
the whole isolating part and the structures under and over 
it are modeled in the form of concentrated mass, spring, 
and damper, then the whole system behavior is assessed. In 
the second method, however, only the isolating system is 
modeled and tests on it were performed (Suhara et al. 1992; 
Martelli et al. 1992).

Modeling methods of the parts

At the beginning of the analysis process, each element can 
generally be modeled in three forms: two-dimensional, 
three-dimensional, and axisymmetrical. Two-dimensional 
modeling has a lot of limitations and was popular in the past 
decades regarding the hardware possibilities of those days 
(Imbimbo and De Luca 1998). Most cases of modeling now 
are three-dimensional or axisymmetrical. Forni et al. state 
that although in axisymmetrical models the solution pro‑
cess takes less time, they will not be very accurate for shear 
strains of more than 150% and three-dimensional models 
are more efficient for horizontal deformations (Talaeitaba 
et al. 2019).

Introducing materials

The most important step in modeling an elastomeric isola‑
tor is defining the materials especially rubber. In this sec‑
tion, the properties of the materials used in the model are 
explained.

Steel

The main role of the steel in rubber isolators is preventing 
high strains under vertical loads. The best-known materials 
for modeling are metals. Steel was defined as an elastoplastic 
material with characteristics presented in Table 1 (Mori et al. 
1996; Doudoumis et al. 2005).

Lead

Lead has a crystal structure which will change as displace‑
ment increases. Lead reaches the yield under shear force 
in relatively low tensions of about 8–10 MPa and shows a 
stable hysteresis behavior and never reaches fatigue due to 
the repeated yields under the lateral cyclic dynamic loads 
(Trevor 2001). Lead is defined as an elastoplastic material 
according to Table 2.

Rubber

The elastomeric materials have an almost linear behavior in 
small strains; however, their behavior is highly non-linear 
and elastic in large strains. This non-linear behavior causes 
the material’s parameters including the shear modulus and 
elasticity modulus to change as the strain increases (Guo 
and Sluys 2008). The rubber’s shear modulus and damping 
depend on the load size, temperature changes, and the strain 
history (Charlton et al. 1993).

In the finite element program, materials whose 
stress–strain curve in large deformations is non-linear and 
elastic are called hyperelastic materials. Polymers such as 
rubber are among these (APASmith 2007).

To model these materials, they can be assumed to be iso‑
tropic, isothermal, elastic, and incompressible. The effect of 
loading frequency and time on their behavior is also ignored 
(Salomon et al. 1999; Venkatesh and Srinivasa Murthy 2012).

Hyperelastic materials are described in terms of “strain 
energy potential” (U) which defines the strain energy stored 
in the material per unit of reference volume (volume in the 
initial configuration) as a function of the strain at that point 
in the material (APASmith 2007).

Table 1   Steel properties (Imbimbo and De Luca 1998)

Modulus of elasticity 210,000 MPa
Poisson’s ratio 0.3
Yield stress 240 MPa

Table 2   Lead properties (Doudoumis et al. 2005)

Modulus of elasticity 18,000 MPa
Poisson’s ratio 0.43
Yield stress 19.5 MPa
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These functions have the following characteristics (Garcia 
et al. 2005):

1.	 The stress–strain function of the model will not change 
for frequent loadings.

2.	 The stress–strain function is fully reversible.
3.	 The materials are assumed to be completely elastic with 

no permanent deformation.

There are several forms of strain energy potentials avail‑
able in Abaqus to model approximately incompressible iso‑
tropic elastomers which are listed below. In the presented 
equations, I1, I2, and I3 are the deviatoric strain invariants. 
Strain energy functions are defined by these coefficients. 
Also, Je1 is the elastic volume ratio (APASmith 2007).

i. Mooney–Rivlin form

where U is the strain energy per unit of reference vol‑
ume. C01, C10, D1 are the temperature-dependent material 
parameters.

ii. Neo-Hookean form

where D1 and C10 are the temperature-dependent material 
parameters.

iii. Ogden form

where �i, �i,Di are the temperature-dependent material 
parameters and N is the material parameter.

iv. Yeoh form

where Ci0 and Di are the temperature-dependent material 
parameters.
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where � , �m and D are the temperature-dependent material 
parameters. The locking stretch �m can be obtained from the 
limiting chain stretch ( �lim) , which is the stretch at which 
the stress starts to increase without any limit (see Fig. 1; 
Bergstrom 2002). λm is determined according to the Eq. (6).

 
vi. Polynomial form

where Cij and Di are the temperature-dependent material 
parameters. N is a material parameter.

vii. Reduced polynomial form
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Fig. 1   Determining the limiting chain stretch (λlim) (Bergstrom 2002)
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In order for the design predictions to be relevant, it is 
essential that the materials’ properties are determined under 
test conditions appropriate for the service conditions. Where 
combinations of test data are supplied to derive model coef‑
ficients, these data must be determined at the same tem‑
peratures and strain rates (Garcia et al. 2005). These tests 
specify the force–displacement relation of the material in 
four different modes of deformation which follow (Charlton 
et al. 1993):

1.	 Uniaxial tension and compression test.
2.	 Equibiaxial tension and compression test
3.	 Planar shear test (also known as pure shear).
4.	 Volumetric tension and compression.

All tests must be done on the same material and at the 
same temperature. The most commonly performed experi‑
ments are uniaxial tension, uniaxial compression, and pla‑
nar tension. After running these tests and determining the 
strain–stress relation in each of the above modes, the results 
are fed into the program and the program matches the results 
with the function; then the adapted curve is exhibited and the 
required coefficients are determined (APASmith 2007). In 
other words, for each of the above tests, the test is simulated 
with ABAQUS software, and then the required parameters 
of the simulation are extracted.

Modeling the high damping rubber bearing 
(HDRB)

The high damping rubber bearing under study is selected 
from the research done by Yoo et al. in the Korea Atomic 
Energy Research Institute (Doudoumis et al. 2005; Yoo et al. 
2002).

Geometry

The model is three-dimensional with the following attributes 
presented in Table 3.

Defining materials

The high damping rubber bearing consists of two materials: 
rubber and steel. Steel is defined as an elastoplastic mate‑
rial with the properties given in Table 1. To model the rub‑
ber, uniaxial, biaxial, and planar shear tests were carried out 
(Yoo et al. 2002; Busfield and Muhr 2003; Tun Abdul Razak 
Research Centre 2002; Bradley et al. 2001) whose results are 
presented in Figs. 2, 3 and 4. The initial shear modulus for 
rubber is 0.4 MPa.

Regarding rubber tests’ results and by matching curves 
with each of the strain energy functions, the coefficients for 
each function were determined as Table 4.

Afterwards to specify the amount of error in each model, 
the value of shear modulus for each function was compared 
with its experimental value.

As seen in Table 5, the best estimation of the initial shear 
modulus was done by van der Waals and Yeoh functions. 
After that comes Arruda–Boyce and polynomial (N = 2), 
Ogden (N = 3), neo-Hookean and Mooney–Rivlin functions 
in order of estimation accuracy. Other than the functions of 

Table 3   Geometric features of the HDRB (Doudoumis et al. 2005)

Diameter of isolator (mm) 125
Thickness of rubber sheet (mm) 2.5
Number of rubber sheets 12
Total rubber thickness (mm) 30
Initial shape factor 12
Thickness of inner steel plates (mm) 1
Number of steel plates 11
Thickness of top and bottom loading plates (mm) 5

Fig. 2   Rubber’s uniaxial test (Yoo et  al. 2002; Busfield and Muhr 
2003; Tun Abdul Razak Research Centre 2002; Bradley et al. 2001)

Fig. 3   Rubber’s biaxial test (Yoo et  al. 2002; Busfield and Muhr 
2003; Tun Abdul Razak Research Centre 2002; Bradley et al. 2001)
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Yeoh and polynomial (N = 2) which have estimated the origi‑
nal shear modulus below the real value, all other functions 
had a higher estimation than its true measure.

Loading

According to the experimental processes on the model, in 
the first step, a vertical load of 50 kN was applied to the 
model uniformly distributed on top. In the second step, as 
the load exertion continues, a shear displacement of 60 mm 
was applied to the system. The amount strain due to this 
shear displacement was equal to 200%.

Meshing

The Hex element shape was used for meshing the model in 
ABAQUS. C3D8H and C3D8R elements of the software 
were used to model rubber sheets and steel plates, respec‑
tively. The size of the meshes was assigned 4.5 units and 
the whole enmeshed elements were as many as 18,700. The 
meshed HDRB and its deformation shape under shear strain 
are shown in Fig. 5.

Solution method

To analyze the finite elements model, the static general anal‑
ysis was used; due to the high amount of displacement, the 
non-linear geometry was also activated.

The analysis results

After analyzing the models, the numerical hysteresis loops 
were attained which are shown in Figs. 6 and 7 along with 
the experimental hysteresis loop for comparison.

Fig. 4   Rubber’s planar test (Yoo et al. 2002; Busfield and Muhr 2003; 
Tun Abdul Razak Research Centre 2002; Bradley et al. 2001)

Table 4   Coefficients of the 
strain energy functions for the 
rubber in HDRBs

Function C
10

C
01

C
11

C
20

C
02

C
30

Mooney–Rivlin 0.428550 − 0.068869 – – – –
Neo-Hookean 0.232304 – – – – –
Yeoh 0.197738 – – 0.002146 – 0.000091
Polynomial (N = 2) 0.195291 − 0.013261 0.000203 0.006484 − 0.000179 –
Function � �m a � – –
van der Waals 0.401558 4.381771 0.140441 0 – –
Arruda–Boyce 0.393941 3.592024 – – – –
Function �

3
�
2

�
1

�
3

�
2

�
1

Ogden (N = 3) 0.092292 4.024120 0.266487 − 2.827823 0.063751 3.212091

Table 5   Amount of error in 
calculating the model’s initial 
shear modulus in comparison to 
the experimental value

Function Model’s shear modulus 
(MPa)

Experimental shear modulus 
(Salomon et al. 1999) (MPa)

Error percentage 
(%)

Mooney–Rivlin 0.72 0.40 80.00
Neo-Hookean 0.46 0.40 15.00
Ogden (N = 3) 0.45 0.40 12.50
Yeoh 0.40 0.40 0.00
Arruda–Boyce 0.41 0.40 2.50
Polynomial (N = 2) 0.38 0.40 − 5.00
van der Waals 0.40 0.40 0.00

Fig. 5   HDRB model and its deformed shape
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As seen in Figs. 6 and 7, in modeling HDRB the resulted 
hysteresis loop is linear. Therefore, the amount of energy 
damping in the isolating system cannot be measured. To deter‑
mine the amount of error resulting from each hysteresis loop, 
the effective stiffness values of the models were calculated 
using Eq. (12) and compared to the experimental results in 
Table 6.

where F+ is the corresponding force with the maximum 
displacement, and F− is the corresponding force with the 
minimum displacement.

What is concluded from the hysteresis loops and Table 6 
is that the effective stiffness of the experimental model is 

(12)Keff =
F+ − F−

Δ+ − Δ−
,

generally less than that of the analytical models. The best 
result is for Yeoh function. Arruda–Boyce, van der Waals, 
and Ogden (N = 3) functions come next, respectively. These 
four functions have an error less than 10%.

Modeling the lead rubber bearings (LRB)

For lead rubber bearings (LRBs), three samples were mod‑
eled. The first model was chosen from the study of Dou‑
doumis et al. (2005). The second and third models were 
selected from the paper presented by Nersessyan et  al. 
(2001). The interpretation of the modeling process and the 
results are shown in the following.

Fig. 6   Experimental and numer‑
ical hysteresis loops resulted 
from Mooney–Rivlin, polyno‑
mial (N = 2), van der Waals and 
Yeoh functions for HDRBs

Fig. 7   Experimental and numer‑
ical hysteresis loops resulted 
from neo-Hookean, Ogden 
(N = 3) and Arruda–Boyce func‑
tions for HDRBs
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Geometry

All three models are three-dimensional having the charac‑
teristics shown in Table 7.

Defining material

LRBs consist of three main materials: rubber, steel, and lead. 
Steel was defined according to Table 1 and lead according to 
Table 2. The rubber’s properties are listed in Table 8.

Regarding the fact that there are not any experimental 
results for quadruple tests on rubber for determining the 
coefficients of the strain energy functions, the required tests 
were done by the finite element software itself. To do this, 
the software instructions state that there must be the results 
of at least two tests. Regarding the fact that rubber is usu‑
ally considered incompressible, there is no need to do the 
volumetric test. In this study, the tests that have been done 
for rubber are the uniaxial and planar shear tests.

To do the uniaxial tension test, the rubber whose proper‑
ties are presented in the standard DIN53504-S2 was used. 
The dimensions of the model are shown in Fig. 8 (Trevor 
2001). The model’s thickness is 2 mm.

The sample was modeled two dimensionally and the 
rubber was defined using the Arruda–Boyce function. To 
use this function, the initial shear modulus and the amount 
of locking stretch ( �m ) are needed. Regarding the amount 
of isolator’s strain and the vast range of numerical tests, 
3 seems the proper value for �m . This amount, which was 
determined by trial and error, was a premise that the speed 
and precision of the solution would be higher.

To analyze the model, the implicit dynamic analysis 
was used, and the model was considered as planar tension. 
Therefore, the CPS4R element was used for meshing. In 
Fig. 9, the created model of rubber as well as its deformed 
shape under uniaxial tension is presented.

After analyzing the model, the strain–stress curve for rub‑
ber in its central zone was attained.

Table 6   Comparing the 
calculated effective stiffness 
with the experimental results in 
HRDBs

Samples F+ (KN) Δ+ (mm) F− (KN) Δ− (mm) Keff (KN/mm) Error percentage

Experimental 9.770 63.151 − 10.712 − 61.766 0.164 –
Mooney–Rivlin 17.279 60.000 − 17.040 − 59.121 0.288 75.72%
Neo-Hookean 11.199 60.000 − 10.594 − 56.625 0.187 13.98%
Ogden (N = 3) 10.833 60.000 − 10.124 − 56.625 0.180 9.60%
Yeoh 10.555 60.000 − 9.861 − 56.625 0.175 6.78%
Arruda–Boyce 10.535 60.000 − 10.465 − 59.625 0.176 7.08%
Polynomial (N = 2) 11.252 60.000 − 10.392 − 56.625 0.186 13.19%
van der Waals 10.663 60.000 − 10.589 − 59.625 0.178 8.36%

Table 7   Geometrical specifications of the LRB models

Isolator characteristics First model (Imbimbo and De 
Luca 1998)

Second model (Bergstrom 
2002)

Third model 
(Bergstrom 
2002)

Diameter of top and bottom loading plates (mm) 601 450 180
Thickness of top and bottom loading plates (mm) 31.8 23 15
Diameter of top and bottom fixing plates (mm) 431 – –
Thickness of top and bottom fixing plates (mm) 25.4 – –
Diameter of rubber sheets (mm) 431 450 180
Thickness of rubber sheets (mm) 9.5 4 3
Number of rubber sheets 11 44 21
Diameter of steel plates (mm) 431 450 180
Thickness of steel plates (mm) 3 3 1
Number of steel plates 10 43 20
Diameter of lead core (mm) 116.8 90 25.4
Height of lead core (mm) 185 305 83
Lead core yield stress (MPa) 6 7 6
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To do the planar shear test, a two-dimensional model for 
the rubber with the following measurements and a thickness 
of 2 mm was used (Forni et al. 2002) (Fig. 10).

All the stages of modeling and analysis of this model are 
the same as those of the rubber under uniaxial tension test. The 
meshed model and its deformed shape are shown in Fig. 11.

After attaining the stress–strain curves according to 
Fig. 12 the coefficients for strain energy functions were 
determined according to Table 9 for the first type of rubber 
in LRBs and Table 10 for second and third types.

After determining the coefficients of the strain energy 
functions, the initial shear modulus value was compared to 
the experimental value in order to calculate the amount of 
error in each function (Table 11).

For the first rubber model, the Arruda–Boyce function 
had the least error followed by the functions of Yeoh, Ogden 
(N = 3), neo-Hookean, Mooney–Rivlin, van der Waals and 
polynomial (N = 2), respectively. Other than the functions of 
Mooney–Rivlin and neo-Hookean, all other functions esti‑
mated the initial shear modulus below the real value.

For the second and third models of rubber, too, 
the Arruda–Boyce function had the least error. After 
that came the functions of Yeoh, van der Waals, 
Ogden (N = 3), polynomial (N = 2), neo-Hookean and 
Mooney–Rivlin. The functions of Mooney–Rivlin, neo-
Hookean and Yeoh have estimated the initial value of the 

shear modulus higher than its real value, yet the other 
functions have reached a lower value than the real one.

Loading

To conduct the hysteresis cycle test, first the vertical load 
is applied to the model. Then, in the second stage, along 
with this load, the shear displacement is exerted on the 
isolating system. The amount of the vertical load and dis‑
placement applied to each of the three models of LRB is 
shown in Table 12.

Meshing

The Hex element shape was used for meshing the model in 
ABAQUS. C3D8H and C3D8R elements of the software 
were used to model rubber sheets and steel plates, respec‑
tively. All the meshed elements of the first model were 
equal to 6016 elements, the second model 30349, and the 
third model 4945. The meshed model of each LRB and its 
deformed shape caused by the shear displacement are pre‑
sented in Figs. 13, 14 and 15.

Table 8   Initial properties of 
rubber in the modeled LRBs

Rubber properties First model (Dou‑
doumis et al. 2005)

Second model 
(Nersessyan et al. 2001)

Third model 
(Nersessyan et al. 
2001)

Initial shear modulus (MPa) 0.62 0.59 0.59
Initial bulk modulus (MPa) 1500 – –

Fig. 8   Dimensions of the rubber model for uniaxial tension test (mm)

Fig. 9   Rubber model for uniaxial tension test and its deformed shape under tension force

Fig. 10   Dimensions of the rubber model for the planar shear test 
(mm)
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Analysis results

In Figs. 16, 17, 18, 19, 20 and 21, the hysteresis loops of the 

strain energy functions are compared with the experimental 
results.

First model:

Fig. 11   Rubber model for the planar shear test and its deformed shape under tension force

Fig. 12   Stress–strain curves resulted from rubber’s tests
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The second model:
The third model:
In these hysteresis loops, the models’ behaviors have been 

illustrated qualitatively. After calculating the effective stiffness 

and the effective damping for each hysteresis loop, their 
quantitative errors are determined. The value of the effective 
stiffness and the effective damping can be determined using 

Table 9   Coefficients of the 
strain energy functions for the 
first type of rubber in LRBs

Function C10 C01 C11 C20 C02 C30

Mooney–Rivlin 0.053708 − 0.670950 – – – –
Neo-Hookean 0.367465 – – – – –
Yeoh 0.287802 – – 0.001890 – 0.000424
Polynomial N = 2 1.114475 − 0.912280 − 0.575830 0.1199180 0.470235 –

Function � �m a � – –

van der Waals 0.454676 7.637174 − 0.150100 0.000000 – –
Arruda–Boyce 0.569053 3.039270 – – – –

Function �3 �2 �1 �3 �2 �1

Ogden N = 3 − 7.200500 7.747580 2.476592 0.00359 0.000318 0.517097

Table 10   Coefficients of the 
strain energy functions for the 
second and third types of rubber 
in LRBs

Function C10 C01 C11 C20 C02 C30

Mooney–Rivlin 1.636999 − 1.190500 – – – –
Neo-Hookean 0.410013 – – – – –
Yeoh 0.311112 – – − 0.004411 – 0.000580
Polynomial N = 2 1.684135 − 0.527640 − 0.866020 0.167200 0.713158 –

Function � �m a � – –

van der Waals 0.532218 7.586497 0.009330 0.000000 – –
Arruda–Boyce 0.546603 2.976734 – – – –

Function �3 �2 �1 �3 �2 �1

Ogden N = 3 − 8.304410 8.322200 2.390980 0.000063 0.000134 0.527638

Table 11   Amount of error in calculating the initial shear modulus of the numerical models using the functions in comparison to the experimen‑
tal value in LRBs

Function Rubber type Model’s shear modu‑
lus (MPa)

Experimental shear modulus (MPa) (Martelli 
et al. 1992; Garcia et al. 2005)

Error 
percentage 
(%)

Mooney–Rivlin First model 0.77 0.62 24.19
Second and third model 0.89 0.59 50.85

Neo-Hookean First model 0.73 0.62 17.74
Second and third model 0.82 0.59 38.98

Ogden N = 3 First model 0.52 0.62 − 16.13
Second and third model 0.53 0.59 − 10.17

Yeoh First model 0.58 0.62 − 6.45
Second and third model 0.62 0.59 5.08

Arruda–Boyce First model 0.61 0.62 − 1.61
Second and third model 0.59 0.59 0.00

Polynomial N = 2 First model 0.40 0.62 − 35.48
Second and third model 0.31 0.59 − 47.46

van der Waals First model 0.45 0.62 − 27.42
Second and third model 0.53 0.59 − 10.17
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Eq. (12) which was presented before and Eq. (13) which is 
shown below.

where Δ+ is the maximum shear displacement in the isolat‑
ing system, and Δ− is the minimum displacement (maxi‑
mum shear displacement in the opposite direction). The 
effective stiffness (Keff) should be calculated for displace‑
ments Δ+ and Δ− . βeff is the effective damping and Eloop is 
the absorbed energy in each loading cycle which is obtained 
through calculating the inner area of the curve. The two 

(13)�eff =

(
2

�

)[ Eloop

Keff(|Δ+| + |Δ−|)2

]
,

above-mentioned parameters for all three LRBs are pre‑
sented in Table 13.

In the first model with the shape factor of 11.3 and shear 
strain of 100%, the best performance belongs to the poly‑
nomial (N = 2) function with error of 6%. After that, the 
functions of Yeoh, Ogden models (N = 3), van der Waals 
and Arruda–Boyce with a nearly similar performance vary 
in error from 11 to 14%, respectively. The neo-Hookean and 
Mooney–Rivlin functions were the weakest with errors equal 
to 18% and 20%, respectively.

In the second model, the shape factor of the isolating 
system is 28.1 and the applied shear strain is 150%. Here 
too, the polynomial (N = 2) and an error less than 3% had the 
best performance followed by Yeoh and Ogden (N = 3) with 
23% error. The Arruda–Boyce and van der Waals functions 
with 27% and 31% errors, respectively, come next. The neo-
Hookean and Mooney–Rivlin functions have had the worst 
performances.

In the third model, the shape factor of the rubber layers 
is equal to 15 and its shear strain compared to the other two 
models is much higher (shear strain equals to 300%). Here 
too, the minimum error belongs to polynomial (N = 2) func‑
tion which shows a 30% discrepancy in estimating the effec‑
tive stiffness. The Yeoh function with 41% error comes next. 
After that, Ogden (N = 3), Arruda–Boyce, van der Waals, 
neo-Hookean and Mooney–Rivlin have the highest errors, 
respectively.

As seen, among the studied functions, the polynomial 
(N = 2) has the best performance.

These functions have the same ranking in estimating 
effective damping as they did in estimating effective stiffness 
of the isolators. The calculated effective damping values for 
all the functions as well as the amount of their errors are 
shown in Table 14, in order of the error percentages.

In the first model, the polynomial function has an error 
about − 1.6%, and Yeoh, Ogden (N = 3), van der Waals 
and Arruda–Boyce with a similar performance have an 
error equal to − 6% to − 10%. The neo-Hookean and 
Mooney–Rivlin functions are the weakest in estimating 
the effective damping.

In the second model, too, the polynomial (N = 2) func‑
tion and 18% error had the best estimation. After that 
come the Yeoh, Ogden (N = 3), Arruda–Boyce and van 
der Waals. Then, the neo-Hookean and Mooney–Rivlin 

Table 12   Vertical load and 
displacement applied to the 
LRB models

Load type First model (Doudoumis 
et al. 2005)

Second model 
(Nersessyan et al. 2001)

Third model 
(Nersessyan et al. 
2001)

Comp. axial force (MPa) 2.35 5.34 10.99
Horiz. displacement (mm) 

(horiz. strain) %
160 (100%) 280 (150%) 150 (300%)

Fig. 13   First LRB model and its deformed shape

Fig. 14   Second LRB model and its deformed shape

Fig. 15   Third LRB model and its deformed shape
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with − 45% and − 49% have the highest error values, 
respectively.

The effective damping of the third model is less than 
the other models. Here too, the polynomial (N = 2) func‑
tion and an error below 2% had the best result. Yeoh, 
Ogden (N = 3), Arruda–Boyce, van der Waals, neo-
Hookean and Mooney–Rivlin come, respectively, after 
that.

Conclusion

•	 High damping rubber bearing (HDRB)

	   Based on the available results of experimental tests 
conducted on the rubber of the isolators by other 
researchers and obtaining the stress–strain curve of 
each, the coefficients of the strain energy functions were 
derived. In Yeoh and van der Waals functions which esti‑
mated the shear modulus of the rubber without any error, 
the isolating system, too, had better results. Regarding 
these considerations, the best function is the Yeoh or the 
reduced polynomial function (N = 2) whose error in esti‑
mating the effective stiffness is below 7%.

The major errors in analyzing the HDRB models for 
obtaining the hysteresis loops are due to two factors:

Fig. 16   Experimental and 
numerical hysteresis loops 
resulted from Mooney–Rivlin, 
polynomial (N = 2), van der 
Waals and Ogden (N = 3) func‑
tions for the first type of rubber 
in LRBs

Fig. 17   Experimental and 
numerical hysteresis loops 
resulted from Neo-Hookean, 
Arruda–Boyce and Yeoh func‑
tions for the first type of rubber 
in LRBs
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(a)	 It is the property of hyperelastic materials that their 
force–displacement behavior is completely revers‑
ible, and regarding the fact that there is no plasticity in 
HDRBs, the derived hysteresis loop will be in the form 
of a line. Therefore, the amount of energy in each cycle 
and the damping cannot be determined.

(b)	 The behavior of HDRBs is highly non-linear and the 
force–displacement behavior of the isolating system 
gains a softening attribute as the strain increases. As 
a result, in high strains the isolator’s behavior cannot 
be modeled in all stages of loading exactly like what 
happens during experimental tests.

•	 Lead rubber bearings (LRB)

	   In the studied finite elements models, there were two 
types of error for LRBs: one caused by modeling the 
rubber tests which creates an error in determining the 
coefficients of the strain energy functions and another 
caused by modeling of LRBs.

	   In experimental models of LRBs, the stiffness and 
therefore the slope of the force–displacement curve 
decreases as the strain increases. However, in numeri‑
cal modeling, the curve shows a linear behavior, there‑
fore the error of modeling increases with the increase 
in strain. It seems the lower error in polynomial (N = 2) 
function is due to the lower value in the initial estima‑
tion for rubber’s shear modulus.

	   The hysteresis loop of the LRBs is bilinear. The initial 
slope follows the elasticity modulus of lead. The yield 

Fig. 18   Experimental and 
numerical hysteresis loops 
resulted from Mooney–Riv‑
lin, polynomial (N = 2), van 
der Waals and Ogden (N = 3) 
functions for the second type of 
rubber in LRBs

Fig. 19   Experimental and 
numerical hysteresis loops 
resulted from neo-Hookean, 
Arruda–Boyce and Yeoh func‑
tions for the second type of 
rubber in LRBs
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Fig. 20   Experimental and 
numerical hysteresis loops 
resulted from Mooney–Rivlin, 
polynomial (N = 2), van der 
Waals and Ogden (N = 3) func‑
tions for the third type of rubber 
in LRBs

Fig. 21   Experimental and 
numerical hysteresis loops 
resulted from neo-Hookean, 
Arruda–Boyce and Yeoh func‑
tions for the third type of rubber 
in LRBs

Table 13   Calculated effective stiffness of the LRB models and the amount of its error compared with the experimental results in order of error 
percentage

Sample First model Second model Third model

Keff (KN/mm) Error percentage Keff (KN/mm) Error percentage Keff (KN/mm) Error percentage

Experimental 1.474 – 0.636 – 0.187 –
Mooney–Rivlin 1.838 19.80% 1.034 62.58% 0.367 95.52%
Neo-Hookean 1.802 18.20% 0.972 52.83% 0.341 81.73%
van der Waals 1.683 12.42% 0.839 31.92% 0.305 62.75%
Arruda–Boyce 1.711 13.85% 0.808 27.04% 0.284 51.67%
Ogden (N = 3) 1.658 11.10% 0.784 23.27% 0.278 48.06%
Yeoh 1.655 10.94% 0.782 22.96% 0.265 41.37%
Polynomial (N = 2) 1.570 6.11% 0.650 2.20% 0.245 30.58%
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stress of lead indicates the ultimate strength in initial 
stiffness. The secondary stiffness is a function of the 
rubber’s stiffness in a way that the secondary stiffness 
is higher for higher stiffness of rubber which is derived 
from the strain energy function.

	   Regarding the fact that lead core has an elastoplas‑
tic behavior during the horizontal loading process, the 
damping of the isolating system can be determined.

	   In modeling LRBs, the best result is attained from the 
polynomial (N = 2) function. The effective stiffness of the 
isolating system can be estimated with an error less than 
3% at 150% shear strain and with the shape factor of 28.1.
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