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Abstract

In this paper, we investigate the long-term dynamics of fractional stochastic delay
reaction-diffusion equations on unbounded domains with a polynomial drift term of
arbitrary order driven by nonlinear noise. We first define a mean random dynamical
system in a Hilbert space for the solutions of the equation and prove the existence and
uniqueness of weak pullback mean random attractors. We then establish the existence
and regularity of invariant measures of the system under further conditions on the
nonlinear delay and diffusion terms. We also prove the tightness of the set of all
invariant measures of the equation when the time delay varies in a bounded interval.
We finally show that every limit of a sequence of invariant measures of the delay
equation must be an invariant measure of the limiting system as delay approaches
zero. The uniform tail-estimates and the Ascoli—-Arzela theorem are used to derive the
tightness of distribution laws of solutions in order to overcome the non-compactness
of Sobolev embeddings on unbounded domains.
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1 Introduction

This paper is concerned with the long-term dynamics of the fractional stochastic delay
reaction-diffusion equation with a polynomial drift term defined on R":

du(®) + (=N *u)dt + ru(t)dt + F(t, x, u(t))dt
=G, u(t—p)dt +o(t,u@)dW(), t>r, (1.1)

with initial data
u(t +s) =gp(s), se€l[—p,0], (1.2)

where (—A)* witha € (0, 1) is the fractional Laplace operator, X is a positive constant,
p € [0, 1] is a time delay parameter, ', G and o are nonlinear functions, and W is
a two-sided cylindrical Wiener process in a Hilbert space U defined on a complete
filtered probability space (2, %, {%}ier, P).

We will investigate mean random attractors and invariant measures of (1.1)—(1.2)
under certain conditions on the nonlinear drift term F, delay term G and diffusion term
o. Indeed, in the non-autonomous case, we will prove the existence and uniqueness
of weak mean random attractors for the dynamical system associated with (1.1)—(1.2)
in L*(Q, .7; L*(R")) x L*(Q, Z; L*((—p, 0), L*(R"))) when F is a polynomial
nonlinearity of arbitrary order, G and o are locally Lipschitz continuous. Notice that
the diffusion coefficient o of white noise in (1.1) is nonlinear, and hence the pathwise
random attractors theory does not apply to (1.1)—(1.2). That is why we study the
weak mean random attractors instead of pathwise random attractors in this paper.
Nevertheless, we remark that the pathwise random attractors theory is very effective
for dealing with stochastic equations driven by linear white noise, see, e.g., [1-9] and
the references therein.

On the other hand, because the weak mean random attractors theory is built up
on reflexive Banach spaces [10-12] and C([—p, O]; LZ(R”)) of continuous func-
tions from [—p, 0] to LZ(R") is not reflexive, we need to choose the Hilbert
space L*(Q, F; L*(R") x L*(Q, .Z; L*((—p, 0), L?>(R"))) rather than the space
L? (SZ, F: C([—p, 0], L>(R" ))) as a phase space for studying mean random attractors
of (1.1)—(1.2), though the space C([—p, 0]; L2(R™)) is often chosen as a phase space
for pathwise random attractors.

The main goal of this paper is to investigate the existence and the limiting behavior
of invariant measures of the autonomous version of (1.1)—(1.2) in the product space
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L2(R") x L*((—p, 0), L2(R™)) when the delay p varies over a bounded interval.
The concept of invariant measure is an important tool for understanding the asymp-
totic behavior of stochastic systems from the point of statistical dynamics view. For
instance, the existence of such invariant measures has been studied in [ 13—16] for finite-
dimensional stochastic delay systems in R”, and in [17-19] for infinite-dimensional
stochastic delay lattice systems in /2.

When F = 0, G and o are globally Lipschitz continuous, the existence of invariant
measures of (1.1)—(1.2) in C([—p, 0], L2(R")) was recently investigated in [20]. In
the present paper, we will deal with the case where F has a polynomial growth rate
of arbitrary order. The polynomial nonlinearity of F introduces an essential difficulty
for establishing the tightness of distribution laws of a family of solutions in L>(R") x
L2((—p, 0), L2(R™)). Indeed, in this case, we have to derive the uniform estimates of
solutions in L” (€2, L" (R")) for sufficiently large r (see Lemma 4.6). We will employ
the Ito formula for the norm of solutions in the space L" (R") as given in [21] to derive
such uniform estimates. Furthermore, we need to establish the regularity of solutions
in L2(Q2, HY(R™)) for initial data in L2(2, L2(R")) x L%(Q, L?>(—p, 0), L>(R"))
(see Lemma 4.7) as well as the regularity in L'0(2, H*(R")) for initial data
in L'"(Q2, H*(R")) x L™(2, L'(—p, 0), H*(R™)) for some appropriate ro > 1
depending on the nonlinear terms in (1.1) (see Lemma 4.9). All these uniform esti-
mates will be used to prove the Holder continuity of solutions in time in the space
L"(Q, L2(R™)) (see Lemma 4.10), which will be further used to obtain the pathwise
equicontinuity of solutions in time based on the Kolmogorov theorem.

Note that the stochastic equation (1.1) is defined on the unbounded domain R", and
hence the standard Sobolev embeddings are non-compact. This introduces another
major difficulty for proving the tightness of distribution laws of a set of solutions
in L2(R") x L2((—p, 0), L2(R")). We will overcome this difficulty by the idea of
uniform tail-estimates of solutions outside a sufficiently large ball in R". More pre-
cisely, we will first show the uniform smallness of solutions for large space variables
(see Lemma 4.4), and then apply the compactness of Sobolev embeddings in bounded
domains as well as the pathwise equicontinuity of solutions to establish the tightness
of distribution laws of solutions (see Lemma 4.12). The tightness of distributions
of solutions immediately yields the existence of invariant measures of (1.1)—(1.2) in
L2(R")x L2((—p, 0), L2(R")) by the Krylov-Bogolyubov method (see Theorem 4.1).
For existence of invariant measures of stochastic PDEs without delay in unbounded
domains, we refer the reader to [22-30] for more details.

Based on the existence of invariant measures, we will further investigate the limits
of a family of invariant measures of (1.1)—(1.2) in L2(R") x L*((—p, 0), L2(R™)) as
the delay p — po € [0, 1). To that end, we need to establish the regularity of invariant
measures of (1.1)—(1.2)in H¥(R") x L>®°((—p, 0), H*(R")) (see Theorem 5.1), which
means that every invariant measure of (1.1)—(1.2) in L>(R") x L2((—p, 0), L*>(R"))
is supported by H¥(R") x L*®°((—p, 0), H*(IR")). We then prove the tightness of the
collection of all invariant measures of (1.1)—(1.2) as p varies on the interval [0, 1] by
using the regularity of invariant measures as well as the uniform estimates of solutions
with respect to p € [0, 1] (see Theorem 6.1). We finally prove that every limit of a
family of invariant measures of (1.1)—(1.2) as p — pp € [0, 1) must be an invariant
measure of the corresponding limiting system (see Theorem 7.2). For the limits of
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invariant measures of stochastic PDEs without delay as the noise intensity approaches
zero, the reader is referred to [31] and [32] for bounded and unbounded domains,
respectively.

This paper is organized as follows. In Sect.2, we prove the existence and
uniqueness of solutions and define a mean random dynamical system. Section3
is devoted to the existence and uniqueness of weak mean random attractors in
L*(Q,.7; L*(R™) x L*(Q, F; L*((—p, 0), L*(R"))). In Sect.4, we derive all nec-
essary uniform estimates of solutions and prove the existence of invariant measures
in LZ(R") x Lz((—,o, 0), L>(R™)). Sections 5 and 6 are devoted to the regularity of
invariant measures and the tightness of the collection of all invariant measures of
(1.1)—(1.2) when p varies on [0, 1], respectively. In the last section, we show every
limit of a family of invariant measures of (1.1)-(1.2) as p — po € [0, 1) must be an
invariant measure of the limiting system.

Throughout this paper, we write H, = L*(R")x L>((—p, 0), L>(R"))if p € (0, 1],
and H, = L2(R") if p = 0. For convenience, we also denote L2 (R") by H with inner
product (-, -) and norm and || - ||. If u(¢), t > © — p, is an H -valued stochastic process,
then for every t > 7, define u; : (—p,0) — L2(R™) by u;(s) = u(t +s),Vs €
(—p, 0). Given aBanach space Z, we use LZ(Q, F; Z) for the space of all strongly .% -
measurable square-integrable Z-valued random variables. The notation L?($2, .%;; Z)
withz € R will be understood similarly. We alsouse £, (U, H) for the space of Hilbert-
Schmidt operators from a separable Hilbert space U to H with norm || - || 2, w, H)-

2 Mean random dynamical systems

In this section, we prove the existence and uniqueness of solutions of (1.1)—(1.2) and
define a mean random dynamical system based on the solution operators. For that
purpose, we first discuss the assumptions on the nonlinear functions in (1.1).

(F1). F : R x R" x R — R s continuous and F(-, -, 0) € L? (R, L?>(R")) and

loc

F(t,x,u)u2A1|u|p—lﬁ1(t,x), (21)

PGt 0)] < Yot Ol + 3t ), (22)

w > gl x), 23)
u

where A; > 0 and p > 2 are constants, ¥y € L} (R, L'(R"), y» € L® (R,

loc loc
2q

L>®@®R")), ¥z € qu{w(R, L4(R™)) and ¥4 € L7, (R, L (R")) N leo_cq (R, L%(R"))
with L + 1 =1,

(F2). F(t, x, u) is locally Lipschitz continuous in u uniformly with respect to t € R
and x € R”; that is, for any bounded interval 7, there exists a constant C [F > 0 such

that

|F(t,x,u1) — F(t,x,u2)| < Cf|u1 —uy|, VteR, xeR", uj,upel. 24)
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(G1). G : R x H — H is continuous such that
1G@ w| <A@ +allull, VieR, ueH, (2.5)

where @ > 01is a constant and & € L%OC(R, H).

(G2). G(t, u) is locally Lipschitz continuous in u € H uniformly with respect to
t € R; that is, for any » > 0, there exists a constant CrG > ( such that

IG(t,ur) = Gt up)| < CF luy —uall, ViR, Juill <r, Juall <r. (2.6)

For the diffusion coefficients of noise, we assume that o : R x H — L,(U, H) is
continuous and
(X1). o(t, u) is locally Lipschitz continuous in ¥ € H uniformly with respect to
t € R; that is, for every r > 0, there exists a constant C; > 0 such that

lo(t,ur) —o(t, u)llcyw,m < C7llug —uzll, YteR, lull <r, lluall <r
2.7)

(X2). o(t,u) grows linearly in u € H uniformly for r € R; that is, there exists a
constant L > 0 such that for all (¢, u) € R x H,

o, Wl o, my < LA+ ul). (2.8)

Recall that for o € (0, 1), the Hilbert space H*(IR") is defined by

_ 2
H“(R")—{ueL(R") // ) u(y)|ddy<oo},

|x _ y|n+2a

with inner product

(W, V) goe@rny = Anu(x)v(x)dx
+f (w(x) —u() ) —vy))
n RVL

| 2 dxdy, Yu,ve H*R"),
X =y

1
and norm ||u|| ge®ry = (u, “)za(Rn) foru € H*(R"). Note that for all u € H¥(R"),

1

2
2 g2
u o (Rny = u + —A 2y ,
llaell pre ey (II I Con.) [(=A)2ull )
4T (1) o - i
where C(n, o) = # and (—A)* is the fractional Laplace operator given by
72T (1—a)

(see, e.g., [33]):

u(x +y) +ulx —y) —2u(x)
|y|n+201

(=2) u(x) = —%C(n,a) dy, xeR".

Rn
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For convenience, we write V = H*(R") with inner product (-, -)y and norm || - ||y .
A solution of problem (1.1)—(1.2) will be understood in the following sense.

Definition 2.1 Suppose u® € L?(Q, F¢; H) and ¢ € L*(Q, Z;; L*((—p, 0), H)).
Then an H-valued stochastic process u(t), t > t — p, is called a weak solution of
problem (1.1)—(1.2) in the sense of PDEs if

(i) u e L*(Q, Zr; L*((t — p, 1), H)) and u; = ¢.

(ii) u is pathwise continuous on [, 00), and .%;-adapted for all t > 7, u(r) = ul,
andu € LZSQ, C(r,t+T1. H))NL*(Q, L*(r,t+T; V))NLP(Q, LP(tr, T+
T;LP(R"))) forall T > 0.

(iii) Forallt > tand & € V N LP(R"),

t t
(u(t),é?)-i-/ ((=2)Zu(s), (—A)TS)dS-H»/ (u(s), &)ds

!
+// F(s,x,u(s))édxds
T JR?
t

t
= (u, ) +/0 (G(s,u(s — p)), &)ds +/0 (&, o (s, u(s)dW(s)), P-almost surely.

Next, we show the existence and uniqueness of solutions of problem (1.1)—(1.2).

Theorem 2.2 Suppose (F1)-(F2), (G1)-(G2) and (X1)-(X2) hold. Then for any ul e
L*(Q, Fr; H) and ¢ € L*(Q, Fr; L*((—p, 0), H)), problem (1.1)~(1.2) has a
unique solution u in the sense of Definition 2.1. Moreover, for any T > 0,

E (1 rrrr.m) + B (100320 e s 720) +E (W70 7,y )
0 +T
< M[JE(IIMOIIZ) +/ E(lg@s)*)ds + T +/ (I ®llz1 @y + 1AGIP) ds]eMT,
—p .
2.9)
where M is a positive constant independent of u®, @, p, tandT.
Proof We first show the existence of solutions on [z, T + p]. By (G1) we have for any

¢ € L*(Q, Zr: L*((—p.0), H)),

T+p T+p
f E(||G<z,u(r—p>)||2)dt=f E(IG(t. ot —p — ) dt
T+p 0
< 2/ |\h(t)||2dt+2a2/ E (llg(s)I1?) ds < oo. (2.10)
T —p

In terms of (2.10), (1.1)—-(1.2) on [z, T + p] is equivalent to the following system
without delay:

du(t) + (=A)*u(t)dt +  u(t)dt + F(t, -, u(t))dt
=G, 9t —p—1)dt +0(t,u(?)dW(t), t € (r,T + pl, 2.11)

u(t) = u®,
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Then by Theorem 6.3 in [25], under conditions (F1)-(F2), (G1)-(G2) and (X1)-
(X2), problem (2.11) has a unique solution u defined on [z, T + p] such that u €
L*(2,C(r,t+pl, H))NL*(, L*(x, T+p; V))NLP(Q, LP(z, T+ p; LP (R"))).
Repeating this argument, one can extend the solution u to the interval [t, o) such
thatu € L*(Q, C([r,t + T1, H)) N L*(Q, L*(x,t + T; V)) N LP(Q, LP(z, T +
T; L?(R"))) for any T > 0.

Next, we derive the uniform estimates of solutions. Applying Ito’s formula to (1.1),
we obtain

t t t
||u(t)||2+2/ ||(—A)%u(s)||2ds+2x/ Hu(s)\lzds—l—Z/ / F(s, x, u(s))u(s)dxds
T T T JR"?
t t
= [lu(o)|? +2/ (G(s.u(s — p)). uls))ds +/ llo (s, w7 .y
t
+2/ (u(s), a(s,u(s))dW(s)). (2.12)
For the fourth term on the left-hand side of (2.12), by (2.1), we have
t t '
2/ /R F(s,x,u(s)u(s)dxds > 2A1/ ||u(s)||zp(R,,)ds —2/ ||1ﬁ1(s)||L1(Rn)ds.
T n T T
(2.13)

For the second term on the right-hand side of (2.12), by (G1), we obtain

t
2/ (G(s, u(s — p)), u(s))ds

t t 0
<(1+2a2)/ ||u(s)||2ds+2/ ||h(s)||2ds+2a2/ lo@)|2ds.  (2.14)

—P
Then by (2.12)—(2.14), we get
t « t
@) +2 / I(=2)Zu(s)Pds + 221 / (N p gy ds
0 t t
<||u<r>||2+za2/ ||<p(s>||2ds+2/ ||w1<s>||L1<Rn>ds+(1+2a2—2x)/ lu(s) | ds
—p T T

t t t
+2/ ||h(s)||2ds+/ Ha(s,u(s))llzczwﬂ)ds+2/ (u(s), o (s, u(s)HdW(s)). (2.15)

By (2.15), we obtain

E( sup ||u<r)||2>
T<r<s

< u()|? + 2a°E (/

0

t
||<p(s)||2ds> +2 f 191611 oy ds
0 T
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+2/ ||h(s)||2ds+(l+2a2)f E (lu(s)|1%) ds

f (u(s). a(s,u(s))dW(s))D.
(2.16)

t
‘HE(/ ||U(S,M(S))|I%:2(U’H)ds> +2E< sup
T

s€(r,1]

For the last two terms on the right-hand side of (2.16), by (£2) and Burkholder-
Davis-Gundy’s inequality, we have

t s
E(/ ||o(s,u(s))||252(U’H)ds> +ZIE< sup / (u(s), o(s,u(s))dW(s))D

sel1,t]

1 t
< 51{3( sup ||u<s)||2) +0 +2c2)E( / lo(s. u(s))H%z(U,mdS)

Tt

l 2 2\72 2\72 ! 2
< ZE| sup |u(s)||7 ) +2(1 4+2¢°)L°T +2(1 +2c¢°)L E(|u(s)|7)ds,
2 TSt T

(2.17)

where c is the positive constant in Burkholder-Davis—Gundy’s inequality.
Then by (2.16)—(2.17), we obtain

0
E( sup ||u(r>||2> < 2E (Ju°|?) + 4a’E ( f IIw(S)||2dS>
T<r<t —p

t
+4/ ||¢1(S)||L1(Rn)ds
Tt
+4/ Ilh(s)|%ds + 4(1 +2¢H) LT
T

t
+2[(14202) +20 +2)17] / E| sup ful? | ds.
T T<r<s
(2.18)

From (2.18) and Gronwall’s inequality, it follows that for all # € [z, T + T] with
T > 0,

0
E( sup ||u(r>||2) < {2E(||u°||2) +4a’E ( / ||¢>(s>||2ds>
T<r<t —p

+T

+T
+4f V1) L1 gmyds +4/ 1A (s)[|>ds
T T

+4(1 + 2C2)L2T}e[2(1+2a2)+4(1+2c2)L2](t—r)’

which together with (2.15) concludes the proof. O
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Now, forallt € Rand ¢ € RT, let (¢, 7) be a mapping from Lz(Q, Fri H) x
L*(Q, F; L*((—p. 0), H)) to L*(Q, Fi 411 H) x L? (Q, Fi11: L*((—p. 0), H))
given by

o1, 1), ¢) = (utt + 7 1.0’ )i (7, )

forall (u®, ¢) € L*(Q, Fr; H) x L? (Q, F¢; L*((—p. 0), H)), where u(t; 7, u®, ¢)
is the solution of (1.1) with initial data u° and ¢, and u; . (0; 7, u®, @) = u(t + v +
0: 1, u, @) for@ € (—p, 0). Then, we find that ® is a mean random dynamical system
on

LX(Q, 7 H) x L (Q L2 ((=p,0), H))

over the filtration {.%; };cRr.
In what follows, we investigate the existence and uniqueness of weak mean random
attractors of (1.1).

3 Weak pullback mean random attractors

In this section, we study weak pullback mean random attractors of (1.1). For simplic-
ity, for every t € R, we set H; = L3(Q, F; H) x LZ(Q, Fe; L2((—p, 0), H)).

Then H is a Hilbert space with inner product ((u’, ¢), 0°, 1/[))HT =E (u° %) +
1

E( /2, @), ¥ () ds) andnorm [, )1z, = (B 1)+/°, E (o)) ds)*
for (u®, ) and (V°, V) € H,.
Assume a in (G1) and L in (X2) are sufficiently small in the following sense:
V2a+L? < 1. (3.1)
By (3.1), there exists a positive constant p such that
w—2x+~2a(l +e*) +2L% < 0. (3.2)

Let B = {B(t) € 'H; : T € R} be a family of nonempty bounded sets such that

lim e*"|B()|3,. =0, (3.3)
T——00 T
where || B(7) 13, = Sup0,4)eB(r) [, ©) |, - Denote by

D= {B = {B(t) C H; : T € R} : B satisfies (3.3)}.
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We will show (1.1) has a unique weak D-pullback mean random attractor for which
we further assume that for every v € R,

| e (s + 1)) ds < . G4

where p is the positive constant as in (3.2).

Lemma 3.1 Suppose (F1)-+(F2), (G1)—(G2), (X1)~(X2), (3.1) and (3.4) hold. Then
foranyt € Rand B = {B(t)};er € D, there exists T = T(t, B) > p such that for
allt > T,

B (lutei e =0 o)) + [ B (lutsi w1, 1) ds

T—p
212 T B V2
< (1 + pet?) [1 - +/ et <||w1<s>||u<w> + 7||h<s)||2) ds] ,
—00

(3.5)

where | is the same constant as in (3.2) and O, @) € B(t —1).

Proof Foranyt > Oandr € (t —t, t], by (2.12) we get

() +2 [ B (1-0Tue)I) ds

T—t
= e"TIE (JJu’)%) + (n — 21) /r eE (Jlus)|1?) ds
T—1
—2/r e’”E(/ F(s,x,u(s))u(s)dx)ds—i—Z/r eME(G (s, u(s — p)), u(s))ds
T—t Rn T—t
+/ B (llo (s, u) 2,0, my)ds- (3.6)
T—t

We now estimate the right-hand side of (3.6). For the third term on the right-hand side
of (3.6), by (F1), we obtain

P
2/ e | (/ F(s, x, u(s))u(s)dx) ds
T—t R
r ) r
> 2 / B (I ) ds — 2 / N Ol gnds. ()
T—t T—t
For the fourth term on the right-hand side of (3.6), by (G1) we have

2/r e E(G(s,u(s — p)), u(s)) ds
T—1

< ﬁa<1+eﬂp>fr e’”E(nm)nz)ng/r ¢ h(s)|*ds
Tt T—t
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0
+ 2aet et T / E (lo))1%) ds. (3.8)

—p

For the fifth term on the right-hand side of (3.6), by (X2) we get

r r g
/ e (llo (s, us)IE, 0.y ) ds < 212 / e'ds + 2L / e E (Jlu(s)I1?) ds.
T—t ' Tt !
3.9)

From (3.6)—(3.9), it follows that for all r € (t — ¢, 7],

B (lue v — 1,4 9)I?) +2fr

T—t

O IE (=) Tu(s)|?) ds

,
+ 2 / R () ) ds

0
< HTDR <||u0||2> + 2aekP e T=1=r) f MR (||(p(s)||2> ds
—p
r 2 (" , 217
+2 / DY ()] 1 s + V2 / M) P ds + ——
T—t a Jr—t %8

+ [M — 204 V2a(l + ) +2L2] /

T—t

MR (||u(s)||2> ds.  (3.10)
By (3.2) and (3.10) we find

T
E (Ilu(r; =10, (p)||2) + 2/

T—t

R (|| (= 8) Fu(s)|?) ds
T
+ 211 / t eM(S—‘L’)]E (“u(s)”iP(R”)) ds
-

< e ME <||u0||2> + +2get P f

—p

T \/E T
+ 2f STy ()| 1 oy ds + —/ TN h(s)Pds,  (3.11)
T—t a Jr—g

0 212
E (o)) ds + =
%

and forz > p,

sip B (llutri v — 1,4, 011
T—p<r<r

0 2L2
< MO (||u0||2> + V2aete0 / E (||g0(s)||2) ds + 2=
—o n
T 2 T
4 2eMP / PGl 11 (s) ”LI(]R”)dS + £eﬂp / M=) ||h(s)||2ds
T—t a T—t
(3.12)
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From (3.11) and (3.12), we obtain that for ¢ > p,

T
Bl —nat o) + [ B (st~ ) ds
0
< (1+ pe?) [e"“lE (||u°||2) +«/§ae“("_t>/ E(llgo(s)llz) ds

—p
4 2 [T 2L
+2 / e“(“_’)lldn(S)llLl(R")dS+£ f e““‘”nh(s)uzdw—].
T—t a Jr—t n
(3.13)

For the first two terms on the right-hand side of (3.13), by P, @) € B(t —1t) we
obtain

B (u0)2) + v2aet =" / "k (le)1?) ds

—p
< (e +V2ae PNt T B(r — 1))> > 0, ast — oo,

and hence there exists 7 = T(t, B) > p such thatforall > T,

T

E(||u(r;r—z,u°,<o>n2)+f E (lu(s; T —1,u’, )|I%) ds
—p

2L2 T Vﬁ T
< (1 + pet?) [1 T2 / TNl ey ds + == / et ||h(s>||2ds],
—00 —0o0

as desired. O

In order to prove the existence and uniqueness of weak pullback mean random
attractor, we need the following result (see Theorem 2.13 in [11]), which is given here
for convenience.

Theorem 3.1 ([11]) Suppose X is a reflexive Banach space and p € (1, 00). Let Dy
be an inclusion-closed collection of some families of nonempty bounded subsets of
LP(Q, 7; X) and ® be a mean random dynamical system on LP (2, F; X) over
(2, F,{F}ier, P). If ® has a weakly compact Dy-pullback absorbing set K € Dy
on LP(Q2, F; X) over (2, F,{Z:}ier, P), then ® has a unique weak Dy-pullback
mean random attractor A € Dy on LP (2, F; X) over (2, F,{F:}ier, P), which is
given by, for each t € R,

Ay ="K, 0= Jot.7—n(K@E—1)

r>0t2r
where the closure is taken with respect to the weak topology of LP (2, F+; X).

We are now in a position to present the main result of this section.
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Theorem 3.2 Suppose (F1)—(F2), (G1)~(G2), (X1)—(X2), (3.1) and (3.4) hold. Then
the mean random dynamical system ® associated with (1.1) has a unique weak D-
pullback mean random attractor A = {A(r) : v € R} € D in L*(Q,.F; H) x
L*(Q, F; L*((—p. 0), H)), that is:

(i) A(v) is weakly compact in L*(2, Zr; H) x Lz(Q, Fei L2((—p, 0), H))for all
TeR

(ii) A is a D-pullback weakly attracting set of ®.

(iii) A is the minimal element of D with properties (i) and (ii).

Proof For each t € R, define
Ko(t) = {(w) € He : llw, )7, < Ro<r>},

where

212 4 2
Ro(v) = (1 + pet?) [1 + e +/ SO (Y () 1 ey + %_Ilh(s)nz)ds}.

—00

Then Ko (7) is a bounded closed convex subset of H, and hence is weakly compact
in H,. By (3.4) we have

lim " |Ko(0)ll3, = lim e*"Ro(r) =0,
T——00 T T——00

which means that K = {Ko(t) : T € R} € D.

By Lemma 3.1, we see that for every t € R and B = {B(t)};cr € D, there exists
T =T(t,B) > psuchthatforallt > T,

@(t, T —1)(B(r — 1)) S Ko(7).

Consequently, K¢ is a weakly compact D-pullback absorbing set of ®. Then by
Theorem 3.1, ® has a unique weak D-pullback mean random attractor A € D in
L*(Q,.7; H) x L*(Q, F; L*((—p, 0), H)). o
4 Existence of invariant measures
In this section, we investigate invariant measures of the autonomous version of (1.1)

when the nonlinear functions F, G and o are time-independent. More precisely, con-
sider the following stochastic delay equation:

du(t) + (—=2)%u(t)dt + ru(t)dt + F(x, u(r))dt

=G, u(t— p))dt + Z (al,k(x) + K(X)O’g’k(u(l‘))) dWi(), t>0, &1
k=1
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where o1 € L2(R™), k € L*(R") N L®(R"), and {Wk172, is a sequence of real-
valued mutually independent Wiener processes on a complete filtered probability space
(Q, F AFihier, P).

The autonomous version of assumption (F1) is given below:
(F). F : R" x R — R is continuous and F (-, 0) € L2(R"), and for all x € R” and
u € R,

F(x, wu = rlul” — ¥ (x), (4.2)
|F(x, u)] < ya(o)lul? ™+ y3(x), (4.3)
AF (x,u)
2 ), (4.4)
u

where A > 0 and p > 2 are constants, ¥y € L'(R"), y» € L®R"), y3 €
2
LI(R") N L2(R"), and y4 € L®(R") N L4 (R") with % + é =1.
In addition, F'(x, u) is locally Lipschitz continuous in # € R uniformly with respect
to x € R"; that is, for any bounded interval 7, there exists a constant C IF > 0 such
that

|F(x,u1) = Fx,u)| S Cf luy —ual, VxeR", ujupel.  (45)
(G). G : R® x R — R is continuous such that
IG(x,u)| < |h(x)| +alu|, YxeR" uck, 4.6)
where @ > 0 is a constant and & € LZ(R").
In addition, G (x, u) is Lipschitz continuous in # € R uniformly with respecttox € R;
that is, there exists a constant C¢ > 0 such that
IG(r.up) — G, up)| < COluy —uz|, YxeR", ujupeR (47)
For the diffusion coefficients of noise, we now assume:
(2.
o
> llonell? < oo. 4.8)
k=1

In addition, for each k € N, we assume that o5 : R — R is globally Lipschitz
continuous; that is, for each k € N, there exists a positive number o such that for all
51,52 € R,

|02,k (s1) — 02,k (s2)| < aklsy — s2]. 4.9

We further assume that for each k € N, there exist positive numbers B and y, such
that

lo2 k()| < Bk + wlsl, Vs eR, (4.10)
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o0
where )" (oz,% + /3,?) < 4o00.
k=1

In order to prove the existence of invariant measures of (4.1), we need to assume
Y4, a, ay and y, in (F), (G') and (') are sufficiently small in the sense that there
exists a constant & > 1 such that

o
_1 20-1
Ollvall Loy +a2' "7 (20 — 1) 420020 — Dl |70, Y@ + ¥2) < 04

k=1
4.11)
Note that (4.11) implies the following conditions:

o
V2a+23 Rkl e < A (4.12)

k=1

and
1 26—1 s

a2'”27 (20 = )T +20(20 — Dlkl| 7o) Z vE < 6. (4.13)

k=1

These inequalities are useful for deriving uniform estimates of solutions which are
needed for proving the tightness of distribution laws of a family of solutions on the
space H x Lz((—p, 0), H).

4.1 Uniform estimates of solutions

We now derive uniform estimates of solutions for proving existence of invariant mea-
sures. We start with the estimates in L2(Q2, .%;; H).

Lemma 4.1 Suppose (F'), (G'), (') and (4.12) hold. Then foranyu® € L*(Q2, Fo; H)
andg € LZ(Q, Fo; L2((—p, 0), H)), the solution u of (4.1) satisfies that for allt > 0,

' '
E (||u(t; 0. u°, (p)”2) + /0 ICEl) (||u(s)||%_,a(w)) ds + /(; UGN (||14(S)||€p) ds

<My {[E(nuonz) +IE(fO l@)7ds) Je™ + 1} : (4.14)

-p
andfort > 1+ p,

t

t « 5 p
L E(emtuoR)ass [ & (16nga,)d

<M, {[E <||u0||2) +E(/O ||<p(s)||2ds>]e—“’ + 1} , 4.15)

—p
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where v and M\ are positive constant independent of p, u® and .

Proof By (2.12), we have for all ¢ > 0,

t t
E(llu(z;O,u0,¢)||2)+2A JE(“(_A)zu(s)nz)ds+2A/0 E (Jlu(s)]|?) ds

t t
:E(Ilu°||2)—2/ ]E(/ F(x,u(s))u(s)dx>ds+2/ E(G(, u(s — p)), u(s)) ds
0 R7 0

o t
+3 [ E o+ s IP) s (4.16)
k=1
By (4.16) we have for all ¢ > 0,

2B (Ju)1?) + 28 (1= Fu()1?) + 2 (Juco)]1?)

— F (f F(x, u(t))u(t)dx) +2E (G(-, ult — p)), u(®))
Rn

+ 3B (llonk + ko w@®)?) (*.17)

k=1

We now estimate the terms on the right-hand side of (4.17). For the first term on
the right-hand side of (4.17), by (4.2) we have

2F ( /}R F(x, u(r))u(r)dx) 2E (1O ) = 2Vl iy @18)
For the second term on the right-hand side of (3.6), by (4.6) we have

2E(GC u(t — p)),u() SLENGC, ut — p)[Hu@))

2
<V24E (Jlu(®)]?) + %nhu2 +v/2aE (Jlutc = p)I1?).

(4.19)

For the third term on the right-hand side of (4.17), by (4.10) we have

Y E(lonk +kork @) <2 (lovxl® +28¢ I |1 +4Zyknxnmw (1%
k=1 k=1 k=1
(4.20)

It follows from (4.17)—(4.20) that for ¢t > 0,

S B (10,40, o)1) + 2B (1-2 5 ) + 214E (1))
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< (22— 2a- 4y V21K gy ) E (114)11?) + v/2aE (Jlutt = p)I?)
k=1

\/E [}
+ 209l + I +2 3 (o el + 287 11?). (4.21)
k=1

By (4.12) we infer that there exists a positive constant v such that
oo
20— 2% +v2a+ 4> YRl ooy + V2ae” < 0. (4.22)
k=1

Then by (4.21), we obtain

d a
T E (Iu(r: 0, 9)|12) + 2¢"E (1 (=) 2u() ) + 21¢" E (1) 1] )

< —(ZA —v—+2a— 42Vk2||"||2L°<>(Rn))eWIE(||u(z)||2) +2ae"'E (||u(t _ P)||2)

k=1

vt \/E 2 - 2 2 2
+ e (20l + -l #23 (Il + 2671l ))- (4.23)

By (4.23), we get that for ¢ > 0,

t t
E (lu(t: 0.u°. )]1%) +2 / 0O (|(= ) u(o)]I?) ds + 20 / eI ()7 gy ) s
0 0

S t
+ (2)& -V — \/5(1 - 42 VkZHK”%oo(Rn)) / eV(Sfl‘)]E (HM(S)HZ) ds
0
k=1

0 t
<E(Iu®)?) e + v2ae" P~ f E (llg(s)11%) ds + ﬁae“f’/ ¢"“TIE (Jlu(s)||?) ds
—p 0
1 V2 >
+ = (20l + 1012 +2 ) (lonal? + 282 11?) ). (4.24)
k=1

By (4.22) and (4.24), we have, for all t > 0,

1
E (Jlutr; 0.4%, 9)]2) + v /0 "B (Jlu)]?) ds
t o t
+2 / 0 E (=) 2u)I?) ds +24) f "B ()11 ) ) ds
0 0

0
< (14 V2ae")e ’[E(nuonz) ~|—/pE(||<p(s)||2) ds]

1 ﬁ 2 - 2 2 2
+ = (21l + 20 423 (lonal? + 282 11?) ). (4.25)

k=1
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which yields (4.14).
Integrating (4.21) on [t — 1, 7] fort > 1 + p, we have

t

t
2 [ E(Ieafuw ) ds+ 240 [ B (1)) ds

<E (Jlutt — DI?) + v2a /_1 E (luts - o)1) ds

\/5 e’}
+ 2y + - IAIE 42 (o el + 288 l1?). (4.26)
k=1
Then from (4.25) and (4.26), we get (4.15) immediately. O

Remark 4.1 Let (u®, ¢) € L*(Q, Zo; H) x L*(Q, Fo; L>((—p. 0), H)) satisfy

0
E<I|u0||2+/ ||g0(s)||2ds) <R
—p

for some R > 0. Then by Lemma 4.1, we find that the solution u of (4.1) satisfies, for
t >0,

t t
B (I 0.6, )1%) + [ B (o) n ) ds + [ 0B (I ) ds < B0,

and fort > 1,

t

1
/til E <||(—A)7u(s)||2) ds + /tll E <||u(s)||’L?],(Rn)) ds < M.

where M| > 0 is a constant depending only on R but not on (uo, @) or p € [0, 1].
Furthermore, there exists 7 > 2 depending only on R (but not on (1°, @) or p € [0, 1])
such that forallt > T,

t t
E(lu(t; 0. u°, o)) + /0 "B () ey ) ds + fo "0 ()75 gy ) ds < By

and

t t
/ 11E<||(—A)7u(S)||2) ds+/ ]E(llu(s)||’£p<w))ds s M.
r— f—
where 1\71 > ( is a constant independent of R, (uo, @) and p € [0, 1].

Lemma 4.2 Suppose (F'), (G'), (') and (4.12) hold. Then foranyu® € L*(Q2, Zo; H)
and ¢ € LZ(Q, Fo; L2((—,0, 0), H)), the solution u of (4.1) satisfies that for all
t>1+4p,
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0
IE( sup ||u<r;o,u°,«)>||2><M2{[E(||u0n2)+E(/ ||<p(s>||2ds)]e‘“’+1},

t—p<r<t —p

where v and M5 are positive constant independent of u®, ¢ and p € [0, 1].

Proof The proof is based on Lemma 4.1 and is similar to that of Lemma 3.2 in [20].
So the details are omitted here. O

In order to prove the tightness of probability distributions of solutions to (4.1),
we need to derive the uniform estimates on the tails of solutions with initial data in
LX(Q, Zo; H) x L*(Q., Zo; L*((—p. 0), H)).

Lemma 4.3 Suppose (F'), (G'), (£') and (4.12) hold. Then for every p € [0, 1] and

every compact subset E of L*(2, Fo; H) x L? (Q, Zo: L2((—p, 0), H)), the solution
u of (4.1) satisfies

limsup sup sup/ E <|u(t; 0, u°, <p)|2) dx = 0.
x| >m

m—00 (uo’(p)eE t>0

Proof Let 0 be a smooth function on R such that

’

0, Is] <1
| =2,

H(S):{l Is

and 0 < O(s) < 1foralls € R.
For given m € N, denote by 0,,(x) = 0(%). By (4.1) and Ito’s formula, we obtain

VoA

IE3(||9mu(f)||2) +2)»/0 E(IIGmM(S)Hz) ds
= E (|6mu°?) —2/ ]E[((_A)%u(s), (-A)%@,ﬁu(x))]ds
0
t t
—2f E(/ e,i(x)F(x,u(s))u(s)dx) ds+2/ E[OnG (-, uls — p)), Omit(s))]ds
0 R~ 0

0 t
+y /0 E (16001 & + Omicor k (u(s)1%) ds, (4.27)
k=1

and hence for ¢ > 0,

%E (16,0 17) + 22 (16ce) 1)

= 2F [((—A)%’u(t), (—A)%’e,%,u(t))] —2F (/R 62 (x)F(x, u(t))u(t)dx)

+ 2B (60 G, u(t = ), it 1)) + Y E (1601 & + Orcoz s ®)]?)
k=1
(4.28)
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For the first term on the right-hand side of (4.28), as (8.18) in [25] we find that there
exists a positive constant ¢ independent of m and p such that

—2E((—2)3u(), (=8)302u) < erm™E (Ju) > + | (=5 Fu)]?) . 4.29)

For the second term on the right-hand side of (4.28), by (2.1) we get

IR ([ 62 (x)F (x, u(t))u(t)dx> < —2E (||9mu(t)||§,,(Rn)) n 2/ 1 (x)dx.
R~ X

[x[Zm
(4.30)

For the third term on the right-hand side of (4.28), by (4.6), we deduce
2E (0 G (-, u(t — p)), Opuu(t))

< V24E (||9 u(t)||2) “/_ hz(x)dx+ﬁaE(||emu(t—p)||2).

(4.31)

lx|Zm

For the last term on the right-hand side of (4.28), by (4.10) we get

> E(16m01 & + Omk o (u(®)]?) <2Z/
k=1

[x|=m

o1k () Pdx +4) B / lic (x)*dx
k=1

|x|Zm

[ee]
+ 4l oy Y VEE (10mu(®)]) . (4.32)
k=1

From (4.28)—(4.32), it follows that for ¢t > 0,

ZE (10nu()]?) +211E (uemu(z)ni,,(w))

< —(2r = V2a — 4l 1} o g Zyk (I6mu(D)]1%) + V2aE (16,1t — p)1%)

o 2
+em™E (Ju®I? + =5 Fu)]?) +2 / neds+ 2 [ s
[x|=m a |x|=m
/ Z o1k (02 dx +4Zﬁk/ lic (x)[dx. (4.33)
\x|/mk 1 k=1 [x|Zm

Let v > 0 be a constant satisfying (4.22). Then by (4.22) and (4.33) we obtain that
forall p € [0, 1]and t > p,

E(I6uuIP) < sup E (u(s) ) e ™0

0<s<p

t
e [0 () P+ -2 Fu(s)1?) ds
p
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+ %[2f Y1 (x)dx + V2 I (x)dx
x| >m

a Jizm
o o0
+2/ Zlol,k(x)lzdx+42ﬁ,§/ |/<(x)|2dx].
|x|Zm k=1 k=1 [x|=m
(4.34)

Next, we estimate the first term on the right-hand side of (4.34). By (4.12), (4.33)
and Theorem 2.2, we obtain that for all p € [0, 1] and ¢ € [0, p],

0
E (||emu(t)||2) <E (||9m”0”2) 24 /_p

0
+cam™ (E(||u°||2) + f

—p

E (16m0()12) ds
E (Ilg)I?) ds + 1)

+ ,0|:2 / Y1 (x)dx + v2 h%(x)dx
[x|=m

a Jixizm
oo

+2 Z|al,k(x)|2dx+42ﬁ,§/
k=1 |

|x[Zm  —) x|Zm

|K(x)|2dx].

(4.35)

For the second and third terms on the right-hand side of (4.34), by Lemma 4.1, we
obtain

t
cim™ / e CVE (Ju()I? + 1(=2)u(s)|?) ds
0

0
<coym™ [E (||u0||2> +E (/ ||(p(s)||2ds> + 1} ) (4.36)

0

Then from (4.34), (4.35) and (4.36), it follows that for all p € [0, 1] and ¢t > p,

E (16,u®]?) < (1 +2a) (E (1mi%) + /0

—-p

0
+ (c2 4 cym™ <E(||u°||2) + [ E(lowR)ds + 1)

—p

+ <1 + 1) [2/ V1 (x)dx + ‘/—E/ h%(x)dx
v x|=m a Jixizm

+2/ Zlol,k(x)lzdx+42ﬁ,§/ |K(x)|2dxi|.
| |x|=m

x[zm k=1

E (16n0()I1?) ds) e =)

(4.37)
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Forany e > 0, since E is compactin L(Q2, .Zo; H)XLZ(Q, Zo: L2((—p, 0), H)),
E has a finite open cover of balls with radius ‘/Tg which is denoted by {B((u', ¢'),

SEV)i_, Since (ul, @) € E C LXQ, Fo; H) x L2(Q, Fo; LX((—p, 0), H)) for

i = 1,2,...,1, it follows that there exists Ry = Rji(e, E) > 1 such that for all
m>=Ry,i=1,2,...,1,
. 0 . &
f (E (lul(x)lz) +/ E(Igo'(s,x)|2> ds) dx < 2.
[x|=m -p 4

Then for all (uo, @) € Eandm > Ry,

0
/ <IE <|u0(x)|2> +/ E(l(s, x)|2)ds> dx <. (4.38)
Ixl2m —p

From (4.38) and the definition of 6,,, we obtain that for all («°, ¢) € Eandm > Ry,

E <||9mu0||2) 4 /O E (||9m(p(s)||2> ds <. (4.39)

—p

By (4.37) and (4.39), we infer that there exists Ry = Rz (¢, E) > Rj such that for
allm > Ry, w®, ¢) € Eandt > p,

> E(unP) < EQ6u®]?) < (2+2a)e. (4.40)

In|>2k

On the other hand, by (4.35) and (4.39), we find that there exists R3 = R3(¢, E) >
R» such that for all m > R3, (uo, ¢) € Eandt € [0, p],

> E(ua()) < E(l0nu()]?) < 2,
|n| =2k

which along with (4.40) shows that

limsup sup sup/ E(lu(r,x;o, uo,(p)|2> dx =0,
[x]Zm

m—00 (uoy(p)eE =0

as desired. O

Based on Lemma 4.3 we have the following uniform tail-estimates on the segments
of solutions.

Lemma 4.4 Suppose (F'), (G'), (X') and (4.12) hold. Then for every p € [0, 1] and
every compact subset E in L*(Q2, %o; H) x L? (Q, Zo: L2 ((—p, 0), H)), the solution
u of (4.1) satisfies

limsup sup sup]E( sup / |u(r;0,u0,go)|2dx)=0.
m—>o0 0 p)eE tZp Nt—p<r<tJlx[Zzm
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Proof Let 6 be the smooth function as defined in Lemma 4.3 and v be the positive
number determined by (4.22). Fort > p andt — p < r < ¢, by Ito’s formula, (4.2)
and (4.22), we obtain that for all t > p,

E( sup l6,u()]?)
t—p<r<t

<E (I16nut — p)I?) +E ( sup (—2/r e’ ((_A)%u(s), (—A)%e,%lu(s)) ds))
t—p

t—p<r<t

;2 f 1/f1<x>dx+2E( sup / e’ |(9mG(~,u<s—p>>,0mu(s))|ds)
[x|Z=m t—p

v t—p<r<t

o0 r
+2 E ( sup / 'O 0,01 k + Opkcon g (u(s)) ||2ds>
k=1 I=p

t—p<r<t

e}

/ " e (Omo1 & + O ok (U(s)), O (s)) d Wi (s)

t=p

+2E sup
t—p<r<t

) . (4.41)

k=1

Now we estimate the terms on the right-hand of (4.41). For the second term on the
right-hand of (4.41), we obtain by the arguments of (8.18) in [25] and Remark 4.1 that
forallt > p,

E( sup (—2 /r e’ ((—A)%M(S), (—A)%Gr%lu(s)) ds))
t—p

t—p<r<t

t
< Clm—aevp/ UGN (””(5)”%—1'1(1[{")) ds < com™¢, (4.42)
1=p

where ¢ > 0 is a constant depending only on E but not on m, (u°, ¢) or p € [0, 1].
For the fourth term on the right-hand of (4.41), by (4.6), we get that for all 7 > p,

2E sup / et [(On G, uls — p)), Ou(s))|ds
t—p<r<t Jt—p

=p
< 200,17 + 22 [ "8 (10,)I) ds + supE (10,01
s>0

r—

0
< 2/0mhl® + 24> / E (1629@)I7) ds + (1 +2a%) swpE (16,u()I7) . (4.43)
—p s=0

For the fifth term on the right-hand of (4.41), by (4.10), we have

o r
Z]E< sup / ev(s_r)”emal,k+9mK02,k(u(S))||2dS>
k=1 I=p

t—p<r<t

o o o
<2Y 0 Wnor il +4 3 BEIOMKI + 4l 1y D v SUpE (16010(5)12)
k=1 k=1 k=1 52

=

(4.44)
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For the sixth term on the right-hand of (4.41), by Burkholder-Davis-Gundy’s
inequality and (4.44), we have

o0

2E sup Z
t—p<r<t k=1

,
/ &) (Bt i + Ok 1 (4(5)). Bia(5)) d Wi (5)
t—p

1
<3E( sw_ 16,u)]?)
2 t—p<s<t

oo oo
+42? Y N0nor kI + 8%y Bl
k=1 k=1

o0
+ 82 e 2 oo ny D Y2 SUDE (||9mu(s)||2) . (4.45)

k=1 520

Then from (4.41)—(4.45), it follows that for all ¢ > p,
2
E<t7§i‘3<t 6 ()1

2 —a 4 2
< 2E ([10mu(t = p)II°) + 2cam™ + 5 Vi (x)dx +4[|6,h]

[x|Zm

0
+ 4a® [ E (16ne(s)1?) ds + 2(1 + 2a®) sup E ([|6u(s)|1%)

—p 520
+4(1+ 4c2e2“”)(2 16mo1 k1> + 2 BENOmk | + 2l | ooy Y ¥ sup (16muts)1*) )
k=1 k=1 k=1 sz

(4.46)

By (4.39), (4.46) and Lemma 4.3, we find

limsup sup sup IE( sup [ lu(r, 0, u, (p)|2dx) =0,
m—00 @0 geE 12p  “t—p<r<tJIx|zm
which concludes the proof. O

Remark 4.2 From (4.34) and Remark 4.1, we see that for every R > 0 and ¢ > O,
there exist 7 = T(R,e) > 2and K = K(¢) > 1 suchthatforallr > T,m > K and
p € [0, 1], the solution u of (4.1) satisfies

/ E (Iu(t; 0, u”, (/))|2> dx <&, (4.47)
x>

for any (1, ¢) € L*(Q, Fo; H) x LZ(Q, Fo: L*((—p, 0), H)) such that

E (J1u1?) + fo E(lp)I2) ds < R. (4.48)

—p
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Based on (4.47), similar to Lemma 4.4, one can further show that there exist 7] =
Ti(R,e) > T and K| = K;(¢) > K suchthatforallr > T),m > K and p € [0, 1],

IE( sup / |u(r;0,u0,<p)|2dx)<8,
t—p<r<t Jx|Zm

for any u°, ) satisfying (4.48).

In what follows, we derive uniform estimates on the higher-order moments of
solutions to (4.1).

Lemma 4.5 Suppose (F'), (G'), (') and (4.13) hold. If (u°, ¢) € L**(Q, Fo; H) x
L¥(Q, Fo; L* ((—p, 0), H)), then there exists a positive constant y such that the
solution u of (4.1) satisfies for any t > 0,

t
E (u(t; 0, 4, 9)%) + E( /0 0 uts: 0,u”, ) 2 (=) Fus: 0., ) ds )
t
+E( / e us: 0.4, )2 (s 0, u’. )17, ds )
0

0
< M (E (1°1%) + B( / ||<p(s>||29ds))e-“’ + Ms,

-p
where M3 is a positive constant independent of u®, ¢ and p € [0, 1].

Proof The proof is similar to Lemma 3.6 in [20]. For the reader’s convenience, we
here sketch the main idea.

If 6 = 1, then this result is already covered by Lemma 4.1. Next, we assume 6 > 1.
By (4.13), there exist positive constants p and &1 such that

7 Lo L 21
420 — el +ae2> w20 — 1)

20

o
+200 - D20~ DeZ 2 Y ol
k=1

20 00 o0
+40 — D@0 — De” 2 cl® Y B +4020 — Dkl ey Y72
k=1 k=1
< 20A. (4.49)
Given m € N, let 7, be a stopping time as defined by t,, = inf{r > 0 : |lu(?)| >
m}. Asusual, inf J = oco. Note that the pathwise continuity of u implies lim,,— oo Ty =

00.
Applying Ito’s formula to (4.1), we obtain for t > 0,

ATy N
E (™)t A 7)|*) + 26 ( / e ||u(s)||292||(—A>2u(s>||2ds>
0
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=E (||u°||29) + (u—201)E ( /0 s ||u(s)||29ds>
- 20E ( fo e (s fR F(x, u(s))u(s)dxds)
+20E ( /0 S ) P (s, G s — p)))ds)
+0 ilE ( /0 s ()2 llonx + Kaz,k<u<s>>||2ds)

S ATy,
+200-1)) E ( / & lu ()2~ (). o1 + xaz,k(u<s>>>|2ds) .
k=1 0

(4.50)

For the third term on the right-hand side of (4.50), by Young’s inequality and (4.2),
we get

AT
—ZGIE(f em||u(s)||29—2/ F(x,u(s))u(s)dxds)
0 Rz
A 202
—20ME <f0 e uls)|l ||u(S)||Lp(Rn)d>
6 ATy
+2(9—1)ef-‘1E( / e“*‘nu(s)u”ds) 9||w1||L1(R,1 et (451)
0

Similar to Lemma 3.6 in [20], by Young’s inequality and (4.6), we get

ATy,
20E ( f e u)II* 2 (u(s), GC,uls — p)))ds)
0

20—1
_ AT 1 (40 -2\ 7
<ae% 2 w20 - )T E (/ e*‘fnu(s)n”ds) b (—) ]2 bt
0 w\a

20 ehp

0
tae® @46 -2)FE (/ ||<p(s)||29)ds) . (4.52)
—p

For the fifth term on the right-hand side of (4.50), we have
S ATy
6> E ( / ()P ok + xaz,k<u(s>>n2ds)
0
=1

NTm
<26 - 1eP? Z llo klI*E ( / e“Suu(s)n”ds) Z lo k%"

1 k=1
£406 - DeF e ? ZﬂzE ([ enuonas) + > e
k e ?
k=1
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o AT
+ 401k ooy D VEE </ e [lu(s) ||29ds> . (4.53)
0
k=1

For the sixth term on the right-hand side of (4.50), by (4.53), we have

sl ATy
200-1) E ( / S Nlu() P us), o1k + wz,k(u(s>))|2ds)
k=1 0

20 @ AT
<40 -1 Y lloiil’E ( / e’“||u<s)||29ds)
k=1 0
20 o) ATy 400 — 1 S
+80 — 1% > R (/ e“f||u(s>||29ds)+ ¢ - )Znol,knze’“
k=1 0 S Sl

— 5 A 2 8O —1) =
+80(0 — Dkl oo Y VE (fo e fluls) | eds) = el > Bret.
k=1 1 k=1

(4.54)

It follows from (4.50)—(4.54) that fort > 0,

ATy o
E ("% u(r A ) [*) + 20E ( / et ||u<s>||29*2||<—mfu(s)llzds)
0
ATy
+20ME ( / e*”||u<s>||29‘2||u(s>||£p(Rn)ds>
0
AT
<E(1e1) + (u = 200)E ( / e“nu(swz"ds)
0

0 ATy 2
+20 - e/ 'E ( f e“‘?uu(s)u”ds) + vl e
0 ney
20—1
20— ATy 1 /460 —2\ 20
+ae% 2720 - )5 E (f e ||u(s>||2(’ds) +- <7> R
0 13

a0 eio
up 201 0 26
+aeW (49 —2) 7T E (/ o)l dS>

-P
AT 2020 — 1)
e*‘“‘nu(s)\\”ds) + =) lonle
S Gy !

20

oo
+200 - DO — D" Y o1 |’E (/
0

k=1

2 e ([ sy 20 420 =1) 2N 2
+40 - 1DQO - Del 2 x| Y BIE /0 I ds ) + =G lel Y Bie
1 k=1

k=1

0 ATy
+4620 — Dllicl oy Y ¥ E (f e‘”Hu(S)II”’ds) (4.55)
k=1 0
Then by (4.49) and (4.55) we get for ¢ > 0,

ATy N
E (e'*““m) llu(t A rm)n”) +20E ( / el ||u(s>||29—2||<—A>fu(s)||2ds)
0
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ATy
+20ME ( /0 e*”||u<s)||29*2||u<s>||§,,<Rn)ds>

0 | (40 -2\
||(p(s)||29ds) + ; (7) ||h”296Mt

20 pup

E (1) + ac% (40 —2)"7 E ([

2(20 — 1) 4(2@
9||x//1||L1(R,, M = . Zn (Pt + 22D Zﬂ2 .

l k=1
(4.56)

Letting m — oo in (4.56), by Fatou’s theorem we can obtain the desired estimate.
This completes the proof. O

4.2 Regularity of solutions

In order to prove the existence of invariant measures of (4.1), we need to derive further
regularity of solutions. To that end, we assume:

|Fe,u) = F(y,w] < 1¢(x) =, Vx,y eR" uelR; (4.57)

o0
o1k € VALY HRY, Yk eN and Y (lowilly + o1 kll7 sy s < 00
k=1
(4.58)

k €V and |Vk(x)|<C, VxeR"Y, (4.59)

he L>?(R") N L3> 4R, ¥ € L'"RH N L5 R, Yn € L®R") N L*(R"),
(4.60)

where C > Qis aconstantand ¢ € V.

When proving the Holder continuity of solutions in Lemma 4.10, the regularity
of solutions of (1.1) is needed, for which the coefficients o} ; and « should belong
to the space V instead of H. Since the nonlinear drift term F has a polynomial
growth of arbitrary order, the assumptions (4.58) and (4.60) are further required when
establishing the higher-order moment estimates of F in L" (€2, L" (R™)) with r > 0.

Next, we derive uniform estimates of solutions in L3p—4(52, L3p—4 (R”)).

Lemma 4.6 Assume (F'), (G'), ('), (4.12) and (4.58)~(4.60) hold. If

0
Nl 2@, 70:m) + 10l 2@, 7 12((=p.0), 1)) S R,

with R > 0, then the solution u of (4.1) satisfies, for allt > 6 and p € [0, 1],

t
3p—4 4p—6
E (”l/{(t, 07 Moa (p)HLI;p—At(Rn)) + E </ | |Iu(S7 Oa uov ¢)||L€]J—6(Rn)ds> < Clv
[_
4.61)
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where C| is positive constant depending on R and p, but not on (u°, ¢) or p.

Proof The proof consists of several steps. We first derive the uniform estimates of
solutions in L7” (SZ, L? (R”)). The calculations are formal, but can be justified by a
limiting procedure like the Galerkin method.

Step (i). We will show that for all # > 2,

t
2p-2
E(nu(r; 0, MO,@”{,,(R,,)) +E ( / Nus: 0. u°,<p>||L€,,_2(Rn)ds) < Li,
[_
(4.62)

where L is positive constant depending on R and p, but not on (u°, ¢) or p.
By Ito’s formula [21], we get fort > r > O,

t
E (4O} g)) + PE ( / (117 2u(s), (~2)u(s)) ds)
t
= E ()] an,) - pr( / ||u<s)||ip(Rn)ds)
t
—pIE(/ ds/ |u(s,x)|”_2u(s,x)F(x,u(s,x))dx)
r R"

t
—{-pIE(/ ds/ |u(s,x)|”_2u(s,x)G(x,u(s —,o,x))dx>
r R?

— e t
+ME(Z/ dsf |u(s,x)|P—2|al,k(x)+K<x)oz,k(u<s,x)>|2dx>.
2 k=l r Rn7

(4.63)

For the second term on the left-hand side of (4.63), we have

PE (/[ (luts, )P 2uls), (—2)%u(s)) ds)

e (/de/ / (u(s, x) — u(s, y)) (|u<s,x)|1’-2u<s,x)—|u<s,y)f’—2u(s,y>)dxdy>

Ix _ y|n+2a

p
> ep ( / ds / " / n '”(Slxx)_y;(fmy)l dx dy)

> 0. (4.64)

For the third term on the right-hand side of (4.63), by assumption (F’) and Young’s
inequality we get

'
—plE(/ ds/ |u(s,x)|p_2u(s,x)F(x,u(s,x))dx)

t
mE(f () 17552 )+pE([ dS/Rn |u<s,x>\”—2w1<x>dx)
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t t
( f ||u(s)\|§'§,,t€(w)ds> +(p—2E ( / ||u<s>||£p(R,,)ds>
r
%

t—r). (4.65)
R™)

+ 2|1y ||

For the fourth term on the right-hand side of (4.63), by Young’s inequality and (4.6)
we get

'
pE(/ ds/ |u(s,x)|p_2u(s,x)G(x,u(s —p,x))dx)

2p—2 p ! 2
217)»115 (f lu(s) 75, 2@ S) + ZTIE (/r 1GC,uls — p)ll dS>
1 2p2 P2 a’*p ! )
~pMmE ||M(S)”L2p 2@nyds ) + Tlllh\l (t—r)+ TE lu(s — p)li“ds ) .
r

2
(4.66)
For the last term on the right-hand side of (4.63), by (4.10) we deduce that
1 O ot
2(p ﬁ(z/ s [ luts. 017 o146 + k(o2 s, x))|2dx)
2 =/ Rn
Sl t
< plp— 1)IE<Z/ ds/ |u(s,x)|p72c712’k(x)dx>
k=177 Rn

> t
+p(p— I)E(Z/ dS/R lue(s, ) 1P|k ()] |o2.1 (s, x>>|2dx)

=1 r n

> t
<Sp-Dp-2) ||ol,k||i,,(Rn)E(/ ||u<s>||ip(w)ds)

k=1 r

+2(0 = DY lon kllTp g (t = 7)
k=1
+2(p = D(p—2) ZB,%IE(/ w17 ) ds) +4(p = DIkl @) Zﬂk (t—r)
k=1
+2p(p = Dl 70 @ Z yEE( f ||u<s>||£,)(w)ds>. (4.67)
k=1 r

Then from (4.63)—(4.67), it follows that forall t > r > 0,

2p—2
E (11 ny ) + MPJE (/ ()15 )
o t
<e (1 + Z lorillZp e + Zﬂ,? I N ooy Y V;?) IE(/ ””(‘Y)”[L)P(R")ds)
k=1 k=1 k=1 r

2 2 0
E () + 51 S E (@))€ =) + PR (/_p ngo(s)uzds)

520
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+2(P_])Z”UII<HLF(R”)(t r)+2||1//1||2 ”)(l—r)-i- P ynPa -
k=1

+4(p = DIl pgny D BEC = 1), (4.68)

k=1

where ¢; = c¢1(p) > 0 is a constant. Then integrating (4.68) with respect to » on
[t —1,¢]fort > 1, we get

E (||u(t)||§,,(R,, )

1
(1 + Z okl ey + Zﬁk + 11K 17 o ey Zyk) (/ ||u(s>||'g,,(Rn)ds>
t—1

k=1
t a2 az 0
+E (/ ||u<r>||ip(R,,>dr) + 2L upE (Ju)?) + £PE (/ ||¢<s>||2ds>
-1 A s20 Al -p
+2(p—1>Z||olk||u<w>+znw1n San T llhll2+4(p—1>IIKIIU<R")Zﬂk
k=1
(4 69)

By (4.69) and Remark 4.1, we find that there exists a positive number ¢, depending
only on R and p but not on (uo, @) or p € [0, 1] such that forall r > 1,

E ()11} ) < 2. (4.70)

By (4.68) and (4.70), we obtain for t > 2,

t
2p—2
E ( f e (1152 ey ds) < a3, (4.71)
t

where ¢3 > 0 depends only on R and p but not on (uo, @) or p € [0, 1]. Then (4.62)
follows from (4.70)—(4.71) immediately.
Step (ii). We now show that for all t > 4

t
2p=2 3p—4
E (”M(t, O, MO, (p)”LIZ)p—Z(Rn)) + E (/ 1 ”M(S, O» u()’ (/))||L€1:4(Rn)ds> g L2,
t—
(4.72)

where L is positive constant depending on R and p, but not on (1, ¢) or p.
It follows from Ito’s formula [21] that for¢t > r > 0,

t
E (Iu15, %)) + @ = 2E ( / (s )PP 4u(s). (=2)u(s)) ds)
=E (eI}, 5 ) — @p = zm«:( f a5 ) s)
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'
—(2p—2)IE</ ds/ |u(s,x)|21’_4u(s,x)F(x,u(s,x))dx)
r R®
‘
+(2p—2)E(/ ds/ |u(s,x)|2p—4u(s,x)G(x,u(s —p,x))dx)
r R®

> t
+<p—1>(2p—3>IE(Z/ ds/ |u(s,x>|2"‘4\m.k(x>+x(x>oz,k<u<s,x>)\2dx>.
h=17" Rr
(4.73)

For the second term on the left-hand side of (4.63),

t
Qp —2)E (/ (|u(s, 2P u(s), (—A)“u(s)) ds) > 0. (4.74)

For the third term on the right-hand side of (4.73), by assumption (F’) and Young’s
inequality we get

t
—(2p—2)E(/ ds/ |u(s,x)|21’*4u(s,x)F(x,u(s,x))dx)
r R®

t t
<-Cp-DME ( [ s ds) +Qp-2E ( [ as [ Pt (x)dx)

t
<—<2p72>A11E</ ()15 e d )+<2p 4>E<f () 1352 s)

217 gy (€ = - (4.75)

For the fourth term on the right-hand side of (4.73), by Young’s inequality and (4.6)
we get

t
Qp— 2)]E</ ds/ lus, X)?P " u(s, x)G(x, u(s — ,o,x))dx>

2p—2 2p—2
<(@2p—-3)E (/ et (1152 ey >+E(/ GG uls = VIS, 2 ) s)
<(@2p-3)E ( / ()15, o d )+22P—3||h||i’§pi(w)<t—r>
2p—2
L 92p-3,2p2 (/ lus = p)II5, . ds). (4.76)

For the last term on the right-hand side of (4.73), by (4.10) we deduce that
0 t

(p—12p - 3)E<Z [ ds /R luls, )PP~ H o1k (X) + K (X)o2.k (u(s, x)>|2dx)
k=177 !

Xt
<2p - 1)(2p—3)E<Z/ ds/ |u(s,x)|2p4aﬁk(x)dx>
=1Y" R”
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o t
+2(p - 1)(2p—3)E<Z/ ds/ |u(s,x)|2p—4|;c(x)|2|az,k(u(s,x))|2dx>
k=177 R®

o t
< (217 - 3)(217 - 4) Z ||O‘1,k||22p2(Rﬂ)E<'/\ ||u(s)||il2);—22(Rn)ds>
k=1 r
o
+22p =3) ) N1kl g2y gyt = 1)
k=1
+42p =3)(p—2) Zﬂ%E( f (11752 s)
+42p =3l 2 e Zﬁ,%u -7
+42p = 3)(p = DIl ) Zy;?E( / ()35 ds>. 4.77)

Then from (4.73)—(4.77), it follows that for all t > r > 0,

2p—2 3p—4
E (1135, ) ) + @p = DME ( / (5115, % g s )
o0
<eall 2 2 2 2p—2
Sea |1+ D llowkll} o + Zﬂk + llicll oo ) Zyk ||u<s)||m o d
k=1 k=1 k=1

t
2p—2 — — 2p—2
IE(uu(r)nL’;p,z(R,,)) +2207 3% ZE( / luts = P02 g d)

— 2p—2
+2(2p—3>Z||a1k||L2p 2y (€ = 1)+ 2015 o ¢ =)+ 2P NRIGE S G (= 1)
k=1
o0
2p—2
+4Q2p = 3l 5 gy DB 1), (4.78)
k=1

where c4 = c4(p) > 0 is a constant. Then integrating (4.78) with respect to r on
[t —1,¢]fort > 1, we get

2p—2
E (lu1352 g )

o0 o0 o0 t
2p—2
<C4(1+§:nm,knizpz(mQ BE + 11K oo oy D y,?)E( f [TC] ot )
k=1 k=1 k=1

t t
2p-2 — —
+IE</ l||u(r)||L§’,,,2(W)dr) 420320 2E</ s - I, o ds )
— —

o0
—1 _ 2p—2
+22p =3 ) llowkl oy 2y + 2101170 gy + 227 RIS g,

k=1
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+42p = Dkl 5, D B (4.79)
k=1

By (4.71) and (4.79) we find that there exists a positive number c5 depending only on
R and p but not on (uo, @) or p € [0, 1] such that for all r > 3,

2p—-2
E (Iu)135,% @) ) < e (4.80)

By (4.78) and (4.80), we obtain for t > 4,

t
E (/ ||u(s)||i’3’p 44(R,, ds) < ¢6, (4.81)
t

where ¢ > 0 depends only on R and p but not on W, p) or p € [0, 1]. By (4.80)—
(4.81) we obtain (4.72).
Step (iii). We now prove (4.61). Again, by Ito’s formula [21], fort > r > 0,

t
E (Iu®1% " o)) + G —HE ( / (s, )PP~ Cu(s). (=2)*u(s)) ds)
=E (e} ) = G = 4>ME( / [LIO] 5 s)

—(3p—4)]E(/ ds/ |u(s,x)|3p76u(s,x)F(x,u(s,x))dx)

r R~

t

+ @3p —4)IE(/ ds/ |u(s,x)|3p76u(s,x)G(x, u(s — p,x))dx)

r Rn

0 t
+1<3p_4)<3,,_5)1@(2/ dsf |u<s,x)|3f’*6\al,k<x>+K<x>az,k<u(s,x>>\2dx>.
2 =1 r R
(4.82)

For the second term on the left-hand side of (4.82),
t
Gp — HE <f (|u(s, )PP Ou(s), (—A)“u(s)) ds) >0. (4.83)

For the third term on the right-hand side of (4.82), by assumption (F') and Young’s
inequality we get

—@3p - 4)E(/ ds/ lu(s, x)|3p_6u(s,x)F(x, u(s,x))dx)
r Rz
t t
<—(Gp—HME ( [ ds) +Gp—HE ( / ds / s, x>|3l’*6w1<x>dx>

t
<—Gp-HME ( f %S, g ds) +Gp—6F ( f I, g )
3p—4

2l L, - (4.84)
L™ 7 (R
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For the fourth term on the right-hand side of (4.82), by Young’s inequality and (4.6)
we get

t
(3p—4)]E</ ds/ lu(s, )PP~ Cu(s, x)G(x, u(s —p,x))dx)
r Rn
<GBp-35E (/ lu(I5 >+E</ G, uls — oI5 ds)
S L3p—4(Rn) P L3P—4Rn)

<Gp- S)E(/ (135 s)

t
_ 3p—4 — — 3p—4
+ 23 5||h||L‘gp74(Rn)(t —r)+ 23P=5,3p—4R (/r lu(s — p)”LI;P“(R”)dS) .
(4.85)

For the last term on the right-hand side of (4.82), by (4.10) we deduce that
1 > [
SGp=4HGp— 5)E< Z/ ds f (s, )P0k () + K (X)o2,k (u(s, x)>|2dx>
2 k:l r RH

0 t
<QBp-DH3p —5)IE<Z/ ds/ |u(s,x)|3ﬁ—6aﬁk(x)dx)
k=177 R

o t
+Bp-4Gp - S)E( Z f ds f lu(s, )P0l () Ploz ke (u s, x>>|2dx)
r R®

3
(3]7 —5)(3P 6)2”01 k”L3p 4R <f ”u(S)HLIB)p ‘tl(]Rn dS)

k=1

o0
+23p =35 Y llo1kllF sp-agen) @ = 1)
k=1

+2GBp—5Gp - 6)Zﬁk ( f ()35 v)

k=1

+4G3p = 9l 5 ) Zﬁ;f(t )
k=1
o t
+20p = HBp =Kk Y VEIE( / () 1755 oy s ) (4.86)
k=1 r
Then from (4.82)—(4.86), it follows that forall t > r > 0,
3p—4 ! 4p—6
E (1 g ) + Gp — DME ( / ||u<s>||L':;6(Rr,)ds)
(1 + Z ol 5ps gy + Zﬂk + il o0 ) Zm) (/ ()15 oy )

k=1

3p—4 — — 3p—4
E(nu(r)n;;,,fw))+23p Ya’? 4E( f liels = P15 % s )
r
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zp 4
— 3p—4
+2(3p—5)§ o1 5ps gy @ = 1) + 21191 3,, 4(R,,)("’)+23P 215,y = 1)
k=1 2

+4Gp = el gy 2B =), (4.87)
k=1

where ¢; = ¢7(p) > 0 is a constant. Then integrating (4.87) with respect to r on
[t —1,¢]fort > 1, we get

3p—4
B (a1} g )

t
3p—4
(1+§ o173, 4(R,,)+§ ﬁk+||x||LM(Rn>§ n) (f e ()15 % oy ds)
t

k=1

t t
3p—4 — — 3p—4
+1E< f uu<r>nL’§,,f4(R,,)) dr +2°0a’ 4E( / 1||u(s—p>||L’§p74(Rn)ds>
t —

74
3p-5 3p—4
+2(3P—5);||U1k||L3p . 2y Lt g + 2P0

+4Gp = kI gy 2B (4.88)
k=1

By (4.81) and (4.88), we find that there exists a positive number cg depending only on
R and p but not on (uo, @) or p € [0, 1] such that forall r > 5,

E (lu()135,%) < es. (4:89)

By (4.87) and (4.89), we obtain for r > 6,

t
E( / (150 oy s ) < co, (4.90)
t

where cg > 0 depends only on R and p but not on (uo, @) or p € [0, 1]. This concludes
the proof. O

Remark 4.3 The uniform estimates given by Lemma 4.6 can be further extended under
additional assumptions. Suppose ; € L"(R") for all r € [1, co) and
o
heLl R and Y fo1xllfr @ <00, ¥r €[2,00).
k=1
Then by the argument of Lemma 4.6, one can show that for every integer k > 0, the
solution u of (4.1) satisfies, forall r > 2(k + 1) and p € [0, 1],

'
. 0 p+(p—2k . 0 p+(p=2)(k+1)
E (llu(l, 0,u”, w)”LIJHI’*Z)k(R")) +E (/[_1 [Ju(s; O, u”, QD)||Lp+([)72)(k+l)(Rn)ds) < Ly,
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where Ly is positive constant depending on k, p and R but not on (u°, ¢) or p when

0
lull 2@ r2@ey) + 10l 2@, L2((=p,0), L2R7))) < R

In addition, by Remark 4.1 and the proof of Lemma 4.6, we know that there exists
T > 2(k+ 1) depending on R and k but not on u, gorp € [0, 1]suchthatfort > T,

t
. 0 p+(p—2)k . 0 p+(p—=2)(k+1) 1
E (llu(f, 0,u", ¢)||Lp+(p72)k(Rn)) +E (/tl ”M(S, 0,u", ¢)||Lp+(p2)(k+])(Rn)dS> < Ly,

where L; is positive constant depending on k and p but not on R or p € [0, 1]

Lemma 4.7 Suppose (F'), (G'), (¥'), (4.12) and (4.57)—(4.60) hold. Then for every
R > 0 and initial data (u®, ) € L*(Q, Fo; H) x L*(Q, Fo; L>((—p. 0), H)) with

0
IE(nuOn2 +/ ||go(s>||2ds> <R,

—p

the solution u of (4.1) satisfies, for all t > 3,
1
E <||u(t; 0, u", (p)||%,) +E (/ (=2)%u(s; 0, u®, ¢)||2ds) < Cy, 4.91)
1—1

where Co > 0 depends on R but not on ul, @, or p €10,1].

Proof We formally derive (4.91). By (4.1) and Ito’s formula, we obtain for¢t > r > 0,

t t
E (I(—&)3u)?) +2E ( / ||(—A)°‘u(s)||2ds) + 20 ( / ||(—A>°2’u<s>||2ds)
t
=E (I~ 5u)|?) - 2E (f ((=2)"u(s). F(-u(s)) ds)
t
+2E (/ ((—A)“u(s), G(,u(s — p))) ds)

o t
+E (Z I(=2)% (o1 + mz,k<u(s>>)||2ds> : (4.92)

k=1Y"

For the second term on the right-hand side of (4.92), by (4.4) and (4.57), we get

—2E (/f ((—A)"‘u(s), F(, u(s))) ds>
= —2E </[ ((—A)%u(s), (—0)2F(, u(s))) dS>

t — —
< ConoE </ ds/ / lu(s, x) — uls, )| 1¢(x) ¢(y)|dxdy>

|x _ y|n+2a
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2
o Q)E(/ ds/ / it )<u(v x) —uts. )’ )
y|n+2a

t
<2E ( f =) us)] - ||<—A>7¢uds) T 2l e @n E ( / ||(—A>7u(s>||2ds)

< (1 20aliman) [ B (1 Tu6)1) ds + 1= 201~ . (4.93)

For the third term on the right-hand side of (4.92), by (4.6) and Remark 4.1, we
obtainfort >r > p

t
2E (/ ((—A)“u(s), G(,u(s — p))) ds)

t
= (f ||(—A>“u(s>||2ds>+4<||h||2+a2 sup E(||u(s>||2)> (t 7).
r r—p<s<t

(4.94)

For the fourth term on the right-hand side of (4.92), by the inequality (4.13) in [20],
we have

E (Z I(=8)3 o1k + mz.k(u<s)>>||2ds)

k=1""

rSSt

Z(m M o1kl + 4B IR E el +2C0, @er? sup E(||u(s)||2)> =)
k=1

o0 t N

+4) a IIKIIin)/ E(H(—A)fu(S)llz)ds, (4.95)

k=1

where the constant ¢; > 0 depends only on n, « and «.
By (4.92)—(4.95), we have fort > r > p,

t
E(I-0)%u0)) +E (f ||<—A)°‘u(s>uzds)
o ! o
B (10 8u)?) + (1 -+ 2aliman) [ B (1-2)Fu0)1?) ds

2 ESIP @ —r) +4 <||h||2 +a’ sup E (|u(s)||2)) (t=r)

r—p<s<t

+2Z(|<—A>5m,kn2+4ﬂ,§||<—A>3K||2+2C<n,a>cm? sup E(u<s>||2)) (t=r)

k=1 r<s<t

LN [ E(1-artuen?) as (4.96)

k=1

Fort > 1 + p, integrating (4.96) on [t — 1, ¢] with respect to r, we have
E (I um)?)
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<[ B(ieaumR) dr+ 1+ 20vatiman) [ B (12 50IR) ds
t—1 =1

t—1—p<s<t

+ =2t ) +4 (nhu2 +a’ swp E (||u<s)||2)>

+22<||<—A)”2’m,k||2+4ﬂ,3||<—A>?x||2+2C<n,a)c1yk2 sup E(||u<s>||2)>

k=1 —1<s<t

i t
+43 0Pl [ B (10 fu) ) ds 4.97)
A

k=1
By Remark 4.1 and (4.97), we see that there exists ¢, > 0 depending on R but not on
ud, @ or p € [0, 1] such that

E(I-03u@l?) <e2 V2. (4.98)

Then by (4.96) and (4.98), we have for ¢ > 3,
t
E ( / ||<—A>°‘u(s>||2ds) <o, (4.99)
-1

where ¢3 > 0 depends on R but not on ud, @ or p € [0, 1]. Then (4.98)—(4.99) and
Lemma 4.1 conclude the proof. O

Lemma 4.8 Suppose (F), (G'), (X'), (4.12) and (4.57)—~(4.60) hold. Then for any
R > 0 and the initial data (u°, ¢) € L*(Q, Fo; H) x L*(Q, Fo; L*((—p, 0), H))

with E(||u0||2 +/° ) ||(p(s)||2ds) < R, the solution u of (4.1) satisfies, for all t > 4,

E{ sup [lu(;0,u° 9)3 | <Cs,
—1<r<e

where C3 > 0 depends on R but not on ul, porpel0,1]

Proof The proof is based on Lemma 4.7 and is similar to that of Lemma 4.2 in [20].
So the details are omitted here. O

Remark 4.4 Suppose the assumptions of Lemma 4.7 hold and IE(HMOH2 + fi)p 1%

(s) ||2ds) < R for some R > 0. Then by Remark 4.1 and the proof of Lemma 4.7, we

find that there exists 7 > 4 depending only on R (but not on ul, g or p € [0, 1]) such
that for all + > T, the solution u of (4.1) satisfies ]E(sup,_lgrgt ||u(r)||%,) < 53,

where 53 > 0 is a constant independent of R, ul, ¢ and p € [0, 1].

Lemma 4.9 Suppose (F'), (G'), (X'), (4.11) and (4.57)~(4.60) hold. If R > 0 and
W, @) e L¥(Q, Fo; V) x L¥(Q, Fo; L* (—p, 01; V)) such that 1E<||u0||2V9 +
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fi)p ||<p(s)||%,0ds) < R, then the solution u of (4.1) satisfies

supE (11(—2)3u(t; 0., )| ) < C,
>0

where Cy is a positive constant depending on R but not on u°, ¢ or p € [0, 1].

Proof The proof for & = 1 is easier. So we assume 6 > 1 in the sequel. Let 1 and ¢
be positive constants to be specified later. By (4.1) and Ito’s formula, we get for ¢ > 0,

ME [~ u()|*] +26E [ fo Z e*”||(—A>%u(s>||29—2||(—A>“u<s>||2ds}
= E[I(=2) 3’12 + (1 — 20)E [ / I e“n(—m%u(s)n”ds]
—26E [ /0 e ) P2 A) ), u(s)))ds]
+20E [ /0 =) ) P2 (= A u(s), GO s — p)))ds]
+6 EE [ /0 R TEUNL PISTL TN TR xoz,k<u(s>>)||2ds]

0 t
+200 -1 E [ / (=) Tu() P (=) u(s), o1k + Kaz,k<u<s>))|2ds] :
k=1 0
(4.100)

For the third term on the right-hand side of (4.100), similar to (4.93), we obtain

t
20E [ / e (=A) 2 u) 12 (= 0)%us), FC, u(s)))ds]
0

t

< 20|yl oo gy E [ /O e“‘||<—A>%u<s)||29ds]
+260E [ / M (=) Tu(s)*0 ! ||(—A>%ws||ds]
0

20 t w
< (29||w4||Loe(Rn> + (20 — l)ef”‘)ﬂi[/o eﬂﬂ\(—mfu(s)n%’ds] +er e g3
(4.101)

For the fourth term on the right-hand side of (4.100), by (4.6) we obtain
t
20E [ f (=) 2u) 1?72 (=) %uls), G, uls — p)))ds}
0
t
< OE [ / eM||(—A)°z'u(s)||292||(—A)“u(s)||2ds}
0

t
+0E [ / (=) 2u)IP NG uls — p))nzds}
0
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t
< OE [ f e*”||(—A)°5u(s)||29—2||(—A)“u(s)||2ds}
0

t
140~ 1)eE [ / ewn(—A)%u(s)n”ds]
0

2 2029 2(129 0
+ —5 111" + = sup Ell|u(s)|**1e"" + —5—¢* E [ f ||«><s>||29ds].
ey HEL s20 €1 -
(4.102)

For the fifth term on the right-hand side of (4.100), by (4.31) in [20], we have
i t

6)_E [ fo e I=2)Tu@) P2 I(=2) (01 + Kaz,k<u(s)>>||2ds]
k=1

> o & ! a I
L2 M) ToilP (0 = De[ B | e I=A)u@)Pds |+ 5 | e*ds
' ! 0 e Jo

k=1

o t
+492a£|wuinU e“||<—A>7u<s>||2"ds]
0

k=1

o 1 1
+8) " BEI(=A) Tk ((9—1»:166'1&{/ e“f||(—A>“fu<s>H29ds}+igf e'”ds)
f—1 0 31 0

o t
+4C(m, a)er Y ¢ ((9 - I)E%E U ehs ||(—A)%u(s)||29dx]
0

k=1

t
+ %E U emnu(s)uwds] ) (4.103)
& 0

For the sixth term on the right-hand side of (4.100), we have
0 t
200 -1 E [ fo (=) U@ (=A) us), o1k + Koz,k<u(s>)>|2ds]
k=1

<2000 — 1)2@ [ /0 ) ) P (=) o4+ mz,k(u(s»)nzds] :
(4.104)
Then by (4.100)—(4.104), we get for all # > 0,
ME (=) Fu) ]
<E[I-a%1¥]

20 0
+ (u — 2605 4 26|[Yall Lo @ + 20 — DX T +2(26 + 1)(6 — e[

o0 0 o N
+4020 — 1)) aflklie +80 — DO — el Y BLI(=0) k|
k=1 k=1
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9 «
+2(0 = D20 — De{ " Y (=) 7014
k=1

o0 t
+40 —1)(20 — 1)81"%‘C(n, ey yk2>E [/ e’”||(—A)gu(s)||29dsi|
0

k=1
—20 —1 ut 20 2 20 ut 2a% 204 ut
+e e olly + —5 T e™ + — sup E[Jlu(s) |7 1e
ney MET 5>0

2477 ‘ 200 - 1) & .
T e |:/_p ||<p(s)||29]dsi| + Y =)o ilPe

1 1 k=1

+8(29—1)M Zﬁkn( D)5

8

t
+420 - C<n ey Zyﬁﬂa [ / 6’“|IM(S)||29ds]. (4.105)
0

k=1

By (4.11), there exist positive constants i and &1 such that

9

n— 20+ ze||¢4||Lw<Rn) + (26 — 1)8 T 42020 + 1)(6 — e~

+46(20 — 1) Za,%uxnim +8(6 —1)(26 — l)efj Zﬂ,3||(—A)%K||2

k=1 k=1
+20 — 126 — ey~ Z I(=2) %0 4]

F40 — 1)(20 — 1)8fT'C(n, @)e; Z Y2 <0. (4.106)
k=1

By (4.105) and (4.106) we get for all 7 > 0,
E[lI-)%u()*]
E [n(—m%uouz‘)] R T [

2a 20 2a 20 0
9||h||29 = sup E[[lu(s)*"] + x: e“p]E|:/ ||¢(s)||29ds}e“’
1 —p

&1 MSI 520

220 - 1)  — o
+ —Z =)o 4l? + 820 — )—5 Y BEI(=2) 2k |
| - o
4020 — 1)—C(n @)er Z y2 supE [||u(s)||29] (4.107)
k=1 s>0
which together with Lemma 4.5 concludes the proof. O
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The next lemma is concerned with the pathwise Holder continuity of solutions.
Lemma 4.10 Suppose (F'), (G'), (£) and (4.57)—~(4.60) hold. Let (4.11) be fulfilled

with = 31;—:‘2‘.1f1e > 0and u®, ¢) € L?(Q, Fo; V)xL¥(Q, Fo; L* ((—p,0), V)
such that

0
E(Iluollzf + / ||<p<s)||2£ds> <R,

—p

then the solution u of (4.1) satisfies
Efluce; 0,1, 9) = 0,u, )] < Cs (10 = 7 + 1t = )

forall p € [0, 1]andt > r > 6, where C5 > 0 is a constant depending on R but not
on u®, @ or p.

Proof Let A = (—A)* + Al, where o € (0, 1) and A is the positive constant in (1.1).
Then, by (4.1) we find that fort > r > 6,

t t
u(t) :e*A“*r)u(r)Jr/ e*AU*S)F(.,u(s))der/ e ATIG(L uls — p))ds

r r

00 t
+ Z/ e (o § + ko (U(5))) dWi(s),
k=1°"

which implies that

E[lu() - ur)* ]
t
< 429—1]E |:||(E—A(t—r) _ I)u(r)”Z@] +420—1E |:||/ e—A(l—S)F(_’ u(s))dsllza]

r

t
+477E [n f e MG uts — p))dsnﬂ
r

S t
+4%-1g [n 3 / e (o1 4 + ko2 1 (u(s))) d Wi (s)u”} : (4.108)
k=17

For the first term on the right-hand side of (4.108), by Theorem 1.4.3 in [35] and
Lemmas 4.5 and 4.9, there exists a positive number c¢; depending on 6 such that for
allt >r >0,

PR [ = Dur) 2] < o1 = D BT < 2 =)' 4.109)
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For the second term on the right-hand side of (4.108), by the contraction property of
e~ (4.3) and Lemma 4.6, we obtain for all # > r > 6,

t
4-1E [n / eAIF( u(s))dsnﬂ
t
<47'E [ / IF (., u(s))n”ds} (t =r)?!
t
<8'E [(/ IW2lu()P~ 12 ds + [[ws))* (¢ — r))} (t=r)>!

'ip 4
3p—4 - -
<87 yall 7y [ / ||u<s>||Lé’,,4ds} (=m0 iy | ¢ — ¥

LP2

3p
< 8%-! (c3||1/f2|| "ops + ||w3||26> (t —r)%. (4.110)

L P2

For the third term on the right-hand side of (4.108), by (4.6) and Lemma 4.5, we obtain
forallt >r > 1,

t
429—115[” f e—*‘“—“G(-,u(s—p))dsu”]
r

<% (||h||29 +a supE [||u(s)||29]> t =)

§2

<82 (I + a¥es) (6 = ). (4.111)

For the fourth term on the right-hand side of (4.108), by the BDG inequality, (4.10)
and Lemma 4.5, we obtain forall t > r > 0,

o t
4R {n > f e A (o0 4 + Kok (u(s))) de(s)n”}
k=1""
0
<41 0E ( / Z||alk+mk(u<s>>|| ds)
< 8%l (Z(||m,k||2+2||x||2ﬂ£)) +c6<22||x||%myk2) t ).

k=1

4.112)

Then from (4.108)—(4.112), it follows that there exists ¢;7 > 0 depending on R but
not on 1, ¢, p,torr,suchthatforallt >r > 6,

Efllu(t; 0, u®, ) — u@r; 0, u®, o)1 < c7(|t — r|” + |t — r?%).

This completes the proof. O
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Remark 4.5 Suppose R > Oand (u°, ¢) € L*(Q, Fo; V)xL* (R, Fo; L* ((—p. 0),
V)) such that

0
E (||u°||2V9 +/ ||¢(s)||2V9ds) <R.
—pP

Then by (4.107) and Lemma 4.5 we see that there exists 7 > 0 depending only on R
noton p € [0, 1] such that forallt > T

E[l(—2) % u()[*] < Ca, (4.113)
where Cy is a positive constant independent of R, (u°, ¢) and p € [0, 1].
Moreover, by Lemma 4.5, Remark 4.3 and (4.113), we find from the proof of
Lemma 4.10 that there exists 7 > 6 depending only on R but not on p € [0, 1] such
that forall¢t,r > T,

Elflu(t) — u()|*1< Cs(|jt —r|? + |t — r|*),

where C 5 is a positive constant independent of R, (uo, @) and p € [0, 1], and 6 is the
same as that in Lemma 4.10.

4.3 Existence of invariant measures
We now prove the existence of invariant measures of (4.1) on H x LZ((— p,0); H)
for which we need to show the tightness of distributions of solutions.

By Theorem 2.2, we see that for any initial time o > 0 and any (uo, Q) €
LX(Q, Fyy; H) x L*(, Fy; L>((—p, 0), H)), problem (4.1) has a unique solution

u(t; to, u®, @) defined for ¢ € [ty — p, 00). The segment of u(¢; 1y, ul, g)on (t—p,t)
18 written as

u (to, u®, @) (s) = u(t + s; 19, u®, ) forall s € (—p,0).

Ify : H x Lz((—p, 0); H) — R s a bounded Borel function, then for 0 < r <t
and (uo, @) € H x L2((—p, 0), H), we set

(Pra¥)W’, @) =E (1/f (u(t; rou’, @), u(r, u®, (p))) )

In particular, for I' € B(H x L2((—p,0),H)), 0<r<tand (u’ ¢) € H x
L*((—p,0), H), we set

P, 0i 0. 1) = (. 1D, 9) = Plo e @ (i r u 9), w0, ) T,
where 1r is the characteristic function of I'. We often write pg ; as p;.
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Let & be the space of all probability measures on H x L?((—p, 0), H). Recall that
a probability measure v € &7 is called an invariant measure of (4.1) if for all # > 0,

(P @, @) dv(®, ¢) = / v @®, ) dvu®, ¢)

[HxLZ((—p,O),H) HXL?((—p,0),H)
for every bounded Borel function ¢ : H X L*((—p,0), H) — R.

The following properties of {p, ;}o<r<: can be proved by standard arguments as
in [34].

Lemma4.11 If (F)), (G') and (X') hold, then:
(i) The family {p; s}o<r<: is Feller, and is homogeneous in time.
(i) Forany (u°, 9) € HxL*((—p, 0), H), the process {(u(t; 0, u°, 9), u; (0, u°, ))}1>0
isan Hx L*((—p, 0), H)-valued Markov process with transition operators {Prilo<r<s-
In particular, if  : H x L>((—p, 0), H) — R is a bounded Borel function, then for
any 0 < s <r <t P-as.,

(Ps. )@, 0) = (ps.r (Pra¥ D@, ), VWP, 9) € H x L*((—p,0), H),

and the Chapman-Kolmogorov equation is valid:

p(s,uo,cp;t,l“)=/HL2(( 0)H)p(s,uo,w;r,dy)p(r,y;t,F)
xL%((—p,0),

forany T € B(H x L*((—p, 0), H)).

We will employ Krylov-Bogolyubov’s method to show the existence of invariant
measures of (4.1). To that end, for every k € N, we set

1 k7
7

where p(0, 0, 0; ¢, -) is the distribution law of (u(z; 0, 0, 0), u; (0, 0, 0)) corresponding
to the solution u(z; 0, 0, 0) of (4.1) with initial condition (0, 0) at initial time 0. We
first prove {uy }ren is tight on H x Lz((—,o, 0), H).

Lemma 4.12 Suppose (F), (G'), (X') and (4.57)—(4.60) hold. Let (4.11) be fulfilled
with 6 = ;;;—:‘2‘ Then {u ke is tight on H x L2((—p, 0), H).

Proof The proof is based on the uniform estimates given by Lemma 4.4, Lemma 4.8
and Lemma 4.10, and is similar to [20] regarding the tightness of distributions of solu-
tions on C([—p, 0]; H). We here sketch the main idea of the proof. For convenience,
during the proof, we write the solution u(z; 0, 0, 0) as u(z).

By Lemma 4.8, for any given € > 0, there exists Ry = Rj(¢) > 0 such that for all
t >4andp € [0, 1],

. 4.115)

1
P({ sup [ur(9)lly > R1}> <3

s€[—p,0]
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By Lemma 4.10, forall > 7 and r, s € [—p, 0],
E(Jlur(r) = eI 7T ) S erl+ p2=)lr =527 < 2erlr =577, (4.116)

where ¢; > 0 is independent of p. By (4.116) and the technique of diadic division,
we infer that for every € > 0, there exists Ry = Ry(€) > 0 such that for all # > 7 and

p €[0,1],
- 1
]P({ sup M <R }) > 1— e 4.117)
—p<s<r<0 3

|r — S|4(3p 4)

From Lemma 4.4, it follows that for every ¢ > 0 and m € N, there exists n,, =

n(e, m) > 1 such that E( sup le\>n lu(s, x)|2dx) < 22;+2 for all + > 1 and
t—p<s<
p € [0, 1], and hence for all t > 1

1 1
IP’({ sup f (s, x)2dx < —, Vm € N}) S l—-e.  (4118)
x> 2m 3

t—p<s<t

For every € > 0, denote by

2= {s H=p 0> V| swp (€O < R1<e)} (4.119)
se[—p,
Zye = {s eClp. 0 HY| syp 1D ZEON g (e)} (4.120)
—p<s<r<0 |r _ s|4(2p )

1
Z3¢e = {S € C([—p,05; H)| sup / l£(s, x)[?dx < —, Vm € N},
—p<s<0Jx=np 2m

(4.121)

and
Ze=21eNZeNZ3e. (4.122)
By (4.115),(4.117)and (4.118)—(4.122) wee find that for all # > 7 and every p € [0, 1],
P({u; € Z}) > 1 —e. (4.123)
Moreover, by (4.119)—(4.122) and the Ascoli-Arzela theorem, one may verify that

the set {£(0) | £ € Z.} is compact in H and Z, is compact in C([—p, 0]; H). Since
the embedding C([—p, 0]; H) — Lz((—,o, 0), H) is continuous, we find that Z, is
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also compact in L*((—p,0), H). Consequently, the set 56 ={(0),&) | £ € Z.}is
compact in H x L>((—p, 0), H).
Furthermore, by (4.123), we have that for all + > 7 and p € [0, 1],

P({u(0). ur) € Z¢}) = P({us € Z}) > 1 — e,
which along with (4.114) implies that for every p € [0, 1],
uk(gé) >1—¢€, VkeN,

Thus {ug }bren is tight on H x L?((—p, 0), H), which completes the proof. O

Theorem 4.1 Suppose (F'), (G'), (X') and (4.57)—(4.60) hold. Let (4.11) be fulfilled
with 6 = ;i—:g. Then for any p € [0, 1], the stochastic equation (4.1) has an invariant

measure on H x Lz((—p, 0), H).

Proof By Lemma 4.12 we see that {x}ren is tight on H x L*((—p, 0), H), and
hence there exists a probability measure . on H x L?((— p,0), H) such that, up to
a subsequence, py — . Then by Lemma 4.11, one can prove u is invariant, which
completes the proof. O

Given p € [0, 1], let S” be the collection of all invariant measures of (4.1) with
delay parameter p. Then from Theorem 4.1 we see that S” is nonempty. In the next
section, we will prove the set | J S7 is tight.

pel0,1]
5 Regularity of invariant measures

In this section, we establish the regularity of invariant measures of (4.1), which will
be useful for proving the tightness of the set of all invariant measures of (4.1) when p
varies on the interval [0, 1] in the next section.

Theorem 5.1 Suppose (F'), (G'), (¥'), (4.12) and (4.57)—(4.60) hold. Then for every
p €10, 1] and p” € S, we have MP(V x L*®((—p, 0), V)) =1

Proof By Remark 4.4, we find that for every O, @) € H x Lz((—p, 0), H), there
exists T = T (u", ¢) = 4 (independent of p) such that forall # > T and p € [0, 1],

E (lut; 0.4, )1}) +E( sup Jus ., )} ) <ers (5D
rel—p,0]

where ¢; > 0 is independent of u°, ¢ and p.
Given R > 0, denote by

Br={W0) eV x L2(=p, 00, V) | 16 @)llvsrporv) < R}.

@ Springer



Stochastics and Partial Differential Equations: Analysis and Computations

Then Bp is a closed subset of H x L2((—p, 0), H).
By (5.1) we getforallz > T and p € [0, 1],
c1

P ‘(I;O,O,, 0, u, )H ) S &
({ u( w”, @), ur (0, u”, @) V><L°°((*ﬂ»0)vv)> R?

which implies that for all ¢t > T and p € [0, 1],

P ({(u(t; 0, u’, ), u: (0, u?, <p)) € BR}) >1— % 5.2)

If u” € S”, then from the invariance of ©”, it follows that for any s > 0,

/HXLZ((_M)’H)P ({(u(t; 0, u°, ), u, (0, u°, (p)) € BR}) duf = Mp(ER). (5.3)

By (5.2), (5.3) and Fatou’s theorem we get, for all p € [0, 1],
P (Br) 21— —. (5.4)

Letting R — 400 in (5.4), since Rlim MP(ER) = pu”(V x L®((—p,0),V)) we
— 00
obtain for all p € [0, 1],

1 (V x L¥((=p,0), V) > L,

which concludes the proof. O

6 Tightness of the set of invariant measures

In this section, we prove the set of all invariant measures of (4.1) is tight when p
varies on [0, 1]. To that end, for every p € (0, 1], define a restriction operator 7, :
H x L*((=1,0), H) = H x L*((—p,0), H) by

T, 0) = @ ¢l—p0), Y@’ ¢)eHxL*((—1,0), H),

where ¢|(_, o) is the restriction of ¢ to the interval (—p, 0).
We now prove the tightness of the set of all invariant measures of (4.1) for all
p €10, 1].

Theorem 6.1 Suppose (F'), (G'), (¥') and (4.57)—(4.60) hold. Let (4.11) be fulfilled

with 6 = gi—:g. Then the set L[g ; SP is tight in the sense that for every ¢ > 0, there
p€l0,

exists a compact subset K in H x L*((—1,0), H) such that u” ('J;) (IC)) > 1—¢for
all u? € 8” and p € [0, 1].
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Proof Givenp € [0, 1]and (u°, ¢) € VxL®((—p,0), V) C VXL%((—/O, 0),V),
by Remark 4.2, we find that for every ¢ > 0 and m € N, there exist 7, =
T(e,m,uo,w) > 2 and k,, = k(e,m) > 1 such that for all p € [0,1],7t > T,
and k > k,,,

E( sup / |up(r;0,u0,g0)|2dx><%. 6.1)
—1<r<e J x>k 22m+

On the other hagd, by Remark 4.4, we see that there exists 7~"1 = Tl (uo, @) = 1 such
that for all r > T,

B sup 47 0,1, 9))I}) <1,
se[—1,0]

where ¢; > 0 is a constant independent of (1°, ¢) and p, which implies that for every
& > 0, there exists R = Rj(¢) > 0 (independent of (u®, ¢) and p) such that for all
t 2T,

1
IP({ sup (w0, 1%, 9) )y > RlD < 3e. (6.2)
se[—1,0]

By Remark 4.5, there exist 7> = TQ(NMO, @) > land Ry = Ry(¢) > 0 (independent
of (u, @) and p) such that for all t > 7>,

P(t+7;0,ul @) —uf (t+5;0,u, 1

P<{ up lu? (t +73;0,u°, ) L;,z( 5;0,u ¢)|I<R2}>>1__8.

—1<s<r<0 Ir — 5|77 ® 3
63)

For every ¢ > 0, denote by
He={E1-101> V] swp ey < Rie)], (6.4)
se[—1,0]
1§(r) — &)l

tre=fgecaronmy s EOZEDL gl )

—1<s<r<0 |r — s]%Gr=9

1
S = {5 e C([-1,0]; H)| sup / |§(s,x)|2dx <—, Yme N},
“1<5<0 x>k 2

(6.6)
It follows from (6.4)—(6.6) and the proof of Lemma 4.12 that the set

My = {(S(O),E) | &€ <%/1,s m«%,e ﬂ%,a}
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is compact in H x L%((—1,0), H).
In what follows, we will prove for any p € [0, 1] and u” € S”,

uP (’];,(Jifg)) >1—e. (6.7)

For any m € N, define

1
Ao =i e -0k s [ e < 5.
—1<5<0 J |x| >k 2m

and

A ={E0. o1 e A namen( N Hiem)} VieN
m=1

o0
Then 7 = () A7, A7 is a closed subset of H x L%((—1,0), H) and Af 2 Af+1.
i=1

Similarly, one can verify that 7, A7 is a closed subset of H x L*((—p,0), H) and
Ty (A7) 2 Tp(A7 ) fori e N.
We claim:

() 7o(AD) =T, (A). Y pelo1]. (6.8)

i=1

o0
It is evident that (1) 7,(A?) 2 7,(#¢). So it is enough to prove
i=1

() To(A) € T, (). (6.9)

i=1

o0
Let zg € C([—p, 0], H) such that (z0(0), z0) € () Z,(A?). Then for every i € N,
i=1
we have (z0(0), z0) € 7,(A{), which implies that there exists Z; € C([—1,0]; H)
such that

Zi(0),%) € A and zo(s) =Zi(s), Vs € [—p,O0]. (6.10)

i
Consequently, we have Z; € ] . N #2.. N ([ J3..m), which together with (6.10)

m=1
implies
lIz0(r) — zo(s) I
sup lzo($)llv < Ri(e), sup ———— 55— < Ra(e), (6.11)
s€[—p,0] —p<s<r<0 |r — s|m
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and

1
sup / z0(s, X)|?dx < —, Vm € N. (6.12)
—p<r<0J x| >k 2m

Define a continuous function z : [—1, 0] — H by
z2(s) = zo(s) if s € [—p,0]; z(s) =zo(—p) if 5 € [—1,—p). (6.13)
Then (z0(0), z0) = 7,(z(0), z). Moreover, it follows from (6.11)—(6.13) that z €

Je N e N I3 ¢, and hence (20(0), zo) € T,(J;), which gives (6.9).
By (6.8) we infer that for every p € [0, 1] and u” € S°,

lim p?(7,(AD) = 1 (T,(H)),
11— 00
which implies that there exists No = No(e, p, u”) > 1 such that for any i > Ny,

1
0.< p (Ty(AD) = n"(T,(A0) < T3e. (6.14)

Next, we will prove u” (7}) (.Afvo)) >1-— %8.
Since u” is an invariant measure of (4.1) with p € [0, 1], we get

P({ (w0 0. 00, 0.4 ) ) € Ty (A | ) di = (T,(A5,)).
(6.15)

-/HXLZ((*,O,O)-,H)

Then by (6.15) and Theorem 5.1, we have

P ({(u”(z; 0,u®, v), u? (0, u°, 1//)) c T,,(Afvo)}) du’.
(6.16)

W (1,045) = [

VXL®((=p.0),V)

By (6.16) and Fatou’s theorem, we get

1 (T (A5,)) = lim inf

m in /V m«_p,0>,v>P({<”p(“ 0,9, 1l 0,u°, ) € Ty (A3 ) du”

S1- /;/ lim sup P ({(u"’(t; 0,u°, ¥, u? (0, u®, w)) ¢ %(A?vo)}) dup’.

XL®((—=p,0),V) t—00

(6.17)

Next, we estimate the term on the right-hand side of (6.17). For any (1, ¥) € V x

L*®((—p, 0), V), note that uf(O, u, ) is the segment of the solution u” (¢; 0, ud, )
of (4.1) on the interval [t — p, t]; that is,

ul 0, u®, Y)(s) = uf (t +5;0,u’, %), Vs e[—p,O0l.
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We now consider the segment of u” (¢; 0, ul, ) on the interval [t — 1, ¢] witht > 1,
which is denoted by v/ (0, u®, ¥); that is,

(0, u’, ) (s) = u”(t +5:0,u’, ), Vse[—1,0]
Then for all ¢+ > 1, we have vtp(O, uo, ¥) e C([—1,0]; H) and
(150, u® v, uf (0,u®, ¥)) = T, (v/ (0, u®, ¥)(0), v/ (0, u®, ¥)). (6.18)

By (6.18) we see thatif (u (1; 0, u®, ), uf (0, u®, ¥)) ¢ T,(AY ) witht > 1, then
we must have (vf (0, u®, ¥)(0), v (0, u®, ¥)) ¢ A5, which shows that for 7 > 1,

P({ (w23 0,40 90, uf 0.4, 1)) ¢ T, (A |)
<p({oroul vy g i)+ ([ 0.0 ) ¢ 5. ))

P30 (Joro.u vy ¢ H5.em})
m=1

=IP({ sup ||uf<0,u°,w><s>||v>R1<a>})

s€[—1,0]
Pt 0, ud, —uP(t -0, ul,
+P<{ sup uf (t +r;0,u’, ¥) 114)72( +s:0.u Pl Rz(g)}>
—1<s<r<0 lr — slm
No 1
+ P { su / [u” (r, x;0,u®, ¥) > dx > —} ) (6.19)
mzzjl ( 19r<t Dtz 2n

By (6.2), we obtain

1imsupIP<| sup  [u” (0, u®, ) ($)lly > R1(8)}> <. (6.20)
t—>00 se[—1,0] 3
By (6.3), we have
P t ;O’ O’ —uf t ;03 07
limsup]P’<{ sup e 473 0,07, 9 ’,l,z( 3009l > Rz(S)}> < €
=00 —1<s<r<0 lr — 5| %G5 3
6.21)

By (6.1), we have

No
1
lim sup E ]P’<{ sup [|>k luf(r, x; 0, uO, w)|2dx> z—m})
m 'x/ m

t—1<r<e
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No
< 22’” limsupE< sup / u? (r, x; 0, u°, 1/f)|2dx)
[x|Zkm

m—1 1—00 t—1<r<t
No
€ 1
< Z 2 < Zs. (6.22)
m=1

It follows from (6.19)—(6.22) that

limsup[P’({(up(t;O, W0, 9, u (0, u, w)) ¢ T,)(Af\,o)]) PRI

1—>00 12

which along with (6.17) yields

11
w (T, (Ay,)) > 1 — e (6.23)

Then (6.7) follows from (6.14) and (6.23) immediately, which completes the proof. O

7 Limits of invariant measures with respect to delay parameter

In this section, we investigate the limiting behavior of invariant measures of (4.1) as
p — po. We will show any limit of a sequence of invariant measures of (4.1) must be
an invariant measure of the limiting system. We start with an abstract result regarding
the limits of invariant measures.

Let Z be a separable Hilbert space withnorm || - || z. Assume that forevery p € (0, 1],
ze€ Zand ¢ € L2((—p,0), Z), {XP(1: 0, (z, ¢)) : t > 0} is a stochastic process in
Z x L*((—p, 0), Z) with initial data (z, ¢) at t = 0. We also assume that for every
z€Z, {Xo(t; 0, z) : t > 0} is a stochastic process in Z with initial conditionz when
t = 0. Suppose the probability transition operators of X are Feller.

For each p € (0, 1] and p; € [0, p), for any (z, ¢) € Z x L*>((—p, 0), Z), let

_ ) @ ol=p,0), asp1 >0;
%»pl (z,9) = {27 as p = 0,

where ¢|(—,,,0) is the restriction of ¢ to the interval (—p;,0). Let Z, = Z x
L>((—=p,0), Z)if p € (0,1],and Z, = Z if p = 0.

Similar to [18, 31], we assume that X”" converges to X” as p, — p™T in the
following sense: for every compact subset E in Z x L%((—=1,0), Z),t > 0and >0,

tim —sup P ({1 Z,—p (X (110, Tis, (2. 9))) = X (10, Timsp (2. )|z, > ¢}) = 0.
Pn=>P7 (z,0)€E
(7.1)

Then we have the following result as Lemma 7.1 in [18] whose proof is omitted.
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Theorem7.1 Let 0 < p < p, < 1 and (7.1) hold. Suppose uP" is an invariant
measure of XP in Z X L2((—pn, 0), Z), and for any € > 0, there exists a compact
subset K € Z x L*((—1, 0), Z) such that pPr (T]HPH(K)) >1l—-¢, Vn=1,2,....
Then:

(i) The sequence {P" o pn—>p}+ | is tightin Z,.
(ii)If pn — p and w is a probability measure on Z , such that (1" o’Tp; AN p converges

weakly to L as n — oo, then |t must be an invariant measure of X°”.

Next, we will apply Theorem 7.1 to the stochastic system (4.1) with Z = H =
L?(R"). Recall that H, = H x L*((—p,0), H) if p € (0, 1], and H, = H if p = 0.
We now write the solution of (4.1) with p € (0, 1] as u”, and reserve u for the the
solution of (4.1) with p = 0.

Lemma 7.1 Suppose (F'), (G') and (X’) hold. Then for every p; € [0, 1) and every
compact subset E in H x Lz((—l, 0),H), T >1andn > 0,

lim  sup P({ sup (| Tp— o (P (1), uy) — WP (0), u") || b, > n}) =0,

p=p1 (u0,0)eE 0T

where uf(t) = u”(t;0, 71— ,u®, @)), and uf (s) = uP(t + s:0, Ti— ,(u°, @)) for
s € (—p,0).

Proof By Theorem 2.2, we find that for every 7 > 1 and every compact subset E in
‘H 1, there exists a positive number ¢; = ¢ (E, T) independent of p € [0, 1] such that
for all (u°, @) € E and p € [0, 1],

B sup Nluf 430, Tiepa, @))I?) < 1. (7.2)
t€[0,T]

Applying Ito’s formula to (4.1), we obtain for ¢ € [0, T']

E ( sup [lu” (r) — u”! (r)||2>
0<r<t

< < sup / ds/ —2 F(x uf(s)) — F(x, u” (s))) ( P(s) —u™ (s))dx)

0<r<t

+ 2E< sup / ds/ (G(x, uf(s — p)) — G(x,u” (s — pl))) (uf (s) —u” (s))dx)

0<r<t Jo

E( > /0 ko2 kWP (5)) — Ko (! (s>>||2ds)
k=1

+ 2E< sup Z /r (ko2 kW (5)) — ko2 1 (U (5)), uP (s) — u” (5))d Wi (s)

o<r<t | i Jo

). (1.3)
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We now estimate all terms on the right-hand side of (7.3). For the first term on the
right-hand side of (7.3), it follows from (4.4) that

]E( sup /r ds/ —2(F(x, uf(s)) — F(x, u” (s))) . (up(s) —u (s))dx)
0 n

0<r<r

t
< 2||'(//4||L°O(R")E</ [l (s) — u”" (s) ||2d5)- (7.4)
0
For the second term on the right-hand side of (7.3), we have

2E< sup /r ds/ (G(x, u’(s — p)) — G(x,u’' (s — pl))) . (u”(s) — u” (s))dx)
0 n

0<r<t

t—p
< E(/ IGC, ul(s)) = G(,u’' (s — p1 +,0))||2dS>

-p

t
+E(/ lu? (s) — uP! (s)||2ds>
0

o1—p
= E(/ G, u?(s)) — G(, u”' (s — p1 + p))||2d5>

—p

0
+ E(/ IG(, uP(s)) — GG, u (s — p1 + p))||2d5>
p

1—p

t—p
+E</0 G, u’(s)) = G(, uP' (s — p1 + p))IIZdS>

- E( / [ lu? (s) — u? <s>||2ds). (71.5)
0

For the first term on the right-hand side of (7.5), by (4.7) we have

p1—p
E(/ G (-, uP(s)) — G (-, uP' (s — p1 + p))||2ds)

P

0
< (C)? f lo(s + o1 — p) — w(s)Ids. (7.6)
-1

Since C([—1,0]; H) is dense in L2((—1,O), H), we find that for each ¢ €
L%((—1,0), H), there exists 3y € (0, 1=p1) suchthatfi)pl lo(s —h)—@(s)||?ds < ¢
for any i € (0, 8,). Since E is compact in H x L?((—1,0), H), we infer that there
exists 8 = 8(E) € (0, 1 — py) such that for all # € (0, 8) and for all (u°, ¢) € E,

0
/ lpts — h) — p()]*ds < e. (1.7)

—p1
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By (7.6) and (7.7), we obtain that for 0 < p — p; < 4,

]E( / NG () = G uP (s — p1 + p>>||2ds) <(C%% (18
—-p

For the second term on the right-hand side of (7.5), it follows from (4.6) and (7.2)
that for0 < p — p; < 6,

0
E(/ IG(, uP(s)) — G( uf' (s — p1 + p))llzdS>
p

1=p

0 P—P1
< 4lhlP (o — p1) + 24 / lp(s)I12ds + 2a* / E( sup [|lu” (s>||2ds)
pP1—p 0 s€[0,T]

0
<2QIR) + a*er)(p — p1) + 2a* / lp(s)%ds. (7.9)
p1—p

For the third term on the right-hand side of (7.5), by (4.7) we have

E(/O,_,, IG . uP(s)) = G(Lul' (s — p1 + p)>||2ds)
< E( /0 H) Lo NG (L ul (5)) = G(,uP' (s — p1 + p>)||2ds)
< 2<CG>2E( fo e O (5) — P (s)||2ds>
+ 2<CG>2E< /O - L. 400) (D[4 (5) — u”' (s — p1 + p)||2ds). (7.10)

Next, we consider the second term on the right-hand side of (7.10). Since E
is compact in H X Lz((—l, 0), H), we see that for every ¢ > 0, E has a finite
open cover of balls with radius ¢ in H X L2((—1,0), H), which is denoted by
{B((ui. @), 8)}:"21. Then for each (u°, ¢) € E, there exists ig € {1,2,...,m} such
that (u?, Q) € B((uio, ®ig)> 8); that is,

0
u® — uiglI* + / lp(s) — @iy (s)l12ds < &2 (7.11)
—1
Note that
t—p
2<CG>2E( / L, +00) (D IUP' () — u (s — p1 + p)szs)
0

t—p
< 6(CG)2E( / L(p,+o00) O Nu? (550, Ti—s p, ®, 9)) — uP (550, Ti s py (i, w,-o»nzds)
0

t—p
+ 6<CG)2E( / 1(p +00) D 1P (550, Tis p, (i, Pig)
0
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—umc—pr+mQﬂqmwmw&M%0
t—p
+ 6<CG)2E< /0 L, +00) DNNUP' (s = p1 + 5 0, Tis py (Wi, @iy))

—uP' (s — p1 + p3 0, Tis p, (u°, <p>>||2ds)

=L+ L+ 15 (7.12)

Sinceforalli = 1,2,...,m,u”'(s; 0, 71—, (u;, ¢;)) € C([0, T], LX(Q, Fo; H)),
which implies that u”'(s; 0, 71—, (u;, ¢i)) : [0,T] — L2(Q, Fo; H) is uni-
formly continuous, and thus there exists §; = §;(e, T, u;, ¢;) > 0 such that for
all 11, tp € [0, T] with |t; — 1| < §;,

&

E( |u” (t1; 0, Ti— o (u;, @) — uP' (t2; 0, T1- ,, (u;, @; )<
(1 013 0, Ticspy i 900) = (123 0, Tis (i, @) ) TR T)

Letd = min{s; | i =1,2,...,m}. Thenforall0 < p — p; < 3§,

&
E (||L4pl (550, T oy (ui, 1)) — uP (s — p1 + p; 0, T p, (ui, (ﬂi))Hz) < m
(7.13)
foralls € [0,T — p], i =1,2,...,m. Then by (7.13) we obtain
L <e, forallt €[0,T]and0 < p — p; < 6. (7.14)

On the other hand, by Ito’s formula and together with (4.4), (4.7), and (4.9), we
obtain

E (1”150, Ty sy (4, 9)) = w1 (150, Ti sy i, 01D

0 o)
< u® = wig I + / lp(s) = @ig ()IPds + (Il + (CO* + 1+ Ikl Do)
—pP1 k=1
t
X E([() “Wol (s3 0, 7—1—>p1 (u()’ ®) — u! (s; 0, ,Tl—>pl (Miov ‘pio))szs>~ (715)

Applying Gronwall’s inequality to (7.15), by (7.11) we have

E (107 (130, Tiepy 0, 9)) = 4P (150, Ti sy (g i) )

0
< (1 —ui0||2+/

I6(5) — gig(5)112ds (14l HED kI T, o)
—p1

< oIl +COt1tIkl o 21 e})1 2 vy (0, 7). (7.16)
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By (7.16), we have for ¢ € [0, T']

T
I < 6(CG)2E< /0 4 (53 0, Ti p 1, @) — u' (550, Ty py (tti g%))uzds)

< 67 (CO2eWallLoe +COP 41 oo 32 o) T 2. (7.17)

In addition, by (7.16) we have

t—p

1
I < 6<CG>2E( f L, +00) D NuP (550, Tis py (ttig s @ig)) — P (53 0, Tis p, (u, w))uzds)
P—P1

< 6T(Cc)ze(|\1//4luoo+(CG)2+1+|\KHioo PRl af)TSZ‘ (7.18)

So by (7.12), (7.14), (7.17) and (7.18), we obtain for 0 < p — p1 < 5,

t—p
2(CG>2E( / L(p.+o0) ()P (s) — uP' (s — p1 + p>||2ds)
0

<ot IZT(Cc)ze(nmuLoo+<cG>2+1+ux||ioo ¥ ag)ng’ (7.19)

which along with (7.10) yields that for 0 < p — p; < 5,

t—p
E(/O 1G (1P (5)) = G ' (s — pr + p>>||2ds)

.
< 2(CG)2E( /0 ’ 1o, +o0) () |uP (s) — u” <s>||2ds)

et 1272 (Wl COP 1R TR R)T 2 79

Letd = min{8, §}. Thenfor 0 < p — p; < 8, it follows from (7.5), (7.8), (7.9) and
(7.20) that

2E< sup /'r dsf (G(x, uf (s — p)) — G(x, ul (s — ,01))) . (up(s) —u” (s))dx)
O n

o<r<t
0
< (C9)% +220h|2 + a®er)(p — p1) + 2d° / lo(s)|12ds
p1—p

+ e 1 127(CO)2eIWallos HCO P41+ oo 721 o) T 2

t
+[2(C9?* + 1]E</ u? (s) — u” (s)||2ds). (7.21)
0
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For the third term on the right-hand side of (7.3), by (4.9), we have

00 t 0 t
E(Z /0 ||w2,k<u"<s>>—Kaz,kwpl(s))uzds)<||Kn%w2a£E( /0 ||uﬂ(s>—um<s>||2ds).
k=1

k=1

(7.22)

For the fourth term on the right-hand side of (7.3), by (£1’) and the Burkholder-
Davis-Gundy inequality we have

2E < sup
0<r<r

Zfo (k02,1 (UP () — ko2 K (U (5)), U (s) — uP (5))d Wk (s)
k=1

)

1 > ¢
<SE( sup u () —u” (I ) + 27 Ik llF Y R E (/ lu? (s) — u? (s)szs> :
2 \ogrsr P 0

(7.23)

Then by (7.3), (7.4), (7.21)—(7.23), we obtain, fore € (0, 1) and 0 < p — p1 < 3,

E ( sup [lu” (r) — u” (r)||2>

0<r<t

0
<coe+c3lp—p1) +C4/
p1—p

t
lp(s)I2ds + csE( / [u (s) — u? <s>||2ds),
0
(7.24)

where ¢2, 3, c4 and c5 are positive numbers depending only on E and 7 but not on

ul, @, € or p. By (7.24) and Gronwall’s inequality, we obtain that for all ¢ € [0, T],
u®, ¢) e Eand0 < p — p; < 6,

0
E( sup [|u (r) — u”" (r>||2> < (CzE +a3p—p)+ey / ||<p(s>||2ds> et
o<r<t P

1—p
(7.25)

Furthermore, by (7.25) we obtain for all ¢ € [0, T'], (uo, p)e Eand0 < p—p1 < S,

0 0
E Sup/ l[uf (s) — u? (s)||*ds g/ E( sup u’@ +s) —u” (r +5))° ) ds
0<r<r J—pi

—p1 0<r<e
<piE| sup [u?(r) —u? (r)|?
0<r<t

0

<pi <028 +e3(p—p1) + m/ ||<p(s>\|2ds) et
P

(7.26)

1—p
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Since E is compact in H x L2((—1,0), H), there exists 89 = 8¢ (e, E) > 0 such that
forall h € (0, &p),

0
f lo)l2ds < e, V@’ ¢)eE. (7.27)
—h

Let § = min{8y, 8}. By (7.25), (7.26) and (7.27) we get for all (u’,¢) € E and
0<p—p1 <o,

0
E( sup <||u"(r)—u*"(r>||2+ / ||uf(s>—uf](s)||2ds))
0<r<T —p1

<1+ p1) (c2e + c3(p — p1) + cae) €57 (7.28)

It follows from (7.28) that for all 0 < p — p; < do,

sup P({ sup T (w0). ) = (w00, ") 11, > n})
u0,p)eE 0<t<T

< (14 p)n "2 (cae + c3(p — p1) + cae) 7. (7.29)

By (7.29), we obtain

lim sup P({ sup 1T (w0, uf) = (u (), uf" 1w, > n}) =0,
PZPL 0 p)eE 0T

as desired. O

We are now ready to present the main result of this section.

Theorem 7.2 Suppose (F), (G'), (X)) and (4.58)—(4.60) hold. Let (4.11) be fulfilled
with § = ;p 5. Take po € [0, 1) and p, € (po, 11. If pn — po and pr € S, then
there exist a subsequence {p,, }7>, and an invariant measure u € S such that

U o 7, l_) , —> WP weakly.

P
Proof Note that {”}°° | is tight by Theorem 6.1. Therefore, there exist a subsequence
{on )72, and probability measure p* such that 1 o ’];) N " — w* weakly. Since
Pn, — po, by Lemma 7.1 and Theorem 7.1 we infer that w* must be an invariant
probability measure of (4.1) with p = pg, which concludes the proof. m]
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