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Abstract
We consider stochastic PDEs on the d-dimensional torus with fractional Laplacian of
parameter ρ ∈ (0, 2], quadratic nonlinearity and driven by space-time white noise.
These equations are known to be locally subcritical, and thus amenable to the theory
of regularity structures, if and only if ρ > d/3. Using a series of recent results by
the second named author, A. Chandra, I. Chevyrev, M. Hairer and L. Zambotti, we
obtain precise asymptotics on the renormalisation counterterms as the mollification
parameter ε becomes small and ρ approaches its critical value. In particular, we show
that the counterterms behave like a negative power of ε if ε is superexponentially
small in (ρ − d/3), and are otherwise of order log(ε−1). This work also serves as
an illustration of the general theory of BPHZ renormalisation in a relatively simple
situation.

Keywords Stochastic partial differential equations · Regularity structures ·
Fractional Laplacian · BPHZ renormalisation · Subcriticality boundary

Mathematics Subject Classification 60H15 · 35R11 (primary); 81T17 · 82C28
(secondary)

B Yvain Bruned
yvain.bruned@univ-lorraine.fr

Nils Berglund
nils.berglund@univ-orleans.fr

1 Institut Denis Poisson (IDP), CNRS – UMR 7013, Université d’Orléans, Université de Tours,
Bâtiment de Mathématiques, B. P. 6759, 45067 Orléans Cedex 2, France

2 Institut Elie Cartan de Lorraine (IECL), CNRS–UMR 7502, Faculté des Sciences et Technologies,
Université de Lorraine, Campus, Boulevard des Aiguillettes, 54506 Vandæuvre-lès-Nancy, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40072-024-00331-2&domain=pdf
http://orcid.org/0000-0002-1714-9130


Stochastics and Partial Differential Equations: Analysis and Computations

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Model and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Model space and renormalised equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Canonical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1 Simplifying the twisted antipode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 From expectations to Feynman diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 Simplification rules for Feynman diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 Zimmermann’s forest formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Hepp sectors and forest intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Bounds on E(ÃE
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1 Introduction

The last years have witnessed tremendous progress in the theory of singular stochastic
partial differential equations (SPDEs). The theory of regularity structures, introduced
by Martin Hairer in [19], provides a functional analysis framework in which many
so-called locally subcritical singular SPDEs can be shown to admit (local in time)
solutions. The theory has been successfully applied to a number of different SPDEs,
including the KPZ equation [18, 27, 30] and its generalisations to polynomial nonlin-
earities [25] and non-polynomial nonlinearities [29], the dynamic �4

3 model [19, 28],
the continuum parabolic Anderson model [22], the Navier–Stokes equation [34], the
motion of a random string on a curved surface [5, 20], the FitzHugh–Nagumo SPDE
[2], the dynamical Sine–Gordon model [9, 26], the heat equation driven by space-time
fractional noise [14], reaction–diffusion equations with a fractional Laplacian [3], and
the multiplicative stochastic heat equation [23, 24].

A limitation of the theory introduced in [19] is that, while it provides function spaces
allowing to prove fixed-point theorems in a very general setting, the applications to
SPDEs also require a renormalisation procedure, which had to be carried out in an ad
hoc manner in each case. This situation has been remedied in a series of papers by
the second named author, Ajay Chandra, Ilya Chevyrev, Martin Hairer and Lorenzo
Zambotti [4, 6, 8]. These works provide a kind of black box, allowing to automatically
renormalise any locally subcritical SPDE. Owing to its great generality, however, this
theory is rather abstract, making it somewhat difficult of access.

Afirst goal of the presentwork is to illustrate the general theory in oneof the simplest
possible, yet interesting examples. This example is the �3 model with fractional
Laplacian�ρ/2 on the d-dimensional torus, driven by space-timewhite noise ξ , whose
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equation before renormalisation reads

∂t u −�ρ/2u = u2 + ξ. (1.1)

A family of SPDEs with fractional Laplacian, including the above example, was con-
sidered in [3]. Results in that work imply in particular that the above equation is locally
subcritical if and only if ρ > ρc = d

3 . As the parameter ρ of the fractional Lapla-
cian decreases towards its critical value ρc, the size of the model space describing a
regularity structure for (1.1) diverges exponentially fast in 1/(ρ − ρc). As we shall
see, this has an effect on the renormalisation procedure for the equation, since the
counterterms entering this procedure involve sums over elements of the model space
having negative degree (see [6, Thm. 2.21] and (3.3) below). This should be a general
phenomenon for models approaching the subcriticality threshold.

The fact that the nonlinearity in (1.1) is quadratic entails a number of significant
simplifications when applying the general theory of [4, 6, 8], owing to the fact that
the model space can be described precisely in terms of binary trees. This considerably
simplifies a number of combinatorial arguments. Throughout the analysis, we provide
numerous examples, which should help to illustrate the general abstract theory.

A second goal of this work is to analyse in detail the limit ρ ↘ ρc, i.e. when
approaching the threshold where local subcriticality is lost. The hope is that this will
improve the understanding of the role of subcriticality in renormalisation of singular
SPDEs and the theory of regularity structures. The renormalisation procedure requires
to modify the SPDE (1.1) by mollifying space-time noise ξ on scale ε, and adding
ε-dependent counterterms to the equation. Our main result, Theorem 2.1, analyses the
asymptotic behaviour of these counterterms as a function of ε and ρ − ρc. We obtain
that if ε is superexponentially small in terms of ρ − ρc, the counterterms scale like a
negative power of ε, while for larger ε, they have order log(ε−1).

Note that fractional models near criticality have been studied before, in particular
in the context of constructive Quantum Field Theory (QFT). For instance, the large-
volume (infrared) behaviour of the static �4

4−δ model has been studied in [7], by
modifying the Laplacian of the �4

4 model in order to make it subcritical. The picture
that emerges froma renormalisation group (RG) analysis is thatwhile for δ = 0, theRG
flow converges to a Gaussian fixed point, for δ > 0, this fixed point becomes unstable,
and a non-Gaussian fixed point appears. Recently, in [1] Aizenman and Duminil–
Copin proved that by taking both the large-volume and zero-spacing (ultraviolet) limit
of a latticemodel converging to the�4

4 model, one converges to amodel with Gaussian
fluctuations. It is thus of interest to try to connect what is known on static models at and
near criticality, with what happens to the renormalisation procedure in near-critical
dynamical models.

A final motivation for this article is that the equation (1.1) is interesting in its own
right. For instance, it approximates the Fisher–KPP equation for population dynamics
[16, 31] for intermediate population values. Note that the real Fisher–KPP equation
contains a factor of the form

√
u(1− u) in front of the noise ξ , and it currently seems

unlikely that such a nonlinearity could be handledwith the help of regularity structures.
However, an understanding of the equation with additive noise may provide some
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useful first insights on its dynamics. See also [3] for further motivation on considering
SPDEswith fractional Laplacians as away to regularise coupled SPDE–ODE systems.

The remainder of this article is organised as follows. Section2 gives a detailed
description of the model, and states the main result, Theorem 2.1, on the asymptotic
behaviour of counterterms. Section3 summarises the construction of the model space,
and the main results from [4, 6, 8] needed to compute the renormalised equation.
The most difficult step in applying the general theory is to compute the expectation
of the renormalised canonical model elements, and is presented in the next three
sections. Section4 describes how these expectations can be represented in terms of
Feynman diagrams (see Definition 4.11). Section5 introduces the notions of forests
(see Definition 5.5) and Hepp sectors (see Definition 5.11), needed to apply ideas from
BPHZ renormalisation theory, as explained in [21] in the Euclidean case. Most of our
formalism is taken from [21], which transposes the algebraic construction in [6] and
the proof of the renormalised model convergence in [8] to Feynman diagrams. It has
a strong connection with the algebraic structures observed by Connes and Kreimer in
[12, 13]. The main difference comes from the presence of Taylor expansions, which
are encoded at the level of the diagrams by changing decorations. In our model, we
can to a large extent circumvent these Taylor expansions and thus be closer to the
extraction–contraction renormalisation procedure on Feynman diagrams. The actual
bounds on the expectations are then obtained in Sect. 6, and the asymptotic analysis
completing the proof of the main result is given in Sect. 7.

2 Model and results

We are interested in the SPDE

∂t u − �ρ/2u = u2 + ξ (2.1)

for the unknownu = u(t, x)with (t, x) ∈ R+×T
d , where�ρ/2 = −(−�)ρ/2 denotes

the fractional Laplacian with 0 < ρ � 2, and ξ denotes space-time white noise. As
such, this equation is not well-posed in general, and a renormalisation procedure is
required. The general form of the renormalised equation is expected to be

∂t u − �ρ/2u = u2 + C(ε, ρ, u) + ξε, (2.2)

where ξε = 
ε ∗ξ denotes space-time white noise mollified on scale ε, andC(ε, ρ, u)

is a counterterm which diverges as ε ↘ 0. Here 
ε(t, x) = ε−(ρ+d)
(ε−ρ t, ε−1x) for
a smooth, compactly supported mollifier 
 integrating to 1, and ∗ denotes space-time
convolution.

The theory of regularity structures introduced in [19] applies, provided the equa-
tion (2.1) is locally subcritical, or superrenormalisable in physicist’s terms. As shown
in [3, Theorem 4.3], (2.1) is locally subcritical for

ρ > ρc(d) = d

3
.
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Fig. 1 Parameter space (d, ρ). Results in this article apply to the locally subcritical regimeρc = d
3 < ρ < d,

with ρ � 2

Note that ρc < 2 imposes d � 5 (Fig. 1). One can guess this threshold by a scaling
argument. Indeed, let us set ū(t, x) = λαu(λβ t, λx) with λ > 0 and α, β ∈ R. Then,
ū solves the equation

∂t ū − λβ−ρ�ρ/2ū = λβ−α ū2 + λα+βξλβ,λ = λβ−α ū2 + λα+ β
2− d

2 ξ, (2.3)

where the second equality is in law, and ξλβ,λ denotes scaled space-time white noise
given by

〈ξλβ,λ, ϕ〉 = 〈ξ, ϕλβ,λ〉, ϕλβ,λ(t, x) = 1

λβ+dϕ

(
t

λβ , x
λ

)

for any compactly supported test function ϕ. Setting α = d−β
2 , the noise intensity is

the same in (2.1) and (2.3). Then one has β − α = 3
2 (β − ρc), so that

∂t ū − λβ−ρ�ρ/2ū = gū2 + ξ, g = λ
3
2 (β−ρc). (2.4)

The natural choice is then β = ρ, which corresponds to the fractional scaling s =
(ρ, 1, . . . , 1) (cf. (4.2)). One thus obtains two regimes:

• If ρ > ρc and we let λ tend to 0, then g tends to 0, i.e. (2.4) converges to a linear
equation. This is exactly the definition of local subcriticality.

• If ρ = ρc, we recover the non-linear equation we started with, i.e. the system is
invariant under this particular scaling. This is reminiscent of what is called a fixed
point of the Wilsonian renormalisation group in the language of physicists.

The counterterm C(ε, ρ, u) in (2.2) is expected to diverge also in the limit ρ ↘ ρc,
and the main goal of this work is to determine how C(ε, ρ, u) behaves as a function
of ε and ρ − ρc for small values of these parameters.
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In order to formulate the main result, we define, for a ∈ R and k > 0, the threshold
value

εc(ρ, a, k) = exp

{
− 1

ρ − ρc

[
log k + a − log(k + 1)

2k

]}
.

Then we set

εc(ρ, a) = εc(ρ, a, kmax), ε̄c(ρ, a) = εc(ρ, a, k̄max),

where

kmax = d − ρ

3(ρ − ρc)
and k̄max = d − 2ρ

3(ρ − ρc)
.

The integer parts of kmax and k̄max measure the size of themodel space of the regularity
structure (cf. [3, Thm. 4.18]), where kmax is associated with the part of the counterterm
C(ε, ρ, u) that does not depend on u, while k̄max determines its part linear in u. Note
that εc(ρ, a) > ε̄c(ρ, a), and that as ρ decreases to ρc, εc(ρ, a) and ε̄c(ρ, a) both go
to zero superexponentially fast, namely like

exp

{
− 1

ρ − ρc

[
log

(
1

ρ − ρc

)
+O(1)

]}
. (2.5)

Finally, for η < 0, we denote by Cη(Td) the Besov–Hölder space defined as the set
of distributions ζ on T

d such that λ−η|〈ζ,S λ
x ϕ〉| is bounded uniformly in λ ∈ (0, 1]

for any x ∈ T
d and any compactly supported test function ϕ of class C	−η
, where

(S λ
x ϕ)(y) = λ−dϕ(λ−1(y − x)).
Our main result is then the following.

Theorem 2.1 (Main result) Assume ρ < d
2 and ρ ∈ (ρc, 2]. Then there exist functions

Ci (ε, ρ), i ∈ {0, 1}, such that for any initial condition u0 ∈ Cη(Td) with η > −ρ
2 , the

regularised renormalised SPDE (2.2) with counterterm

C(ε, ρ, u) = C0(ε, ρ) + C1(ε, ρ)u

admits a sequence of local solutions uε, converging in probability to a limiting process
as ε → 0. Furthermore, there exist constants a, M, A0 and Ā0, all independent of
ε and ρ, such that, writting εc = εc(ρ, a) and ε̄c = ε̄c(ρ, a), the first counterterm
satisfies

∣∣C0(ε, ρ)
∣∣ � Mε−(d−ρ)

c

[
log(ε−1) + 1

ρ − ρc

(
εc

ε

)3(ρ−ρc)
]

if ε � εc ,

∣∣∣∣ C0(ε, ρ)

A0ε−(d−ρ)
− 1

∣∣∣∣ � M

ρ − ρc

(
ε

εc

)3(ρ−ρc)

if ε < εc , (2.6)
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while the second counterterm satisfies

∣∣C1(ε, ρ)
∣∣ � M ε̄−(d−2ρ)

c

[
log(ε−1) + 1

ρ − ρc

(
ε̄c

ε

)3(ρ−ρc)
]

if ε � ε̄c ,

∣∣∣∣ C1(ε, ρ)

Ā0ε−(d−2ρ)
− 1

∣∣∣∣ � M

ρ − ρc

(
ε

ε̄c

)3(ρ−ρc)

if ε < ε̄c . (2.7)

Remark 2.2 Convergence is in probability in Cα
s([0, T ], T

d), for any fixed T > 0, and
for the process stopped when its Cα

s -norm exceeds a fixed large cut-off L . Here α is
any real number satisfying α < − 1

2 (d − ρ), and Cα
s is the scaled Hölder–Besov space

associated with the scaling of the fractional Laplacian. This space is defined in an
analogous way as Cα(Td), but with a fractional scaling given by (S λ

(t,x),sϕ)(s, y) =
λ−(ρ+d)ϕ(λ−ρ(s − t), λ−1(y − x)).

Remark 2.3 The conditionρ < d
2 is due to the fact that we focus here on the asymptotic

regime when the counterterms are given by sums of many divergent terms that are
indexed by Feynman diagrams. More precisely, the results are meaningful when kmax
and k̄max are both large. What happens for ρ � d

2 is in fact well known. When
ρ = d, only the counterterm C0(ε, ρ) is required, and it diverges like log(ε−1). When
d
2 < ρ < d,C0(ε, ρ) is still the only required counterterm, but it diverges like ε−(d−ρ).
When ρ = d

2 , it becomes necessary to include the second countertermC1(ε, ρ), which
then diverges like log(ε−1).

Remark 2.4 The condition η > −ρ
2 is a consequence of the critical regularity of the

initial condition in the fractional heat equation. Indeed, the scaling property Pρ(t, x) =
t−d/ρPρ(1, t−1/ρx) of the fractional heat kernel implies that if u0 ∈ Cη with η < 0,
then (Pρu0)(t, x) blows up like tη/ρ . Therefore, (Pρu0)(t, x)2 blows up like t2η/ρ ,
and its space-time convolution with Pρ is bounded if and only if η > −ρ

2 .
More technically, the condition is related to the exponents of the space Dγ,η of

modelled distributions in which one solves a fixed-point equation, where γ measures
the Hölder regularity, while η controls the singularity at time zero (cf. [19, Def. 6.2]).
Indeed, [19, Lemma7.5] shows that if u0 ∈ Cη(Td), then its convolutionwith theGreen
function of the fractional Laplacian can be identified with an element ofDγ,η for every
γ > max{η, 0}. The fixed pointU cannot bemore regular than the fractional stochastic
convolution, which has regularity α for any α < − 1

2 (d − ρ) (cf. [2, Sect. 4.1]). If
U ∈ Dγ,η has regularity α < 0, thenU 2 has regularity ᾱ = 2α, while [19, Prop. 6.12]
shows that U 2 ∈ Dγ̄ ,η̄ with γ̄ = γ + α and η̄ = η + min{α, η}. In order to apply
[19, Thm. 7.8] yielding existence of a unique fixed point, one needs to fulfill the
conditionmin{η̄, ᾱ} > −ρ, which holds if−ρ

2 < η � α. (The other required condition
η < min{η̄, ᾱ} + ρ is automatically satisfied if η < 0.)

In less technical terms, the first estimate in Theorem 2.1 shows that, up to error
terms which are small unless ε is close to εc,

C0(ε, ρ) �
{

ε
−(d−ρ)
c log(ε−1) if ε � εc,

A0ε
−(d−ρ) if ε < εc.
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Fig. 2 Behaviour of the
counterterms as a function of
ρ − ρc and ε. The small-ε
asymptotics of C0 changes on
the blue curve ε = εc(ρ), while
the asymptotics of C1 changes
on the green curve ε = ε̄c(ρ)

In the same spirit, the second counterterm satisfies

C1(ε, ρ) �
{

ε̄
−(d−2ρ)
c log(ε−1) if ε � ε̄c,

Ā0ε
−(d−2ρ) if ε < ε̄c.

We thus obtain a saturation effect at values of the mollification parameter ε which
are not superexponentially small: for ε larger than its critical value, the counterterms
are of order log(ε−1), with a prefactor becoming very large when ρ approaches ρc
(Fig. 2). For superexponentially small ε, on the other hand, the counterterms diverge
respectively like ε−(d−ρ) and ε−(d−2ρ). This is due to the fact that both counterterms
can be written as the sum of a large number of contributions. Only one of these terms,
which has the strongest singular behaviour as ε goes to 0, dominates for superexpo-
nentially small ε. The vast majority of the terms diverge only logarithmically, but their
number is large enough for them to dominate when ε is larger than its critical value.

The constants A0 and Ā0 can be characterised more precisely. Assuming that the
mollifier has the form 
ε(t, x) = 
ε

0(t)

ε
1(x) with 
ε

0(t) = ε−ρ
0(ε
−ρ t), 
ε

1(x) =
ε−d
1(ε

−1x), and 
1 even, we have

A0 = −1

2
lim
ε→0

εd−ρ(
ε
1 ∗x Gρ)(0) = −1

2
lim
ε→0

∫
Rd


1(x)ε
d−ρGρ(εx) dx, (2.8)

whereGρ = (�ρ/2)−1 is theGreen function of the fractional Laplacian and ∗x denotes
convolution in space. Scaling properties of Gρ (see for instance [32, Section 4]) imply
that A0 is indeed finite. We also have

Ā0 = −2 lim
ε→0

εd−2ρ
∫

Rd+1
Pρ(t, x)(Gε

ρ ∗x P̃ε
ρ )(|t |, x) dt dx, (2.9)

where Pρ is the fractional heat kernel, Gε
ρ = 
ε

1 ∗x Gρ , and P̃ε
ρ = Pρ ∗ 
ε ∗ 
ε.

The main insight provided by Theorem 2.1 is as follows. The usual way of renor-
malising the singular SPDE (1.1) is to fix ρ > ρc, and then to take the limit ε → 0.
Our result then shows that a well-defined limit exists, provided one adds counterterms
to the equation that behave logarithmically in ε as long as ε is not too small, but
ultimately diverge like a negative power of ε. On the other hand, one could also fix a
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small positive value of ε and look at the limit ρ ↘ ρc. In physical terms, this would
model a situation where space-time is discrete at very small scales, perhaps defined
by Planck’s scale. Since discrete models are usually harder to solve than continuous
ones, the vanishing ε limit can be considered as an idealised mathematical object that
really only approximates the real system. Note that for ε > 0, the SPDE is no longer
singular, and local existence of solutions does not pose a problem at all. What our
result says in this case, is that in order to have a chance to be close, for small ε, to a
well-defined continuous model, one should add counterterms of order log(ε−1), but
which diverge superexponentially fast in ρ − ρc in the sense of (2.5).

A more ambitious goal would be to look at possible limiting dynamics when ε and
ρ−ρc simultaneously converge to zero, along some path in the (ρ, ε) plane, cf. Fig. 2.
There are two reasons why obtaining such a convergence result is currently out of
reach. The first reason is that when changing ρ, one changes both the model space and
the space ofmodelled distributions inwhich one tries to solve a fixed-point equation, so
that the general theory of convergence in regularity structures does not immediately
apply. The second, more serious reason is that as ρ ↘ ρc, the number of symbols
in the model space having negative degree diverges exponentially. However, many
arguments in the theory of regularity structures only apply when the number of these
symbols remains bounded. This fact is then crucial in showing that the sequence of
ε-dependent models converges in an appropriate topology to a well-defined limiting
model. It is not clear at this point whether a similar convergence argument can be
obtained when the number of symbols having negative degree is unbounded.

Before moving to the proof of Theorem 2.1, we list some extensions and interesting
open questions related to our results.

• Obtaining a matching lower bound on the counterterms in the regime of large ε

seems out of reach at this stage, because of the existence of cancellations in the
sums defining these counterterms.However, as explained in Sect. 7.3, one can show
that there exist terms in the sum definingC0(ε, ρ)which have the same asymptotic
behaviour as the upper bound obtained above. Therefore, the counterterm can only
be of smaller order in case unexpected cancellations occur in this sum.

• One can extend the results to the following generalisation of (1.1):

∂t u − γ�ρ/2u = gu2 + σξ.

Its renormalised version reads

∂t u − γ�ρ/2u = gu2 + Cγ,g,σ (ε, ρ, u) + σξε,

where

Cγ,g,σ (ε, ρ, u) = Cγ,g,σ
0 (ε, ρ) + Cγ,g,σ

1 (ε, ρ)u.

One can then show (see Sect. 7.4) that

∣∣Cγ,g,σ
0 (ε, ρ)

∣∣ �
(
g2σ 2

γ 3

)kmax gσ 2

γ
Ĉ0(ε, ρ) if ε � εc ,
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Cγ,g,σ
0 (ε, ρ) = gσ 2

γ

[
C0(ε, ρ) +O

(
g2σ 2

γ 3

(
ε

εc

)3(ρ−ρc)
)]

if ε < εc ,

(2.10)

where Ĉ0(ε, ρ) denotes the upper bound on |C0(ρ, ε)| in (2.6), and we write
a(ε, ρ) � b(ε, ρ) if there exists a constant M � 1, independent of ε and ρ, such
that a(ε, ρ) � Mb(ε, ρ) holds for ε and ρ − ρc small enough. In a similar way,
we have

∣∣Cγ,g,σ
1 (ε, ρ)

∣∣ �
(
g2σ 2

γ 3

)kmax g2σ 2

γ 2 Ĉ1(ε, ρ) if ε � ε̄c ,

Cγ,g,σ
1 (ε, ρ) = g2σ 2

γ 2

[
C1(ε, ρ) +O

(
g2σ 2

γ 3

(
ε

ε̄c

)3(ρ−ρc)
)]

if ε < ε̄c ,

(2.11)

where Ĉ1(ε, ρ)denotes the upper boundon |C1(ρ, ε)| in (2.7).Note that for ε � εc,
the important parameter is g2σ 2γ−3. In particular, (2.5) implies

|Cγ,g,σ
0 (ε, ρ)| � gσ 2

γ
exp

{
d − ρ

ρ − ρc

[
log

(
g2/3σ 2/3

γ (ρ − ρc)

)
+O(1)

]}
.

A similar relation holds for Cγ,g,σ
1 (ε, ρ) for ε � ε̄c. Thus if γ , g and σ are fixed,

the counterterms diverge in the same way as for γ = g = σ = 1 as ρ ↘ ρc.
However, if γ , g and σ are allowed to depend on ρ, new regimes can occur.

• The above choice of counterterms is not unique. In this work, we have chosen the
BPHZ renormalisation, which is natural in some sense. However, as shown in [6],
the set of all potential choices of counterterms is parametrised by a group, called
the renormalisation group. This group can be very large, since its dimension as a
Lie group is equal to the number of symbols in the model space having negative
degree. However, in our case only a two-parameter family of counterterms really
matters: this family is obtained by adding constants to bothC0(ε, ρ) andC1(ε, ρ).
It is interesting to note that a one-parameter family of these choices of counterterms
can be realised by a simple shift v = u+k of the randomfield,where k is a constant.
Indeed, the equation for v reads

∂tv − �ρ/2v = v2 + (C0(ε, ρ) − C1(ε, ρ)k + k2
)+ (C1(ε, ρ) − 2k)v + ξε.

In fact, one can observe that this is nothing but the equation obtained by applying
the BPHZ renormalisation to the equation

∂tv −�ρ/2v = v2 − 2kv + k2 + ξ.

Indeed, the term C1(ε, ρ)k comes from the fact that almost full binary trees (as
defined in Sect. 3 below) can be generated by kv, and they will come with a factor
k. Note that time-dependent shifts are currently out of the scope of the general
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theory, though one may expect that they lead to time-dependent renormalisation
constants.

• A common way to analyse the effect of the interaction term as ρ ↘ ρc is to study
moments of the solution of the form

E

{
u(t, x1)u(t, x2)u(t, x3)

}
.

So far, such moments have been computed only for very specific models such as
the two-dimensional parabolic Anderson model, see [17]. The main issue of such
an approach is that in our case, the solutions are only local in time. However, it may
be possible to obtain moment estimates for the process stopped when its Hölder
norm exceeds some large threshold, and analysing their behaviour as ε → 0 and
ρ ↘ ρc may yield information on the potential convergence to a non-trivial model.

3 Model space and renormalised equation

In order to apply the theory of regularity structures, the first step is to introduce a
model space. This is a graded vector space spanned by abstract symbols, which allow
to represent solutions of (2.1) by an abstract fixed-point equation of the form

U = Iρ(� +U 2) + P(U ). (3.1)

HereU represents the solution, � stands for space-time white noise, Iρ is an abstract
integration operator standing for convolutionwith the fractional heat kernel, and P(U )

is a polynomial part, required by a recentering procedure.
More precisely, let s = (ρ, 1, . . . , 1) ∈ R

d+1+ be the scaling associated with the
fractional Laplacian. Then we construct a set of symbols τ , each admitting a degree
|τ |s ∈ R, in the following way.

• For each multiindex k = (k0, . . . , kd) ∈ N
d+1
0 , we define the polynomial symbol

Xk = Xk0
0 . . . Xkd

d , which has degree |Xk |s = |k|s = ρk0 + k1 + · · · + kd . In
particular, X0 is denoted 1 and has degree |1|s = 0.

• The symbol � representing space-time white noise has degree |�|s = − 1
2 (ρ +

d) − κ , where κ > 0 is arbitrarily small.
• If τ, τ ′ are two symbols, then ττ ′ is a new symbol of degree |ττ ′|s = |τ |s+|τ ′|s.
• Finally, if τ is a symbol which is not of the form Xk , then Iρ(τ ) denotes a new
symbol of degree |τ |s+ρ, while for k ∈ N

d+1
0 , ∂kIρ(τ ), stands for a new symbol of

degree |τ |s+ρ−|k|s (where we use the multiindex notation ∂k = ∂
k0
t ∂

k1
x1 . . . ∂

kd
xd ).

It is convenient to represent symbols by trees, in which edges stand for integration
operators Iρ , leaves stand for noise symbols �, and multiplication of symbols is
represented by joining them at the root. For instance,

= Iρ(�)2 , =
[
Iρ

(
Iρ

(
Iρ(�)2

)
Iρ(�)

)]2
.

123



Stochastics and Partial Differential Equations: Analysis and Computations

Multiplication by a polynomial symbol Xk is represented by adding a node decora-
tion k to the relevant node of the tree, while derivatives ∂�Iρ are denoted by edge
decorations �. Thus for instance

k
� = Iρ(Xk∂�Iρ(�)) .

The degree of a tree with p leaves (for the noise), q edges (for integration operators),
node decorations of total exponent k and edge decorations of total exponent � is given
by

|τ |s =
(
−ρ + d

2
− κ

)
p + ρq + |k|s − |�|s. (3.2)

Not all symbols are needed to represent the abstract fixed-point equation (3.1). In fact,
for its right-hand side, we only need the smallest set T such that

• Xk ∈ T for any k ∈ N
d+1
0 ,

• � ∈ T ,
• if τ, τ ′ ∈ T , k ∈ N

d+1
0 , one has XkIρ(τ ), Iρ(τ )Iρ(τ ′) ∈ T ,

• if d > 2 and τ ∈ T , then ∂xiIρ(τ ) ∈ T for every 1 � i � d.

We denote by T the linear span of T . It is a consequence of local subcriticality that T
has only finitely many symbols of degree smaller than any α < ∞ (see [19, Lemma
8.10]). The difference between d � 2 and d > 2 is due to the fact that for d � 2, one
has ρ < 1 when ρ is close to ρc = d

3 � 2
3 . This means that the abstract operator ∂xiIρ

decreases the degree of the tree. Therefore, if we were to keep this rule, we would
break subcriticality. For both cases, we have exhibited rules which are complete in the
sense that they are stable under the action of the renormalisation.

Let T− ⊂ T denote the set of symbols/decorated trees of negative degree, and T−
(resp. T̂−) the linear span of the forests composed of elements in T− (resp. T ). On T−
we define a commutative and associative forest product. The product of two forests τ1
and τ2 is simply the forest containing all the trees of both forests, where the same tree
may occur several times. The neutral element for this product is the empty forest, that
we will denote by 1.

The structure of the trees in T− will be very important later on to control the
renormalisation constants, which will be expressed in terms of sums over all trees
of negative degree. We know from [3, Prop. 4.17] that trees in T− are necessarily
either full binary trees (every vertex has either two children or no child), in which case
q = 2p − 2, or full binary trees with one edge missing (then q = 2p − 1), which we
will call almost full binary trees. It turns out that for symmetry reasons, full binary
trees can only contribute to the renormalized equation if they contain no nontrivial
node decoration, while the almost full ones can contain one node decoration k with
|k|s = 1. Furthermore, (3.2) implies that the latter can only have negative degree if
d > 3.

The form of the renormalised equation can be determined using the methods intro-
duced in [6] and expanded in [4]. As shown in [4, Thm. 2.21], it has the form (2.2)
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with

C(ε, ρ, u) =
∑

τ∈T F−

cε(τ )
ϒ F (τ )(u)

S(τ )
, (3.3)

where the terms ϒ F (τ )(u) describe the effect of the nonlinearity F(u, ξ) = u2 + ξ ,
S(τ ) is a symmetry factor, and cε(τ ) is the expectation of the element of the Wiener
chaos represented by τ .

More precisely, the terms ϒ F (τ )(u) are elementary differential operators defined
recursively by ϒ F (�)(u) = 1 and

ϒ F
(
Xk

m∏
j=1

Iρ[τ j ]
)

(u) =
⎛
⎝ m∏

j=1

ϒ F (τ j )(u)

⎞
⎠ ∂k∂mu u2. (3.4)

We write T F− for the subset of elements of T− for which ϒ F is non-zero, see [4,
Def. 2.12]. We could extend the previous definition of ϒ F to elements of the form
∂xiIρ(τ j ) by using the derivative ∂∂xi u

. However, such a derivative applied to F gives

zero, which is why we omit this case in the definition of ϒ F .

Lemma 3.1 Let ninner(τ ) be the number of inner nodes of τ ∈ T−, where an inner
node is any node which is not a leaf (including the root). Then

ϒ F (τ )(u) =

⎧⎪⎨
⎪⎩
2ninner(τ ) if τ is a f ull binary tree,

2ninner(τ )u if τ is an almost f ull binary tree without decoration Xi ,

2ninner(τ )∂xi u if τ is an almost f ull binary tree with a decoration Xi .

Proof By induction on the size of the tree. The base case follows from ninner(�) = 0.
If τ is a full binary tree, then it can be written as τ = Iρ(τ1)Iρ(τ2), where each
τi is a full tree with ni inner nodes. Then (3.4) and the induction hypothesis yield
ϒ F (τ )(u) = 2n1+n2+1, where n1 + n2 + 1 is exactly the number of inner nodes of τ .

If τ is an almost full tree without decoration, there are two possibilities. Either
τ = Iρ(τ1) is a planted tree, where τ1 is a full tree with n1 inner nodes. Then (3.4)
yields ϒ F (τ )(u) = 2n1+1u, where n1 + 1 is the number of inner nodes of τ . Or
τ = Iρ(τ1)Iρ(τ2), where τ1 is full with n1 inner nodes, and τ2 is almost full with n2
inner nodes. In that case, we obtain ϒ F (τ )(u) = 2n1+n2+1u, where n1 + n2 + 1 is
again the number of inner nodes of τ .

The case of an almost full tree with decoration Xi is straightforward, because then
∂k = ∂xi commutes with the other terms. ��

The second newquantity appearing in (3.3) is the symmetry factor S(τ ). It is defined
inductively by setting S(�) = 1, while if τ is of the form Xk

(∏m
j=1 Iρ[τ j ]β j

)
with

123



Stochastics and Partial Differential Equations: Analysis and Computations

τi �= τ j for i �= j , then

S(τ ) = k!
( m∏

j=1

S(τ j )
β j β j !

)
.

Lemma 3.2 Let nsym(τ ) be the number of inner nodes of τ ∈ T− having two identical
lines of offspring. Then S(τ ) = 2nsym(τ ).

Proof First note that k! = 1 for any τ ∈ T−. Then the proof proceeds by induction on
the size of the tree, noting that m = 1 and β1 = 2 whenever two identical trees are
multiplied, while m = 2 and β1 = β2 = 1 when two different trees are multiplied,
and m = β1 = 1 when τ is a planted tree of the form Iρ(τ1). ��
Remark 3.3 Note that S(τ ) is exactly the order of the symmetry group of the tree,which
is generated by the nsym(τ ) reflections around symmetric inner nodes. For instance,
S(τ ) = 2 for a comb tree, that is, a full binary tree in which each generation but the
root has exactly two individuals, i.e.

S( ) = S( ) = S( ) = S( ) = · · · = 2 .

Maximal symmetry is reached for regular trees, in which all individuals of the s first
generations have exactly two offspring, while those of the last generation have no
offspring. For such a tree, nsym(τ ) = 2s − 1, and thus S(τ ) = 22

s−1, e.g.

S( ) = 2 , S( ) = 23 , S( ) = 27 . (3.5)

��
The final new quantity appearing in (3.3) is the ε-dependent factor cε(τ ), which is

related to the expectation of the model of τ . We analyse it in the next sections.

4 Canonical model

As in [19, Section 5], we decompose the fractional heat kernel Pρ as the sum

Pρ(z) = Kρ(z) + Rρ(z), (4.1)

where Rρ is smooth and uniformly bounded inR
d+1, while Kρ is compactly supported

and has special algebraic properties. More precisely, let

|z|s = |z0|1/ρ +
d∑

i=1

|zi | (4.2)
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be the pseudonorm associated with the fractional scaling. Then by [19, Lemma 5.5],
we may assume that Kρ is supported in the ball {z : |z|s � 1}, that Kρ = Pρ in
the ball {z : |z|s � 1

2 }, and that Kρ integrates to zero all polynomials of degree up
to 2. In addition, Kρ and its derivatives satisfy a number of analytic bounds, cf. [3,
(3.1)–(3.4)]. See also [10] for a derivation of the associated Schauder estimate. We
also assume the following two properties for the kernel K ε

ρ = 
ε ∗ Kρ :

1. Non-anticipation: K ε
ρ(t, x) = 0 for t � −ερ ;

2. Spatial symmetry: K ε
ρ(t,−x) = K ε

ρ(t, x).

To any symbol τ ∈ T , we associate the canonical model �ετ , defined (cf. [19,
proof of Prop. 8.27]) by

(�ε1)(z) = 1, (�εXi )(z) = zi , (�ε�)(z) = ξε(z), (4.3)

and extended inductively by the relations

(�ετ τ̄ )(z) = (�ετ )(z)(�ετ̄ )(z) ,

(�ε∂kIρτ )(z) =
∫

∂k Kρ(z − z̄)(�ετ )(z̄) dz̄ . (4.4)

We then set

E(τ ) = E

{
(�ετ )(0)

}
,

which has in general the form of a Gaussian iterated integral. The computations will
be greatly simplified by removing symbols that are in the kernel of E . We denote by
IE the ideal generated by forests having at least one decorated tree τ satisfying one of
the following properties:

• τ has an odd number of leaves;
• τ is a planted tree (i.e., of the form Iρ(τ ′) or ∂xiIρ(τ ′));
• τ has one Xi as a node decoration and no edge of the form ∂xiIρ .

Proposition 4.1 Let τ be a decorated tree. Then E(τ ) = 0 whenever τ ∈ IE .

Proof If τ has an odd number of leaves, then (�ετ )(0) is centered as the product of
an odd number of centered Gaussians has zero mean. If τ = Iρ(τ ′), then E(τ ) =
Kρ∗E(τ ′) = E(τ ′)Kρ∗1 by translation invariance. The term Kρ∗1 is equal to zero by
definition of the kernel Kρ (Kρ integrates polynomials to zero up to a certain order). For
the last case, the conclusion follows by noticing that (�ετ )(t,−x) = −(�ετ )(t, x).

��

4.1 Simplifying the twisted antipode

The ε-dependent coefficients cε(τ ) are defined by

cε(τ ) = E(Ã−τ), (4.5)
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where Ã− : T− → T̂− is a linear map encoding the renormalisation procedure, called
the twisted antipode. The twisted antipode is defined in [6, Proposition 6.6], in terms
of a coaction �− : T̂− → T− ⊗ T̂− which is close in spirit to the Connes–Kreimer
extraction–contraction coproduct introduced in [11].However, the coaction�− ismore
complicated than the one used in [11], because it acts on decorated trees, where the
decorations encode multiplication by monomials and derivatives appearing in Taylor
expansions. This results in rather complicated expressions for the twisted antipode,
cf. Proposition 4.4 below. It turns out, however, that thanks to Proposition 4.1, in our
case many terms of Ã−τ give a vanishing contribution when applying E . The purpose
of this section is to derive the simplified expression (4.7) of Ã−, which only involves
extraction of subtrees and contractions, without any decorations. Furthermore, this
simplified expression allows to define Ã− in an iterative way, which does not involve
the coaction �− at all.

In order to derive the simplified expression of the twisted antipode, we have to
start with the general construction given in [6]. The twisted antipode can be defined
inductively by setting Ã−(1) = 1 for the empty forest 1, and

Ã−τ = −M̂−(Ã− ⊗ id)(�−τ − τ ⊗ 1),

cf. [6, Prop. 6.6]. Here M̂− is the multiplication operator (acting on forests), and τ is
a tree of negative degree (we have omitted the natural injection of T− into T̂− because
we view T− as a subset of T̂−). Elements of T̂− are of the form (F, n, e) where F
is a forest with node set NF and edge set EF , n : NF → N

d+1
0 represents the node

decoration and e : EF → N
d+1
0 represents the edge decoration. The forest product is

defined by

(F, n, e) · (G, n̄, ē) = (F · G, n̄+ n, ē+ e),

where the sums n̄ + n and ē + e mean that decorations defined on one of the forests
are extended to the disjoint union by setting them to vanish on the other forest. Then
the map �− : T → T− ⊗ T defined in [6] is given for T n

e ∈ T by

�−T n
e =

∑
A∈A(T )

∑
eA,nA

1

eA!
(
n

nA

)
(A, nA + πeA, e�EA) ⊗ (RAT , [n− nA]A, e+ eA),

(4.6)

where we use the following notations.

• Factorials and binomial coefficients are understood in multiindex notation, and the
latter vanish unless nA is pointwise smaller than or equal to n.

• For C ⊂ D and f : D → N
d+1
0 , f �C is the restriction of f to C .

• The first sum runs over A(T ), the set of all subforests A of T , where A may be
empty. The second sum runs over all nA : NA → N

d+1
0 and eA : ∂(A, T ) → N

d+1
0

where ∂(A, T ) denotes the edges in ET \EA that are adjacent to NA as a child, not
a parent.
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• We write RAT for the tree obtained by contracting the connected components of
A. Thenwe have an action on the decorations, in the sense that for f : NT → N

d+1
0

and A ⊂ T , one has [ f ]A(x) =∑x∼A y f (y), where x is an equivalence class of

∼A, and x ∼A y means that x and y are connected in A. For g : ET → N
d+1
0 , we

define for every x ∈ NT , (πg)(x) =∑e=(x,y)∈ET
g(e).

Remark 4.2 The name “ twisted antipode” is due to the fact that Ã− satisfies the
relation

M̂−(Ã− ⊗ id)�−τ = 1�(τ )1,

where 1� is the projection on the empty forest and �− is a coaction (but not a coprod-
uct). If the spaces T− and T̂− were equal, (T−, ·,�−,1,1�, Ã−) would be a Hopf
algebra, similar to the extraction–contraction Connes–Kreimer Hopf algebra of [11]
which involves trees without decoration.

Example 4.3 Consider the case τ = (with zero node and edge decorations). Then

�− = 1⊗ + 2
∑
k

1

k! k ⊗ k + ⊗ 1 ,

where the sum is over k ∈ N
d+1
0 such that the extracted symbol has negative degree.

Here the first term corresponds to extracting A = 1, the second one to A = , and the
last one to A = .

Consider now a case when the tree has one node decoration, say τ = k . Then

�−k = 1⊗ k +
∑
m

1

m! m ⊗ k
m +

∑
�

(
k

�

)
� ⊗ k − � ,

where we first extract A = 1, then A = and finally A = . As before, the sums
on � and m are restricted by the fact that the extracted symbol has to have a negative
degree.

As a short-hand notation for (4.6), we use

�−T n
e =

∑
A∈A(T )

∑
eA,nA

1

eA!
(
n

nA

)
AnA+πeA
e ⊗RAT

n−nA
e+eA

.

We extend this map to T̂− by multiplicativity regarding the forest product. Then one
can turn this map into a coproduct �− : T− → T− ⊗ T− and obtain a Hopf algebra
for T− endowed with this coproduct and the forest product see [6, Prop. 5.35] and [6,
Cor. 6.37]. The main difference here is that we do not consider extended decorations,
but the results for the Hopf algebra are the same as in [6].
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Using the definition of �−, one can write a recursive formulation for Ã− in which
one doesn’t see any tensor product. It is convenient to introduce the reduced coaction
�̃−τ = �−τ−τ⊗1−1⊗τ . Then, using Sweedler’s notation, if �̃−τ =∑(τ ) τ ′⊗τ ′′
one has

Ã−τ = −τ −
∑
(τ )

(Ã−τ ′)τ ′′.

Proposition 4.4 For a decorated tree T n
e with negative degree, one has the relation

Ã−T n
e = −T n

e −
∑

A∈A�(T )

∑
eA,nA

1

eA!
(
n

nA

)
Ã−AnA+πeA

e ·RAT
n−nA
e+eA

,

where A�(T ) = A(T )\{1, T }.
Proof The proof follows from a straightforward manipulation of the definitions:

Ã−T n
e = −M̂−(Ã− ⊗ id)(�−T n

e − T n
e ⊗ 1)

= −M̂−(Ã− ⊗ id)(1⊗ T n
e )− M̂−(Ã− ⊗ id)�̃−T n

e

= −T n
e −

∑
A∈A�(T )

∑
eA,nA

1

eA!
(
n

nA

)
Ã−AnA+πeA

e ·RAT
n−nA
e+eA

,

where we have treated separately the cases A = 1 and A = T . ��
The construction of the twisted antipode can be substantially simplified by using

Proposition 4.1. Indeed, one has the property �− IE ⊂ IE ⊗ T̂− + T− ⊗ IE , which
makes IE a kind of biideal associated to�−. Therefore,�− is a well-definedmap from

TE− into TE−⊗T̂E−, where TE− = T−/IE and T̂E− = T̂−/IE (in other words, if τ ′−τ ∈ IE ,

then �−(τ ′) − �−(τ ) belongs to IE ⊗ T̂− + T− ⊗ IE , and thus equivalence classes
modulo IE are mapped into equivalence classes).

In what follows, we will use the notation ÃE
− when Ã− is considered as acting on

TE−. As the consequence of the biideal property, we get

Proposition 4.5 One has cε(τ ) = E(Ã−τ) = E(ÃE
−τ).

Proof This follows from Proposition 4.1, which implies IE ⊂ ker E . ��
Proposition 4.6 If we consider �− as a map from TE− into TE− ⊗ T̂E−, then it reduces to
an extraction–contraction map with some restrictions: for any tree τ ∈ TE−, we have

�−τ =
∑

τ1·...·τn⊂E τ

τ1 · . . . · τn ⊗ τ/(τ1 · . . . · τn),

where ⊂E means that we consider all the subforests τ1 · . . . · τn of τ such that the
trees τi belong to TE−, and τ/(τ1 · . . . · τn) denotes the tree obtained by contracting
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τ1, . . . , τn to a single node. Therefore, one can define a multiplicative map Ã
E
− for the

forest product as

ÃE
−τ = −τ −

∑
1�τ1·...·τn�E τ

ÃE
−(τ1 · . . . · τn) · τ/(τ1 · . . . · τn). (4.7)

Proof The simplification for �− and ÃE
− comes from the precise description of TE−

which is composed of full and almost full binary trees. Therefore,�−τ does not contain
any sum on the node decorations and there remains only the extraction–contraction
procedure. ��
Remark 4.7 The very simple expression (4.7) for the twisted antipode is a direct con-
sequence of the fact that we may remove trees with one Xi as a node decoration. This
expression may be useful for numerical computations of the constants.

Example 4.8 Wehave ÃE
−( ) = − , since no nontrivial tree can be extracted. There-

fore, we obtain

ÃE
− = − − 4 ÃE

−( ) · − 4 ÃE
−( · ) · (4.8)

= − + 4 · − 4 · · ,

where · ∈ T− and ∈ T̂− \ T−.

4.2 From expectations to Feynman diagrams

We now discuss the computation of expectations E(τ ), starting with some examples.

Example 4.9 It follows from (4.3) and (4.4) that

(�ε )(0) =
∫

Kρ(−z)ξε(z) dz =
∫

K ε
ρ(−z)ξ(dz),

where we have assumed that ξε = 
ε ∗ ξ for a scaled mollifier 
ε, and defined
K ε

ρ = Kρ ∗ 
ε. Since this is a centred Gaussian random variable, we have E( ) = 0,
in accordance with Proposition 4.1. It then follows from the defining property of
space-time white noise that

E( ) = E

{
(�ε )(0)

} = E

{
(�ε )(0)2

}
=
∫

K ε
ρ(−z1)K

ε
ρ(−z2)E

{
ξ(dz1)ξ(dz2)

}

=
∫

K ε
ρ(−z1)

2 dz1 . (4.9)
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Example 4.10 A more complicated example is

E( ) = E

{
(�ε )(0)2

}

= E

{(∫
Kρ(−z)K ε

ρ(z − z1)K
ε
ρ(z − z2)ξ(dz1)ξ(dz2) dz

)2}
.

Wick calculus implies that E{ξ(dz1)ξ(dz2)ξ(dz̄1)ξ(dz̄2)} is a sum of three terms,
which can be symbolised by the pairings

, and .

The first pairing yields

(∫
Kρ(−z)K ε

ρ(z − z1)
2 dz dz1

)2

= 0,

owing to the fact that Kρ integrates to zero. By symmetry, the second and third pairing
yield the same value, namely

∫
Kρ(−z)K ε

ρ(z − z1)K
ε
ρ(z̄ − z1)Kρ(−z̄)K ε

ρ(z − z2)K
ε
ρ(z̄ − z2) dz dz̄ dz1 dz2.

It is convenient to represent such an integral graphically by the diagram

, (4.10)

where small black vertices denote integration variables, the large green vertex denotes
the point 0, solid arrows denote kernels Kρ , and broken arrows denote kernels K ε

ρ . The
benefit of the graphical representation (4.10), besides saving space, is that it will allow
to represent in a more visual way the extraction–contraction operations associated
with renormalisation. ��

These examples motivate the following definition, which is a particular case of [21,
Def. 2.1].

Definition 4.11 (Feynman diagram) A Feynman diagram (or, more precisely, a vac-
uumdiagram) is a finite oriented graph� = (V ,E ), with a distinguished node v� ∈ V ,
and in which each edge e ∈ E has a type t belonging to a finite set of types L. With
each type t ∈ L, we associate a degree deg(t) ∈ R and a kernel Kt : R

d+1 \ {0} → R.
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The degree of � is defined by

deg(�) = (ρ + d)(|V | − 1) +
∑
e∈E

deg(e), (4.11)

where |V | denotes the cardinality of V and deg(e) = deg(t(e)). The value of the
diagram � = (V ,E ) is defined as

E(�) =
∫

(Rd+1)V \v�

∏
e∈E

Kt(e)(ze+ − ze−) dz, (4.12)

where each oriented edge is written e = (e−, e+) ∈ V 2, and zv� = 0.

The graph in (4.10) is an example of Feynman diagram, with a set of types L
consisting of 2 types corresponding to the kernels Kρ and K ε

ρ . We define their degrees
by

deg( ) = deg( ) = −d . (4.13)

To each symbol τ ∈ T without decorations, we associate a linear combination of
Feynman diagrams in the following way.

Definition 4.12 (Pairing) Let τ ∈ T \ IE be a symbol without decorations, and denote
its set of leaves by Nτ . A pairing of τ is a partition P of Nτ into two-elements blocks.
We denote the set of pairings of τ by P(2)

τ . Then �(τ, P) is the Feynman diagram
obtained by merging the leaves of a same block, and assigning to every edge adjacent
to a former leaf the type K ε

ρ , and to all other edges the type Kρ .

Proposition 4.13 Let τ ∈ T \ IE . If τ has p leaves and q edges, then each �(τ, P)

has q + 1− p
2 vertices and q edges. Therefore,

deg(�(τ, P)) = |τ |s
∣∣∣
κ=0

(4.14)

holds for any P ∈ P(2)
τ . In addition, we have

E(τ ) =
∑

P∈P(2)
τ

E(�(τ, P)). (4.15)

Proof By (3.2), we have |τ |s = − p
2 (ρ + d)+ ρq − pκ . Since τ is a tree, it has q + 1

nodes, and therefore q+1−p inner nodes.When contracting the p leaves pairwise, one
obtains a Feynman diagramwith q edges of type Kρ or K ε

ρ , and q+1− p+ p
2 vertices.

Therefore its degree is given by −qd + (ρ + d)(q − p
2 ), which agrees with (4.14).

The relation (4.15) is then a direct consequence of the rules (4.4) defining the model
and Wick calculus. ��
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The following simple result shows that we can limit the analysis to Feynman dia-
grams which are at least 2-connected.

Lemma 4.14 If � is 1-connected (i.e., if one can split � into two disjoint graphs by
removing one edge), then E(�) = 0.

Proof If � = (V ,E ) is 1-connected, then there exist two vertex-disjoint subgraphs
�1 = (V1,E1) and �2 = (V2,E2) such that V = V1 ∪V2 and E = E1 ∪E2 ∪ {e0}. By
a linear change of variables, we may arrange that e0 = (v�, v1) where v1 ∈ V1. We
thus obtain

E(�) =
∫

(Rd+1)V 1
Kt(e0)(z1)

∏
e∈E1

Kt(e)(ze+ − ze−) dz E(�2).

Performing the change of variables zv = z̄v + z1 for all v ∈ V1 \ {v1}, we can factor
out the integral over z1. This integral vanishes by construction. ��

4.3 Simplification rules for Feynman diagrams

Integrals of the type encountered above can be somewhat simplified by using the
fact that Pρ is the kernel of a Markov semigroup, describing a rotationally symmet-
ric ρ-stable Lévy process (see for instance [32]). While this is not essential for the
general argument, it reduces the size of diagrams and thus improves the graphical rep-
resentation. It also allows to compute the explicit expressions for the renormalisation
constants A0 and Ā0 given in (2.8) and (2.9).

Lemma 4.15 Assume the scaled mollifier has the form 
ε(t, x) = ε−(ρ+d)
(ε−ρ t,
ε−1x), where 
(t, x) = 
0(t)
1(x) is even in x, supported in a ball of scaled radius 1,
and integrates to 1. Then K ε

ρ satisfies the following properties for all (t, x) ∈ R
d+1:

1. Chapman–Kolmogorov equation: there exists a function Rε
1 : R

d+2 → R, uni-
formly bounded and integrable in its first two arguments, such that

∫
K ε

ρ(t, x − y)K ε
ρ(s, y) dy = K̃ ε

ρ(t + s, x) + Rε
1(t, s, x), (4.16)

where K̃ ε
ρ = K ε

ρ ∗ 
ε = Kρ ∗ 
ε ∗ 
ε is a kernel with a different mollifier;

2. Green function: there exists a uniformly bounded function Rε
2 : R

d+1 → R such
that

∫ ∞

t
K ε

ρ(s, x) ds = −(Gρ ∗x Pε
ρ )(t, x) + Rε

2(t, x), (4.17)

where Gρ = (�ρ/2)−1 is the Green function of the fractional Laplacian, Pε
ρ =

Pρ ∗ 
ε and ∗x denotes convolution in space.
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Proof For the first property, we use the Chapman–Kolmogorov relation Pρ(t, ·) ∗x
Pρ(s, ·) = Pρ(t + s, ·) to obtain

Kρ(t, ·) ∗x Kρ(s, ·) = Kρ(t + s, ·) + Rρ(t + s, ·) − Kρ(t, ·) ∗x Rρ(s, ·)
− Rρ(t, ·) ∗x Kρ(s, ·) − Rρ(t, ·) ∗x Rρ(s, ·) .

Using the fact that Rρ is bounded and that Kρ and Rρ = Pρ − Kρ are integrable (Pρ

being integrable and Kρ having compact support), one obtains that all terms involving
Rρ are bounded. The relation (4.16) then follows upon convolving twice with 
ε. The
last relations follows from the fact that

�ρ/2
∫ ∞

t
Pρ(s, ·) ds =

∫ ∞

t
�ρ/2 es�

ρ/2
ds = es�

ρ/2
∣∣∣∣
∞

t
= −Pρ(t, ·).

Convolving with Gρ , we obtain

∫ ∞

t
Pρ(s, x) ds = −Gρ ∗x Pρ(t, x).

The result then follows by decomposing Pρ on the left-hand side into Kρ + Rρ , and
convolving with 
ε. ��

Applying these properties to (4.9), we obtain

E( ) =
∫∫

K ε
ρ(−t,−x)K ε

ρ(−t, x) dx dt =
∫

K̃ ε
ρ(−2t, 0) dt +O(1)

= 1

2
Gε

ρ(0) +O(1),

where Gε
ρ = 
ε

1 ∗x Gρ , O(1) denotes a constant bounded uniformly in ε, and we
used the fact that Pρ(0, x) = δ(x). Note that this implies the expression (2.8) for the
counterterm associated with . The expression (2.9) for Ā0 is obtained by a similar
argument applied to the element .

Lemma 4.16 There exists a uniformly bounded function Rε
3 : R

2(d+1) → R such that

∫
K ε

ρ(z1 − z)K ε
ρ(z2 − z) dz =

∫
K ε

ρ(z − z1)K
ε
ρ(z − z2) dz

= −1

2
(Gε

ρ ∗x P̃ε
ρ )(|t1 − t2|, x1 − x2)+ Rε

3(z1, z2) ,

(4.18)

where P̃ε
ρ = Pε

ρ ∗ 
ε.
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Proof The first two terms in (4.18) are equal, as can be seen by a change of variables
z �→ −z. Using (4.16) and setting s = t1 + t2 − 2t , we obtain that

∫
K ε

ρ(z1 − z)K ε
ρ(z2 − z) dz

=
∫

K ε
ρ(t1 − t, x1 − x)K ε

ρ(t2 − t, x2 − x)1{t<t1∧t2} dt dx + Rε
3,1(z1, z2)

=
∫

K ε
ρ(t1 + t2 − 2t, x1 − x2)1{t<t1∧t2} dt + Rε

3,2(z1, z2)

= 1

2

∫ ∞

|t1−t2|
K ε

ρ(s, x1 − x2) ds + Rε
3,2(z1, z2)

for some uniformly bounded remainders Rε
3,1 and Rε

3,2. The result follows from (4.17).
��

We represent (4.18) symbolically, for ε = 0 and ε �= 0, by

z1 z2 = z1 z2 = −1

2

z1 z2
, (4.19)

z1 z2 = z1 z2 = −1

2

z1 z2
,

where we do not put arrows on edges representing kernels that are symmetric in both
variables, and discard terms bounded uniformly in ε.

Example 4.17 Applying Lemma 4.16 to (4.10), and using the fact that the root, marked
by the green vertex, can be moved to a different node by a linear change of variables
in the integral, we obtain

E( ) = −1

4
.

Here and below, we will sometimes make a slight abuse of notation, by identifying a
Feynman diagram � with its value E(�). A similar computation yields

E( ) = 2 = 1

2

Moving the root and introducing the new kernel

0 z = 0 z
, (4.20)
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we obtain

E( ) = 1

2
. (4.21)

Proceeding in the same way, we obtain for instance

E( ) = 1

8
+ 1

4
+ 1

4
(4.22)

and

E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= − 1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

+ + + +

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The corresponding pairings are

for the first three diagrams, and

for the last five.

Definition 4.11 can be applied to this setting, by expanding the set of types L by 3
new elements, with degrees

deg( ) = deg( ) = ρ − d (4.23)

deg( ) = 2ρ − d .
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The associated kernels are Gρ ∗x P̃ρ,Gε
ρ ∗x P̃ε

ρ and Kρ ∗ Gε
ρ ∗x P̃ε

ρ . We will say
that a Feynman diagram is reduced if the reduction rules (4.19) and (4.20) have been
applied. Then Proposition 4.13 extends as follows.

Proposition 4.18 Let τ ∈ T \ IE . If τ has p leaves and q edges, then each reduced
�(τ, P) has q − p vertices. The relation (4.14) still holds in this case, while (4.15)
becomes

E(τ ) =
∑

P∈P(2)
τ

(
−1

2

)1+ p
2

E(�(τ, P)) +O(1), (4.24)

where O(1) denotes a constant uniform in ε.

Proof Recall that the unreduced Feynman diagram has q edges of type Kρ or K ε
ρ , and

q + 1− p+ p
2 vertices. Since τ cannot be a planted tree, the number of reductions is

equal to 1+ p
2 , each decreasing by 1 the number of edges and vertices, which is why

each reduced �(τ, P) has q − p vertices. The degree is conserved by the reductions.
The relation (4.24) is then a direct consequence of Lemma 4.16 and (4.19). ��

5 Forests

5.1 Zimmermann’s forest formula

The aim of this and the following section is to derive upper bounds for the expectations
E(Ã−τ) when τ ∈ T−. We want to prove that

|E(Ã−τ)| � C f (τ )ε|τ |s , (5.1)

where the constant C does not depend on τ , ε or ρ, and f (τ ) is a function to be
determined, which depends on the structure of the tree τ .

A nice feature is that one can define a twisted antipode Ã− acting on Feynman
diagrams of negative degree, which is essentially the same as in [21], and reduces in
this case to a mere extraction/contraction of divergent subdiagrams. In the sequel, we
will use the same notation for this antipode as the one on trees. From the context, it will
be clear which one is used. Denote by G the vector space spanned by all admissible
Feynman diagrams (not necessarily connected), and by G− the subspace spanned by
diagrams of negative degree. We say that �′ = (V ′,E ′) is a subgraph of � = (V ,E )

if E ′ ⊂ E , and V ′ contains all vertices in V which belong to at least one edge e ∈ E ′.
Then we define the twisted antipode to be the map Ã− : G− → G given by

Ã−� = −� −
∑
�̄��

Ã−�̄ · �/�̄,

where the sum runs over all not necessarily connected subgraphs of negative degree,
and �/�̄ denotes the graph obtained by contracting �̄ to a single vertex.
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Remark 5.1 The name twisted antipode is again related to the fact that one can intro-
duce a Hopf algebra structure on (decorated) graphs, see [21, Section 2.3], which
generalises the extraction–contraction Hopf algebra on undecorated graphs introduced
by Connes and Kreimer in [12, 13]. The twisted antipode differs from the antipode of
that Hopf algebra because of the use of a coaction instead of a coproduct, meaning
that the extracted graphs �̄ and the contracted graphs �/�̄ are not in the same space:
while the former have negative degree, the latter can have arbitrary degree.

Proposition 5.2 One has

E(Ã−τ) =
∑

P∈P(2)
τ

E(Ã−�(τ, P)).

Proof It follows from Propositions 4.5 and 4.6 that

E(Ã−τ) = −E(τ ) −
∑

1�τ1·...·τn�E τ

E(Ã−(τ1 · . . . · τn) · τ/(τ1 · . . . · τn)).

We then apply Proposition 4.13 to the expectations on the right-hand side and by an
inductive argument, we get

E(Ã−τ) = −
∑

P∈P(2)
τ

E(�(τ, P))

−
∑

1�τ1·...·τn�E τ

n∏
i=1

∑
Pi∈P(2)

τi

E(Ã−�(τi , Pi ))
∑

Pn+1∈P(2)
τn+1

E(�(τn+1, Pn+1))

where τn+1 = τ/(τ1 · . . . · τn). Indeed, one has

P(2)
τ =

⋃
1�τ1·...·τn�E τ

{
n+1⊔
i=1

Pi : Pi ∈ P(2)
τi

}⊔
P̂(2)

τ

where P̂(2)
τ contains the pairings without any subdiagrams that could be extracted via

Ã−. Moreover, any subdiagram of �(τ, P) is of the form �(τ̄ , P̄)where τ̄ is a subtree
of τ and P̄ is a subpairing of P . ��

Example 5.3 Consider the symbol τ = . The effect of the twisted antipode on
τ has been determined in Example 4.8, and E(τ ) is given in (4.22). Applying the
twisted antipode directly to (4.22), we find

E(Ã−( )) = −E( ) + 1

2
− 1

4

( )2
.(5.2)
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Indeed, one easily checks that since ρ > ρc = d/3, the only nontrival subgraph of
negative degree in (4.22) is the “ bubble” having two edges, one of type Kρ and one
of type Gε

ρ ∗x P̃ε
ρ . The expression (5.2) is indeed equivalent to the one obtained by

transforming the expression (4.8) for ÃE
−(τ ) into Feynman diagrams.

Note that the degree of all diagrams in (4.22) is 7ρ − 3d, while the total degree of
the two extracted diagrams in (5.2) is 2(2ρ− d) < 7ρ− 3d. This is an instance of the
degree of subdivergences being worse than the degree of the whole diagram.

Remark 5.4 If γ is any (non-reduced) diagram with n + 1 vertices and q edges, then
its degree can be written as

deg(γ ) = (ρ + d)n − qd = (4n − 3q)
d

3
+ n(ρ − ρc).

In particular, if γ is of the form �(τ, P), one has

deg(γ ) = −2

3
d + 3m − 1

2
(ρ − ρc), deg(γ ) = −1

3
d + 3m̄ + 1

2
(ρ − ρc),

respectively, for full and almost full binary trees, where m, m̄ are such that τ has 2m
edges in the first case, and 2m̄ + 1 edges in the second case. Note that in both cases,
the degree is a strictly increasing function of the number of edges.

For practical counting of degrees, it is sometimes useful to consider the limiting
case ρ ↘ ρc, and to use d

3 as degree unit. Then edges of the three types in (4.13)
and (4.23) count for −3, −2 and −1 respectively, while vertices have weight +4.
Similarly, for trees τ ∈ T−, edges have weight +1 and leaves have weight −2.

Proposition 5.2 allows to reduce the estimation of the coefficients cε(τ ) to the
problem of estimating the value of Feynman diagrams. The difficulty is that the twisted
antipode is essential to obtain a bound of the form (5.1): such a bound is not true in
general for E(τ ), because, as the above example shows, Feynman diagrams �(τ, P)

may contain subdiagrams whose degree is strictly less than the degree of �(τ, P). In
order to deal with this difficulty, our plan is now to adapt the approach of [21] to the
present situation. While we will use its formalism, the main novelty is an adaptation
of the proof of [21, Thm. 3.1] in order to derive ε-dependent bounds for Feynman
diagrams given in Proposition 6.1 below. This proposition can be considered as one
of the main results of this work, as the bound it provides is new and was not proved
in [21].

Definition 5.5 (Forests) Let � be a Feynman diagram, and denote by G−
� the set of all

connected subgraphs �̄ ⊂ � of negative degree. We denote by < the partial order on
G−

� defined by inclusion. A subset F ⊂ G−
� is called a forest if any two elements of

F are either comparable by <, or vertex-disjoint. The set of forests on � is denoted
by F−

� . Given a forest F and two graphs �̄, �̄1 ∈ F , we say that �̄1 is a child of �̄

if �̄1 < �̄, and there is no �̄2 ∈ F such that �̄1 < �̄2 < �̄. In that case, �̄ is called
the parent of �̄1.
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Example 5.6 Let τ be the combwith eight leaves, and consider the following pairings:

P1 = , P2 = .

The corresponding Feynman diagrams are given by

�1 = �(τ, P1) =

γ1
γ2

γ3

�2 = �(τ, P2) =
γ1

γ2

.

The diagram �1 has 3 identical divergent bubbles γ1, γ2, γ3, indicated by shaded
frames. The left-hand bubble γ2 is part of two overlapping subdivergences, each
consisting of two bubbles and the joining edge. However, these subdiagrams are
1-connected, and thus do not matter in the analysis. If we restrict our attention to
the set G−

�1,E
of subgraphs with non-vanishing expectation, we obtain indeed a for-

est G−
�1,E

= {�1, γ1, γ2, γ3, ∅}. The corresponding parent–child relationship graph
consists of the parent �1 and its three children γ1, γ2, γ3.

The diagram�2 has two nested subdivergences: a bubble γ1, and the bubble together
with the 3 adjacent edges, denoted γ2. In this case again, the set G

−
�2,E

is a forest, while
the associated graph is a linear graph with parent �, child γ2 and grandchild γ1.

Inwhat follows,wewill occasionally needdecoratedFeynmandiagrams �̄n
e , though

as in the case of trees, decorations will play almost no role. Such a diagram is defined
by a graph � = (V ,E ) with a distinguished node v� ∈ V , a node decoration n :
V → N

d+1
0 and a vertex decoration e : E → N

d+1
0 . The degree of �̄n

e is defined as

deg(�̄n
e ) = (ρ + d)(|V | − 1) +

∑
v∈V

|n(v)|s +
∑
e∈E

[
deg(e) − |e(e)|s

]
, (5.3)

and its value is given by

E(�̄n
e ) =

∫
(Rd+1)V \v�

∏
e∈E

∂e(e)Kt(e)(ze+ − ze−)
∏

w∈V \v�

(zw − zv�)n(w) dz. (5.4)

Note that when the decorations n and e vanish identically, (5.3) and (5.4) reduce to the
expressions (4.11) and (4.12) for undecorated Feynman diagrams. Given a divergent
subdiagram γ ∈ G−

� , we define an extraction–contraction operator Cγ by

Cγ �̄n
e =

∑
eγ ,nγ

1
deg(γ

nγ +πeγ
e )<0

(−1)|out eγ |

eγ !
(
n

nγ

)
γ
nγ+πeγ
e ·Rγ �̄

n−nγ

e+eγ
, (5.5)
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where πeγ and Rγ are defined in the same way as for decorated trees in (4.6), and
|out eγ | is the number of derivatives on outgoing edges from γ . This operator can
be naturally extended to undecorated diagrams �, by identifying them with �̄n

e with
n = 0 and e = 0. Note that in that case, the sum over nγ disappears in (5.5). The main
difference with the case of trees is that eγ has a different support: it is supported on the
edges (x, y) such that either x or y belongs to the vertex set V (γ ). Therefore, one gets
a minus sign for each derivative on outgoing edges. In the case of a tree, by contrast,
eγ is supported only on the incoming edges. However, using this representation does
not make any difference. Indeed, by taking v� to be the root of the underlying tree
behind the construction of γ , one obtains a vanishing contribution whenever one puts
a monomial at v� and a derivative on the only outgoing edge at v�.

We can now define a forest extraction operatorCF recursively by settingC∅� = �

and

CF� = CF\
(F )

∏
γ∈
(F )

Cγ �,

where 
(F ) denotes the set of roots of γ in the graph of parent–child relationships.
Then Zimmermann’s forest formula states that

Ã−� = −
∑

F∈F−
�

(−1)|F |CF�, (5.6)

cf. [21, Prop. 3.3]. In the particular case where G−
� is itself a forest, (5.6) can be

rewritten as

Ã−� = −RG−
�

�,

where R is defined recursively byR∅� = � and

RF� = RF\
(F )

∏
γ∈
(F )

(id−Cγ )�, (5.7)

which turns out to be simpler to handle than (5.6). This is a consequence of the “
inclusion–exclusion identity”

∏
i∈A

(id−Xi ) =
∑
B⊂A

(−1)B
∏
j∈B

X j

valid for anyfinite set A, and operators {Xi : i ∈ A}, cf. [21, (3.3)]. In general, however,
G−

� is not a forest, so that (5.7) does not hold. This is the problem of overlapping
subdivergences: a divergent subgraph �̄ ⊂ � can be part of two different divergent
subgraphs �̄1 and �̄2, none of which is included in the other one.

The above example suggests that in our case, G−
�,E may always be a forest, so

that (5.7) is applicable. In order to establish this fact, we define a grafting operation
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on trees. If τ1 and τ2 are two non-planted trees, with τ1 being almost full, we denote
by τ1 � τ2 the tree obtained by joining the root of τ2 to the vertex of τ1 of degree 2
which is not the root. For instance, we have

� = .

Note that this operation is associative, but not commutative.
The following observation allows to characterise divergent subgraphs.

Lemma 5.7 Let τ be a full binary tree with an even number of leaves. Then there exists
a pairing P such that �(τ, P) is at least 2-connected, and a divergent subdiagram
�̄ = �(τ̄ , P̄) � �, if and only if τ̄ is an almost full binary tree of negative degree,
having an even number of leaves, and which does not contain the root of τ .

Proof Assumefirst that τ̄ is an almost full binary tree of negative degree, not containing
the root and with an even number of leaves. Let P̄ be any pairing of the leaves of τ̄

and �̄ = �(τ̄ , P̄). Then τ = τ0 � τ̄ � τ1, where τ0 is almost full and τ1 is full. By
pairing at least one leaf of τ0 and one leaf of τ1, we obtain a 2-connected diagram �.

Conversely, assume �(τ, P) is at least 2-connected, with a divergent subdiagram
�̄ = �(τ̄ , P̄). Then τ̄ cannot contain the root of τ . Indeed, if thiswere the case, τ̄ would
necessarily be an almost full binary tree (being divergent and a proper subtree of τ ),
so that τ̄ and τ1 = τ \ τ̄ would be connected by a single edge. Since P cannot connect
leaves of τ̄ to leaves of τ1, � would be 1-connected. Similarly, if τ = τ0 � τ̄ , we
would obtain a 1-connected diagram. Thus τ has to be of the form τ = τ0 � τ̄ � τ1,
showing that τ̄ is almost full and does not contain the root of τ . ��
Example 5.8 Some examples of subtrees τ̄ leading to divergent subdiagrams are

, , , , , .

One can check that they do not lead to any overlapping subdivergences.

Proposition 5.9 Assume a Feynman diagram �(τ, P) has two overlapping subdiver-
gences �1 and �2. Then �1 and �2 are 1-connected. As a consequence, G

−
�,E is always

a forest.

Proof Assume there exist 3 subdivergences �̄, �1, �2, such that �1 \ �2 and �2 \ �1
are both non-empty and �̄ ⊂ �1 ∩ �2. Then there exist subtrees τ̄ , τ1, τ2 such that
τ1 \ τ2 �= ∅, τ2 \ τ1 �= ∅, τ̄ ⊂ τ1 ∩ τ2 and each diagram is obtained by restricting the
pairing P , e.g. �̄ = �(τ̄ , P�τ̄ ). In particular, P can only pair leaves of τ̄ .

The previous lemma shows that we must have

τ1 = τ1,− � τ̄ � τ1,+ and τ2 = τ2,− � τ̄ � τ2,+.

123



Stochastics and Partial Differential Equations: Analysis and Computations

Since τ1 \ τ2 �= ∅ and τ2 \ τ1 �= ∅, we may assume without restricting the generality
that τ2,− � τ1,− and τ1,+ � τ2,+. Since the leaves of τ1,− \ τ2,− cannot be paired
with those of τ2, they have to be paired among themselves. But this results in �1 and
�2 being 1-connected, by definition of the grafting operation. Therefore, they do not
belong to G−

�,E by Lemma 4.14. ��
Remark 5.10 Another consequence of Lemma 5.7 is that a divergent subdiagram γ �

� has a degree strictly larger than − d
3 . Therefore, in dimension d � 3, the operator

Cγ � defined in (5.5) reduces to a simple extraction–contraction, while in dimension
d ∈ {4, 5}, the sum also contains terms γ πeγ with edge decorations e of degree at
most 1. However, the value (5.4) of these additional terms vanishes by symmetry.

5.2 Hepp sectors and forest intervals

In this section, we present the main tools and definitions for renormalising Feyn-
man diagrams: Hepp sectors, safe and unsafe forests, and forest intervals. All these
notions have originally been introduced in the physics literature, see for instance [33,
Chapter II.3] for an overview. We follow mainly [21], where these notions have been
reformulated in connection with [6, 8]. They first appear in the context of singular
SPDEs in [8], and were imported from [15]. A first important concept in order to
evaluate Feynman diagrams is the one of Hepp sector (cf. [21, proof of Prop. 2.4]).

Definition 5.11 (Hepp sector) Fix a finite set V and a bounded set � ⊂ R
d+1. With

any point configuration z ∈ �V , one can associate a binary tree T = T (z), whose
leaves are given by V , and a function n = n(z) defined on the inner nodes of T and
taking values in N0, with the following properties (Fig. 3):

• u �→ nu is increasing when going from the root to the leaves of T ,
• for any leaves v, v̄ ∈ V , one has

‖zv − zv̄‖s � 2−nu ,

where u = v∧ v̄ is the first common ancestor of v and v̄ in T and� is a shorthand
notation for

C−12−nu ≤ ‖zv − zv̄‖s ≤ C2−nu , (5.8)

where the constant C only depends on the size of �.

Writing T = (T ,n) for these data, the Hepp sector DT ⊂ �V is defined as the set of
configurations z ∈ �V for which (T (z),n(z)) = T.

The main idea is that in each Hepp sector, the kernels have a given order of mag-
nitude. Since the Hepp sectors provide a partition of �V , the value of the Feynman
diagram can be written as a sum of integrals over individual Hepp sectors, so that it
suffices to obtain uniform bounds on the products of kernels valid in each sector.

In order to exploit cancellations, it turns out to be necessary to adapt the way
contractions are performed to the particular Hepp sector, cf. [21, Section 3.2]. If � is a
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Fig. 3 A point configuration z ∈ �V with its minimal spanning tree (left), and the associated labelled tree
T = (T (z), n(z)) (right). Here V = {v1, v2, v3, v4, v5}, and node decorations n are shown in green. For
instance, nv1∧v2 = 2, so that zv1 and zv2 are at a distance of order 2−2, while nv3∧v5 = 1, so that zv3 and

zv5 are at a distance of order 2−1

Feynman diagram (possibly with decorations) and γ is a divergent subdiagram of �,
one defines a new diagram Ĉγ � as in (5.5), but with the following differences. First
the vertices of � are given an arbitrary order, and its edges e are assigned an additional
label d(e) = 0 indicating their depth. Instead of extracting the subdiagram γ , all edges
of � adjacent to γ are reconnected to the first vertex of γ (according to the chosen
order), while the depth d(e) of all edges e of γ is incremented by 1. Finally, when
applying Ĉγ � to a diagram having edges of strictly positive depth, we set Ĉγ � = 0
unless all edges adjacent to γ have a smaller depth than those of γ .

Example 5.12 Let

� = �2 =
1

23
4

5
6

γ1

γ2

be the second diagram in Example 5.6 (without decorations n and e). We order the
vertices counterclockwise, starting at the green vertex, as indicated by blue labels.
Assume furthermore that d � 3, so that Cγ does not create any terms with nontrivial
decoration. Then we have

Ĉγ1� =
1

23

4
5

6

1

1

, Ĉγ2� =
1

2

34

5 6

1 1

1

1

1 ,

(5.9)
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where violet edge labels denote the depth d(e) (we do note indicate zero depths).
Extracting both subdiagrams, we obtain

Ĉγ1 Ĉγ2� = Ĉγ2 Ĉγ1� =
1

2

3

4
5

6

2

2
1

1

1 . (5.10)

��
Note that Ĉγ1 and Ĉγ2 commute. Given a forest F ⊂ G−

� , one can thus define in
an unambiguous way the operator KF performing all contractions Ĉγ with γ ∈ F .
We denote by σ the bijection between vertices and edges of KF� and those of �.

We now fix a Hepp sector DT,T = (T ,n) and a forestF ⊂ G−
� , which we assume

to be full in the sense that all γ ∈ F contain all edges of � joining two vertices of
γ . As in [21, Section 3.2], we construct a partition PT of G−

� into subsets which are
adapted to the particular Hepp sector. The first step is to define, for each edge e of �,
the common ancestor of the extremities of e viewed as an element of KF�, that is

ve = σ(σ−1(e)−) ∧ σ(σ−1(e)+).

Then the integer

scaleFT (e) = nve

measures the distance between the extremities of e in KF�. For γ ∈ F , define

intFT (γ ) = inf
e∈E F

γ

scaleFT (e), extFT (γ ) = sup
e∈∂E F

γ

scaleFT (e),

where EF
γ denotes the set of edges belonging to γ , but not to any of its children inF ,

while ∂EF
γ denotes the set of edges adjacent to γ belonging to its parentA (γ ) inF .

If γ is a root of F , we set A (γ ) = �. Thus intFT (γ ) describes the longest distance
between points in γ without its children, while extFT (γ ) describes the shortest distance
between points in γ and those in its parent inF . Examples 5.14, 6.5 and 6.12 below
provide illustrations of these concepts.

Definition 5.13 (Safe and unsafe forests)

• A subdiagram γ ∈ F is safe inF if

extFT (γ ) � intFT (γ )

and unsafe otherwise.
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• A subdiagram γ of � is safe (resp. unsafe) forF ifF ∪ {γ } is a full forest and γ

is safe (resp. unsafe) inF ∪ {γ }.
• A forestF is safe if every γ ∈ F is safe inF .

Loosely speaking, a subdiagram γ is thus unsafe if the diameter of γ (without its
children) is much shorter than the distance between γ and its parent. In other words,
children are unsafe if they are small and far away from their parents.

Example 5.14 Consider again the diagram � of the previous example, with the forest
F = {γ1, γ2}. Then for most edges e = (e−, e+) we have scaleFT (e) = ne−∧e+ ,
except for the two cases

scaleFT ((5, 6)) = n4∧6, scaleFT ((6, 1)) = n3∧1.

Indeed, the edges (5, 6) and (6, 1) are exactly those which are reconnected when
applying KF . It follows that γ1 is safe inF if and only if

n3∧4 ∨ n4∧6 � n4∧5, (5.11)

and one checks that this is also the condition for γ1 to be safe in {γ1} (that is, for {γ1}
to be a safe forest). The condition for γ2 to be safe inF reads

n2∧3 ∨ n3∧1 � n3∧4 ∧ n4∧6 ∧ n3∧6. (5.12)

This time, it turns out that γ2 is safe in the forest {γ2} if and only if

n2∧3 ∨ n3∧1 � n3∧4 ∧ n4∧5 ∧ n5∧6 ∧ n3∧6,

because of the difference between Ĉγ2 and Ĉγ1 Ĉγ2 . Note, however, that the ultrametric-
ity of n·∧· implies that n4∧6 � n4∧5 ∧ n5∧6, so that if γ2 is safe in F , then it is also
safe in {γ2}.

This example shows that the property of being safe or unsafe may depend on the
choice of forest F . A crucial property, shown in [21, Lemma 3.6], is the following.
IfFs is a safe full forest, and

Fu =
{
γ ∈ G−

� : γ is unsafe for Fs
}
, (5.13)

then Fs ∪ Fu ∈ F−
� is a full forest, and every γ ∈ Fs is safe in Fs ∪ Fu, while

every γ ∈ Fu is unsafe in Fs ∪ Fu. This implies in particular that any full forest
F ⊂ G−

� has a unique decomposition F = Fs ∪Fu, where Fs is safe and Fu is
given by (5.13). Moreover, the properties of being safe/unsafe and the construction
of Fu depend only on the structure of the tree T , and not on the scale assignment n
defining T.

The last step to construct the partitionPT relies on the notion of forest interval, cf.
[21, Section 3.1]. In general, forest intervals have two purposes: one of them is to deal
with overlapping divergences, and the other one is to simplify the combinatorics when
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dealing with unsafe forests. In our model, we do not have overlapping divergences,
but forest intervals are still useful to deal with unsafe forests. Moreover, they will
allow us to obtain estimates on cε(τ ) that can be extended to cases with overlapping
divergences.

Definition 5.15 (Forest interval) Let M ⊂ M be two forests inF−
� . A forest interval

is a subset M ⊂ F−
� defined by

M = [M, M] = {F ∈ F−
� : M ⊂ F ⊂ M

}
.

Alternatively, we have

M = {M ∪F : F ⊂ δ(M)
}
,

where δ(M) = M \ M is a forest such that δ(M) ∩ M = ∅.

Given a Hepp sector DT, T = (T ,n), we write F (s)
� (T ) for the set of all safe full

forests in �. Then we have a partition

PT = {[Fs,Fs ∪Fu] : Fs ∈ F (s)
� (T )

}
, (5.14)

where Fu is defined by (5.13). The point of PT is that Zimmermann’s forest for-
mula (5.7) can be rewritten as

R� = RG−
�

� =
∑

Mi∈PT

R̂Mi�, (5.15)

where

R̂M� =
∏

γ∈δ(M)

(id−Ĉγ )
∏
γ̄∈M

(−Ĉγ̄ )�.

Here, the factors (id−Ĉγ ) are interpreted as renormalising the subdiagrams in δ(M),

and the factors (−Ĉγ̄ ) as extracting those in M.

Example 5.16 Continuing with the previous example, there are 4 cases to be consid-
ered.

1. If {γ1, γ2} is a safe forest, then we have seen that both {γ1} and {γ2} are safe. We
thus have

F (s)
� (T ) = {∅, {γ1}, {γ2}, {γ1, γ2}

}
,

and the corresponding partition is simply

PT = {[∅, ∅], [{γ1}, {γ1}], [{γ2}, {γ2}], [{γ1, γ2}, {γ1, γ2}]
}
,
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which is in fact identical withF (s)
� (T ). Thus (5.15) becomes

R� = � − Ĉγ1� − Ĉγ2� + Ĉγ1 Ĉγ1�, (5.16)

which is indeed compatible with (5.7).
2. If {γ1} is safe, but γ2 is unsafe for {γ1}, then {γ2} may be safe or unsafe. In the

former case, we have

F (s)
� (T ) = {∅, {γ1}, {γ2}

}
,

PT = {[∅, ∅], [{γ1}, {γ1, γ2}], [{γ2}, {γ2}]
}

,

R� = � − (id−Ĉγ2)Ĉγ1� − Ĉγ2� (5.17)

while in the latter case,

F (s)
� (T ) = {∅, {γ1}

}
,

PT = {[{γ1}, {γ1, γ2}], [∅, {γ2}]
}

,

R� = −(id−Ĉγ2)Ĉγ1� + (id−Ĉγ2)� . (5.18)

Naturally, the expressions (5.17) and (5.18) are equivalent to (5.16), but the point
is that the terms in each expression can be controlled individually.

3. If {γ2} is safe, but γ1 is unsafe for {γ2}, then {γ1} is unsafe. Hence

F (s)
� (T ) = {∅, {γ2}

}
,

PT = {[∅, {γ1}], [{γ2}, {γ1, γ2}]
}

,

R� = (id−Ĉγ1)� − (id−Ĉγ1)Ĉγ2� .

4. Finally, if both {γ1} and {γ2} are unsafe, then

F (s)
� (T ) = {∅} ,

PT = {[∅, {γ1, γ2}]
}

,

R� = (id−Ĉγ1)(id−Ĉγ2)� .

��

6 Bounds on E(ÃE
−�)

Combining Zimmermann’s forest formula (5.15), our choice (5.14) of partition of
F−

� , and the expression (4.12) for the expectation of a Feynman diagram, we obtain
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(cf. [21, Section 3.2])

E(Ã−�(τ, P)) = −
∑
T

∑
Fs∈F (s)

� (T )

∑
n

∫
DT

(W K R̂[Fs,Fs∪Fu]�(τ, P))(z) dz,

(6.1)

where the sums run over all binary trees T with |V | leaves, and all increasing node
labels n of T . Here

(W K �̄n
e )(z) =

∏
e∈E

∂e(e)Kt(e)(zσ(e+) − zσ(e−))
∏

w∈V \v�

(zσ(w) − zσ(v�))
n(w)

corresponds to the integrand in (5.4) (recall that σ is the bijection between vertices
and edges of KF� and �), and v� is by definition the first vertex in the component of
KFs� containing w. An upper bound for (6.1) is given by

∣∣E(Ã−�(τ, P))
∣∣ �

∑
T

∑
Fs∈F (s)

� (T )

∑
n

sup
z∈DT

∣∣(W K R̂[Fs,Fs∪Fu]�(τ, P))(z)
∣∣C |V� |

0

∏
v∈T

2−(ρ+d)nv .

Here |V�| is the number of vertices of the graph �(τ, P), C0 is a constant depending
only on the size of � through the definition 5.11 of Hepp sectors, and C |V� |

0 times the
product corresponds to the volume of the Hepp sector DT. The aim of this section is
to prove the following bound.

Proposition 6.1 There exists a constant K1, depending only on the kernels Kt, such
that for any safe forestFs ∈ F (s)

� (T ),

∑
n

sup
z∈DT

∣∣(W K R̂[Fs,Fs∪Fu]�)(z)
∣∣ ∏
v∈T

2−(ρ+d)nv

�
{
K |E |
1 εdeg(�)

[
log(ε−1)

]ζ
if deg� < 0,

K |E |
1

[
log(ε−1)

]1+ζ
if deg� = 0,

where ζ ∈ {0, 1} is the number of children of � inFs having degree 0.

The existence of the exponent ζ has no influence on the main result, because ζ = 1
occurs only for very few diagrams. The fact that ζ ∈ {0, 1} is shown in Lemma 6.11
below.

The proof of Proposition 6.1 follows rather closely the one given in [21, Section 3.2].
There are a few differences, due to the facts that weworkwith a non-Euclidean scaling,
and that the Feynmandiagramswe consider have no legs.Owing to the special structure
of the equations we consider, decorations of vertices and edges can be almost entirely
avoided, they only arise in one estimate involving unstable forests (cf. Sect. 6.2).
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We first need to quantify the singularity of the kernels. Similarly to [19, 21], we
use the notation

‖Kt‖ = sup
|k|s�2

sup
z

|∂k Kt(z)|
‖z‖deg t−|k|ss

.

It then follows from [19, Lemma 10.7] that there exists a constant Ct such that

|K ε
t (z)| � Ct‖Kt‖

(‖z‖s ∨ ε
)deg t

holds uniformly in ε ∈ (0, 1]. We will write K0 for the maximal value of Ct‖Kt‖ for
all kernels involved. Indeed t runs over a finite set of types, so that the maximum is
finite.

A difference with [21] is that we have to deal explicitly with the fact that some
kernels are regularised, and others are not. To indicate this, we attach to each edge
e ∈ E an additional label reg(e) with value 0 if e corresponds to a bare kernel, and
with value 1 if it corresponds to a mollified kernel, and we write

E ◦ = {e ∈ E : reg(e) = 0}, E ε = {e ∈ E : reg(e) = 1}.

6.1 The caseFu = ∅

As in [21], we start by discussing the case Fu = ∅. First note that according to
Remark 5.10, any diagram with nontrivial decorations obtained by applying an oper-
ator Ĉγ has zero expectation. Therefore we may simply set

R̂[Fs,Fs∪Fu]� =
∏

γ∈Fs

(−Ĉγ )� = (−1)|Fs|KFs�.

Lemma 6.2 For any inner node v ∈ T , define

η◦(v) = ρ + d +
∑
e∈E ◦

deg(e)1e↑(v) ,

ηε(v) =
∑
e∈E ε

deg(e)1e↑(v) , (6.2)

where e↑ = σ(e−) ∧ σ(e+) is the last common ancestor of the vertices of e seen as
an edge of �. Let

f (v,nv) = η◦(v)nv + ηε(v)
[
nv ∧ nε

]
, (6.3)
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where nε is the smallest integer such that 2−nε � ε. Then there exists a constant
K̄0 � K0 such that

∑
n

sup
z∈DT

∣∣(W KKFs�)(z)
∣∣ ∏
v∈T

2−(ρ+d)nv � K̄ |E |
0 C− deg�

∑
n

∏
v∈T

2− f (v,nv), (6.4)

where C is the constant appearing in the relation (5.8) characterising Hepp sectors.

Proof The definitions of Hepp sectors and of K0 imply that uniformly over z ∈ DT,
one has

∣∣(W KKFs�)(z)
∣∣ � K |E |

0 C−∑e∈E deg(e)
∏
e∈E ◦

2−n(e↑) deg(e)
∏
e∈E ε

2−(n(e↑)∧nε) deg(e).

Since only edges of negative degree give an unbounded contribution, the term
C−∑e∈E deg(e) can be bounded by C− deg� , enlarging if necessary the value of K0.
Now it suffices to observe that

− log2
∏
e∈E ◦

2−n(e↑) deg(e) =
∑
v∈T

∑
e∈E ◦

deg(e)1e↑(v)nv =
∑
v∈T

[
η◦(v) − ρ − d

]
nv ,

− log2
∏
e∈E ε

2−(n(e↑)∧nε) deg(e) =
∑
v∈T

∑
e∈E ε

deg(e)1e↑(v)
[
nv ∧ nε

] =∑
v∈T

ηε(v)
[
nv ∧ nε

]
.

Substituting in the left-hand side of (6.4) yields the result. ��
Our aim is now to bound the quantity

∑
n

∏
v∈T

2− f (v,nv) (6.5)

by a recursive argument, starting from the leaves of T . The argument is somewhat
similar to the one given in [25, Lemma A.10], but with an explicit control of the
bound’s dependence on the properties of the graph �.

Given an inner node v of T , we say that w is an offspring of v if w > v, and there
exists no w̄ withw > w̄ > v (we do not use the term child to avoid confusion with the
notion of child inFs). We denote the set of offspring of v by O(v). Note that since T
is a binary tree, O(v) has at most two elements.

For any v ∈ T and nv ∈ N0, we introduce the notation

Sv(nv) =
∑
n̄�nv

∏
w>v

2− f (w,n̄w),

where the sum runs over all increasing node decorations n̄ of {w : w > v}. We can
rewrite this as

Sv(nv) =
∏

wi∈O(v)

Ŝwi (nv), (6.6)
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where

Ŝw(nv) =
∑
n̄�nv

∏
w̄�w

2− f (w̄,n̄w̄) =
∑

nw�nv

2− f (w,nw)Sw(nw). (6.7)

Then (6.5) is equal to Ŝ∅(0), where ∅ denotes the root of T . Our plan is now to
compute the quantities Ŝw(nv) inductively, starting from the leaves of T . In order
to initialise the induction, we set Ŝ�(nv) = 1 on the leaves � of T . (Equivalently,
one could set Sv(nv) = 1 for all nodes v of T with no offspring.) Then we have the
following recursive bound.

Lemma 6.3 Let v be an inner node of T . Assume that there exist non-negative functions
α, β, γ and ᾱ, β̄ such that the relation

Ŝw(nv) �
{
2α(w)nε2−β(w)nv (nε − nv)

γ (w) i f nv < nε

2ᾱ(w)nε2−β̄(w)nv i f nv � nε

(6.8)

holds for all w ∈ O(v). Assume furthermore that one has

η◦(v) +
∑

wi∈O(v)

β̄(wi ) > 0 , (6.9)

α(wi ) − β(wi ) � ᾱ(wi ) − β̄(wi ) ∀wi ∈ O(v) , (6.10)

and define

η(v) = η◦(v) + ηε(v), λ(v) = η(v)+
∑

wi∈O(v)

β(wi ). (6.11)

Let u be the parent of v, that is, the unique u such that v ∈ O(u). Then Ŝv(nu) satisfies
the analogue of (6.8), with exponents given as follows:

α(v) =

⎧⎪⎪⎨
⎪⎪⎩

∑
wi∈O(v)

α(wi ) − λ(v) i f λ(v) < 0,

∑
wi∈O(v)

α(wi ) otherwise,
(6.12)

while

β(v) =
{
0 i f λ(v) � 0,

λ(v) otherwise,
(6.13)
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and

γ (v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 i f λ(v) < 0,∑
wi∈O(v)

γ (wi ) + 1 i f λ(v) = 0,

∑
wi∈O(v)

γ (wi ) otherwise.

(6.14)

Finally, we have

ᾱ(v) =
∑

wi∈O(v)

ᾱ(wi ) − ηε(v) ,

β̄(v) =
∑

wi∈O(v)

β̄(wi ) + η◦(v) . (6.15)

Proof Combining (6.6) and (6.7), we obtain

Ŝv(nu) =
∑

nv�nu

2− f (v,nv)
∏

wi∈O(v)

Ŝwi (nv).

Consider first the case nu � nε. Using (6.8) and the definition (6.3) of f (v,nv), we
get

Ŝv(nu) � 2ᾱ(v)nε
∑

nv�nu

2−β̄(v)nv

with ᾱ(v) and β̄(v) given by (6.15). By Condition (6.9), one can sum the geometric
series, yielding the claimed bound.

For nu < nε, we decompose the sum into two parts, yielding

Ŝv(nu) � 2
∑

i α(wi )nε

nε−1∑
nv=nu

2−λ(v)nv (nε − nv)
∑

i γ (wi ) + 2ᾱ(v)nε
∑

nv�nε

2−β̄(v)nv .

The first sum can be evaluated using the bound

N−1∑
n=n0

(N − n)γ 2−ηn �

⎧⎪⎨
⎪⎩

(N − n0)γ 2−ηn0 if η > 0,

(N − n0)γ+1 if η = 0,

2−ηN ifη < 0,

valid for any n0 < N ∈ N, η ∈ R and γ > 0. The second sum has order 2(ᾱ(v)−β̄(v))nε ,
and is negligible thanks to Condition (6.10). ��
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Fig. 4 A tree T defining a Hepp sector DT for the diagram KF s� in (5.10). The table shows, for each edge

e, its image σ(e) = (σ (e)−, σ (e)+), the ancestor e↑, the degree of e measured in units of d
3 in the limit

ρ ↘ ρc, and the index showing whether the edge has been mollified. Since there can be multiple edges
between two given vertices, they have been colour-coded according to their type

Table 1 Coefficients appearing in the recursive computation described in Lemma 6.3, in the case of the
Hepp tree T given in Fig. 4

v η◦(v) ηε(v) η(v) η�(v) λ(v) α(v) β(v) γ (v) ᾱ(v) β̄(v)

e 1 0 1 1 1 0 1 0 0 1

d 4 −3 1 1 1 0 1 0 3 4

c −2 0 −2 −1 −1 1 0 0 3 2

b 1 −2 −1 −1 0 1 0 1 5 4

a 1 −2 −1 −2 −1 2 0 0 7 5

The first four exponents are defined in (6.2), (6.11) and (6.16). All coefficients are shown in units of d
3 and

in the limit ρ ↘ ρc

Example 6.4 Consider again the diagram of Example 5.12, with the forest F =
{γ1, γ2}. Consider a Hepp sector DT such that T has the structure given in Fig. 4.
The forest F is safe according to (5.11) and (5.12). Table 1 shows the values of the
different exponents, computed iteratively starting from the leaves of the tree T , in the
limit ρ ↘ ρc. In particular, we obtain

∑
n

∏
v∈T

2− f (v,nv) = Ŝa(0) � 2α(a)nε = 22dnε/3 � ε−2d/3,

which is indeed equal to εdeg� in that limit. A similar computation can be made for
any ρ > ρc.

Let us now examine the inductive bounds in more detail. The initialisation is made
by setting all functions α, β, γ , ᾱ and β̄ equal to zero on the leaves of T . Combining
the recursive relations (6.12) and (6.13), we obtain

α(v) − β(v) =
∑

wi∈O(v)

(
α(wi )− β(wi )

)− η(v).
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Together with the initial values on the leaves, this yields

α(v) − β(v) = −
∑
w�v

η(w) =: −η�(v) (6.16)

for all nodes v of T . In the same way, (6.15) yields

ᾱ(v)− β̄(v) = −η�(v).

This shows in particular that Condition (6.10) is always satisfied. Regarding Condi-
tion (6.9), we observe that (6.15) implies

β̄(v) =
∑
w�v

η◦(w) =: η◦�(v).

We thus have to show that η◦�(v) is strictly positive on all inner vertices v if T , and to
bound η�(v) below in order to control (6.5). To do this, we will import some further
notations from [21]. For γ ∈ Fs∪{�}, we write K(γ ) = (Vγ ,Eγ ) for the subgraph of
KFs� with edge set Eγ = σ−1(E (γ \C (γ ))), where C (γ ) denotes the set of children
of γ in Fs. Given an inner vertex v ∈ T , we let �0 = �0(v) = (V0,E0) be the
subgraph of KFs� containing all vertices w ∈ V such that σ(w) � v. Note that this
implies

e ∈ E0(v) ⇔ e↑ � v.

In addition, we have

scaleFs
T (e) > scaleFs

T (ē),

and thus e↑ > ē↑, for all e ∈ E0 and all ē adjacent to �0 in KFs�.

Example 6.5 Continuing with Example 6.4, we have

K(γ1) = 45 , K(γ2) =

3

4

6

, K(�) =
1

2

3 .

Examples of subgraphs �0(v) are

�0(b) = 1

2

3

4

6

, �0(d) =
1

2

, �0(e) = 4

6

,

while �0(c) = K(�) and �0(a) = KFs� is the diagram given in (5.10). ��
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Lemma 6.6 Let v be an inner vertex of T such that �0(v) is non-empty. Then the
quantity η�(v) satisfies the following properties :

1. η�(v) = deg(�) if v = ∅ is the root of T , and η�(v) � deg(�) otherwise;
2. if v > ∅, then η�(v) = deg(�) happens only if � has at least one child γ ∈ C (�)

satisfying deg(γ ) = 0, and �0(v) = ⋃γ̄ K(γ̄ ), where the union runs over all γ̄

which are not descendents of a child with vanishing degree;
3. if O(v) = {w1, w2}, then there exists at least one i ∈ {1, 2} such that η�(w) > 0

for all w � wi .

If, furthermore, � has at least one regularised edge, then there exists a constant κ > 0
such that

η◦�(v) =
∑
w�v

η◦(w) � κ. (6.17)

Proof Since T is a tree, {w � v} has |V0| − 1 elements, so that we can write

η�(v) = (ρ + d)(|V0| − 1) +
∑

e∈E∩E0
deg(e).

By construction, the K(γ ) have disjoint edge sets, and two K(γ ) can share at most one
vertex. We can thus decompose

η�(v) =
∑

γ∈Fs∪{�}
η�,γ (v), (6.18)

where

η�,γ (v) = (ρ + d)(|V0 ∩ Vγ | − 1) +
∑

e∈Eγ∩E0
deg(e).

As in [21], we say that γ ∈ Fs ∪ {�} is
• full if Eγ ∩ E0 = Eγ ;
• empty if Eγ ∩ E0 = ∅;
• normal in all other cases.

By [21, Lemma 3.7], a full γ cannot have an empty parent, and

η�,γ (v) =

⎧⎪⎨
⎪⎩
deg(γ )−∑γ̄∈C (γ ) deg(γ̄ ) if γ is full,

0 if γ is empty,

deg(γ̂ )−∑γ̄∈C∗(γ ) deg(γ̄ ) if γ is normal,

(6.19)

where C∗(γ ) is the set of children γ̄ of γ such that K(γ̄ ) shares a vertex with �0(v),
and γ̂ is the subdiagram of � with edge set σ(Eγ ∩ E0) ∪⋃γ̄∈C∗(γ ) E (γ̄ ). The fact
that γ is safe implies that deg(γ̂ ) > 0, and is also used to prove the absence of empty
parent.

The result follows by considering all possibilities for the types of the subgraphs γ .
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• A first case occurs when no γ ∈ Fs ∪ {�} is full. Since �0 is not empty, the γ

cannot all be empty, so that η�(v) is a non-empty sum of strictly positive terms.
Therefore, η�(v) > 0.

• A second case occurs when � is not full, but there exists at least one subgraph
γ � � which is full. Since the parent of γ is not empty, the negative term deg(γ ) is
compensated by the corresponding term stemming from its parent. Since � is not
full, there must exist a full subgraph γ whose parent is normal. Since the inequality
for normal subgraphs is strict, we have again η�(v) > 0.

• It remains to consider the case where � is full (which does not occur in [21]). The
case of all γ ⊂ � also being full can only occur when v = ∅ (because only in
that case is �0(v) equal to KFs(γ )), and leads to the sum being equal to deg(�).
Consider next the case when there is no normal subgraph. Then all subgraphs
are full or empty. Since a full subgraph cannot have an empty parent, we obtain
η�(v) = deg(�) −∑i deg(γi ), where the γi are all empty subgraphs with a full
parent. This shows in particular that η�(v) � deg(�) if v is not the root. Equality
can only holdwhen all γi have zero degree. These γi must all be children of�, since
Lemma 5.7 and Remark 5.4 imply that the degree of strict subdiagrams, which
all arise from almost full trees, is strictly increasing in terms of their number of
edges. In addition, all γ ⊂ γi are empty, so that the second property follows. The
only remaining case occurs when there exists a γ � � which is normal. Then one
obtains η�(v) � deg(�) − deg(γ ) + deg(γ̂ ) > deg(�).

Toprove the third property ofη�,wenote that since the edge setsE0(w1) andE0(w2)

are disjoint, � cannot be full for both �0(w1) and �0(w2). Since E0(w) ⊂ E (wi ) for
all w � wi , there is at least one i such that � is not full for any �0(w) such that
w � wi . Therefore, η�(w) > 0 for these w.

It remains to prove (6.17). Here we note that η◦�(v) can be written as the sum of
η◦�,γ

(v), where

η◦�,γ (v) = (ρ + d)(|V0 ∩ Vγ | − 1) +
∑

e∈E ◦∩Eγ

deg(e).

We define full, empty and normal subgraphs as above, but with E0 replaced by E0∩E ◦.
Since � admits at least one regularised edge, it cannot be full. The same argument as
above thus shows that η◦�(v) is strictly positive. ��
Remark 6.7 If follows from Lemma 5.7 that for any subtree τ̄ � τ of negative degree,
τ has at least two leaves that do not belong to τ̄ . As a consequence, for any diver-
gent subdiagram γ � �, � \ γ admits at least one regularised edge. Therefore, the
assumption that K(�) admit at least one regularised edge is indeed satisfied in our
situation.

Example 6.8 We illustrate the lemma and the notions of full, normal and empty sub-
graphs used in its proof on Example 6.5:

• for �0(a), all γ ∈ Fs ∪ {�} are full;
• for �0(b), � and γ2 are full, while γ1 is empty;
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• for �0(c), � is full, while γ2 and γ1 are empty;
• for �0(d), � is normal, and the other graphs are empty;
• for �0(e), γ2 is normal, and the other graphs are empty.

The first three cases lead to η�(v) � 0, since there is no normal subgraph. The last
two cases lead to η�(v) > 0, since there is no full subgraph (compare with Table 1).

Consider now the case where the Hepp tree is of the form

T =

1 2 3 4 6 5

a

b

c

d

e (6.20)

The forest F = {γ1, γ2} is again safe, and we have in particular �0(b) = K(�).
This shows that for �0(b), � is full, and γ1 and γ2 are empty. If ρ = 2

5d, then
deg(�) = deg(γ2) = 0, and we are in a situation where Property 2. of Lemma 6.6
applies: we have η�(a) = η�(b) = 0, while η�(v) > 0 for v ∈ {c, d, e}.
Corollary 6.9 There exists a constant K1, depending only on K̄0 and d, such that

∑
n

sup
z∈DT

∣∣(W KKFs�)(z)
∣∣ ∏
v∈T

2−(ρ+d)nv �
{
K |E |
1 εdeg(�)

[
log(ε−1)

]ζ
if deg� < 0,

K |E |
1

[
log(ε−1)

]1+ζ
if deg� = 0,

(6.21)

where ζ is the number of children of � inFs having degree 0.

Proof The lower bound (6.17) on η◦� shows that Condition (6.9) is satisfied, so that
Lemma 6.3 applies for all inner vertices of T . Combining (6.16) with the induction
relations (6.12) and (6.13), we obtain

α(v) = max

{
−η�(v),

∑
wi∈O(v)

α(wi )

}
. (6.22)

We claim that in fact, we have

α(v) � max
({0} ∪ {−η�(w) : w � v}). (6.23)

This relation is clearly true if v has no offspring. We now proceed by induction, and
assume that (6.23) holds for all wi ∈ O(v). If all α(wi ) vanish, (6.23) trivially holds.
Property 3. of Lemma 6.6 implies that at most one of the α(wi ), say α(w1), can be
strictly positive. Indeed, if v has two offspringw1 andw2, then the property implies that
there is at most one offspring, say w2, such that η�(w) > 0 for all w � w2. But then
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α(w2) = 0 by the induction assumption. Therefore, α(v) = max{−η�(v), α(w1)},
and (6.23) follows from the induction assumption.

The result is then a consequence of the fact that (6.5) is bounded by

Ŝ∅(0) � 2α(∅)nεnγ (∅)
ε .

Indeed, we have α(∅) = − deg(�), as a consequence of Property 1. of Lemma 6.6,
which implies

max{−η�(w) : w � ∅} = −η�(∅) = − deg(�).

Therefore (6.23) yields α(∅) � − deg(�), but by (6.22) this is actually an equality,
because (6.22) implies that α(∅) � − deg(�). Since deg(�) is bounded below by a
constant depending only on d, the term C− deg� in (6.4) can be incorporated into K1.

It remains to determine γ (∅). We first note that (6.16) implies

λ(v) = η�(v) +
∑

wi∈O(v)

α(wi ).

In the case deg(�) = 0, we have α(v) = 0, and thus λ(v) = η�(v) for all v ∈ T .
By Property 3. of Lemma 6.6, at most one of the offspring of v, say w1, satisfies
η�(w1) = 0. Therefore, there exists at most one path (w0 = ∅, w1, . . . , wζ ) starting
at the root, such that η�(wi ) = 0, and thus λ(wi ) = 0, for each wi in the path. On
such a path, (6.14) shows that γ (v) increases by 1 at each step. Extending this path to
any leaf, and using γ = 0 as initial value on the leaf, we obtain that γ (∅) = ζ . By
Property 2. of Lemma 6.6, each �0(wi ) is of the form

⋃
γ̄i
K(γ̄i ), where the γ̄i are not

descendents of a given γi ∈ C (�) with vanishing degree. Since �0(wi+1) � �0(wi )

for each i , ζ is bounded by the number of these γi .
In the case deg(�) < 0, consider the longest sequence (w0 = ∅, w1, . . . , wζ ′)

such that wi+1 ∈ O(wi ) and η�(wi ) � 0 for each i . Then Property 3. of Lemma 6.6
implies that η�(v) > 0 for all other v ∈ T , which yields α(v) = 0, λ(v) > 0 and thus
γ (v) = 0 for those v. For the wi , we get the induction relations

λ(wi ) = η�(wi ) + α(wi+1) ,

α(wi ) = max
{−η�(wi ), α(wi+1)

}
� α(wi+1) ,

γ (wi ) =

⎧⎪⎨
⎪⎩
0 if λ(wi ) < 0 ,

γ (wi+1) + 1 if λ(wi ) = 0 ,

γ (wi+1) if λ(wi ) > 0 ,

with the convention that α(wζ ′+1) = γ (wζ ′+1) = 0. Note that we have the implica-
tions

γ (wi ) �= 0 ⇒ λ(wi ) � 0 ⇔ α(wi+1) � −η�(wi ) ⇔ α(wi ) = α(wi+1).
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In addition, γ is incremented only if λ(wi ) = 0, which happens if and only if α(wi ) =
α(wi+1) = −η�(wi ). It follows that γ (∅) is equal to the length ζ � ζ ′ of the
longest sequence (w0, . . . , wζ−1) such that η�(wi ) = deg(�) for all i . Property 2.
of Lemma 6.6 again implies that ζ is bounded by the number of children of � having
degree 0. ��
Example 6.10 Consider again the Hepp sector with tree T as in (6.20) in Example 6.8.
As we have seen, when ρ = 2

5 , one has deg(�) = deg(γ2) = 0. Therefore, the
bound (6.21) has order (log(ε−1))2.

Though we find that nontrivial powers of log(ε−1) can occur, the following result
shows that in our situation, these powers cannot exceed the value 2.

Lemma 6.11 If � = �(τ, P) and τ is an almost full binary tree, then � cannot have
any children of degree 0, i.e., ζ = 0. If � = �(τ, P) and τ is a full binary tree, then
� can have at most one child of degree 0, i.e., ζ � 1.

Proof Let τ be almost full with 2m+1 edges, and assume that� contains a subdiagram
γ with deg(γ ) = 0. By Lemma 5.7, γ is of the form �(τ̄ , P̄) with τ̄ an almost full
binary tree having 2m̄ + 1 < 2m + 1 edges. By Remark 5.4, we necessarily have
deg(γ ) < deg(�), so that deg(γ ) = 0 would imply deg(�) > 0, which is not
permitted.

If τ is full with 2m edges, then any divergent subdiagram γ results from an almost
full tree τ̄ with 2m̄ + 1 < 2m edges. By Remark 5.4, the condition deg(�) � 0 =
deg(γ ) yields m � 2m̄ + 1. If � contains ζ non-overlapping divergent subdiagrams
of degree 0, they must all have the same number of edges, and we obtain ζ(2m̄+1) <

2m � 2(2m̄ + 1), yielding ζ < 2. ��

6.2 The caseFu �= ∅

We turn now to the case Fu �= ∅, where we can write

R̂[Fs,Fs∪Fu]� = (−1)|Fs|KFs

∏
γ∈Fu

(id−Ĉγ )�. (6.24)

Wedefine as before subgraphsK(γ ) = (Vγ ,Eγ ) ofKFs , except thatC (γ ) nowdenotes
the set of children of γ inFs∪{γ }. For any γ ∈ Fu, we denote by γ ↑ the inner vertex
of T such that σ(Vγ ) = {v ∈ V : v � γ ↑}, and

γ ↑↑ = sup
{
e↑ : e ∈ EA (γ ) and e ∼ K(γ )

}
.

Recall that A (γ ) denotes the parent of γ in F , while ∼ denotes adjacency. In other
words, we are considering edges in EA (γ ) which are not in Eγ . It follows that we
necessarily have γ ↑ > γ ↑↑. Finally, we set

N (γ ) = 1+ $− deg(γ )%.
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Lemma 5.7 implies that all subdivergences γ have a degree deg(γ ) > − d
3

(cf. Remark 5.4). Thus in space dimensions d � 3, N (γ ) is always equal to 1, while
for d ∈ {4, 5} it can take the value 2, and is always equal to 2 when ρ is sufficiently
close to ρc. In the latter case, the operator Ĉγ produces terms with nontrivial node
labels, which are here essential for the renormalisation.

Example 6.12 Consider again the diagram of Example 5.12, with the forest F =
{γ1, γ2}. Consider now a Hepp sector DT such that T has the structure given in Fig. 5.
In this example, γ1 is unsafe, γ2 is safe, and we have γ

↑
1 = d and γ

↑↑
1 = b.

If d � 3, the extraction operation Ĉγ1� has the same form as in (5.9) in Exam-
ple 5.12. If d ∈ {4, 5}, it becomes

Ĉγ1� =
1

23

4
5

6

+
d∑

i=1
1

23

4
5

6

ei

ei

(6.25)

−
d∑

i=1
1

23

45

6

ei

ei

,

where edge and node decorations have been indicated in green (ei being the i th
canonical basis vector). Note that this produces a factor

Kρ(z4 − z3)
[
Kρ(z6 − z5) − Kρ(z6 − z4) +

d∑
i=1

∂i Kρ(z6 − z4)(z4 − z5)
ei
]

in the integrand giving the value of (id−Ĉγ1)�, since the terms proportional to (z4 −
zv�)

ei stemming from the second term in (6.25) are killed because v� = 4. The point
of the whole procedure is that the term in square brackets is bounded by a positive
power of ‖z4− z5‖s, which is much smaller than ‖z6− z5‖s owing to the fact that γ1
is unsafe.

Lemma 6.13 There exists a constant K̄0 depending only on the kernels Kt such that

∑
n

sup
z∈DT

∣∣(W K R̂[Fs,Fs∪Fu]�)(z)
∣∣ ∏
v∈T

2−(ρ+d)nv � K̄ |E |
0 C− deg�

∑
n

∏
v∈T

2− f (v,nv),

where
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Fig. 5 A tree T defining a Hepp sector DT for the diagram Ĉγ2�, cf. (5.9). The table shows, for each edge,
its image σ(e) = (σ (e)−, σ (e)+), and the ancestor e↑

f (v,nv) = η◦(v)nv + ηε(v)
[
nv ∧ nε

]+ ∑
γ∈Fu

N (γ )
[
1γ ↑(v) − 1γ ↑↑(v)

]
nv,

(6.26)

with the same η◦(v) and ηε(v) as in (6.2).

Proof The difference with the proof of Lemma 6.2 is the presence of the factors
(id−Ĉγ ) with γ unsafe in (6.24). These produce a factor

∏
e∈EA (γ )

e∼K(γ )

[
Kt(e)(zσ(e+) − zσ(e−))−

∑
|�|s<N (γ )

1

�! (zσ(e′+) − zσ(v�))
�∂�Kt(e)(zσ(v�) − zσ(e′−))

]
,

where e′ is the image of e under Ĉγ . By the Taylor formula-type bound given in [21,
Lemma 3.8], this factor is bounded by

K12
N (γ )[n

γ↑↑−n
γ↑ ]

∏
e∈EA (γ )

e∼K(γ )

‖zσ(e+) − zσ(e−)‖deg(e)s ,

which accounts for the last sum in (6.26). ��

Writing as before η(v) = η◦(v) + ηε(v), we introduce the notations

η̂(v) = η(v) +
∑

γ∈Fu

N (γ )
[
1γ ↑(v) − 1γ ↑↑(v)

]
, η̂�(v) =

∑
w�v

η̂(w).

Lemma 6.14 The conclusions of Lemma 6.6 still hold in the present situation, with
η� replaced by η̂�.
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Proof The only difference with the proof of Lemma 6.6 is the presence of the sum
over diagrams in γ ∈ Fu. We claim that we have the equivalences

v � γ ↑ ⇔ K(γ ) ⊂ �0(v) ∩ K(A (γ )) ,

v > γ ↑↑ ⇔ �0(v) ∩ K(A (γ )) ⊂ K(γ ) . (6.27)

Indeed, we always have K(γ ) ⊂ K(A (γ )), so that the first equivalence follows from
the fact that v � γ ↑ ⇔ K(γ ) ⊂ �0(v). For the second equivalence, we observe that if
e ∈ �0(v)∩K(A (γ )), then e↑ � v, and e is either inEγ , or adjacent toK(γ ). However,
the second case is ruled out if v > γ ↑↑. Conversely, if �0(v) ∩ K(A (γ )) ⊂ K(γ ),
then any edge e ∼ K(γ ) cannot belong to E0, and must thus satisfy e↑ < v, which
implies that γ ↑↑ < v.

It follows from (6.27) that

∑
w�v

[
1γ ↑(w) − 1γ ↑↑(w)

] = 1γ ↑↑<v�γ ↑ = 1K(γ )=�0(v)∩K(A (γ )).

Thus, η̂�(v) satisfies the equivalent of the decomposition (6.18), with

η̂�,γ (v) = (ρ + d)(|V0 ∩ Vγ | − 1) +
∑

e∈Eγ∩E0
deg(e)

+
∑

γ̄∈Fu

N (γ̄ )1K(γ̄ )=�0(v)∩K(A(γ̄ )). (6.28)

One then shows that the properties (6.19) of full, empty and normal subgraphs still
hold in this case. The case of γ being normal requires the presence of the last term
in (6.28), to which only γ̂ contributes, together with the fact that deg(γ̂ )+ N (γ̂ ) > 0.
The remainder of the proof is the same as for Lemma 6.6. ��

The analogue of Corollary 6.9 is then proved in the same way as above, completing
the proof of Proposition 6.1.

7 Asymptotics

Fix a tree τ ∈ T F− with p leaves and q edges. It follows from the definition (4.5)
of cε(τ ), Propositions 4.5 and 5.2, the decomposition (6.1) into Hepp sectors and
Proposition 6.1 that

cε(τ ) = (−2)−1− p
2
∑

P∈P(2)
τ

∑
T

∑
Fs∈F (s)

�(τ,P)
(T )

I (τ, P, T ,Fs),

where

I (τ, P, T ,Fs) =
∑
n

∫
DT

(W K R̂[Fs,Fs∪Fu]�(τ, P))(z) dz

123



Stochastics and Partial Differential Equations: Analysis and Computations

satisfies

∣∣I (τ, P, T ,Fs)
∣∣ � C |V (�(τ,P))|

0 K |E (�(τ,P))|
1 εdeg�(τ,P)

[
log(ε−1)

]ζ(�(τ,P))

(with the convention that εdeg�(τ,P) is to be replaced by log(ε−1) if deg�(τ, P) = 0).
To obtain an upper bound on |cε(τ )|, it thus remains to control the sums over Hepp
trees T , permutations P , and safe forests Fs. Summing over all τ ∈ T F− will then
provide an upper bound on the renormalisation constants.

7.1 Full binary trees

Recall that a full binary tree τ with p leaves has q = 2p − 2 edges and p − 1
inner vertices. It will be useful to parametrise the set of full binary trees with an even
number of leaves by integers k such that p = 2k + 2 and q = 4k + 2. It follows
from Proposition 4.18 that for any pairing P , the corresponding (reduced) Feynman
diagram � = �(τ, P) will have 2k vertices, 3k edges, and degree

deg�(τ, P) = (3k + 1)ρ − (k + 1)d

= −2

3
d + (3k + 1)(ρ − ρc) ∀P ∈ P(2) . (7.1)

This degree is negative if and only if

k � kmax = d − ρ

3ρ − d
= d − ρ

3(ρ − ρc)
. (7.2)

We can thus rewrite (7.1) as

deg� = −(d − ρ)

(
1− k

kmax

)
=: αk . (7.3)

The number of possible pairings of the 2k+2 leaves is equal to (2k+1)!! =∏k
i=0(2i+

1). The number of Hepp trees T is bounded above by (2k − 1)!, and is reached when
T is a comb tree, whose 2k leaves can be associated in (2k − 1)! inequivalent ways to
the 2k vertices of �. The number of safe forestsFs can be bounded as follows.

Lemma 7.1 There are at most 2|G−
� | safe forests in �, where the number of divergent

subdiagrams satisfies |G−
� | � k.

Proof Let Nm denote the number of edges of a Feynman diagram� havingm divergent
subdiagrams. Then N1 � 2, and Nm1+m2 � Nm1+Nm2 +1, since elements of a forest
have to be strictly included into one another or vertex disjoint. By induction onm, one
obtains Nm � 3m − 1, implying 3|G−

� | − 1 � 3k, and thus |G−
� | � k. The bound on

the number of safe forests then simply follows from the fact that a finite set with n
elements has 2n subsets, and is reached when all forests are safe. ��
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Finally, we need to control the number of terms yielding an exponent ζ = 1 rather
than ζ = 0. We write P(2)

τ = P(2)
τ,0 � P(2)

τ,1,where P(2)
τ,i denotes the set of pairings

yielding a diagram �(τ, P) with ζ(�) = i . Then we have the following key estimate.

Lemma 7.2 P(2)
τ,1 is non-empty only when kmax is an odd integer and 2k � kmax + 1.

In that case, we have

|P(2)
τ,1|

|P(2)
τ,0|

� r(k) := kmax!!(2k − kmax)!!
(2k + 1)!! . (7.4)

Furthermore, we have

r(k) � M2−(2k−kmax) (7.5)

for kmax + 1 � 2k � 2kmax, where M is a constant independent of k, ρ and ε.

Proof Assume � = �(τ, P) has a child γ having degree 0. By Lemma 5.7, γ =
�(τ̄ , P̄) where τ̄ is an almost full binary subtree of τ , and P̄ is the restriction of P to
the leaves of τ̄ . Let k̄ < k be such that τ̄ has 2k̄+ 2 leaves and 4k̄+ 3 edges. Then we
have

deg γ = −1

3
d + (3k̄ + 2)(ρ − ρc) = 0.

In view of (7.1), this implies

2(3k̄ + 2)(ρ − ρc) = 2

3
d = (3k + 1)(ρ − ρc) − deg�,

which yields 2k̄+1 = kmax by (7.2) and (7.3). Thus kmax must be an odd integer, and the
condition k > k̄ yields 2k � kmax+ 1. Finally, the number of pairings that do not mix
leaves of τ̄ with those of τ \τ̄ is given by (2k̄+1)!!(2k−2k̄−1)!! = kmax!!(2k−kmax)!!,
which proves (7.4). To prove (7.5), we write k = xkmax and use Stirling’s formula to
obtain

log r(k) = kmax

2

[
(2x − 1) log(2x − 1) − 2x log(2x)

]− 1

2
log(x) +O(1)

� − log(2)(2xkmax − kmax)+O(1) ,

where we have used a convexity argument to obtain the last line. ��
Remark 7.3 In what follows, we will always assume that kmax > 1. Indeed, for kmax <

1 (that is, ρ > d
2 ), the only potentially divergent tree is , while for kmax = 1, the

trees with 4 leaves considered in Example 4.17 have degree 0. These cases can be
treated “ by hand”, in particular the expectation (4.21) can be shown to diverge like
log(ε−1).
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The above combinatorial considerations show that

|cε(τ )| � (2k + 1)!!(2k − 1)!C2k
0 K 3k

1 εdeg�
[
1+ r(k) log(ε−1)

]
,

where deg� is given by (7.3), and εdeg� has to be replaced by log(ε−1) if deg� = 0.
Let us write C2k

0 K 3k
1 = K 3k

2 , where K2 = C2/3
0 K1. It follows from Stirling’s formula

that

log
(
(2k + 1)!!(2k − 1)!K 3k

1 εdeg�
)

� 3k log k + 3k
[
log 2− 1+ log K2

]
− log(ε−1) deg� +O(1),

where the remainder term O(1) is independent of k, ρ and ε.
When computing the contribution of full binary trees to the renormalisation coun-

terterm (3.3), we have to take into account the number of these trees, as well as the
combinatorial factor 2ninner(τ )−nsym(τ ). The latter can be bounded above by 22k+1, while
the former is given by the (2k + 2)nd Wedderburn–Etherington number (sequence
A001190 in the On-Line Encyclopedia of Integer Sequences OEIS), cf. [3, Sec-
tion 4.4.1]. These numbers are known to grow like k−3/2β−2k

2 , where β2 � 0.4026975
(OEIS sequence A240943) is the radius of convergence of the generating series of
the sequence.

The renormalisation countertermC0(ε, ρ)due to full binary trees can thus bewritten
in the form

C0(ε, ρ) =
$kmax%−1∑

k=0

Akε
αk + 1kmax∈NAkmax log(ε

−1)

+ 1kmax∈2N+1

[ kmax−1∑
k=(kmax−1)/2

Akε
αk r(k) + Akmaxr(kmax) log(ε

−1)

]
log(ε−1) ,

(7.6)

where αk is defined in (7.3) and

log|Ak | � 3
[
k log k + ak − 1

2
log(k + 1)

]+O(1) ,

a = log 2− 1+ log K2 + 2

3
log(β−1

2 ) .

As a consequence, we have the bound

∣∣Akε
αk
∣∣ � M e3F(k), (7.7)

where M is a constant independent of k, ρ and ε, and

F(k) = k log k + (a − bε)k + bεkmax − 1

2
log(k + 1), (7.8)
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with

bε = (ρ − ρc) log(ε
−1).

Note in particular that e3F(0) = ε−(d−ρ), and that F is strictly convex.

Proposition 7.4 Define the threshold

εc(ρ) = exp

{
− 1

ρ − ρc

[
log kmax + a − log(kmax + 1)

2kmax

]}
.

Then there exist constants M1, M2, independent of ε and ρ, such that the counterterm
C0(ε, ρ) satisfies

C0(ε, ρ) = A0ε
−(d−ρ)

[
1+ R1(ε, ρ)

]
for ε < εc(ρ) ,

|C0(ε, ρ)| � Mεc(ρ)−(d−ρ)
[
log(ε−1) + R2(ε, ρ)

]
for ε � εc(ρ) ,

where the remainders satisfy

∣∣R1(ε, ρ)
∣∣ � M1

ρ − ρc

(
ε

εc(ρ)

)3(ρ−ρc)

,
∣∣R2(ε, ρ)

∣∣ � M2

ρ − ρc

(
εc(ρ)

ε

)3(ρ−ρc)

.

Proof Since F is convex, we have F(k) � F(0)+ Hk for all k ∈ [0, kmax], where

H = F(kmax) − F(0)

kmax
= log kmax − bε + a − 1

2

log(kmax + 1)

kmax
. (7.9)

Note that εc(ρ) has been defined in such a way that

H = (ρ − ρc) log

(
ε

εc(ρ)

)
,

and that e3F(kmax) = εc(ρ)−(d−ρ). We will repeatedly use the fact that if β ∈ R and
N > k0 are positive integers, then

N−1∑
k=k0

eβk �

⎧⎪⎨
⎪⎩

[
(N − k0) ∧ β−1

]
eβ(N−1) ifβ > 0,

N − k0 ifβ = 0,[
(N − k0) ∧ |β|−1

]
eβk0 ifβ < 0.

(7.10)

In the case ε � εc(ρ), i.e. H � 0, we rewrite (7.6) as

C0(ε, ρ) − 1kmax∈NAkmax log(ε
−1) =

$kmax%−1∑
k=0

Akε
αk +

kmax−1∑
k=(kmax+1)/2

Akε
αk r(k) log(ε−1)

+ Akmaxr(kmax)
[
log(ε−1)

]2

123



Stochastics and Partial Differential Equations: Analysis and Computations

=: M e3F(kmax)
[
R1(ε, ρ) +R2(ε, ρ) +R3(ε, ρ)

]
,

where the termsR2 andR3 vanish unless kmax is an odd integer, which we can assume
to be at least 3 by Remark 7.3. By (7.7), the leading term Akmax log(ε

−1) has indeed
order εc(ρ)−(d−ρ) log(ε−1). To bound R1, we use (7.10) with N = $kmax%, k0 = 0
and β = 3 H to get

|R1(ε, ρ)| � kmax e
−3H � 1

ρ − ρc

(
εc(ρ)

ε

)3(ρ−ρc)

.

Regarding R2, we use (7.5) to get

|R2(ε, ρ)| � M e−3Hkmax ekmax log 2
kmax−1∑

k=(kmax+1)/2

e(3H−2 log 2)k log(ε−1).

We use (7.10) differently in several regimes. If 3 H � 1, we obtain

|R2(ε, ρ)| � e−
3
2 H(kmax−1) log(ε−1) � e−3H log(ε−1).

If 1 < 3H < 2 log 2, we get

|R2(ε, ρ)| � kmax e
− 3

2 H(kmax−1) log(ε−1) � e−3H kmax e
− 3

2 (kmax−3) log(ε−1),

which yields a bound of the same form, since kmax e−
3
2 (kmax−3) is bounded uniformly

in kmax � 3. If 3H � 2 log 2, we have

|R2(ε, ρ)| � e−3H kmax2
−kmax log(ε−1).

Note that in all three regimes, we have |R2(ε, ρ)| � e−3 H log(ε−1). Regarding R3,
we observe that it is bounded by r(kmax) log(ε−1)2, showing that

e3H |R3(ε, ρ)| � 2−kmax

εc(ρ)3(ρ−ρc)
ε3(ρ−ρc)

[
log(ε−1)

]2
.

For fixed ρ, the right-hand side is maximal for ε = ε∗ = e−2/(3(ρ−ρc). Therefore, by
definition of kmax and εc(ρ), we have

e3H |R3(ε, ρ)| � 2−kmax

εc(ρ)3(ρ−ρc)

4 e−2

9(ρ − ρc)2
� 2−kmaxk3maxk

2
max,

which is bounded uniformly in kmax � 1. Therefore, we have |R3(ε, ρ)| � e−3H ,
completing the proof for ε > εc(ρ).
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It remains to consider the case ε < εc(ρ), i.e. H < 0. Here we decompose

C0(ε, ρ) − A0ε
α0 =

$kmax%−1∑
k=1

Akε
αk + Akmax log(ε

−1)

+
kmax−1∑

k=(kmax+1)/2

Akε
αk r(k) log(ε−1) + Akmaxr(kmax)

[
log(ε−1)

]2

=: M e3F(0)[R1(ε, ρ) +R2(ε, ρ) +R3(ε, ρ) +R4(ε, ρ)
]

,

where R3 and R4 vanish unless kmax is an odd integer. Applying (7.10) with N =
$kmax%, k0 = 1 and β = 3H , we obtain

|R1(ε, ρ)| � kmax e
3H � 1

ρ − ρc

(
ε

εc(ρ)

)3(ρ−ρc)

.

Using (7.7), we find

|R2(ε, ρ)| � e3Hkmax log(ε−1) =
(

ε

εc(ρ)

)d−ρ

log(ε−1).

Regarding R3, using again (7.10) we get

|R3(ε, ρ)| � e
3
2 H(kmax+1) log(ε−1) =

(
ε

εc(ρ)

) 3
2 (kmax+1)(ρ−ρc))

log(ε−1).

Finally, by (7.5) we also have

|R4(ε, ρ)| �
(

ε

εc(ρ)

)d−ρ

2−kmax
[
log(ε−1)

]2
.

Since kmax > 1, we have d − ρ > 3(ρ − ρc), so that R2 and R4 are negligible
with respect to R1. In addition, R3 only occurs when kmax � 3, and then it is also
dominated by R1. ��

7.2 Almost full binary trees

It remains to consider the case of almost full binary trees without decorations Xi , as
the contribution of almost full binary trees with a decoration Xi vanishes by symmetry.

Almost full trees with an even number of leaves can be parametrised by an integer k
such that these trees have p = 2k+2 leaves and q = 4k+3 edges. The corresponding
reduced Feynman diagrams have 2k + 1 vertices, 3k + 1 edges, and degree

deg�(τ, P) = (3k + 2)ρ − (k + 1)d ∀P ∈ P(2).
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The main difference with the case of full trees is that the maximal value of k for
deg�(τ, P) to be negative is now

k̄max = d − 2ρ

3ρ − d
= d − 2ρ

3(ρ − ρc)
,

which is smaller than kmax by a factor approaching 2 as ρ ↘ ρc. Furthermore,
Lemma 7.2 shows that ζ always vanishes in this case. The remaining combinatorial
arguments remain unchanged, with the result that

C1(ε, ρ) =
k̄max−1∑
k=0

Ākε
ᾱk + 1k̄max∈N

Āk̄max
log(ε−1),

where

ᾱk = −(d − 2ρ)

(
1− k

k̄max

)

and | Ākε
ᾱk | � M e3F̄(k) with

F̄(k) = k log k + (a − bε)k + bε k̄max − 1

2
log(k + 1).

It thus suffices to modify the threshold value of ε to obtain the result.

7.3 A remark on lower bounds

The results we have obtained provide upper bounds on the counterterms. Obtaining
matching lower bounds seems out of reach at this stage, because, as we have seen, the
behaviour in εdeg�(τ,P) of the terms cε(τ ) is a consequence of cancellations of more
singular terms in Zimmermann’s forest formula.

However, we can at least argue that among the many terms contributing to the
counterterms C0(ε, ρ) and C1(ε, ρ), there exist terms which are bounded above and
below by a quantity of the same order. This does not of course exclude that cancella-
tions among these terms exist, which ultimately make the counterterms much smaller.
However, such a scenario seems unlikely, unless some hidden symmetries have been
overlooked.

Indeed, assume that τ is a regular binary tree (cf. (3.5)). Then ninner(τ ) = nsym(τ ),
so that the contribution of τ to C0(ε, ρ) is given by

cε(τ ) = E(ÃE
−τ) =

∑
P∈P(2)

τ

E(Ã−�(τ, P)).

It follows from Lemma 5.7 that �(τ, P) cannot have any divergent strict subdiagram,
since a regular binary tree does not contain any almost full binary subtree. Therefore,
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(6.1) reduces to

E(Ã−�(τ, P)) = −
∑
T

∑
n

∫
DT

(W K�(τ, P))(z) dz.

It is known that whenever ρ < d, the fractional heat kernel Pρ is given by the Riesz
kernel which has a constant sign. This sign is not conserved by the decomposition (4.1)
of the kernel into its singular and smooth parts, but one can add a bounded, compactly
supported term to Kρ in such a way that Kρ has a constant sign, and without changing
the divergent part of the integrals. Therefore, we obtain

|E(Ã−�(τ, P))| � a
∑
T

K |E |
2 εdeg(�)

for a constant a > 0. Since the number of pairings P and of Hepp trees T have the
same factorial behaviour as above, we indeed obtain for cε(τ ) an asymptotic behaviour
in εc(ρ)−(d−ρ) log(ε−1).

7.4 Extension to other parameter regimes

In this section, we extend the results to the more general family of equations

∂t u − γ�ρ/2u = gu2 + σξ, (7.11)

where γ , g and σ are parameters measuring the strength of each component of the
equation, that is, the smoothing effect given by the fractional Laplacian, the nonlin-
earity u2 and the noise ξ . Our aim is to understand how the model behaves when one
lets these parameters vary, and to determine some potentially interesting parameter
regimes.

The extension can actually be done in two equivalent ways: using directly the
BPHZ renormalisation on the parameter-dependent equation (7.11), or using a scaling
argument for the original equation (1.1).Wewill briefly outline both arguments, which
will serve as a reality check of the results. Using the BPHZ renormalisation (3.3)
on (7.11), one obtains the renormalised equation

∂t u − γ�ρ/2u = gu2 + Cγ,g,σ (ε, ρ, u) + σξε, (7.12)

where the new counterterm is given by

Cγ,g,σ (ε, ρ, u) = Cγ,g,σ
0 (ε, ρ) + Cγ,g,σ

1 (ε, ρ)u

with

Cγ,g,σ
0 (ε, ρ) =

∑
τ full

cγ,σ
ε (τ )gninner(τ )2n̄(τ ) ,
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Cγ,g,σ
1 (ε, ρ) =

∑
τ almost full

cγ,σ
ε (τ )gninner(τ )2n̄(τ ) ,

and n̄(τ ) = ninner(τ )− nsym(τ ). The new renormalisation constant cγ,σ
ε associated to

a tree τ is given by

cγ,σ
ε (τ ) = σ nleaves(τ )cγ

ε (τ ),

where nleaves(τ ) is the number of leaves of τ . Here in the notation cγ
ε (τ ), we stress that

the value of the renormalisation constant depends on γ via the scaled Green function
K (γ )

ρ = (∂t − γ�ρ/2)−1 of the fractional Laplacian that now appears on every edge
of the tree τ . One key property that we use in the sequel is

K (γ )
ρ (t, x) = Kρ(γ t, x).

Indeed, since f (t, x) = (Kρ ∗h)(t, x) satisfies the equation ∂t f −�ρ/2 f = h, setting
h̄(t, x) = γ h(γ t, x) it is easy to check that

f̄ (t, x) = f (γ t, x) =
∫

R

∫
Rd

Kρ(γ (t − s), x − y)h̄(s, y) dy ds

satisfies ∂t f̄ −γ�ρ/2 f̄ = h̄. Then, performing a linear change of variable for all time
integrals in the definition (4.12) of E(�), we get

cγ
ε (τ ) = 1

γ ντ−1 cε(τ )

where ντ is the number of nodes of the Feynman diagram �(τ, P) associated with τ .

• If τ is a full tree with p leaves and q = 2p − 2 edges, then we have

ντ = q + 1− p

2
= 3

2
p − 1, ninner(τ ) = p − 1.

Therefore, we obtain

Cγ,g,σ
0 (ε, ρ) =

∑
p

g p−1σ p

γ
3
2 p−2

∑
τ full with p leaves

cε(τ )2n̄(τ ). (7.13)

• If τ is an almost full tree with p leaves and q = 2p − 1 edges, then we have

ντ = 3

2
p, ninner(τ ) = p,

yielding

Cγ,g,σ
1 (ε, ρ) =

∑
p

g pσ p

γ
3
2 p−1

∑
τ almost full with p leaves

cε(τ )2n̄(τ ). (7.14)
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The second argument allowing to obtain (7.13) and (7.14) is based on scaling. If u
satisfies the renormalised equation

∂t u − �ρ/2u = u2 + C(ε, ρ, u) + ξε,

then for any λ > 0 and α, β ∈ R, ū(t, x) = λαu(λβ t, λx) solves the equation

∂t ū − λβ−ρ�ρ/2ū = λβ−α ū2 + λα+βC(ε, ρ, λ−α ū) + λα+βξε
λβ,λ

, (7.15)

where

ξε
λβ,λ

(t, x) = ξε(λβ t, λx)

= 1

ερ+d

∫
Rd+1




(
λβ t − t ′

ερ
,
λx − x ′

ε

)
ξ(dt ′, dx ′)

= 1

ε̄ρ+d

∫
Rd+1

λβ−ρ


(
λβ−ρ(t − t ′′)

ε̄ρ
,
x − x ′′

ε̄

)
ξ(λβ dt ′′, λ dx ′′) .

In the last line, we have set ε = λε̄, and made the change of variables t ′ = λβ t ′′,
x ′ = λx ′′. By the scaling property of space-time white noise, this is equal in law to

λ−
β
2− d

2

ε̄ρ+d

∫
Rd+1

λβ−ρ


(
λβ−ρ(t − t ′′)

ε̄ρ
,
x − x ′′

ε̄

)
ξ(dt ′′, dx ′′) = λ−

β
2− d

2 ξ̃ ε̄(t, x),

where ξ̃ ε̄ = 
̃ε̄ ∗ ξ is defined like ξε, but using 
̃(t, x) = λβ−ρ
(λβ−ρ t, x) as new
mollifier. Thus (7.15) is indeed of the form (7.12) with parameters

γ = λβ−ρ, g = λβ−α, σ = λα+ β
2− d

2 . (7.16)

Using the expression (3.3) of C(ε, ρ, u), we find

λα+βC(λε̄, ρ, λ−α ū) = λα+β
∑
τ full

cλε̄(τ )2n̄(τ ) + λβ
∑

τ almost full

cλε̄(τ )2n̄(τ )u

If deg(τ ) < 0, then

cε(τ ) ∼ εdeg(τ ), cλε̄(τ ) ∼ ε̄deg(τ )λdeg(τ ),

which implies that cλε̄ = λdeg(τ )cε̄(τ ) (note that since log(λε̄) = log λ + log ε̄,
logarithmic divergences do not change the leading order of cε(τ )). In the case of τ

being a full tree with p = 2k + 2 leaves, by (7.1) we have

deg(τ ) = (3k + 1)ρ − (k + 1)d = 3

2
p(ρ − ρc) − 2ρ
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where we have used the fact that ρc = d
3 . For almost full trees, we obtain

deg(τ ) = (3k + 2)ρ − (k + 1)d = 3

2
p(ρ − ρc) − ρ.

It follows that (7.15) becomes

∂t ū − γ�ρ/2ū = gū2 + C̄0(ε̄, ρ) + C̄1(ε̄, ρ)ū + σξ ε̄

with

C̄0(ε̄, ρ) = λα+β
∑
p

λ
3
2 p(ρ−ρc)−2ρ

∑
τ full with p leaves

cε̄(τ )2n̄(τ ) ,

C̄1(ε̄, ρ) = λβ
∑
p

λ
3
2 p(ρ−ρc)−ρ

∑
τalmost full with p leaves

cε̄(τ )2n̄(τ ) .

By (7.16), these expressions for the counterterms are indeed equivalent to (7.13)
and (7.14).

It remains to prove the relations (2.10) and (2.11). For full binary trees, setting as
before p = 2k + 2, we obtain from (7.13) that

Cγ,g,σ
0 (ε, ρ) =

$kmax%−1∑
k=0

g2k+1σ 2k+2

γ 3k+1 f (k) = gσ 2

γ

$kmax%−1∑
k=0

δk f (k),

where f (k) is as on the right-hand side of (7.6) and δ = g2σ 2γ−3. We can now
proceed as in the proof of Proposition 7.4, replacing F(k) defined in (7.8) by F̂(k) =
F(k)+ 1

3k log δ, and H in (7.9) by Ĥ = H + 1
3 log δ. Note that F̂ is still convex.

For ε > εc, the sum is dominated by k = kmax, and yields the same bound as for
C1,1,1
0 (ε, ρ) = C0(ε, ρ), up to an additional factor

gσ 2

γ
δkmax =

(
g2σ 2

γ 3

)kmax gσ 2

γ
.

For ε < εc, the sum is dominated by the term k = 0, which has the same scaling
behaviour as C0(ε, ρ), up to an additional factor gσ 2γ−1. An analogous argument
applies to the expression (2.11) for Cγ,g,σ

1 (ε, ρ).
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