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Abstract
This work is devoted to the study of non-Newtonian fluids of grade three on
two-dimensional and three-dimensional bounded domains, driven by a nonlinear mul-
tiplicative Wiener noise. More precisely, we establish the existence and uniqueness of
the local (in time) solution, which corresponds to an addapted stochastic process with
sample paths defined up to a certain positive stopping time, with values in the Sobolev
space H3. Our approach combines a cut-off approximation scheme, a stochastic com-
pactness arguments and a general version of Yamada–Watanabe theorem. This leads
to the existence of a local strong pathwise solution.

Keywords Third grade fluids · Navier-slip boundary conditions · Stochastic PDE ·
Well-posedness

Mathematics Subject Classification 35R60 · 60H15 · 76A05 · 76D03

1 Introduction

In this work, we are concerned with the existence and uniqueness of strong solution
for a stochastic incompressible third grade fluid model in a two-dimensional (2D) or
three-dimensional (3D) bounded domain with smooth boundary. More precisely, the
evolution equation is given by
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dv +
(
−ν�y + (y · ∇)v +

∑
j

v j∇ y j − (α1 + α2)div(A
2) − βdiv(|A|2A)

)
dt

= (−∇P +U )dt + G(·, y)dW, (1.1)

where v := v(y) = y − α1�y, A := A(y) = ∇ y + ∇ yT , and W is a cylindrical
Wiener process with values in a Hilbert space H0. The constant ν represents the fluid
viscosity, α1, α2, β are the material moduli, and P denotes the pressure.

Recently, special attention has been devoted to the study of non-Newtonian vis-
coelastic fluids of differential type, which include natural biological fluids, geological
flows and others, and arise in polymer processing, coating, colloidal suspensions and
emulsions, ink-jet prints, etc. (see e.g. [18, 25]). It is worth to mention that several
simulations studies have been performed by using the third grade fluidmodels, in order
to understand and explain the characteristics of several nanofluids (see [24, 26] and
references therein). We recall that nanofluids are engineered colloidal suspensions of
nanoparticles (typically made of metals, oxides, carbides, or carbon nanotubes) in a
base fluid as water, ethylene glycol and oil, which exhibit enhanced thermal conduc-
tivity compared to the base fluid, which turns out to be of great potential to be used
in technology, including heat transfer, microelectronics, fuel cells, pharmaceutical
processes, hybrid-powered engines, engine cooling/vehicle thermal management, etc.
Therefore the mathematical analysis of third grade fluids equations should be relevant
to predict and control the behavior of these fluids, in order to design optimal flows
that can be successfully used and applied in the industry.

In this work, we study the stochastic evolutionary equation (1.1) supplemented with
a homogeneous Navier-slip boundary condition, which allows the slippage of the fluid
against the boundary wall (see Sect. 2 for more details). Besides the most studies on
fluid dynamic equations consider theDirichlet boundary condition,which assumes that
the particles adjacent to the boundary surface have the same velocity as the boundary,
there are physical reasons to consider slip boundary conditions. Namely, practical
studies (see e.g. [25]) show that viscoelastic fluids slip against the boundary, and on
the other hand, mathematical studies turn out that the Navier boundary conditions
are compatible with the vanishing viscosity transition (see [9, 10, 21]). It is worth
mentioning that the study of the small viscosity/large Reynolds number regime is
crucial to understand the turbulent flows. The third grade fluid equation with the
Dirichlet boundary condition was studied in [2, 28], where the authors proved the
existence and the uniqueness of local solutions for initial conditions in H3 or global
in time solution for small initial data when compared with the viscosity (see also
[3]). Later on [7, 8], the authors considered the equation with a homogeneous Navier-
slip boundary condition and established the well-posedness of a global solution for
initial condition in H2, without any restriction on the size of the data. Concerning the
stochastic third grade fluid equations, recently the authors in [1] studied the existence
of weak probabilistic (martingale) solutions with H2-initial data in 3D and the authors
in [13] showed the existence of strong probabilistic (pathwise) solutionwith H2-initial
data in 2D. Nevertheless, to tackle relevant problems it is necessary to improve the
H2-regularity of the solutions with respect to the space variable.
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This article is devoted to show the existence and uniqueness of a local strong
solution, both from the PDEs and probabilistic point of view. Namely, the local strong
solutionwill be defined on the original probability space and it will satisfy the equation
in a pointwise sense (not in distributional sense) with respect to the space variable, up
to a certain stopping time. An important motivation to consider strong solutions is the
study of the stochastic optimal control problem constrained by the equation (1.1), in
2D as well as in 3D, where H3-regularity is a key ingredient to establish the first-order
necessary optimality condition (see e.g. [12, 31] for the 2D case and [32] for the 3D
case). However, the construction of H3-solutions, in the presence of a stochastic noise
is not an easy task even in the 2D case. In addition, the presence of strongly nonlinear
terms in the equation makes the analysis much more challenging when dealing with
3D physical domains. We should say that the method in [13] based on deterministic
compactness results conjugated with an uniqueness type argument are not expected
to work in 3D (where the global uniqueness is an open problem for the deterministic
equation). Here, we establish the existence and the uniqueness of a local H3-solution
in 2D and 3D by following a different strategy, which is based on the introduction
of an appropriate cut-off system. To the best of the author’s knowledge, the problem
of the existence and uniqueness of H3-solutions for the stochastic third grade fluid
equation is being addressed here for the first time.

The article is organized as follows: in Sect. 2,we state the third gradefluidmodel and
define the appropriate functional spaces and stochastic setting. Section3 is devoted
to the presentation of some definition and the main result of this paper. In Sect. 4,
we introduce an approximated system, by using an appropriate cut-off function and
we prove the existence of Martingale (probabilistic weak) solution to the approxi-
mated problem. The analysis combines a stochastic compactness arguments based on
Prokhorov and Skorkhod theorems. Section5 concerns the introduction of a “modified
problem”, where the uniqueness holds globally in time and we are able to construct a
probabilistic strong solution by using [22, Thm. 3.14]. Finally, Sect. 6 combines the
previous results to prove the main result of this work.

2 Content of the study

Let (�,F , P) be a complete probability space and W be a cylindrical Wiener pro-
cess defined on (�,F , P) endowed with the right-continuous filtration (Ft )t∈[0,T ]
generated by {W(t)}t∈[0,T ]. We assume that F0 contains all the P-null subset of �

(see Sect. 2.2 for the assumptions on the noise). Our aim is to study the well posed-
ness of the third grade fluids equation on a bounded and simply connected domain
D ⊂ R

d , d = 2, 3,with regular (smooth) boundary ∂D, supplementedwith aNavier-
slip boundary condition, which reads
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(v(y)) = ( − ∇P + ν�y − (y · ∇)v(y)

−
∑
j

v j (y)∇ y j + (α1 + α2)div(A
2)

+βdiv(|A|2A) +U
)
dt + G(·, y)dW in D × (0, T ),

div(y) = 0 in D × (0, T ),

y · η = 0, (η · D(y))
∣∣
tan = 0 on ∂D × (0, T ),

y(x, 0) = y0(x) in D,

(2.1)

where y := (y1, . . . , yd) is the velocity of the fluid, P is the pressure and U corre-
sponds to the external force. The operators v, A,D are defined by v(y) = y−α1�y :=
(y1 − α1�y1, . . . , yd − α1�yd) and A := A(y) = ∇ y + ∇ yT = 2D(y). The vector
η denotes the outward normal to the boundary ∂D and u|tan represents the tangent
component of a vector u defined on the boundary ∂D.

In addition, ν denotes the viscosity of the fluid and α1, α2, β are material moduli
satisfying

ν ≥ 0, α1 > 0, |α1 + α2| ≤ √
24νβ, β ≥ 0. (2.2)

It is worth noting that (2.2) allows the motion of the fluid to be compatible with
thermodynamic laws (see e.g. [18]). We consider the usual notations for the scalar
product A·B := tr(ABT ) between twomatrices A, B ∈ Md×d , and set |A|2 := A·A.

In addition, we recall that

A2 := AA =
( d∑
k=1

aikak j

)

1≤i, j≤d
for any A = (ai j )1≤i, j≤d ∈ Md×d .

The divergence of a matrix A ∈ Md×d is given by

(div(A)i )i=1,...,d =
⎛
⎝

d∑
j=1

∂ j ai j

⎞
⎠

i=1,...,d

.

The diffusion coefficient G will be specified in Sect. 2.2.

2.1 The functional setting

We denote by D(u) = (u,∇u) the vector of R
d2+d whose components are the

components of u and the first-order derivatives of these components. Similarly,
Dk(u) = (u,∇u, . . . ,∇ku) the vector of Rdk+1+···+d2+d whose components are the
components of u together with the derivatives of order up to k of these components.

Q = D × [0, T ], �T = � × [0, T ]. We will denote by C, K generic constants,
which may varies from line to line.

Let m ∈ N
∗ and 1 ≤ p < ∞, we denote by Wm,p(D) the standard Sobolev space

of functions whose weak derivative up to orderm belong to the Lebesgue space L p(D)
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and set Hm(D) = Wm,2(D) and H0(D) = L2(D). Following [27, Thm. 1.20& Thm.
1.21 ], we have the continuous embeddings:

if p < d, W 1,p(D) ↪→ La(D), ∀a ∈ [1, p∗] and it is compact if a ∈ [1, p∗),
if p = d, W 1,p(D) ↪→ La(D), ∀a < +∞ is compact, (2.3)

if p > d, W 1,p(D) ↪→ C(D) is compact,

where p∗ = pd
d−p if p < d, denotes the Sobolev embedding exponent. Proceeding

by induction, one gets the Sobolev embedding for Wm,p(D) instead of W 1,p(D), we
refer to [16, Sections 5.6 & 5.7] for more details. For a Banach space X , we define

(X)k := {( f1, . . . , fk) : fl ∈ X , l = 1, . . . , k} for positive integer k.

For the sake of simplicity, we do not distinguish between scalar, vector or matrix-
valued notations when it is clear from the context. In particular, ‖ · ‖X should be
understood as follows

• ‖ f ‖2X = ‖ f1‖2X + · · · + ‖ fd‖2X for any f = ( f1, . . . , fd) ∈ (X)d .

• ‖ f ‖2X =
d∑

i, j=1

‖ fi j‖2X for any f ∈ Md×d(X).

We recall that

(u, v) =
d∑

i=1

∫

D
uivi dx, ∀u, v ∈ (L2(D))d ,

(A, B) =
∫

D
A · Bdx; ∀A, B ∈ Md×d(L

2(D)).

The unknowns in the system (2.1) are the velocity random field and the scalar
pressure random field:

y : � × D × [0, T ] → R
d , d = 2, 3

(ω, x, t) �→ (y1(ω, x, t), . . . , yd(ω, x, t));
p : � × D × [0, T ] → R

(ω, x, t) �→ p(ω, x, t).

Now, let us introduce the following functional Hilbert spaces:

H = {y ∈ (L2(D))d | div(y) = 0 in D and y · η = 0 on ∂D},
V = {y ∈ (H1(D))d | div(y) = 0 in D and y · η = 0 on ∂D},
W = {y ∈ V ∩ (H2(D))d | (η · D(y))

∣∣
tan = 0 on ∂D}, W̃ = (H3(D))d ∩ W ,

(2.4)
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and recall the Leray-Helmholtz projector P : (L2(D))d → H , which is a linear
bounded operator characterized by the following L2-orthogonal decomposition v =
Pv + ∇ϕ, ϕ ∈ H1(D).

We consider on H the L2-inner product (·, ·) and the associated norm ‖ · ‖2. The
spaces V , W and W̃ will be endowed with the following inner products, which are
related with the structure of the equation

(u, z)V := (v(u), z) = (u, z) + 2α1(D(u),D(z)),

(u, z)W := (u, z)V + (Pv(u),Pv(z)),

(u, z)W̃ := (u, z)V + (curlv(u), curlv(z)),

and denote by ‖ · ‖V , ‖ · ‖W and ‖ · ‖W̃ the corresponding norms. We recall that the
norms ‖ · ‖V and ‖ · ‖H1 are equivalent due to the Korn inequality. In addition, the
norms ‖ · ‖W and ‖ · ‖W̃ are equivalent to the classical Sobolev norms ‖ · ‖H2 and
‖ · ‖H3 , respectively, thanks to Navier boundary conditions (2.1)(3) and divergence
free property, see [8, Corollary 6 ].

The usual norms on the classical Lebesgue and Sobolev spaces L p(D) and
Wm,p(D) will be denoted by denote ‖ · ‖p and ‖ · ‖Wm,p , respectively. In addition,
given a Banach space X , we will denote by X ′ its dual.

Cγ ([0, T ], X) stands for the space of γ -Hölder-continuous functions with values
in X , where γ ∈]0, 1[.

For T > 0, 0 < s < 1 and 1 ≤ p < ∞, let us recall the definition of the fractional
Sobolev space

Ws,p(0, T ; X) := { f ∈ L p(0, T ; X) | ‖ f ‖Ws,p(0,T ;X) < ∞},

where ‖ f ‖Ws,p(0,T ;X) =
(
‖ f ‖p

L p(0,T ;X)
+

∫ T

0

∫ T

0

‖ f (r) − f (t)‖p
X

|r − t |sp+1 drdt
) 1

p
.

Since L∞(0, T ; W̃ ) is not separable, it’s convenient to introduce the following
space:

L p
w−∗(�; L∞(0, T ; W̃ ))

= {u : � → L∞(0, T ; W̃ ) is weakly-* measurable and E‖u‖p
L∞(0,T ;W̃ )

< ∞},

where weakly-* measurable stands for the measurability when L∞(0, T ; W̃ ) is
endowed with the σ -algebra generated by the Borel sets of weak-* topology, see
e.g. [34, Rmq. 2.1].

It will be convenient to introduce the following trilinear form

b(y, z, φ) = ((y · ∇)z, φ) =
∫

D
((y · ∇)z) · φ dx, ∀y, z, φ ∈ (H1(D))d ,

which is anti-symmetric in the last two variables, namely

b(y, z, φ) = −b(y, φ, z), ∀y ∈ V , ∀z, φ ∈ (H1(D))d .

123



Stochastics and Partial Differential Equations: Analysis and Computations (2024) 12:1699–1744 1705

The results on the following modified Stokes problem will very usefull to our
analysis

{
h − α1�h + ∇ p = f , div(h) = 0 in D,

h · η = 0, (η · D(h))
∣∣
tan = 0 on ∂D.

(2.5)

The solution h will be denoted by h = (I − α1P�)−1 f . We recall the existence
and the uniqueness results, as well as the regularity of the solution (h, p). Additional
information can be found in [6, Theorem 3] and [11, Lemma 3.2] for the 3D and 2D
cases, respectively.

Theorem 1 Suppose that f ∈ (Hm(D))d , m = 0, 1. Then there exists a unique (up to
a constant for p) solution (h, p) ∈ (Hm+2(D))d × Hm+1(D) of the Stokes problem
(2.5) such that

‖h‖Hm+2 + ‖p‖Hm+1 ≤ C(m)‖ f ‖Hm , where C(m) is a positive constant.

Furthermore, the following properties hold:

• (h, p) is the solution of (2.5) in the variational sense, namely

(v(h), z) = (h, z)V := (h, z) + 2α1(D(h),D(z)) = ( f , z); ∀z ∈ V . (2.6)

• The operator (I − α1P�)−1 : (Hm(D))d → (Hm+2(D))d is linear and continu-
ous, thanks to Theorem 1. In particular, we have (I −α1P�)−1 : (L2(D))d → W
is linear and continuous.

Let us notice that the relation (2.6) holds for z = ei , where (ei )i∈N is the orthonormal
basis of V satisfying (4.3). We refer to the discussion after [6, Theorem 3] for more
details about the variational formulation (2.6).

Despite the specificities related to 2D and 3D frameworks, we aim to present a
uniform analysis. In order to clarify the reading, throughout the text, wewill emphasize
the relevant differences in 2D comparing to 3D (see Remarks 4, 5 and 6). Before
presenting the stochastic setting and the main results, let us mention some relevant
differences between the 2D and 3D cases:

• In 2D, we have the explicit relation between the normal and tangent vectors to the
boundary, η = (η1, η2) and τ = (−η2, η1), which is very useful for managing
boundary terms arising from integration by parts. In 3D, we do not have a sim-
ilar explicit relation, then dealing with the boundary terms in 3D is much more
complicated, see e.g. [32, Section 10].

• In 2D, the curl operator is the scalar ∂1u2 − ∂2u1 but in 3D it is a vector field
(see e.g. [6, Section 2]), which is more delicate to handle in order to get higher
regularity estimates, more precisely H3-regularity in our setting. In particular, the
management of the non linear terms becomes more delicate after applying the curl
operator to the equation. This is the main raison to use the cut-off (4.1) to construct
H3-solution, see also Remark 4.

• The Sobolev embedding inequalities, see (2.3).
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2.2 The stochastic setting

Let (�,F , P) be a complete probability space endowed with a right-continuous fil-
tration (Ft )t≥0.

Let us consider a cylindrical Wiener process W defined on (�,F , P), which can
be written as

W(t) =
∑
k≥1

ekβk(t),

where (βk)k≥1 is a sequence of mutually independent real valued standard Wiener
processes and (ek)k≥1 is a complete orthonormal system in a separable Hilbert space
H. Notice thatW(t) = ∑

k≥1 ekβk(t) does not convergence onH. In fact, the sample
paths ofW take values in a larger Hilbert space H0 such that the embeddingH ↪→ H0
is an Hilbert-Schmidt operator. For example, the space H0 can be defined as follows

H0 =
{
u =

∑
k≥1

γkek |
∑
k≥1

γ 2
k

k2
< ∞

}
,

endowed with the norm

‖u‖2H0
=

∑
k≥1

γ 2
k

k2
, u =

∑
k≥1

γkek.

Hence, P-a.s. the trajectories ofW belong to the spaceC([0, T ], H0) (cf. [14, Chapter
4]).

In order to define the stochastic integral in the infinite dimensional framework, let
us consider another Hilbert space E and denote by L2(H, E) the space of Hilbert-
Schmidt operators from H to E , which is the subspace of the linear operators defined
as

L2(H, E) :=
{
G : H → E | ‖G‖2L2(H,E) :=

∑
k≥1

‖Gek‖2E < ∞
}
.

Given a E−valued predictable1 process G ∈ L2(�; L2(0, T ; L2(H, E))), and taking
σk = Gek, we may define the Itô stochastic integral by

∫ t

0
GdW =

∑
k≥1

∫ t

0
σkdβk, ∀t ∈ [0, T ].

1 PT := σ({]s, t]× Fs |0 ≤ s < t ≤ T , Fs ∈ Fs }∪{{0}× F0|F0 ∈ F0}) (see [23, p. 33]). Then, a process
defined on �T with values in a given space X is predictable if it is PT -measurable.
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Moreover, the following Burkholder–Davis–Gundy inequality holds

E

[
sup

s∈[0,T ]

∥∥∥∥
∑
k≥1

∫ s

0
σkdβk

∥∥∥∥
r

E

]
= E

[
sup

s∈[0,T ]

∥∥∥∥
∫ s

0
GdW

∥∥∥∥
r

E

]

≤ CrE

[∫ T

0
‖G‖2L2(H,E)dt

]r/2

= CE

[∑
k≥1

∫ T

0
‖σk‖2Edt

]r/2
, ∀r ≥ 1.

Let us precise the assumptions on the noise.

2.2.1 Multiplicative noise

Let us consider a family of Carathéodory functions

σk : (t, λ) ∈ [0, T ] × R
d �→ R

d , k ∈ N,

satisfying σk(t, 0) = 0,2 and there exists L > 0 such that for a.e. t ∈ (0, T ), and any
λ,μ ∈ R

d ,

∑
k≥1

∣∣σk(t, λ) − σk(t, μ)
∣∣2 ≤ L|λ − μ|2, (2.7)

|∇σk(·, ·)| ≤ ak,
∑
k≥1

a2k < ∞. (2.8)

We notice that, in particular, (2.7) gives G
2(t, λ) :=

∑
k≥1

σ 2
k (t, λ) ≤ L |λ|2.

For each t ∈ [0, T ] and y ∈ V , we consider the linear mapping G(t, y) : H →
(H1(D))d defined by

G(t, y)ek = {x �→ σk
(
t, y(x)

)}, k ≥ 1.

By the above assumptions, G(t, y) is an Hilbert-Schmidt operator for any t ∈ [0, T ],
y ∈ V , and

G : [0, T ] × V → L2(H, (H1(D))d).

Remark 1 Notice thatG : [0, T ]×V → L2(H, (L2(D))d) is a Carathéodory function,
L−Lipschitz-continuous in y, uniformly in time. Hence, it is B([0, T ]) ⊗ B(V )-
measurable and the stochastic process G(·, y(·)) is also predictable, for any V -valued
predictable process y(·). Since the embedding H1(D) ↪→ L2(D) is continuous,

2 Note that the same can be reproduced with:
∑

k≥1

σ 2
k (t, 0) < ∞.
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G(·, y(·)) is equally a predictable process with values in L2(H, (L2(D))d) or in
L2(H, (H1(D))d), thanks to Kuratowski’s theorem [33, Th. 1.1 p. 5].

FollowingRemark 1, if y is predictable, (H1(D))d (resp. (L2(D))d )-valued process
such that

y ∈ L2(�×]0, T [, (H1(D))d
)

(resp. y ∈ L2(�×]0, T [, (L2(D))d
)
),

and G satisfies the above assumptions, the stochastic integral

∫ t

0
G(·, y)dW =

∑
k≥1

∫ t

0
σk(·, y)dβk

is a well-defined (Ft )t≥0-martingale with values in (H1(D))d (resp. (L2(D))d ).

Now, let us recall the following result by F. Flandoli and D. Gatarek [17, Lemma
2.1] about the Sobolev regularity for the stochastic integral.

Lemma 2 Let p ≥ 2, η ∈ [0, 1
2
[ be given. Let G = {σk}k≥1 satisfy, for some m ∈ R,

E

[ ∫ T

0

(∑
k≥1

‖σk‖22,m
)p/2

dt
]

< ∞ (‖ · ‖2,m denotes the norm on Wm,2(D)
)
.

Then

t �→
∫ t

0
GdW ∈ L p(�;W η,p(0, T ;Wm,2(D)

))
,

and there exists a constant c = c(η, p) such that

E

[∥∥∥∥
∫ t

0
GdW

∥∥∥∥
p

W η,p
(
0,T ;Wm,2(D)

)
]

≤ c(η, p)E

[ ∫ T

0

(∑
k≥1

‖σk‖22,m
)p/2

dt

]
.

In the sequel, given a random variable ξ with values in a Polish space E , we will
denote by L(ξ) its law

L(ξ)(�) = P(ξ ∈ �) for any Borel subset � of E .

.
Let us recall the following version of the Skorohod representation theorem, which

will be used later.

Theorem 3 [5, Theorem C.1] Let (�,F , P) be a probability space and U1,U2 be
two separable metric spaces. Let ξn : � → U1 × U2, n ∈ N, be a family of random
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variables, such that the sequence of the laws (L(ξn))n∈N is weakly convergent on
U1 ×U2.
For i = 1, 2 let πi : U1 ×U2 be the projection onto Ui , i.e.

U1 ×U2 � ξ = (ξ1, ξ2) �→ πi (ξ) = ξ i ∈ Ui .

Finally let us assume that there exists a random variable ρ : � → U1 such that

L(π1 ◦ ξn) = L(ρ), ∀n ∈ N.

Then, there exists a probability space (�̄, F̄ , P̄), a family of U1 ×U2-valued random
variables (ξ̄n)n∈N defined on (�̄, F̄ , P̄) and a random variable ξ∞ : �̄ → U1 × U2
such that

1. L(ξ̄n) = L(ξn), ∀n ∈ N;
2. ξ̄n → ξ∞ in U1 ×U2 P̄-a.s.;
3. π1 ◦ ξ̄n(ω̄) = π1 ◦ ξ∞(ω̄) for all ω̄ ∈ �̄.

3 Themain results

First, let us precise the assumptions on the initial data y0 and the force U .

H0 : we consider y0 : � → W̃ and U : � × [0, T ] → (H1(D))d such that

• y0 is F0−measurable and U is predictable.
• y0 and U satisfy the following regularity assumption

U ∈ L p(� × (0, T ), (H1(D))d), y0 ∈ L p(�, W̃ ), (3.1)

where p > 4.

Now, we introduce the notion of the local solution.

Definition 1 Let (�,F , (Ft )t≥0, P) be a stochastic basis andW be a (Ft )-cylindrical
Wiener process. We say that a pair (y, τ ) is a local strong (pathwise) solution to (2.1)
if and only if:

• τ is an a.s. strictly positive (Ft )-stopping time.
• The velocity y is a W -valued predictable process satisfying

y(· ∧ τ) ∈ L p(�; C([0, T ], (W 2,4(D))d)) ∩ L p
w−∗(�; L∞(0, T ; W̃ )).

• P-a.s. for all t ∈ [0, T ]

(y(t ∧ τ), φ)V = (y0, φ)V +
∫ t∧τ

0

(
ν�y − (y · ∇)v(y)

−
∑
j

v(y) j∇(y) j + (α1 + α2)div[A(y)2]
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+ βdiv[|A(y)|2A(y)] +U , φ
)
dt

+
∫ t∧τ

0
(G(·, y), φ)dW for all φ ∈ V .

Taking into account the meaning of a local solution, the pathwise uniqueness will
be naturally undestood in the following local sense.

Definition 2 (i) We say that local pathwise uniqueness holds if for any given pair
(y1, τ 1), (y2, τ 2) of local strong solutions of (2.1) with the same data, we have
y1(t) = y2(t) P-a.s. More precisely

P
(
y1(t) = y2(t); ∀t ∈ [0, τ 1 ∧ τ 2]) = 1.

(ii) We say that ((yM )M∈N, (τM )M∈N, t) is a maximal strong local solution to (2.1) if
and only if for each M ∈ N, the pair (yM , τM ) is a local strong solution, (τM ) is
an increasing sequence of stopping times such that

t := lim
M→∞ τM > 0, P-a.s.

and P-a.s.

sup
t∈[0,τM ]

‖y(t)‖W 2,4 ≥ M on {t < T }, ∀M ∈ N. (3.2)

Remark 2 Notice that the expression (3.2) means that [0, t] is the maximal interval
where the trajectories with H3-regularity are defined, since P-a.s.

sup
t∈[0,t]

‖y(t)‖H3 = ∞ on {t < T }.

We are in position to state our main result.

Theorem 4 There exists a unique maximal strong (pathwise) local solution to (2.1).

Remark 3 Following the Definition 1, we ask (2.1) to be satisfied in the strong sense.
In other words, the solution is strong from the probabilistic and PDEs points of view,
since it is satisfied on a given stochastic basis (�,F , (Ft )t≥0, P) and pointwise with
respect to the space variables (not in distributions sense), thanks to the H3−regularity
of the solution.

Before entering in the proof of Theorem 4, let us describe the different steps to
construct local strong solution. Firstly, we introduce an appropriate cut-off system
(Sect. 4) with a strong non-linear terms and the difficulty consists in the use of stochas-
tic compactness arguments to pass to the limit in the associated finite dimensional
approximated problem constructed via Galerkin method. Secondly, the lack of global-
in-time uniqueness for the cut-off system motivates the introduction of a modified
problem. In this last modified problem, we can see the local solution of the cut-off

123



Stochastics and Partial Differential Equations: Analysis and Computations (2024) 12:1699–1744 1711

system as a global solution and the uniquness holds, globally in time. Then, we will
use the result of Kurtz [22, Theorem 3.14] to get the existence and uniqueness of
probabilistically strong solution of the modified problem. Finally, we define the local
solution of (2.1) by using an appropriate sequence of stopping time (Sect. 6).

4 Approximation (cut-off system)

This section is devoted to study an appropriate cut-off system. Using the Galerkin
method, the cut-off system is approximated by a sequence of finite dimensional prob-
lems. Applying the Banach fixed point theorem, we prove the existence and the
uniqueness of the solution for each finite dimensional problem. Then, a compact-
ness argument based on the Prokhorov and Skorkhod’s theorems will guarantee the
existence of a martingale (probabilistic weak) solution defined in some probability
space for the cut-off system.

Let M > 0 and consider a family of smooth cut-off functions θM : [0,∞[→ [0, 1]
satisfying

θM (x) =
{
1, 0 ≤ x ≤ M,

0, 2M ≤ x .
(4.1)

We recall that H3(D) ↪→ W 2,6(D) and H3(D) ↪→
Compact

W 2,q(D) if 1 ≤ q <

6 (see [27, Thm. 1.20 & Thm. 1.21]). In fact, H3(D) ↪→ W 2,a(D), ∀a <

+∞ and compactly in the 2D case, see (2.3). Let us denote by θM the functions
defined on W 2,q(D) as following

θM (u) = θM (‖u‖W 2,4), ∀u ∈ W 2,q(D), 4 ≤ q < 6.

In order to construct a local pathwise solution to (2.1), the first step is to consider the
following approximated problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(v(y)) = { − ∇ p + ν�y − θM (y)(y · ∇)v

−∑
j θM (y)v j∇ y j + (α1 + α2)θM (y)div(A2)

+βθM (y)div(|A|2A) +U
}
dt + θM (y)G(·, y)dW in D × (0, T ),

div(y) = 0 in D × (0, T ),

y · η = 0, [η · D(y)] · τ = 0 on ∂D × (0, T ),

y(x, 0) = y0(x) in D.

(4.2)

In the first stage, we construct a martingale solution to (4.2), according to the next
definition.

Definition 4.1 We say that (4.2) has a martingale solution, if and only if there exist
a probability space (�̄, F̄ , P̄), a filtration (F̄t ), a cylindrical Wiener process W̄ ,
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(Ū , ȳ(0)) ∈ L p(�̄ × (0, T ), (H1(D))d) × L p(�̄, W̃ ) adapted with respect to (F̄t )

and a predictable process ȳ : �̄ × [0, T ] → W with a.e. paths

ȳ(ω, ·) ∈ C([0, T ], (W 2,4(D))d) ∩ L∞(0, T ; W̃ ),

such that ȳ ∈ L p
w−∗(�̄; L∞(0, T ; W̃ )) and P-a.s. in �̄ for all t ∈ [0, T ], the following

equality holds

(ȳ(t), φ)V = (ȳ(0), φ)V +
∫ t

0

{(
ν�ȳ − θM (ȳ)(ȳ · ∇)v(ȳ)

−
∑
j

θM (ȳ)v(ȳ) j∇ ȳ j + (α1 + α2)θM (ȳ)div[A(ȳ)2], φ)

+ (
βθM (ȳ)div[|A(ȳ)|2A(ȳ)] + Ū , φ

)}
dt

+
∫ t

0
θM (ȳ)

(
G(·, ȳ), φ)

dW̄ for all φ ∈ V ,

and L(ȳ(0), Ū ) = L(y0,U ).

Now, we are able to present the following result.

Theorem 5 (Existence of a martingale solution) Assume that H0 holds with p > 4.
Then, there exists a (martingale) solution to (4.2) in the sense of Definition 4.1.

Proof See Sect. 4.6. ��

4.1 Approximation

Let {ei }i∈N ⊂ (H4(D))d ∩ W be an orthonormal basis in V (see e.g. [11]) satisfies

(v, ei )W̃ = λi (v, ei )V , ∀v ∈ W̃ , i ∈ N, (4.3)

where the sequence {λi } of the corresponding eigenvalues fulfils the properties: λi >

0,∀i ∈ N, and λi → ∞ as i ∈ ∞. Note that {̃ei = 1√
λi
ei } is an orthonormal basis

for W̃ . Let us consider

yn,0 =
n∑

i=1

(y0, ei )V ei =
n∑

i=1

(y0, ẽi )W̃ ẽi .
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Let Wn = span{e1, e2, . . . , en} and set yn =
n∑

i=1

ci (t)ei , then the approximation of

(4.2) reads

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d(vn, ei )

= (
ν�yn − θM (yn)(yn · ∇)vn −

∑
j

θM (yn)v
j
n∇ y jn + (α1 + α2)θM (yn)div(A

2
n)

+ βθM (yn)div(|An |2An) +U , ei
)
dt + (

θM (yn)G(·, yn), ei
)
dW,∀i = 1, . . . , n,

yn(0) = yn,0,

(4.4)

where vn = yn − α1�yn and An := A(yn) = ∇ yn + (∇ yn)T . Denote by U :=
(H4(D))d ∩ W and Pn , the projection operator from U ′ to Wn defined by Pn : U ′ →
Wn; u �→ Pnu = ∑n

i=1〈u, ei 〉U ′,Uei . In particular, the restriction of Pn to V ,
denoted by the same way, is the (·, ·)V -orthogonal projection from V to Wn and

given by Pn : V → Wn; u �→ Pnu =
n∑

i=1

(u, ei )V ei . Denote by P∗
n the adjoint of

Pn .
Notice that the restriction projection operator Pn is linear and continous on W̃ .

Moreover

‖Pn y0‖V = ‖yn(0)‖V ≤ ‖y0‖V and ‖Pn y0‖W̃ = ‖yn(0)‖W̃ ≤ ‖y0‖W̃ .

Thanks to Lebesgue convergence theorem, we have Pn y0 → y0 in Lq(�, W̃ ) ∩
Lq(�, V ); ∀q ∈ [1,∞[.

We will use “Banach fixed point theorem” to show the existence of solution to (4.4)
on the whole interval [0, T ]. For that, consider the following mapping

u �→ Su : Wn → Wn,

(Su, ei )V = (y0, ei )V + ν

∫ ·

0
(�u, ei )dt −

∫ ·

0
θM (u)

(
(u · ∇)v(u), ei

)
dt

−
∑
j

∫ ·

0
θM (u)

(
v(u) j∇u j , ei

)
dt

+ (α1 + α2)

∫ ·

0
θM (u)

(
div(A(u)2), ei

)
dt

+ β

∫ ·

0
θM (u)

(
div(|A(u)|2A(u)), ei

)
dt +

∫ ·

0
(U , ei )dt

+
∫ ·

0
θM (u)

(
G(·, u), ei

)
dW, i = 1, . . . , n. (4.5)

Lemma 6 There exists T ∗ > 0 such thatS is a contractiononX = L2(�; C([0, T ∗],Wn)).
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Proof Let us recall thatW 2,q(D) ↪→ W 1,∞(D)∩W 2,4(D), 4 ≤ q < 6, and all norms
inWn are equivalent, which we will use repeatedly in the following. Let u1, u2 ∈ Wn ,
then we have

(Su1 − Su2, ei )V = ν

∫ ·

0
(�(u1 − u2), ei )dt −

∫ ·

0

({θM (u1)(u1 · ∇)v(u1)

− θM (u2)(u2 · ∇)v(u2)}, ei
)
dt

−
∑
j

∫ ·

0

([θM (u1)v(u1)
j∇u j

1 − θM (u2)v(u2)
j∇u j

2], ei
)
dt

+ (α1 + α2)

∫ ·

0

(
θM (u1)div(A(u1)

2) − θM (u2)
(
div(A(u2)

2), ei
)
dt

+ β

∫ ·

0

(
θM (u1)div(|A(u1)|2A(u1)) − θM (u2)div(|A(u2)|2A(u2)), ei

)
dt

+
∫ ·

0

(
θM (u1)G(·, u1) − θM (u2)G(·, u2), ei

)
dW, i = 1, . . . , n.

Itô formula ensures that

(Su1 − Su2, ei )2V = 2ν
∫ ·
0

(Su1 − Su2, ei )V (�(u1 − u2), ei )dt

− 2
∫ ·
0

(Su1 − Su2, ei )V
({θM (u1)(u1 · ∇)v(u1)

− θM (u2)(u2 · ∇)v(u2)}, ei
)
dt

− 2
∑
j

∫ ·
0

(Su1 − Su2, ei )V
([θM (u1)v(u1)

j∇u j
1

− θM (u2)v(u2)
j∇u j

2], ei
)
dt

+ 2(α1 + α2)

∫ ·
0

(Su1 − Su2, ei )V
(
θM (u1)div(A(u1)

2)

− θM (u2)
(
div(A(u2)

2), ei
)
dt

+ 2β
∫ ·
0

(Su1 − Su2, ei )V
(
θM (u1)div(|A(u1)|2A(u1))

− θM (u2)div(|A(u2)|2A(u2)), ei
)
dt

+ 2
∫ ·
0

(Su1 − Su2, ei )V
(
θM (u1)G(·, u1) − θM (u2)G(·, u2), ei

)
dW

+
∑
k≥1

∫ ·
0

(θM (u1)σk(·, u1) − θM (u2)σk(·, u2), ei )2dt, i = 1, . . . , n.

Summing up from i = 1 to n, we deduce

‖Su1 − Su2‖2Wn

:= ‖Su1 − Su2‖2V
= 2ν

∫ ·

0
(Pn�(u1 − u2),Su1 − Su2)dt
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− 2
∫ ·

0

(
Pn{θM (u1)(u1 · ∇)v(u1) − θM (u2)(u2 · ∇)v(u2)},Su1 − Su2

)
dt

− 2
∑
j

∫ ·

0

(
Pn[θM (u1)v(u1)

j∇u j
1 − θM (u2)v(u2)

j∇u j
2],Su1 − Su2

)
dt

+ 2(α1 + α2)

∫ ·

0

(
Pn(θM (u1)div(A(u1)

2) − θM (u2)div(A(u2)
2)),Su1 − Su2

)
dt

+ 2β
∫ ·

0

(
Pn(θM (u1)div(|A(u1)|2A(u1)) − θM (u2)div(|A(u2)|2A(u2))),Su1 − Su2

)
dt

+ 2
∫ ·

0

(
Pn(θM (u1)G(·, u1) − θM (u2)G(·, u2)),Su1 − Su2

)
dW

+
∑
k≥1

n∑
i=1

∫ ·

0
(θM (u1)σk(·, u1) − θM (u2)σk(·, u2), ei )2dt

= I1 + I2 + I3 + I4 + I5 + I6 + I7.

Let us consider δ > 0 and T ∗ > 0 (to be chosen later). We have

E sup
[0,T ∗]

|I1| = 2E sup
r∈[0,T ∗]

|
∫ r

0
(Pn�(u1 − u2),Su1 − Su2)ds|

≤ 2E
∫ T ∗

0
‖�(u1 − u2)‖2‖Su1 − Su2‖2ds

≤ δE sup
[0,T ∗]

‖Su1 − Su2‖22 + CδT
∗
E sup

[0,T ∗]
‖u1 − u2‖2H2

≤ δE sup
[0,T ∗]

‖Su1 − Su2‖2Wn
+ Cδ(n)T ∗

E sup
[0,T ∗]

‖u1 − u2‖2Wn
.

In order to estimate I2, we notice that

({θM (u1)(u1 · ∇)v(u1) − θM (u2)(u2 · ∇)v(u2)}, P∗
n (Su1 − Su2)

)

= −[θM (u1) − θM (u2)]b(u1, P∗
n (Su1 − Su2), v(u1))

− θM (u2)[b(u1 − u2, P
∗
n (Su1 − Su2), v(u1))

− b(u2, P
∗
n (Su1 − Su2), v(u1) − v(u2))]

≤ K (M)‖u1 − u2‖W 2,4‖u1‖4‖Su1 − Su2‖V ‖u1‖W 2,4

+ ‖u1 − u2‖4‖Su1 − Su2‖V ‖u1‖W 2,4

+ ‖u2‖4‖Su1 − Su2‖V ‖u1 − u2‖W 2,4

≤ K (M, n)‖Su1 − Su2‖Wn‖u1 − u2‖Wn .

Concerning I3, we write

∑
j

([θM (u1)v(u1)
j∇u j

1 − θM (u2)v(u2)
j∇u j

2], P∗
n (Su1 − Su2)

)

= [θM (u1) − θM (u2)]b(P∗
n (Su1 − Su2), u1, v(u1))

+ θM (u2)[b(P∗
n (Su1 − Su2), u1, v(u1) − v(u2))
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+ b(P∗
n (Su1 − Su2), u1 − u2, v(u2))]

≤ K (M, n)‖Su1 − Su2‖Wn‖u1 − u2‖Wn .

Therefore, we infer that

E sup
[0,T ∗]

|I2 + I3| ≤ δE sup
[0,T ∗]

‖Su1 − Su2‖2Wn
+ CδK

2(M, n)T ∗
E sup

[0,T ∗]
‖u1 − u2‖2Wn

.

For I4, I5, we have

(
θM (u1)div(A(u1)

2) − θM (u2)
(
div(A(u2)

2), P∗
n (Su1 − Su2)

)

= ([θM (u1) − θM (u2)] div(A(u1)
2), P∗

n (Su1 − Su2)
)

+ θM (u2)
(
div([A(u1) − A(u2)]A(u1))

+ div(A(u2)[A(u1) − A(u2)]), P∗
n (Su1 − Su2))

)

≤ |θM (u1) − θM (u2)|‖u1‖W 1,∞‖u1‖H2‖Su1 − Su2‖2
+ (‖u1‖W 1,∞ + ‖u2‖W 1,∞)‖u1 − u2‖H2‖Su1 − Su2‖2
+ (‖u1‖H2 + ‖u2‖H2)‖u1 − u2‖W 1,∞‖Su1 − Su2‖2

≤ K (M)‖u1 − u2‖W 2,4‖u1‖W 1,∞‖u1‖H2‖Su1 − Su2‖2
+ (‖u1‖W 1,∞ + ‖u2‖W 1,∞)‖u1 − u2‖H2‖Su1 − Su2‖2
+ (‖u1‖H2 + ‖u2‖H2)‖u1 − u2‖W 1,∞‖Su1 − Su2‖2

≤ K (M, n)‖Su1 − Su2‖Wn‖u1 − u2‖Wn .

On the other hand, we notice that

(
θM (u1)div(|A(u1)|2A(u1)) − θM (u2)div(|A(u2)|2A(u2)), P

∗
n (Su1 − Su2)

)

= (θM (u1) − θM (u2))
(
div(|A(u1)|2A(u1)), P

∗
n (Su1 − Su2)

)

+ θM (u2)
(
div(|A(u1)|2A(u1 − u2)), P

∗
n (Su1 − Su2)

)

+ θM (u2)
(
div([A(u1) · A(u1 − u2)

+ A(u1 − u2) · A(u2)]A(u2)), P
∗
n (Su1 − Su2)

)

≤ K (M)‖u1 − u2‖W 2,4‖u1‖2W 1,∞‖u1‖H2‖Su1 − Su2‖2
+ C(‖u2‖W 1,∞‖u1‖H2 + ‖u1‖W 1,∞‖u2‖H2)‖u1 − u2‖W 1,∞‖Su1 − Su2‖2
+ C(‖u1‖W 1,∞ + ‖u2‖W 1,∞)‖u2‖W 1,∞‖u1 − u2‖H2‖Su1 − Su2‖2
+ C‖u1 − u2‖W 1,∞‖u2‖H2‖u2‖W 1,∞‖Su1 − Su2‖2

≤ K (M, n)‖Su1 − Su2‖Wn‖u1 − u2‖Wn .

Therefore

E sup
[0,T ∗]

|I4 + I5| ≤ δE sup
[0,T ∗]

‖Su1 − Su2‖2Wn
+ CδK

2(M, n)T ∗
E sup

[0,T ∗]
‖u1 − u2‖2Wn

.
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Let σ̃k be the solutionof (2.5)withRHS fk = θM (u1)σk(·, u1)−θM (u2)σk(·, u2), k ∈
N

∗. Then it follows that, by using the variational formulation (2.6) and that (ei )i is an
orthonormal basis for V

n∑
i=1

∫ ·

0
(θM (u1)σk(·, u1) − θM (u2)σk(·, u2), ei )2dt

=
n∑

i=1

∫ ·

0
(̃σk, ei )

2
V dt =

∫ ·

0
‖Pn σ̃k‖2V dt ≤

∫ ·

0
‖σ̃k‖2V dt

≤ K
∫ ·

0
‖θM (u1)σk(·, u1) − θM (u2)σk(·, u2)‖22dt .

Taking into account (2.7), we derive

E sup
[0,T ∗]

|I7| ≤ KE

∑
k≥1

∫ T ∗

0
‖θM (u1)σk(·, u1) − θM (u2)σk(·, u2)‖22dt

≤ KE

∑
k≥1

∫ T ∗

0
|θM (u1) − θM (u2)|2‖σk(·, θ2M (u1)u1)‖22dt

+ KE

∑
k≥1

∫ T ∗

0
|θM (u2)|2‖σk(·, θ2M (u1)u1) − σk(·, θ2M (u2)u2)‖22dt

≤ K (M)E

∫ T ∗

0
(‖u1 − u2‖2W 2,4 + ‖u1 − u2‖22)dt

≤ K (M, n)T ∗
E sup

[0,T ∗]
‖u1 − u2‖2Wn

, (4.6)

where we used the fact that all the norms are equivalent on Wn .
Using theBurkholder–Davis–Gundy and theYoung inequalities and thanks to (4.6),

we deduce the following relation, for any δ > 0

E sup
[0,T ∗]

|I6| = 2E sup
r∈[0,T ∗]

|
∫ r

0

(
Pn(θM (u1)G(·, u1) − θM (u2)G(·, u2)),Su1 − Su2

)
dW|

≤ 2E
[ ∑
k≥1

∫ T ∗

0
‖θM (u1)σk(·, u1) − θM (u2)σk(·, u2)‖22‖Su1 − Su2‖22ds

]1/2

≤ δE sup
[0,T ∗]

‖Su1 − Su2‖22

+ CδE

∑
k≥1

∫ T ∗

0
‖θM (u1)σk(·, u1) − θM (u2)σk(·, u2)‖22dt

≤ δE sup
[0,T ∗]

‖Su1 − Su2‖22 + K (M, n)T ∗
E sup

[0,T ∗]
‖u1 − u2‖2Wn

,

≤ δE sup
[0,T ∗]

‖Su1 − Su2‖2Wn
+ K (M, n)T ∗

E sup
[0,T ∗]

‖u1 − u2‖2Wn
.
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Gathering the previous estimates and choosing an appropriate value for δ, we deduce
the existence of K (M, n) > 0 such that

E sup
[0,T ∗]

‖Su1 − Su2‖2Wn
≤ K (M, n)T ∗

E sup
[0,T ∗]

‖u1 − u2‖2Wn
. (4.7)

The inequality (4.7) shows that S is a contraction on X for some deterministic time
T ∗ > 0. Hence, there exists a uniqueFt -adapted function yn defined on�with values
on C([0, T ∗],Wn). Furthermore, yn is predictable stochastic process with values in
Wn . ��

Finally, a standard argument using the decomposition of the interval [0, T ] intofinite
number of small subintervals (e.g. of length T

2K (M,n)
) and gluing the corresponding

solutions yields the next lemma.

Lemma 7 There exists a unique predictable solution yn ∈ L2(�; C([0, T ];Wn)) for
(4.4).

4.2 A priori estimates

For each N ∈ N, let us define the following sequence of stopping times

τ nN := inf{t ≥ 0 : ‖yn(t)‖V ≥ N } ∧ T .

Setting

fn = f (yn)

= ν�yn + {−(yn · ∇)vn −
d∑
j=1

v
j
n∇ y j

n + (α1 + α2)div(A
2
n)

+ βdiv(|An|2An)}θM (yn) +U , (4.8)

By using (4.4), we infer for each i = 1, . . . , n

d(yn, ei )V = ( fn, ei )dt + θM (yn)(G(·, yn), ei )dW
:= ( fn, ei )dt + θM (yn)

∑
k≥1

(σk(·, yn), ei )dβk. (4.9)

Applying Itô’s formula, we deduce

d(yn, ei )
2
V = 2(yn, ei )V ( fn, ei )dt + 2(yn, ei )V θM (yn)(G(·, yn), ei )dW

+
∑
k≥1

(σk(·, yn), ei )2dt .
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Summing over i = 1, . . . , n, we obtain

‖yn(s)‖2V − ‖yn,0‖2V = 2
∫ s

0
( fn, yn)dt + 2

∫ s

0
θM (yn)(G(·, yn), yn)dW

+
∫ s

0
(θM (yn))

2
n∑

i=1

∑
k≥1

(σk(·, yn), ei )2dt

= J1 + J2 + J3, ∀s ∈ [0, τ nN ].

By using integration by parts and the Navier boundary conditions (2.1)3, we derive

J1 = 2
∫ s

0
( fn, yn)dt

= −4ν
∫ s

0
‖Dyn‖22dt + 2

∫ s

0
(U , yn)dt

− 2
∫ s

0
θM (yn)[b(yn, vn, yn) + b(yn, yn, vn)]dt

+ 2(α1 + α2)

∫ s

0
θM (yn)(div(A

2
n), yn)dt

+ 2β
∫ s

0
θM (yn)(div(|An|2An), yn)dt

= −4ν
∫ s

0
‖Dyn‖22dt + 2

∫ s

0
(U , yn)dt − 2(α1 + α2)

∫ s

0
θM (yn)(A

2
n,∇ yn)dt

− β

∫ s

0
θM (yn)

∫

D
|An|4dxdt

≤ −4ν
∫ s

0
‖Dyn‖22dt +

∫ s

0
‖U‖22dt +

∫ s

0
‖yn‖22dt

− β

2

∫ s

0
θM (yn)

∫

D
|An|4dxdt

+ C(α1, α2, β)

∫ s

0
‖yn‖2H1dt .

Concerning J3, let σ̃ n
k be the solution of (2.5) with RHS f = σk(·, yn), k ∈ N

∗. By
using the variational formulation (2.6) and Theorem 1, we get

∫ s

0
(θM (yn))

2
n∑

i=1

∑
k≥1

(σk(·, yn), ei )2dt

=
∫ s

0
(θM (yn))

2
n∑

i=1

∑
k≥1

(̃σ n
k , ei )

2
V dt =

∫ s

0
(θM (yn))

2
∑
k≥1

‖Pn σ̃ n
k ‖2V dt

≤
∫ s

0

∑
k≥1

‖σ̃ n
k ‖2V dt ≤ C

∫ s

0

∑
k≥1

‖σk(·, yn)‖22dt ≤ C(L)

∫ s

0
‖yn‖22dt .
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Let us estimate the stochastic term J2. By using Burkholder–Davis–Gundy and Young
inequalities, for any δ > 0 we can write

E sup
s∈[0,τ nN ]

|
∫ s

0
θM (yn)(G(·, yn), yn)dW| ≤ CE

[∑
k≥1

∫ τ nN

0
‖θM (yn)σk(·, yn)‖22‖yn‖22ds

]1/2

≤ CE
[∑
k≥1

∫ τ nN

0
‖σk(·, yn)‖22‖yn‖22ds

]1/2

≤ δE sup
s∈[0,τ nN ]

‖yn‖2V + CδL
∫ τ nN

0
‖yn‖22dt .

Hence, an appropriate choice of δ ensures

E sup
s∈[0,τ nN ]

‖yn‖2V + 4νE
∫ τ nN

0
‖Dyn‖22dt + β

2
E

∫ τ nN

0
θM (yn)

∫

D
|An|4dxdt

≤ E‖yn,0‖2V + E

∫ T

0
‖U‖22dt + C(α1, α2, β, L)E

∫ τ nN

0
‖yn‖2H1dt .

Then, the Gronwall’s inequality gives

E sup
s∈[0,τ nN ]

‖yn‖2V ≤ eCT (E‖yn,0‖2V + E

∫ T

0
‖U‖22dt).

Let us fix n ∈ N, we notice that

E sup
s∈[0,τ nN ]

‖yn‖2V ≥ E( sup
s∈[0,τ nN ]

1{τ nN<T }‖yn‖2V ) ≥ N 2P(τ nN < T ),

which implies that τ nN → T in probability, as N → ∞. Then there exists a subse-
quence, denoted by the same way, such that

τ nN → T a.s. as N → ∞.

Since the sequence {τ nN }N is monotone, the monotone convergence theorem allows to
pass to the limit, as N → ∞, and deduce that

E sup
s∈[0,T ]

‖yn‖2V + 4νE
∫ T

0
‖Dyn‖22dt + β

2
E

∫ T

0
θM (yn)

∫

D
|An|4dxdt

≤ ecT (E‖y0‖2V + E

∫ T

0
‖U‖22dt). (4.10)

In order to get W̃ -regularity for the solution of (4.4), we define the following
sequence of stopping times

tnN = inf{t ≥ 0 : ‖yn(t)‖W̃ ≥ N } ∧ T , N ∈ N.
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Let σ̃ n
k , f̃n be the solutions of (2.5) with RHS f = σk(·, yn), f = fn , respectively.

Since ei ∈ V , by using the variational formulation (2.6) we write

( f̃n, ei )V = ( fn, ei ), (̃σ n
k , ei )V = (σk(·, yn), ei ).

Now, by multiplying (4.9) by λi and using (4.3), we write

d(yn, ei )W̃ = ( f̃n, ei )W̃ dt + θM (yn)
∑
k≥1

(̃σ n
k , ei )W̃ dβk.

Now, the Itô’s formula ensures that

d(yn, ei )
2
W̃

= 2(yn, ei )W̃ ( f̃n, ei )W̃ dt + 2(yn, ei )W̃ θM (yn)
∑
k≥1

(̃σ n
k , ei )W̃ dβk

+ (θM (yn))
2
∑
k≥1

(̃σ n
k , ei )

2
W̃
dt .

By multiplying the last equality by
1

λi
and summing over i = 1, . . . , n, we obtain

d(‖curlv(yn)‖22 + ‖yn‖2V ) = 2(curl fn, curlv(yn))dt

+ 2( fn, yn)dt + 2θM (yn)(curlG(·, yn), curlv(yn))dW

+ 2θM (yn)(G(·, yn), yn)dW + (θM (yn))
2
∑
k≥1

n∑
i=1

1

λi
(̃σ n

k , ei )
2
W̃
dt

= 2(curl fn, curlv(yn))dt + 2( fn, yn)dt + 2θM (yn)(G(·, yn), yn)dW
+ 2θM (yn)(curlG(·, yn), curlv(yn))dW + (θM (yn))

2
∑
k≥1

‖Pn σ̃ n
k ‖2

W̃
dt

= A1 + A2 + A3 + A4 + A5, (4.11)

where we used the definition of inner product in W̃ to obtain the last equalities.
Let us estimate the terms Ai , i = 1, . . . , 5.

A1 = 2θM (yn)
( − curl[(yn · ∇)vn] −

d∑
j=1

curl[v j
n∇ y j

n ] + (α1 + α2)curl[div(A2
n)], curlv(yn)

)

+ 2βθM (yn)(curl[div(|An |2An)], curlv(yn)) + 2(νcurl�yn + curlU , curlv(yn))

= A1
1 + A2

1 + A3
1.

By using [8, Section 4], note that
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|A1
1| ≤ CθM (yn)

∫

D
|D(yn)||D3(yn)||D3(yn)|dx

+ CθM (yn)
∫

D
|D2(yn)||D2(yn)||D3(yn)dx

≤ CθM (yn)[‖D(yn)‖L∞‖yn‖2H3 + ‖D2(yn)‖2L4‖yn‖H3 ]
≤ K (M)‖yn‖2H3 ,

|A2
1| ≤ CθM (yn)

[∫

D
|D(yn)|2|D3(yn)|2dx +

∫

D
|D(yn)||D2(yn)|2|D3(yn)|dx

]

≤ CθM (yn)[‖D(yn)‖2L∞‖yn‖2H3 + ‖D(yn)‖L∞‖D2(yn)‖2L4‖yn‖H3 ]
≤ K (M)‖yn‖2H3 ,

where we used the fact that ‖D(yn)‖L∞ + ‖D2(yn)‖L4 ≤ K (M), thanks to the prop-
erties cut-off function (4.1). On the other hand, we can deduce

A31 ≤ −2ν

α1
‖curlv(yn)‖22 + C‖yn‖2V + C‖curl(U )‖22 + δ‖curlv(yn)‖22 for any δ > 0.

Setting δ = ν

α1
, we get

A3
1 ≤ − ν

α1
‖curlv(yn)‖22 + C‖yn‖2V + C‖curl(U )‖22.

Due to the estimate of J1, we have

A2 ≤ −4ν
∫ s

0
‖Dyn‖22dt +

∫ s

0
‖U‖22dt +

∫ s

0
‖yn‖22dt − β

2

∫ s

0
θM (yn)

∫

D
|An |4dxdt

+ C(α1, α2, β)

∫ s

0
‖yn‖2H1dt .

The term A5 satisfies

A5 ≤
∑
k≥1

‖σ̃ n
k ‖2

W̃
≤ C

∑
k≥1

‖σk(·, yn)‖2H1 ≤ C‖yn‖2V ,

where we used Theorem 1 with m = 1, (2.7) and (2.8) to deduce the last estimate.
Similarly to the estimate of J2, for any δ > 0, the stochastic integral A3 verifies

E sup
s∈[0,tnN ]

∣∣∣∣
∫ s

0
θM (yn)(G(·, yn), yn)dW

∣∣∣∣ ≤ δE sup
s∈[0,tnN ]

‖yn‖2V + CδK
∫ tnN

0
‖yn‖22dt .

Now, thanks to Burkholder–Davis–Gundy inequality, for any δ > 0, it follows that

123



Stochastics and Partial Differential Equations: Analysis and Computations (2024) 12:1699–1744 1723

2E sup
s∈[0,tnN ]

∣∣∣∣
∫ s

0
θM (yn)(curlG(·, yn), curlv(yn))dW

∣∣∣∣

= 2E sup
s∈[0,tnN ]

∣∣∣∣
∑
k≥1

∫ s

0
θM (yn)(curlσk(·, yn), curlv(yn))dβk

∣∣∣∣

≤ CE

[∑
k≥1

∫ tnN

0
(curlσk(·, yn), curlv(yn))

2ds

]1/2

≤ δE sup
s∈[0,tnN ]

‖curlv(yn)‖22 + CδE

∫ tnN

0
‖yn‖2V dr ,

where we used (2.8) to deduce the last inequality.
Gathering the previous estimates, and choosing an appropriate δ > 0, we deduce

E sup
s∈[0,tnN ]

[‖curlv(yn)‖22 + ‖yn‖2V ] + C(ν, α1)E

∫ tnN

0
[‖Dyn‖22 + ‖curlv(yn)‖22]dt

+ C(β)E

∫ tnN

0
θM (yn)

∫

D
|An|4dxdt

≤ E‖y0‖2W̃ + E

∫ T

0
‖U‖22dt + CE

∫ T

0
‖curl(U )‖22dt

+ K (L, M, α1, α2, β)E

∫ tnN

0
‖yn‖2H3dt .

The Gronwall’s inequality yields

E sup
s∈[0,tnN ]

[‖curlv(yn)‖22 + ‖yn‖2V ] ≤ K (L, M, α1, α2, β, T )
(
E‖y0‖2W̃

+ E

∫ T

0
‖U‖22dt + CE

∫ T

0
‖curlU‖22dt

)
.

Let us fix n ∈ N. Since

E sup
s∈[0,tnN ]

‖yn‖2W̃ ≥ E

(
sup

s∈[0,tnN ]
1{tnN<T }‖yn‖2W̃

)
≥ N 2P(tnN < T ),

we infer that tnN → T in probability, as N → ∞. Then there exists a subsequence
(still denoted by (tnN )) such that

tnN → T a.s. as N → ∞.

Since the sequence {tnN }N is monotone, the monotone convergence theorem can be
applied to pass to the limit, as N → ∞, in order to obtain
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E sup
s∈[0,T ]

[‖curlv(yn)‖22 + ‖yn‖2V ] ≤ K (L, M, α1, α2, β, T )

(
E‖y0‖2W̃ + E

∫ T

0
‖U‖22dt + CE

∫ T

0
‖curlU‖22dt

)
.

Therefore, we have the following result

Lemma 8 Assume that H0 holds, then there exists a constant

K := K (L, M, α1, α2, β, T , ‖y0‖L2(�;W̃ ), ‖U‖L2(�×[0,T ];H1(D)))

such that

E sup
s∈[0,T ]

‖yn‖2V + 4νE
∫ T

0
‖Dyn‖22dt + β

2
E

∫ T

0
θM (yn)

∫

D
|An|4dxdt

≤ ecT (E‖y0‖2V + E

∫ T

0
‖U‖22dt),

E sup
s∈[0,T ]

‖yn‖2W̃ := E sup
s∈[0,T ]

[‖curl v(yn)‖22 + ‖yn‖2V ] ≤ K . (4.12)

Now, let us notice that for any p ≥ 1, the Burkholder–Davis–Gundy inequality
yields

2E

[
sup

s∈[0,tnN ]

∣∣∣∣
∫ s

0
(curlG(·, yn), curlv(yn))dW

∣∣∣∣
]p

= 2E sup
s∈[0,tnN ]

∣∣∣∣∣∣
∑
k≥1

∫ s

0
(curlσk(·, yn), curlv(yn))dβk

∣∣∣∣∣∣

p

≤ CpE

⎡
⎣∑
k≥1

∫ tnN

0
(curlσk(·, yn), curlv(yn))

2ds

⎤
⎦

p/2

≤ Cp(L)E

[
sup

s∈[0,tnN ]
‖curlv(yn)‖22

∫ tnN

0
‖yn‖2V dr

]p/2

≤ δE sup
s∈[0,tnN ]

‖curlv(yn)‖2p2 + Cδ(L, T )E

∫ tnN

0
‖yn‖2pV dr ,

and

E

[
sup

s∈[0,tnN ]

∣∣∣∣
∫ s

0
θM (yn)(G(·, yn), yn)dW

∣∣∣∣
]p
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≤ δE sup
s∈[0,tnN ]

‖yn‖2pV + Cδ(L, T )K
∫ tnN

0
‖yn‖2p2 dt .

From (4.11), for any t ∈ [0, tnN ], the following expression holds

sup
s∈[0,tnN ]

[‖yn(t)‖2V + ‖curlv(yn(t))‖22]

≤ ‖y0‖2W̃ + K (M)

[∫ tnN

0
‖yn‖2H3ds +

∫ T

0
‖U‖22ds +

∫ T

0
‖ curl U‖22ds

]

+ 2 sup
s∈[0,tnN ]

∣∣∣∣
∫ s

0
(curlG(·, yn), curlv(yn))dW

∣∣∣∣ + sup
s∈[0,tnN ]

∣∣∣∣
∫ s

0
θM (yn)(G(·, yn), yn)dW

∣∣∣∣

Taking the pth power, applying the expectation, choosing δ small enough and then
applying the Gronwall inequality, we deduce

Lemma 9 For any p ≥ 1, there exists K (M, T , p) > 0 such that

E sup
[0,T ]

‖yn‖2pW̃ ≤ K (M, T , p)(1 + E‖y0‖2pW̃ + E

∫ T

0
‖U‖2p2 ds + E

∫ T

0
‖ curl U‖2p2 ds).

(4.13)

Remark 4 We wish to draw the reader’s attention to the fact that the cut-off function
(4.1) plays a crucial role to obtain H3-estimate in 2D and 3D cases, which leads
to bound dependent on M . In the deterministic case, the authors in [8, Section 5]
proved the H3-regularity by using some interpolation inequalities (available only on
2D) to bound A1

1 and A2
1 above, see (4.11). Then, solving a differential inequality.

Unfortunately, it is not clear how to use the same arguments because of the presence
of the stochastic integral and the expectation,we refer to [8, Section 5] for the interested
reader.

4.3 Compactness

We will use Lemma 8 and the regularity of the stochastic integral (Lemma 2) to get
compactness argument leading to the existence of martingale solution (see Defini-
tion 4.1) to (4.2). For that, define the following path space

Y := C([0, T ], H0) × C([0, T ], (W 2,4(D))d) × L p(0, T ; (H1(D))d)) × W̃ .

Denote by μyn the law of yn on C([0, T ], (W 2,4(D))d), μUn the law of PnU
on L p(0, T ; (H1(D))d), μyn0

the law of Pn y0 on W̃ , and μW the law of W on
C([0, T ], H0) and their joint law on Y by μn .

Lemma 10 The sets {μUn ; n ∈ N} and {μyn0
; n ∈ N} are tight on L p(0, T ; (H1(D))d)

and W̃ , respectively.
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Proof By using the properties of the projection operator Pn , we know that PnU con-
verges strongly to U in L p(�T ; (H1(D))d). Since L p(0, T ; (H1(D))d) is separable
Banach space, from Prokhorov theorem, for any ε > 0, there exists a compact set
Kε ⊂ L p(0, T ; (H1(D))d) such that

μU (Kε) = P(PnU ∈ Kε) ≥ 1 − ε.

A similar argument yields the tightness of {μyn0
; n ∈ N}, which conclude the proof. ��

Lemma 11 The sets {μyn ; n ∈ N}and {μW }are, respectively, tight onC([0, T ], (W 2,4(D))d)

and C([0, T ], H0).

Proof Recall that Pn : (L2(D))d → Wn corresponds to the projection operator, which
is continuous on (L2(D))d , then (4.4) can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(yn(t)) = Pnv(y0) +
∫ t

0

(
νPn�yn − θM (yn)Pn[(yn · ∇)vn] −

∑
j

θM (yn)Pn[v j
n∇ y j

n ]

+ (α1 + α2)θM (yn)Pn[div(A2
n)] + βθM (yn)Pn[div(|An |2An)] + PnU

)
ds

+
∫ t

0
θM (yn)PnG(·, yn)dW := ydetn (t) + yston (t).

Let us prove the following estimate:

E‖ydetn ‖Cη([0,T ],(L2(D))d ) ≤ K (M), ∀η ∈]0, 1 − 1

p
]. (4.14)

First, thanks to Lemma 8 and in particular due to W̃ -estimate for (yn), we know
that ydetn is a predictable continuous stochastic process with values in (L2(D))d . Next,
by using the Sobolev embedding W 2,4(D) ↪→ W 1,∞(D) and ‖Pnu‖2 ≤ ‖u‖2,∀u ∈
(L2(D))d , we are able to infer

‖Pnv(y0)‖22 ≤ ‖v(y0)‖22 ≤ ‖y0‖2W ;
‖PnU‖22 ≤ ‖U‖22 and ‖Pn�yn‖22 ≤ ‖�yn‖22 ≤ ‖yn‖2W , (4.15)

‖θM (yn)Pn[(yn · ∇)vn]‖22 ≤ θM (yn)‖yn‖2∞‖yn‖2W̃
≤ θM (yn)‖yn‖2W 2,4‖yn‖2W̃ ≤ 4M2‖yn‖2W̃ ,

‖
∑
j

θM (yn)Pn[v j
n∇ y j

n ]‖22 ≤ θM (yn)‖yn‖2W ‖yn‖2W 1,∞

≤ θM (yn)‖yn‖2W̃ ‖yn‖2W 2,4 ≤ 4M2‖yn‖2W̃ ,

‖θM (yn)Pn[div(A2
n)]‖22 ≤ θM (yn)‖div(A2

n)‖22
≤ CθM (yn)

∫

D
|D(yn)|2|D2(yn)|2dx

≤ CθM (yn)‖yn‖2W 1,∞‖yn‖2W ≤ CθM (yn)‖yn‖2W 2,4‖yn‖2W̃
≤ 4CM2‖yn‖2W̃ ,
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‖θM (yn)Pn[div(|An |2An)]‖22 ≤ θM (yn)‖div(|An |2An)‖22
≤ CθM (yn)

∫

D
|D(yn)|4|D2(yn)|2dx

≤ CθM (yn)‖yn‖4W 1,∞‖yn‖2W
≤ CθM (yn)‖yn‖4W 2,4‖yn‖2W̃
≤ 16CM4‖yn‖2W̃ . (4.16)

Therefore, there exists C > 0 independent of n such that

E sup
t∈[0,T ]

‖ydetn (t)‖2 ≤ C + E‖y0‖2W + CE

∫ T

0
(1 + M4)‖yn(s)‖2W̃ ds

+ E

∫ T

0
‖U (s)‖22ds ≤ K (M), (4.17)

thanks to (3.1) and (4.12). Now, let us show that for η ∈]0, 1 − 1

p
], we have the

following

E sup
s,t∈[0,T ],s �=t

‖ydetn (t) − ydetn (s)‖2
|t − s|η ≤ K (M).

Indeed, let 0 < s < t ≤ T we have

‖ydetn (t) − ydetn (s)‖2
≤

∫ t

s

∥∥∥∥
(

νPn�yn − θM (yn)Pn[(yn · ∇)vn] −
∑
j

θM (yn)Pn[v j
n∇ y j

n ]

+ (α1 + α2)θM (yn)Pn[div(A2
n)] + βθM (yn)Pn[div(|An|2An)] + PnU

)∥∥∥∥
2
dr .

We recall that p > 4. Set p = 2q, q > 2, by using Holder inequality and (4.15)-
(4.16), we obtain

‖ydetn (t) − ydetn (s)‖2 ≤ (t − s)
p−1
p

(∫ t

s

∥∥∥∥
(

νPn�yn − θM (yn)Pn[(yn · ∇)vn]

−
∑
j

θM (yn)Pn[v j
n∇ y j

n ] + (α1 + α2)θM (yn)Pn[div(A2
n)]

+ βθM (yn)Pn[div(|An|2An)] + PnU

)∥∥∥∥
2q

2
dr

)1/2q

≤ (t − s)
p−1
p

(
C(1 + M4)q

∫ t

s
‖yn‖2qW̃ dr +

∫ t

s
‖PnU‖2q2 dr

)1/2q
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≤ (t − s)
p−1
p

(
C(1 + M4)

p
2

∫ t

s
‖yn‖p

W̃
dr +

∫ t

s
‖U‖p

2 dr

)1/p

. (4.18)

Considering (4.18) and applying the Holder inequality, we deduce

E sup
s,t∈[0,T ],s �=t

‖ydetn (t) − ydetn (s)‖2
|t − s|1− 1

p

≤
(
C(1 + M4)

p
2

∫ T

0
E‖yn‖p

W̃
dr +

∫ T

0
E‖U‖p

2 dr

)1/p

≤ K (M), (4.19)

where we used (3.1) and (4.12). Consequently, the estimates (4.19) and (4.17) yield
(4.14).

We recall that (see e.g. [17])

Ws,p(0, T ; L2(D)) ↪→ Cη([0, T ], L2(D)) if 0 < η < sp − 1.

Let us take s ∈ [
0,

1

2

[
and sp > 1 (recall that p > 4; see H0). For η ∈ ]

0, sp − 1
[
,

we can use Lemma 2 and (4.13) to deduce

E‖yston ‖p
Cη([0,T ],L2(D))

= E
∥∥
∫ ·

0
θM (yn)PnG(·, yn)dW‖p

Cη([0,T ],L2(D))

≤ CE

[∥∥
∫ ·

0
G(·, yn)dW‖p

Ws,p
(
0,T ;L2(D)

)
]

≤ c(s, p)E
[ ∫ T

0

(∑
k≥1

‖σk(·, yn)‖22
)p/2

dt
]

≤ K (M).

Hence (v(yn))n is bounded in L1(�, Cη([0, T ], (L2(D))d)). Therefore (yn)n is
bounded in

L1(�, Cη([0, T ], (H2(D))d)) ∩ L2(�, L∞(0, T ; W̃ )), ∀η ∈ ]
0, sp − 1

[
,

where we used [6, Proposition 3]. We recall that the embedding W̃ ↪→ W 2,q(D) is
compact for any 1 ≤ q < 6. The following compact embedding holds

Z := L∞(0, T ; W̃ ) ∩ Cη([0, T ], (H2(D))d) ↪→ C([0, T ], (W 2,4(D))d).

Indeed, we have W̃ ↪→
compact

W 2,4(D) ↪→ H2(D), see (2.3). Let A be a bounded set

of Z. Following [30, Thm. 5] (the case p = ∞), it is enough to check the following
conditions:

1. A is bounded in L∞(0, T ; W̃ ).
2. Let h > 0, ‖ f (· + h) − f (·)‖L∞(0,T−h;(H2(D))d → 0 as h → 0 uniformly for

f ∈ A.
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First, note that (1) is satisfied by assumptions. Concerning the second condition, let
h > 0 and f ∈ A, by using that f ∈ Cη([0, T ], (H2(D))d) we infer

‖ f (· + h) − f (·)‖L∞(0,T−h;(H2(D))d = sup
r∈[0,T−h]

‖ f (r + h) − f (r)‖H2

≤ Chη → 0, as h → 0,

where C > 0 is independent of f .
Let R > 0 and set BZ(0, R) := {v ∈ Z | ‖v‖Z ≤ R}. Then BZ(0, R) is a

compact subset of C([0, T ], (W 2,4(D))d). On the other hand, there exists a constant
C > 0 (related to the boundedness of{yn}n in L1(�, C([0, T ], (W 2,4(D))d))), which
is independent of R, such that the following relation holds

μyn (BZ(0, R)) = 1 − μyn (BZ(0, R)c) = 1 −
∫

{ω∈�,‖yn‖Z>R}
1dP

≥ 1 − 1

R

∫

{ω∈�,‖yn‖Z>R}
‖yn‖ZdP

≥ 1 − 1

R
E‖yn‖Z = 1 − C

R
, for any R > 0, and any n ∈ N.

Therefore, for any δ > 0 we can find Rδ > 0 such that

μyn (BZ(0, Rδ)) ≥ 1 − δ, for all n ∈ N.

Thus the family of laws {μyn ; n ∈ N} is tight on C([0, T ], (W 2,4(D))d).

Since the law μW is a Radon measure on C([0, T ], H0), the second part of the
Lemma 11 follows. ��
Remark 5 By using (2.3) and [30, Thm. 5], one can prove, similarly to the above
arguments, that Z is compactly embedded in C([0, T ], (W 2,q(D))d) for q < 6 in the
3D case and that Z is compactly embedded in C([0, T ], (W 2,a(D))d) for a < ∞, in
the 2D case.

As a conclusion, we have the following corollary:

Corollary 12 The set of joint law {μn; n ∈ N} is tight on Y.

4.4 Subsequence extractions

Using Corollary 12 and the Prokhorov’s theorem, we can extract a (not relabeled)
subsequence from μn which converges in law to some probability measure μ, i.e.

μn := (μW , μyn , μUn , μyn0
) → μ on Y.

Applying the Skorohod Representation Theorem [5, Thm. C.1], we obtain the fol-
lowing result:
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Lemma 13 There exists a probability space (�̄, F̄ , P̄), and a family of Y-valued
random variables {(W̄n, ȳn, Ūn, ȳn0 ), n ∈ N} and {(W∞, y∞, Ū , ȳ0)} defined on
(�̄, F̄ , P̄) such that

1. μn = L(W̄n, ȳn, Ūn, ȳn0 ),∀n ∈ N;
2. the law of (W∞, y∞, Ū , ȳ0) is given by μ;
3. (W̄n, ȳn, Ūn, ȳn0 ) converges to (W∞, y∞, Ū , ȳ0) P̄-a.s. in Y;
4. W̄n(ω̄) = W∞(ω̄) for all ω̄ ∈ �̄.

Definition 4.2 For a filtered probability space (�,F , (Ft ), P), the smallest complete,
right-continuous filtration containing (Ft ) is called the augmentation of (Ft ).

Let us denote by (Fn
t ) the augmentation of the filtration

σ(ȳn(s),W∞(s),
∫ s

0
Ūn(r)dr)0≤s≤t , t ∈ [0, T ],

and by (F∞
t ) the augmentation of the filtration

σ(y∞(s),W∞(s),
∫ s

0
Ū (r)dr)0≤s≤t , t ∈ [0, T ].

Since (W, yn, PnU , Pn y0) and (W̄∞, ȳn, Ūn, ȳn0 ) have the same law, by the proper-
ties of the image measure and by an adapted stepwise approximation of Itô’s integral,
one has that ȳn is the solution of (4.4) for given

(�̄, F̄ , (Fn
t ), P̄,W∞, Ūn, ȳ

n
0 ).

In other words, the following equations holds P̄-a.s. in �̄

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(v(ȳn), ei ) = (
ν�ȳn − θM (ȳn)(ȳn · ∇)v(ȳn)

−
∑
j

θM (ȳn)v(ȳn)
j∇ ȳ j

n + (α1 + α2)θM (ȳn)div(A(ȳn)
2)

+ βθM (ȳn)div(|A(ȳn)|2A(ȳn)) + Ūn, ei
)
dt

+ (
θM (ȳn)G(·, ȳn), ei

)
dW∞,∀i = 1, . . . , n,

ȳn(0) = ȳn0 ,

(4.20)

As a consequence of (8) and Lemma 9, we have the following result

Lemma 14 There exists a constant

K := K (L, M, α1, α2, β, T , ‖ȳ0‖L p(�̄;W̃ ), ‖Ū‖L p(�̄×[0,T ];(H1(D))d ))

such that

Ē sup
s∈[0,T ]

‖ȳn‖2V + 4νĒ
∫ T

0
‖Dȳn‖22dt + β

2
Ē

∫ T

0
θM (ȳn)

∫

D
| Ān|4dxdt
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≤ ecT
(
Ē‖ȳ0‖2V + Ē

∫ T

0
‖Ū‖22dt

)
, (4.21)

Ē sup
s∈[0,T ]

‖ȳn‖2W̃ = Ē sup
s∈[0,T ]

[‖curl v(ȳn)‖22 + ‖ȳn‖2V ] ≤ K , (4.22)

Ē sup
[0,T ]

‖yn‖p
W̃

≤ K (M, T , p)
(
1 + Ē‖ȳ0‖p

W̃
+ Ē

∫ T

0
‖Ū‖p

2 ds + Ē

∫ T

0
‖ curl Ū‖p

2 ds
)
, ∀p > 2,

(4.23)

where Ē means that the expectation is taken on �̄ with respect to the probability
measure P̄.

4.5 Identification of the limit andmartingale solutions

Thanks to Lemma 14, we have:

Lemma 15 There existF∞
t -predictable processes y∞, Ū such that the following con-

vergences hold (up to subsequence), as n → ∞:

ȳn converges strongly to y∞ in L4(�̄; C([0, T ], (W 2,4(D))d)) and a.e. in Q × �̄;
(4.24)

ȳn converges weakly to y∞ in L4(�̄; L2(0, T ; W̃ )); (4.25)

ȳn converges weakly-* to y∞ in L4
w−∗(�̄; L∞(0, T ; W̃ )); (4.26)

θM (ȳn) converges to θM (ȳ∞) in L p(�̄ × [0, T ]) ∀p ∈ [1,∞[; (4.27)

Ūn converges to Ū in L4(�̄; L4(0, T ; (H1(D))d)); (4.28)

ȳn0 converges to ȳ0 = y∞(0) in L4(�̄; (W 2,4(D))d). (4.29)

Proof From Lemma 13, we know that

ȳn converges strongly to y∞ in C([0, T ], (W 2,4(D))d) P̄-a.s. in �̄.

Then the Vitali’s theorem yields the first part of (4.24), since p > 4. The second part
is a consequence of the convergence in C([0, T ], (W 2,4(D))d) P̄-a.s. in �̄.

By the compactness of the closed balls in the space L4(�̄; L2(0, T ; W̃ )) with
respect to the weak topology, there exists � ∈ L4(�̄; L2(0, T ; W̃ )) such that ȳn⇀�,
and the uniqueness of the limit gives � = y∞.

Concerning (4.26), the sequence (ȳn) is bounded in L4(�̄, L∞(0, T ; W̃ )), thus in

L4
w−∗(�̄, L∞(0, T ; W̃ )) � (L4/3(�̄, L1(0, T ; W̃ ′)))′,
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where w − ∗ stands for the weak-* measurability and L4
w−∗(�, L∞(0, T ; W̃ )) is

defined as following:

L4
w−∗(�; L∞(0, T ; W̃ ))

= {u : � → L∞(0, T ; W̃ ) is weakly-* measurable and E‖u‖4
L∞(0,T ;W̃ )

< ∞},

see [15, Thm. 8.20.3] and [29, Lemma 4.3] for a similar argument. Hence, Banach-
Alaoglu theorem’s ensures (4.26) and y∞ ∈ L4

w−∗(�̄, L∞(0, T ; W̃ ).
Since ȳn converges strongly to y∞ in C([0, T ], (W 2,4(D))d)P̄-a.s. in �̄, then yn(t)

converges to y∞(t) in (W 2,4(D))d P̄ a.s. in �̄, for any t ∈ [0, T ]. Hence
‖ȳn(t)‖W 2,4 → ‖ȳ∞(t)‖W 2,4 P̄-a.s. in �̄, for any t ∈ [0, T ]. Since 0 ≤ θM (·) ≤ 1,
Lebesgue convergence theorem ensures (4.27).

By combining the convergence (3) in Lemma 13 and theVitali’s theorem, we obtain
(4.28) and (4.29). The equality y∞(0) = ȳ0 is a consequence of (4.24). ��

We recall that L(PnU , Pn y0) = L(Ūn, ȳn0 ) and (PnU , Pn y0) converges strongly to
(U , y0) in the space L4(�; L4(0, T ; H1(D))) × L4(�, W̃ ). Therefore, we have

L(Ū ) = L(U ) and L(ȳ0) = L(y0). (4.30)

Lemma 16 The following convergences hold, as n → ∞

θM (ȳn)(ȳn · ∇)v̄n → θM (y∞)(y∞ · ∇)v∞ in L2(�T , V ′), (4.31)∑
j

θM (ȳn)v̄
j
n∇ ȳ j

n →
∑
j

θM (y∞)v
j∞∇ y j∞ in L2(�T , V ′), (4.32)

θM (ȳn)div( Ā
2
n) → θM (y∞)div(A2∞) in L2(�T , V ′), (4.33)

θM (ȳn)div(| Ān|2 Ān) → θM (y∞)div(|A∞|2A∞) in L2(�T , V ′) (4.34)

θM (ȳn)G(·, ȳn) → θM (ȳ∞)G(·, y∞) in L2
(
�̄, L2(0, T : L2(H, (L2(D))d)

))
,

(4.35)

where we use the notations v̄n = v(ȳn) and v∞ = v(y∞).

Proof It is worth recalling that for any u1, u2 ∈ (W 2,4(D))d

|θM (u1) − θM (u2)| ≤ K (M)‖u1 − u2‖W 2,4 and θM (u1) ≤ 1. (4.36)

Let ϕ ∈ V . Using (4.36) we write

| ({θM (ȳn)(ȳn · ∇)v(ȳn) − θM (y∞)(y∞ · ∇)v(y∞)}, ϕ) |
= |−[θM (ȳn) − θM (y∞)]b(ȳn, ϕ, v(ȳn)) − θM (y∞)

[b(ȳn − y∞, ϕ, v(ȳn)) − b(y∞, ϕ, v(ȳn) − v(y∞))]|
≤ K (M)‖ȳn − y∞‖W 2,4‖ȳn‖4‖ϕ‖V ‖ȳn‖W 2,4
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+ ‖ȳn − y∞‖4‖ϕ‖V ‖ȳn‖W 2,4 + ‖y∞‖4‖ϕ‖V ‖ȳn − y∞‖W 2,4

≤ K (M)‖ϕ‖V ‖ȳn − y∞‖W 2,4

(
1 + ‖ȳn‖2W 2,4 + ‖ȳn‖W 2,4 + ‖y∞‖4

)
.

This estimate together with the Lemma 14 and convergence (4.24) give

Ē

∫ T

0
({θM (ȳn)(ȳn · ∇)v(ȳn) − θM (y∞)(y∞ · ∇)v(y∞)}, ϕ) dt

≤ K (M, ‖ϕ‖V )Ē

∫ T

0
‖ȳn − y∞‖W 2,4

(
1 + ‖ȳn‖2W 2,4 + ‖ȳn‖W 2,4 + ‖y∞‖4

)
dt

≤ K (M, ‖ϕ‖V )‖ȳn − y∞‖L4(�̄T ;(W 2,4(D))d ) → 0.

In a similar way, we can deduce (4.32). Namely, we have

∣∣∣∣∣∣
∑
j

(
θM (ȳn)v(ȳn)

j∇ ȳ j
n − θM (y∞)v(y∞) j∇ y j∞, ϕ

)
∣∣∣∣∣∣

= |[θM (ȳn) − θM (y∞)]b(ϕ, ȳn, v(ȳn)) + θM (y∞)

[b(ϕ, ȳn, v(ȳn) − v(y∞)) + b(ϕ, ȳn − y∞, v(y∞))]|
≤ K (M)‖ϕ‖V ‖ȳn − y∞‖W 2,4

(
1 + ‖ȳn‖2W + ‖y∞‖W

)
,

and using again Lemma 14 and convergence (4.24), we deduce

Ē

∫ T

0
‖ϕ‖V ‖ȳn − y∞‖W 2,4

(
1 + ‖ȳn‖2W + ‖y∞‖W

)
dt → 0,

which yields (4.32). Proceeding with the same reasoning, we derive

|(θM (ȳn)div(A(ȳn)
2) − θM (y∞)

(
div(A(y∞)2), ϕ

)|
= |([θM (ȳn) − θM (y∞)] div(A(ȳn)

2), ϕ
)

+ θM (y∞)
(
div([A(ȳn) − A(y∞)]A(ȳn)) + div(A(y∞)[A(ȳn) − A(y∞)]), ϕ)

)|
≤ |θM (ȳn) − θM (y∞)|‖ȳn‖W 1,∞‖ȳn‖H2‖ϕ‖2

+ (‖ȳn‖W 1,∞ + ‖y∞‖W 1,∞)‖ȳn − y∞‖H2‖ϕ‖2
+ (‖ȳn‖H2 + ‖y∞‖H2)‖ȳn − y∞‖W 1,∞‖ϕ‖2

≤ K (M)‖ȳn − y∞‖W 2,4‖ȳn‖W 1,∞‖ȳn‖H2‖ϕ‖2
+ (‖ȳn‖W 1,∞ + ‖y∞‖W 1,∞)‖ȳn − y∞‖H2‖ϕ‖2
+ (‖ȳn‖H2 + ‖y∞‖H2)‖ȳn − y∞‖W 1,∞‖ϕ‖2

≤ K (M)‖ϕ‖V ‖ȳn − y∞‖W 2,4
(‖ȳn‖W 1,∞‖ȳn‖H2 + ‖ȳn‖W 1,∞

+‖y∞‖W 1,∞ + ‖ȳn‖H2 + ‖y∞‖H2
)
,
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and conclude that

Ē

∫ T

0
|(θM (ȳn)div(A(ȳn)

2) − θM (y∞)
(
div(A(y∞)2), ϕ

)|dt → 0.

Concerning (4.34), we have

|(θM (ȳn)div(|A(ȳn)|2A(ȳn)) − θM (y∞)div(|A(y∞)|2A(y∞)), ϕ
)|

= |(θM (ȳn) − θM (y∞))
(
div(|A(ȳn)|2A(ȳn)), ϕ

)

+ θM (y∞)
(
div(|A(ȳn)|2A(ȳn − y∞)), ϕ

)

+ θM (y∞)
(
div([A(ȳn) · A(ȳn − y∞) + A(ȳn − y∞) · A(y∞)]A(y∞)), ϕ

)|
≤ K (M)‖ȳn − y∞‖W 2,4‖ȳn‖2W 1,∞‖ȳn‖H2‖ϕ‖2

+ C(‖y∞‖W 1,∞‖ȳn‖H2 + ‖ȳn‖W 1,∞‖y∞‖H2)‖ȳn − y∞‖W 1,∞‖ϕ‖2
+ C(‖ȳn‖W 1,∞ + ‖y∞‖W 1,∞)‖y∞‖W 1,∞‖ȳn − y∞‖H2‖ϕ‖2
+ C‖ȳn − y∞‖W 1,∞‖y∞‖H2‖y∞‖W 1,∞‖ϕ‖2,

which gives

Ē

∫ T

0
|(θM (ȳn)div(|A(ȳn)|2A(ȳn)) − θM (y∞)div(|A(y∞)|2A(y∞)), ϕ

)|dt → 0.

Finally, the property (2.7) and (4.36) allow to write

‖θM (ȳn)G(·, ȳn) − θM (ȳ∞)G(·, y∞)‖2
L2

(
�̄,L2

(
0,T :L2(H,(L2(D))d )

))

= Ē

∑
k≥1

∫ T

0
‖θM (ȳn)σk(·, ȳn) − θM (y∞)σk(·, y∞)‖22dt

≤ K (M)Ē
∑
k≥1

∫ T

0

(
|θM (ȳn) − θM (y∞)|2‖σk(·, ȳn)‖22

+ |θM (y∞)|2‖σk(·, ȳn) − σk(·, y∞)‖22
)
dt

≤ K (M, L)Ē

∫ T

0
‖ȳn − y∞‖2W 2,4

(
1 + ‖ȳn‖22

)
dt .

Using Lemma 14 and (4.24), we obtain

Ē

∫ T

0
‖ȳn − y∞‖2W 2,4

(
1 + ‖ȳn‖22

)
dt → 0, as n → ∞,

which give (4.35). ��
The convergence (4.35) implies the following convergence of the stochastic term.
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Lemma 17 We have
∫ ·

0
θM (ȳn)G(·, ȳn)dW∞

→
∫ ·

0
θM (y∞)G(·, y∞)dW∞ in L2(�̄, C([0, T ], (L2(D))d

))
, as n → ∞.

(4.37)

Proof Thanks to Burkholder–Davis–Gundy inequality and (4.35), we obtain

Ē sup
r∈[0,T ]

∥∥∥∥
∫ ·

0
[θM (ȳn)G(·, ȳn) − θM (y∞)G(·, y∞)]dW∞

∥∥∥∥
2

2

≤ CĒ

∑
k≥1

∫ T

0
‖θM (ȳn)σk(·, ȳn) − θM (y∞)σk(·, y∞)‖22ds → 0, as n → ∞.

��

4.6 Proof of Theorem 5

Let ei ∈ Wn and t ∈ [0, T ], from (4.20) we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(v(ȳn(t)), ei ) − (v(ȳn0 ), ei )

=
∫ t

0

(
ν�ȳn − θM (ȳn)(ȳn · ∇)v(ȳn)

−
∑
j

θM (ȳn)v(ȳn)
j∇ ȳ j

n + (α1 + α2)θM (ȳn)div(A(ȳn)
2)

+ βθM (ȳn)div(|A(ȳn)|2A(ȳn)) + Ūn, ei
)
dt +

∫ t

0

(
θM (ȳn)G(·, ȳn), ei

)
dW∞,

ȳn(0) = ȳn0 .

(4.38)

By letting n → ∞ in (4.38), and combining Lemmas 15, 16 and 17 and the equal-
ity 4.30, we deduce

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(v(y∞(t)), ei ) − (v(ȳ0), ei )

=
∫ t

0

(
ν�y∞ − θM (y∞)(y∞ · ∇)v(y∞) −

∑
j

θM (y∞)v(y∞) j∇ y j∞

+ (α1 + α2)θM (y∞)div(A(y∞)2) + βθM (y∞)div(|A(y∞)|2A(y∞)) + Ū , ei
)
dt

+
∫ t

0

(
θM (y∞)G(·, y∞), ei

)
dW∞,

y∞(0) = ȳ0.
(4.39)
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Since W is separable Hilbert space, the last equality holds for any φ ∈ W . Conse-
quently, P-a.s. and for any t ∈ [0, T ]

(y∞(t), φ)V = (y∞(0), φ)V +
∫ t

0

{(
ν�y∞ − θM (y∞)(y∞ · ∇)v(y∞)

−
∑
j

θM (y∞)v(y∞) j∇ y j∞

+ (α1 + α2)θM (y∞)div[A(y∞)2], φ)

+ (
βθM (y∞)div[|A(y∞)|2A(y∞)] + Ū , φ

)}
dt

+
∫ t

0
θM (y∞)

(
G(·, y∞), φ

)
dW∞ for all φ ∈ V , (4.40)

and L(y∞(0), Ū ) = L(y0,U ).
It is very important to note that, a priori, (4.40) holds P̄-a.s, for all t ∈ [0, T ] in

V ′ but we have proved that y∞ ∈ L p(�̄; L∞(0, T ; W̃ )), which ensures that the third
derivative of y∞ belongs to L p(�̄; L∞(0, T ; (L2(D))d)). Therefore, (4.40) holds in
L2(D)-sense (not in the distributional sense).

Our aim is to construct probabilistic strong solution. The idea is to prove an
uniqueness result and use the link between probabilistic weak and strong solutions
via Yamada–Watanabe theorem. Unfortunately, the solution of (4.40) is governed by
strongly non-linear systemand the uniqueness for (4.40) does not hold globally in time.
For that, we will introduce a modified problem based on (4.40), where the uniqueness
holds, then we will use the generalization of Yamada–Watanable–Engelbert theorem
(see [22]) to get a probabilistic strong solution for the modifed problem. This will be
the aim of the next Sect. 5.

5 The strong solution

5.1 Local martingale solution of (2.1)

In order to define strong local solution to (2.1), we need to construct the solution on
the initial probability space. For that, define the following sequence of stopping time

τM := inf{t ≥ 0 : ‖y∞(t)‖W 2,4 ≥ M} ∧ T .

From (4.24), we recall that y∞ ∈ L2(�̄; C([0, T ]; (W 2,4(D))d)
)
and τM is well-

defined stopping time. It’sworth noting that, since y∞ is bounded in L p(�̄; L∞(0, T ; W̃ )),
τM is a.s. strictly positive provided M is chosen large enough. Then (y∞, τM ) is a
local martingale solution of (2.1) such that

y∞(· ∧ τM ) ∈ C([0, T ]; (W 2,4(D))d) P̄ a.s.
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and y∞(· ∧ τM ) ∈ L p(�̄; L∞(0, T ; W̃ )). Set ȳ(t) := y∞(t ∧ τM ) for t ∈ [0, T ] and
note that, since y∞ is continuous, one has

τM = inf{t ≥ 0 : ‖ȳ(t)‖W 2,4 ≥ M} ∧ T . (5.1)

We will refer to ȳ as the solution of the "modified problem". From Theorem 5, (ȳ, τM )

(τM is given by (5.1)) satisfies the following equation:

(ȳ(t), φ)V −
∫ t∧τM

0

{
(ν�ȳ − (ȳ · ∇)v(ȳ) −

∑
j

v(ȳ) j∇ ȳ j , φ)

+ ((α1 + α2)div(A(ȳ)2) + βdiv(|A(ȳ)|2A(ȳ)) + Ū , φ)
}
ds

= (ȳ(0), φ)V +
∫ t∧τM

0
(G(·, ȳ), φ)dW̄ P̄ a.s. in �̄ for all t ∈ [0, T ]. (5.2)

5.2 Local stability for (5.2)

Our aim is to prove the following stability result of (5.2).

Lemma 18 Assume that (W(t))t≥0 is a cylindrial Wiener process in H0 with respect
to the stochastic basis (�,F , (Ft )t≥0, P) and y1, y2 are two solutions to (5.2)
with respect to the initial conditions y10 , y

2
0 and the forces U1,U2, respectively, on

(�,F , (Ft )t≥0, P). Then, there exists C(M, L, T ) > 0 such that

E sup
s∈[0,τ 1M∧τ 2M ]

‖y1(s) − y2(s)‖2V ≤ C(M, L, T )
[
E‖y10 − y20‖2V

+ E

∫ τ 1M∧τ 2M

0
‖U1(s) −U2(s)‖22ds

]
. (5.3)

Proof Let (y1, τ 1M ) and (y2, τ 2M ), where yi ∈ C([0, T ]; (W 2,4(D))d), i = 1, 2, P-a.s.
be two solutions of (5.2) with the initial conditions y10 , y

2
0 and the forces U1,U2,

respectively.
Set y = y1 − y2, y0 = y10 − y20 and U = U1 − U2, then we have for any t ∈

[0, τ 1M ∧ τ 2M ]

v(y(t)) − v(y0) = −
∫ t

0
∇(P̄1 − P̄2)ds + ν

∫ t

0
�y − [

(y · ∇)y1 + (y2 · ∇)y
]
ds

+
∫ t

0
[div(N (y1)) − div(N (y2))]ds +

∫ t

0
[div(S(y1)) − div(S(y2))]ds

+
∫ t

0
Uds +

∫ t

0
[G(·, y1) − G(·, y2)]dW,

where we used an equivalent form of (5.2), see [7, Appendix], such that

S(y) := β
(
|A(y)|2A(y)

)
, N (y) := α1

(
y · ∇A(y) + (∇ y)T A(y) + A(y)∇ y

) + α2(A(y))2.
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Let t ∈ [0, τ 1M ∧ τ 2M ], by applying the operator (I − α1P�)−1 to the last equations
and using Itô formula, one gets

d‖y1 − y2‖2V + 4ν‖Dy‖22dt
= −2

∫

D

[
(y · ∇)y1 + (y2 · ∇)y

]
ydxdt + 2〈 div(N (y1) − N (y2)), y〉dt

+ 2〈 div(S(y1) − S(y2)), y〉dt + 2(U1 −U2, y1 − y2)dt

+ 2(G(·, y1) − G(·, y2), y1 − y2)dW +
∑
k≥1

‖σ̃ 1
k − σ̃ 2

k‖2V dt

= (I1 + I2 + I3 + I4)dt + I5dW + I6dt,

where σ̃k
i is the solution of (2.5) with fi = σk(·, yi ),∀k ≥ 1, i = 1, 2. Notice that,

by using [6, Theorem 3] and (2.7) we deduce

I6 =
∑
k≥1

‖σ̃ 1
k − σ̃ 2

k‖2V ≤
∑
k≥1

‖σk(·, y1) − σk(·, y2)‖22 ≤ L‖y1 − y2‖22.

We will estimate Ii , i = 1, . . . , 4. Since V ↪→ L4(D), the first term verifies

|I1| = 2

∣∣∣∣
∫

D
(y · ∇)y1 · ydx

∣∣∣∣ ≤ C‖y‖24‖∇ y1‖2 ≤ C‖y‖2V ‖∇ y1‖2 ≤ C‖y‖2V ‖y1‖H1 .

After an integration by parts, the term I3, can be treated using the same arguments as
in [8, Sect. 3], the term on the boundary vanish and we have

I3 = 2〈div(S(y1) − S(y2)), y1 − y2〉 = −2
∫

D
(S(y1) − S(y2)) · ∇ ydx

= −β

2
(

∫

D
(|A(y1)|2 − |A(y2)|2)2dx +

∫

D
(|A(y1)|2 + |A(y2)|2)|A(y1 − y2)|2dx) ≤ 0.

Concerning I4, one has

|I4| = 2

∣∣∣∣
∫

D
(U1 −U2) · ydx

∣∣∣∣ ≤ ‖U1 −U2‖22 + ‖y‖22 ≤ ‖U1 −U2‖22 + ‖y‖2V .

Let us estimate the term I2. Integrating by parts and taking into account that the
boundary terms vanish (see [8, Sect. 3]), we deduce

I2 = 2〈 div(N (y1) − N (y2)), y〉 = −2
∫

D
(N (y1) − N (y2)) · ∇ ydx

= −α2

∫

D

(
A(y1)

2 − A(y2)
2) · A(y)dx − α1

∫

D

(
y1 · ∇A(y1) − y2 · ∇A(y2)

) · A(y)dx

− α1

∫

D
((∇ y1)

T A(y1) + A(y1)∇ y1 − (∇ y2)
T A(y2) − A(y2)∇ y2) · A(y)dx

= −α2 I
1
2 − α1 I

2
2 − α1 I

3
2 .
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Since

I 12 =
∫

D

(
A(y1)

2 − A(y2)
2) · A(y)dx =

∫

D

(
A(y)A(y1) + A(y2)A(y)

) · A(y)dx;

I 22 =
∫

D

(
y1 · ∇A(y1) − y2 · ∇A(y2)

) · A(y)dx

=
∫

D

(
y1 · ∇A(y1 − y2) + (y1 − y2) · ∇A(y2)

) · A(y)dx

=
∫

D

(
y · ∇A(y2) · A(y)dx;

I 32 =
∫

D
((∇ y1)

T A(y1) + A(y1)∇ y1 − (∇ y2)
T A(y2) − A(y2)∇ y2) · A(y)dx

= 2
∫

D

(
A(y1)A(y)) · ∇ y1 − (A(y2)A(y)) · ∇ y2

)
dx

= 2
∫

D

(
(A(y))2 · ∇ y1 + (A(y2)A(y)) · ∇ y

)
dx;

the Hölder’s inequality and the embedding H1(D) ↪→ L4(D) yield

|I 12 | ≤
∫

D
|(A(y)A(y1) + A(y2)A(y)

)| · |A(y)|dx ≤ C(‖y1‖W 1,∞ + ‖y2‖W 1,∞)‖∇ y‖22;

|I 22 | ≤
∫

D
|(y · ∇A(y2) · A(y)|dx ≤ C‖y‖4‖y2‖W 2,4‖∇ y‖2 ≤ C‖y2‖W 2,4‖∇ y‖22;

|I 32 | ≤ C
∫

D
|((A(y))2 · ∇ y1 + (A(y2)A(y)) · ∇ y

)|dx ≤ C(‖y1‖W 1,∞ + ‖y2‖W 1,∞)‖∇ y‖22.

Then the embeddingW 2,4(D) ↪→ W 1,∞(D)gives |I2| ≤ C(‖y1‖W 2,4+‖y2‖W 2,4)‖y‖2V .

By gathering the previous estimates, there exists M0 > 0 such that

‖y(t)‖2V + 4ν
∫ t

0
‖Dy‖22ds

≤ ‖y0‖2V + M0

∫ t

0
(‖y1‖W 2,4 + ‖y2‖W 2,4 + 1)‖y‖2V ds +

∫ t

0
‖U1 −U2‖22ds

+ 2
∫ t

0
(G(·, y1) − G(·, y2), y1 − y2)dW.

Thanks to Burkholder–Davis–Gundy inequality, for any δ > 0, one has

2E sup
s∈[0,τ 1M∧τ 2M ]

|
∫ s

0
(G(·, y1) − G(·, y1), y)dW|

= 2E sup
s∈[0,τ 1M∧τ 2M ]

∣∣∣∣∣∣
∑
k≥1

∫ s

0
(σk(·, y1) − σk(·, y2), y)dβk

∣∣∣∣∣∣
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≤ CE[
∑
k≥1

∫ τ 1M∧τ 2M

0
(σk(·, y1) − σk(·, y2), y)2ds]1/2

≤ δE sup
s∈[0,τ 1M∧τ 2M ]

‖y‖22 + CδE

∫ τ 1M∧τ 2M

0
‖y‖22dr .

An appropriate choice of δ and taking into account that t ∈ [0, τ 1M ∧ τ 2M ] yield

E sup
s∈[0,t∧τ 1M∧τ 2M ]

‖y(s)‖2V ≤ E‖y0‖2V + E

∫ t∧τ 1M∧τ 2M

0
‖U1(s) −U2(s)‖22ds

+ M0E

∫ t∧τ 1M∧τ 2M

0
(‖y1(s)‖W 2,4 + ‖y2(s)‖W 2,4 + 1)‖y(s)‖2V ds

≤ E‖y0‖2V + E

∫ t∧τ 1M∧τ 2M

0
‖U1(s) −U2(s)‖22ds

+ M0(2M + 1)E
∫ t∧τ 1M∧τ 2M

0
‖y(s)‖2V ds. (5.4)

Finally, Gronwall’s inequality ensures Lemma 18. ��

5.3 Pathwise uniqueness of (5.2)

If y10 = y20 and U1 = U2, it follows from Lemma 18 that the corresponding solutions
y1 and y2 coincide P̄-a.s. for any t ∈ [0, τ 1M ∧ τ 2M ]. Then from the definition of
stopping time (5.1), we obtain τ 1M = τ 2M P̄-a.s. Moreover, notice that yi (t) = yi (τ iM )

for any τ iM < t ≤ T , i = 1, 2 and we are able to conclude that pathwise uniqueness
holds for (5.2).

5.4 Strong solution of (5.2)

Let (�,F , (Ft )t≥0, P) be a stochastic basis and (W(t))t≥0 be a (Ft )-cylindrical
Wiener process with values in H0. From Sects. 5.1 and 5.3, it follows the existence
of weak probabilistic solution and pathwise (pointwise) uniqueness for compatible
solutions (see [22, Def. 3.1 & Rmk. 3.5]) of the modified problem (5.2). By using
Theorem [22, Thm. 3.14], we are able to deduce

Lemma 19 Let M ∈ N be large enough, there exist a unique strong solution defined
on (�,F , (Ft )t≥0, P), denoted by yM and (ζM )M, a sequence of a.s. strictly positive
(Ft )-stopping time such that:

• yM is a W-valued predictable process and ζM := inf{t ≥ 0 : ‖yM (t)‖W 2,4 ≥
M} ∧ T .

• yM belongs to the space

L p(�; C([0, T ], (W 2,4(D))d)) ∩ L p
w−∗(�; L∞(0, T ; W̃ ));
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• yM satisfies the following equality, P-a.s. for all t ∈ [0, T ]

(yM (t), φ)V = (y0, φ)V +
∫ t∧ζM

0

(
ν�yM − (yM · ∇)v(yM ) −

∑
j

v(yM ) j∇(yM ) j

+ (α1 + α2)div(A(yM )2) + βdiv(|A(yM )|2A(yM )) +U , φ
)
ds (5.5)

+
∫ t∧ζM

0
(G(·, yM ), φ)dW, for all φ ∈ V .

6 Proof of Theorem 4

Let M ∈ N be large enough and note that (yM , ζM ) (see Lemma 19) is a local strong
solution to (2.1) in the sense of Definition 1.

6.1 Local pathwise uniqueness

Let (z1, �1) and (z2, �2) be two local strong solutions to (2.1), in the sense of Defini-
tion 1. Define the stopping time

θS := inf{t ≥ 0 : ‖z1(t ∧ �1)‖W 2,4 + ‖z2(t ∧ �2)‖W 2,4 ≥ S} ∧ T ; S ∈ N.

Note θS → T as S → ∞, since (zi )i=1,2 are bounded in L p
w−∗(�; L∞(0, T ; W̃ ))

by a positive constant independent of S. By using the same arguments of the proof of
Lemma 18, we deduce

P
(
z1(t) = z2(t); ∀t ∈ [0, �1 ∧ �2 ∧ θS]

) = 1.

By letting S → ∞, we are able to get the local pathwise uniqueness, in the sense of
Definition 2 (i). Namely

P
(
z1(t) = z2(t); ∀t ∈ [0, �1 ∧ �2]

) = 1.

6.2 Maximal strong solution

Our aim is to show that the solution can be extended until a maximal time interval.
It is worth mentioning that analogous extension results can be found in the literature
(see e.g. [4, 19, 20]).

Let A be the set of all stopping times corresponding to a local pathwise solution
of (2.1) starting from the initial datum y0 and in the presence of the external force U .
Thanks to Lemma 19, the setA is nonempty. Set t = supA and choose an increasing
sequence (ζM )M ⊂ A such that lim

M→∞ ζM = t, we recall that ζM := inf{t ≥ 0 :
‖yM (t)‖W 2,4 ≥ M} ∧ T and yM satisfies (5.5). Due to the pathwise uniqueness, we

define a solution y on
⋃
M∈N

[0, ζM ] by setting y := yM on [0, ζM ].
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For each m > 0, consider

σm = t ∧ inf{0 ≤ t ≤ T | ‖y(t)‖W 2,4 ≥ m}.

Recall that y is continuouswith values in (W 2,4(D))d andσm is awell-defined stopping
time. On the other hand, note that for a.e. ω ∈ �, there existsm > 0 such that σm > 0
i.e. σm is a strictly positive stopping time P-a.s. It follows that (y, σm) is a local strong
solution for each m > 0, by using the continuity and the uniqueness of the solution.

Let us show that σm < t on [t < T ]. Assume that P(σm = t) > 0, since (y, σm) is
a local strong solution then there exists another stopping time ρ > σm and a process
y∗ such that (y∗, ρ) is a local strong solution with the same data, which contradict
the maximality of t. Therefore, P(t = σm) = 0. In conclusion, σm is an increasing
sequence of stopping time, which converges to t. Additionaly, on the set [t < T ], one
has

sup
t∈[0,σm ]

‖y(t)‖W 2,4 ≥ m

and sup
t∈[0,t)

‖y(t)‖W 2,4 = ∞ on [t < T ].

Remark 6 Thanks to Remark 5, we obtain that yM ∈ L p(�; C([0, T ], (W 2,q(D))d))

for q < 6 in the 3D case. Therefore, one can replace ζM (see Lemma 19) by the
following stopping time

ζ̃M := inf{t ≥ 0 : ‖yM (t)‖W 2,q ≥ M} ∧ T .

• In the 2D case, we obtain that yM ∈ L p(�; C([0, T ], (W 2,a(D))d)) for large finite
a < ∞ and the stopping time ζM (see Lemma 19) can be replaced by

˜̃ζM := inf{t ≥ 0 : ‖yM (t)‖W 2,a ≥ M} ∧ T , for large a < ∞.

In other words, the life span of the trajectories of the solution to (2.1) is larger in 2D
than 3D case.

Remark 7 • An important multiplicative noise that can be considered corresponds
to the following linear noise

G(·, y)dWt = H(u)dBt := (u − α1�u)dBt ,

where (Bt )t≥0 is one dimensional R−valued Brownian motion. Notice that H :
W̃ → L2(R, (H1(D))d) and

‖H(u)‖2L2(R,(H1(D))d ))
≡ ‖u − α1�u‖2

(H1(D))d
≤ C‖u‖2

W̃
.

By performing minor modifications, we are able to prove Theorem 4 by replacing
G(·, u)dW by H(u)dBt .
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• We wish to draw the reader’s attention to the fact that the same analysis can
be applied to an additive noise case, with G ∈ L p

(
�; C([0, T ], L2(H, V ))

)
. One

example is the following: let σk : [0, T ] → V such that sup
t∈[0,T ]

∑
k≥1

‖σk(t)‖2V < ∞,

we can define G : [0, T ] → L2(H, V ) by Gek = σk, k ∈ N. The noise can be
understood in the following sense

∫ T

0
GdW =

∑
k≥1

∫ T

0
σkdβk

and
∫ T

0
‖G(t)‖2L2(H,V )dt =

∑
k≥1

∫ T

0
‖σk(t)‖2V dt .

• If one sets β = 0 in (2.1), then a similar estimates can be obtained and the same
result holds for second grade fluids model, by following the same analysis.
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