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Abstract
We develop a multilevel Monte Carlo (MLMC)-FEM algorithm for linear, elliptic dif-
fusion problems in polytopal domain D ⊂ R

d , with Besov-tree random coefficients.
This is to say that the logarithmsof the diffusion coefficients are sampled fromso-called
Besov-tree priors, which have recently been proposed to model data for fractal phe-
nomena in science and engineering. Numerical analysis of the fully discrete FEM for
the elliptic PDE includes quadrature approximation and must account for (a) nonuni-
form pathwise upper and lower coefficient bounds, and for (b) low path-regularity
of the Besov-tree coefficients. Admissible non-parametric random coefficients corre-
spond to random functions exhibiting singularities on random fractals with tunable
fractal dimension, but involve no a-priori specification of the fractal geometry of sin-
gular supports of sample paths. Optimal complexity and convergence rate estimates
for quantities of interest and for their second moments are proved. A convergence
analysis for MLMC-FEM is performed which yields choices of the algorithmic steer-
ing parameters for efficient implementation. A complexity (“error vs work”) analysis
of the MLMC-FEM approximations is provided.

Keywords Multilevel Monte Carlo · Elliptic diffusion PDE · Besov prior · Galton
Watson tree · Uncertainty quantification

1 Introduction

The efficient numerical solution of partial differential equations with uncertain inputs
is key in forward uncertainty quantification, i.e., the computational quantification of

The datasets generated during and/or analysed during the current study are available from the
corresponding author on reasonable request.

B Andreas Stein
andreas.stein@sam.math.ethz.ch

1 ETH Zurich, Seminar for Applied Mathematics, Zurich, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40072-023-00313-w&domain=pdf
http://orcid.org/0000-0003-3829-1467


Stochastics and Partial Differential Equations: Analysis and Computations (2024) 12:1574–1627 1575

uncertainty of solutions to PDEs with uncertain inputs. It is also crucial in computa-
tional inverse uncertainty quantification, e.g. viaMarkov chainMonte Carlo methods,
where numerous numerical solves of the forward model subject to realizations of
the uncertain input are required. Here, we consider the linear, elliptic diffusion with
uncertain coefficient. It models a wide range of phenomena such as diffusion through
a medium with uncertain or even unknown permeability, e.g. in subsurface flow, light
scattering in dust clouds, to name but a few. Physical modelling of subsurface flow in
particular stipulates systems of fractures of uncertain geometry with high permeability
along fractures (see, e.g., [8] and the references there). With fracture geometry being
only statistically known, it is natural in computational uncertainty quantification (UQ)
to specify the geometry in a nonparametric fashion, rather than, for instance, through
a Gaussian random field (GRF for short) with a known, parametric two-point correla-
tion to be calibrated from experimental data. This function space perspective has also
become topical recently in the context of inverse imaging noisy signals. Modelling
with random, fractal geometries also has found applications in biology (roots, lungs
[2]). There, Gaussian parametric models have been found computationally efficient
due to the availability of padding and circulant embedding based numerics, enabling
the use of fast Fourier transform algorithms for sample path generation. However,
Gaussian models are perceived as inadequate for the efficient representation of edges
and interfaces in imaging. Accordingly, non-parametric representations of inputs with
fractal irregularities in sample paths have been proposed recently, e.g. in [19, 23], and
the references there. We also mention the so-called Besov priors in Bayesian inverse
problems with elliptic PDE constraints (e.g. [4, 22, 24] and the references there).

In the present paper, we investigate so-called Besov random tree priors [23], as
stochastic log-diffusion coefficient in a linear elliptic PDE. These priors are given
by a wavelet series with stochastic coefficients, and certain terms in the expansion
vanishing at random, according to the law of so-called Galton-Watson trees. Samples
of the corresponding randomfields involve fractal geometries, hence theBesov random
tree prior may be a viable candidate in applications, where models based on GRFs do
not allow for sufficiently flexibility. We quantify the pathwise regularity of the random
tree prior in terms of Hölder-regularity, and investigate the forward propagation of the
uncertainty in the elliptic PDE model in a bounded domain. All results in the present
article encompass the “standard” Besov prior from [24] as special case, when no
terms in the wavelet series are eliminated. As we point out in our analysis, regularity
is inherently low, both with respect to the spatial and stochastic domain of the random
field. This is taken into account when developing efficient numerical methods for the
elliptic PDE problem at hand.

We develop a multilevel Monte Carlo (MLMC) Finite Element (FE) simulation
algorithm and furnish its mathematical analysis for the estimation of quantities of
interest (QoI) in the forward PDE model. Multilevel Monte Carlo methods ([6, 14,
15]) are, by now, a well-established methodology in computational UQ, and are effec-
tive in regimes with comparably low regularity. We mention that our MLMC-FE error
analysis includes the case of standard low-regularity Besov priors as a special case. In
contrast, higher-order methods that consider an equivalent parametric, deterministic
PDE problem, such as (multilevel) Quasi-Monte Carlo ([20]), generalized polyno-
mial chaos (gPC) expansions ([21]), or multilevel Smolyak quadrature ([28]) are not
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suitable in the present random tree model: The parametrization of the prior involves
discontinuities in the stochastic domain, which strongly violates the regularity require-
ments of the aforementioned higher-order methods. We refer to Appendix A.3 for a
detailed discussion. On the other hand, MLMC techniques merely require square-
integrability of the pathwise solution

1.1 Contributions

For a model linear elliptic diffusion equation, in a polytopal domain D ⊂ R
d , we

provide the mathematical setting and the numerical analysis of a MLMC-FEM for
diffusion in random media with log-fractal Besov random tree structure. In particular,
we establish well-posedness of the forward problem including strong measurability of
random solutions (a key ingredient in the ensuing MLMC-FE convergence analysis),
and pathwise almost sure Besov regularity of weak solutions. Technical results of
independent interest include: (i) Bounds on exponential moments of Besov random
variables in Hölder norms, generalizing results in [11, 23, 24], (ii) Numerical analysis
of elliptic forward problems with fractal coefficient, in particular bounds on the fractal
scale truncation error and on the finite element approximation error, as well as the
impact of numerical quadrature in view of low (Hölder) path regularity of the random
coefficients, (iii) a completeMLMC-FE convergence analysis, for estimating themean
of non-linear functionals of the random solution field.

1.2 Preliminaries and notation

We denote by V′ the topological dual for any vector space V and by V′ 〈·, ·〉V the
associated dual pairing.WewriteX ↪→ Y for two normed spaces (X, ‖·‖X), (Y, ‖·‖Y),
if X is continuously embedded in Y, i.e., there exists C > 0 such that ‖ϕ‖Y ≤ C‖ϕ‖X
holds for all ϕ ∈ X. The Borel σ -algebra of any metric space (X, dX) is generated
by the open sets in X and denoted by B(X). For any σ -finite and complete measure
space (E, E, μ), a Banach space (X, ‖·‖X), and integrability exponent p ∈ [1,∞], we
define the Lebesgue-Bochner spaces

L p(E;X) := {ϕ : E → X| ϕ is strongly measurable and ‖ϕ‖L p(E;X) < ∞},

where

‖ϕ‖L p(E;X) :=
{(∫

E ‖ϕ(x)‖pXμ(dx)
)1/p

, p ∈ [1,∞)

esssupx∈E ‖ϕ(x)‖X, p = ∞.

In case that X = R, we use the shorthand notation L p(E) := L p(E;R). If E ⊂ R
d is

a subset of the Euclidean space, we assume E = B(E) andμ is the Lebesgue measure,
unless stated otherwise. For any bounded and connected spatial domain D ⊂ R

d we
denote for k ∈ N and p ∈ [1,∞] the standard Sobolev space Wk,p(D) with k-order
weak derivatives in L p(D). The Sobolev-Slobodeckji spacewith fractional order s ≥ 0
is denoted by Ws,p(D). Furthermore, Hs(D) := Ws,2(D) for any s ≥ 0 and we use
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the identification H0(D) = L2(D). Given thatD is a Lipschitz domain, we define for
any s > 1/2

Hs
0 (D) := ker(γ0) = {ϕ ∈ Hs(D)| γ0(ϕ) = 0 on ∂D}, (1)

Here, γ0 ∈ L(Hs(D), Hs−1/2(∂D)) denotes the trace operator.
Let C(D) denote the space of all continuous functions ϕ : D→ R. For any α ∈ N,

Cα(D) is the space of all functions ϕ ∈ C(D) with α continuous partial derivatives.
For non-integer α > 0, we denote by Cα(D) the space of all ϕ ∈ C�α(D) with
α−�α-Hölder continuous �α-th partial derivatives. For any positive, real α > 0 we
further denote by Cα(D) the Hölder-Zygmund space of smoothness α. We refer to,
e.g., [25, Section 1.2.2] for a definition. We denote by S(Rd) the Schwartz space of all
smooth, rapidly decaying functions, and with S′(Rd) its dual, the space of tempered
distributions. Moreover, for any open set O ⊆ R

d , D(O) denotes the space of all
smooth functions ϕ ∈ C∞(O) with compact support in O .

For the finite element error analysis we introduce a countable set H ⊂ (0,∞) of
discretization parameters, and denote by h ∈ H a generic discretization parameter,
such as in the present paper the FE meshwidth of a regular, simplicial and quasi-
uniform partition of the physical domain. We further assume there exists a decreasing
sequence (h�, � ∈ N) ⊂ H such that lim�→∞ h� = 0.

1.3 Layout of this paper

In Sect. 2 we introduce the class of random fields taking values in the Besov spaces
Bs
p,p which we will use in the sequel to model the logarithm of the diffusion coef-

ficient function. Using multiresolution (“wavelet”) bases in Bs
p,p, in Sects. 2.2, 2.3

we construct probability measures on Bs
p,p in the spirit of the Gaussian measure on

path space for the Wiener process, in Lévy-Cieselski representation. The multilevel
structure of the construction will be essential in the ensuing MLMC-FE conver-
gence analysis and its algorithmic realization. In Sect. 3 we introduce the linear,
elliptic divergence-form PDE with Besov-tree coefficients. We recapitulate (mostly
known) results on existence, uniqueness and on strong measurability of random solu-
tions. In Sect. 4 we introduce a conforming Galerkin Finite Element discretization
based on continuous, piecewise linear approximations in the physical domain. We
account for the error due to finite truncation of the random tree priors, and provide
sharp error bounds for the Finite Element discretization errors, under the (gener-
ally low) Besov regularity of the coefficient samples. Section5 then addresses the
MLMC-FE error analysis, also for Fréchet-differentiable, possibly nonlinear func-
tionals. Section6 then illustrates the theory with several numerical experiments,
where the impact of the parameter choices in the Besov random tree priors on the
overall error convergence of the MLMC-FEM algorithms is studied. Section7 pro-
vides a brief summary of the main results, and indicates several generalizations of
these and directions of further research. Appendix A collects definitions and key
properties of Galton-Watson trees which are used in the main text. Appendix B pro-
vides a detailed description of the FE implementation in the experiments reported in
Sect. 6.
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2 Random variables in Besov spaces

2.1 Wavelet representation of Besov spaces

Let T
d := [0, 1]d denote the d-dimensional torus for d ∈ N. We briefly recall the

construction of orthonormal wavelet basis on L2(Rd) and L2(Td) and the wavelet
representation of the associated Besov spaces. For more detailed accounts we refer to
[26, Chapter 1], [27, Chapter 1.2], and to [12, Chapter 5] for orthonormal wavelets in
multiresolution analysis (MRA).

2.1.1 Univariate MRA

Let φ and ψ be compactly supported scaling and wavelet functions in Cα(R), α ≥
1, suitable for multi-resolution analysis in L2(R). We assume that ψ satisfies the
vanishing moment condition

∫
R

ψ(x)xmdx = 0, m ∈ N0, m < α. (2)

One example are Daubechies wavelets with M := �α ∈ N vanishing moments also
known as DB(�α)-wavelets), that have support [−M + 1, M] and are in C1(R) for
M ≥ 5 (see, e.g., [12, Section 7.1]). For any j ∈ N0 and k ∈ Z, the MRA is defined
by the dilated and translated functions

ψ j,k,0(x) := φ(2 j x − k), and ψ j,k,1(x) := ψ(2 j x − k), x ∈ R. (3)

As ‖φ‖L2(R) = ‖ψ‖L2(R) = 1, it follows that ((ψ0,k,0), k ∈ Z) ∪ ((2 j/2ψ j,k,1), ( j, k)
∈ N0 × Z) is an orthonormal basis of L2(R).

2.1.2 Multivariate MRA

A corresponding isotropic1 wavelet basis that is orthormal in L2(Rd), d ≥ 2 may be
constructed by tensorization of univariate MRAs. We define index sets L0 := {0, 1}d
and L j := L0 \ {(0, . . . , 0)} for j ∈ N. We note that L j has cardinality |L j | = 2d if
j = 0, and |L j | = 2d − 1 otherwise. For any l ∈ L0, we define furthermore

ψ j,k,l(x) := 2d j/2
d∏

i=1
ψ j,ki ,l(i)(xi ), j ∈ N0, k ∈ Z

d , x ∈ R
d , (4)

to obtain that ((ψ j,k,l), j ∈ N0, k ∈ Z
d , l ∈ L j ) is an orthonormal basis of L2(Rd).

1 Anisotropic tensorizations leading upon truncation to so-called “hyperbolic cross approximations” may
be considered. As such constructions tend to inject preferred directions along the cartesian axes, we do not
consider them here.
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Orthonormal bases consisting of locally supported, periodic functions on the torus
T
d can be introduced by tensorization, as e.g. in [26, Section 1.3]. Given φ and ψ , we

fix a scaling factor w ∈ N such that

supp(ψw,0,l) ⊂
{
x ∈ R

d
∣∣ ‖x‖2 <

1

2

}
, l ∈ L0.

With this choice of w, it follows for j ∈ N0 that

supp(ψ j+w,0,l) ⊂
{
x ∈ R

d
∣∣ ‖x‖2 < 2− j−1} .

Now let K j := {k ∈ Z
d | 0 ≤ k1, . . . , kd < 2 j } ⊂ 2 j

T
d and note that |K j+w| =

2d( j+w). Define the one-periodic wavelet functions

ψ
per
j,k,l(x) :=

∑
n∈Z

d

ψ j,k,l(x − n), j ∈ N0, k ∈ K j , l ∈ L0, x ∈ R
d ,

and their restrictions to T
d by

ψ l
j,k(x) := ψ

per
j,k,l(x), j ∈ N0, k ∈ K j , l ∈ L0, x ∈ T

d . (5)

We now obtain for the index set Iw := { j ∈ N0, k ∈ K j+w, l ∈ L j } that

�w :=
(
(ψ l

j+w,k), ( j, k, l) ∈ Iw

)
(6)

is a L2(Td)-orthonormal basis, see [26, Proposition 1.34]. We next introduce Besov
spaces via suitable wavelet-characterization as developed in [26, Chapter 1.3]. For this
we introduce the set of one-periodic distributions on R

d given by

S′per (Rd) := {ϕ ∈ S′(Rd)
∣∣ ϕ(· − k) = ϕ for all k ∈ Z

d},

see [26, Eq. (1.131)]. We distinguish between spaces of one-periodic functions on R
d

and their restrictions to T
d :

Definition 2.1 1. For any p ∈ [1,∞) and s ∈ (0, α) the Besov space Bs,per
p,p (Rd) of

one-periodic functions on R
d is given by

Bs,per
p,p (Rd ) :=

⎧⎨
⎩ϕ ∈ S′per (Rd )

∣∣∣∣ ∑
( j,k,l)∈Iw

2
j p
(
s+ d+w

2 − d
p

)
|(ϕ, ψ

per
j+w,k,l )L2(Td )|p < ∞

⎫⎬
⎭ .

(7)

In case that p = ∞, one has

Bs,per∞,∞ (Rd ) :=
{

ϕ ∈ S′per (Rd )

∣∣∣∣ sup
( j,k,l)∈Iw

2
j
(
s+ d+w

2

)
|(ϕ, ψ

per
j+w,k,l )L2(Td )| < ∞

}
.

(8)
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2. For any p ∈ [1,∞) and s ∈ (0, α) the Besov space Bs
p,p(T

d) on T
d is given by

Bs
p,p(T

d ) :=
⎧⎨
⎩ϕ ∈ D′(Td )

∣∣∣∣ ∑
( j,k,l)∈Iw

2
j p
(
s+ d+w

2 − d
p

)
|(ϕ, ψ l

j+w,k)L2(Td )|p < ∞
⎫⎬
⎭ . (9)

In case that p = ∞, we set

Bs∞,∞(Td ) :=
{

ϕ ∈ D′(Td )

∣∣∣∣ sup
( j,k,l)∈Iw

2
j
(
s+ d+w

2

)
|(ϕ, ψ l

j+w,k)L2(Td )| < ∞
}

. (10)

Remark 2.2 Definition 2.1 may be generalized to define the spaces Bs,per
p,q (Rd) and

Bs
p,q(T

d) with p, q ∈ [1,∞] and p �= q, see [26, Chapter 1.3]. The random fields

introduced in Sects. 2.2 and 2.3 are naturally Bs
p,p(T

d)-valued by construction, thus
we only treat the case p = q for the sake of brevity. By [26, Theorem 1.29] there
exists a prolongation isomorphism

prlper : Bs
p,p(T

d) → Bs,per
p,p (Rd), (11)

that extends ϕ ∈ Bs
p,p(T

d) to its (unique) one-periodic counterpart prlper (ϕ) ∈
Bs,per
p,p (Rd). This in turn allows to identify any ϕ ∈ Bs

p,p(T
d) as the restriction of

a periodic function prlper (ϕ) ∈ Bs,per
p,p (Rd) to T

d . We use prlper to define (non-
periodic) Besov space-valued random variables on subsets D ⊂ T

d by restriction in
Sect. 3.2.

Definition 2.1 is based on an equivalent characterization of the spaces Bs,per
p,p (Rd)

and Bs
p,p(T

d). They are often (equivalently) defined using a dyadic partition of unity

(see e.g. [26, Definitions 1.22 and 1.27]): Using the latter definition for Bs,per
p,p (Rd),

[26, Theorem 1.36(i)] shows that the spaces (7) resp. (8) are isometrically isomorphic
to Bs,per

p,p (Rd). As a consequence of the prolongation map prlper in (11), the same
holds true for the spaces Bs

p,p(T
d), see [26, Theorem 1.37(i)].

2.1.3 Besov spaces and MRAs

Wedefine the subspace Vw+1 := span{ψ l
w,k | k ∈ Kw, l ∈ L0} ⊂ L2(Td) and observe

that dim(Vw+1) = 2d(w+1). By the multiresolution analysis for one-periodic, univari-
ate functions in [12, Chapter 9.3], it follows that ((ψ l

j,k), j ≤ w, k ∈ K j , l ∈ L j )

is another orthonormal basis of Vw+1. Hence, we may replace the first 2d(w+1) basis
functions in (5) to obtain the (computationally more convenient) L2(Td)-orthonormal
basis

� :=
(
(ψ l

j,k), ( j, k, l) ∈ I�

)
, I� := { j ∈ N0, k ∈ K j , l ∈ L j }. (12)
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Based on (12), we define for s > 0, p ∈ [1,∞), and sufficiently regular ϕ ∈ L2(Td)

the Besov norms

‖ϕ‖Bs
p,p(T

d ) :=
⎛
⎝ ∑

( j,k,l)∈I�

2
j p
(
s+ d

2− d
p

)
|(ϕ, ψ l

j,k)L2(Td )|p
⎞
⎠

1/p

, (13)

and

‖ϕ‖Bs∞,∞(Td ) := sup
( j,k,l)∈I�

2
j
(
s+ d

2

)
|(ϕ, ψ l

j,k)L2(Td )| < ∞. (14)

By Definition 2.1, it follows that ϕ ∈ Bs
p,p(T

d) if and only if ‖ϕ‖Bs
p,p(T

d ) < ∞.

2.1.4 Notation

We fix some notation for Besov, Hölder and Zygmund spaces to be used in the remain-
der of this paper. As the (periodic) domainT

d does not vary in the subsequent analysis,
we use the abbreviations Bs

p := Bs
p,p(T

d), Cα := Cα(Td) and Cα := Cα(Td) for con-
venience in the following. Furthermore, we will assume that the basis functions in
�w,� ⊂ Cα , are sufficiently smooth with Hölder index α > s for given s > 0, and
therefore omit the restriction s ∈ (0, α) in the following. In this case, it holds that �w

(and thus �) is a basis of Bs
p for p < ∞, see [26, Theorem 1.37].

We recall that for any s > 0 there holds Cs = Bs∞ (see [26, Remark 1.28]), as well
as Cs = Cs for s ∈ (0,∞) \ N, and Cs

� Cs for s ∈ N (see [25, Section 1.2.2]).
By (13) and (14) we further obtain the continuous embeddings

Bs
p ↪→ Bt

q if 1 ≤ p ≤ q < ∞ and s − d

p
≥ t − d

q
,

Bs
p ↪→ Bt∞ = Ct for t ∈

(
0, s − d

p

]
,

(15)

with the embedding constants in (15) bounded by one (cf. [27, Chapter 2.1]).

2.2 Besov priors

To introduce Besov space-valued random variables as in [24], we consider a complete
probability space (�,A, P). Following the constructions in [4, 11, 23], based on
the representation in (9), we now define Bs

p-valued random variables by replacing

the L2(Td)-orthogonal projection coefficients (ϕ, ψ l
j,k)L2(Td ) with suitable random

variables. More precisely, consider for any p ∈ [1,∞) an independent and identically
distributed (i.i.d.) sequence X = ((Xl

j,k), ( j, k, l) ∈ I�) of p-exponential random

variables. That is, each Xl
j,k : � → R is A/B(R)-measurable with density
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φp(x) := 1

cp
exp

(
−|x |

p

κ

)
, x ∈ R, cp :=

∫
R

exp

(
−|x |

p

κ

)
dx, (16)

where κ > 0 is a fixed scaling parameter. We recover the normal distribution with
variance κ

2 if p = 2, and the Laplace distribution with scaling κ for p = 1.

Definition 2.3 [24, Definition 9] Let � be the L2(Td)-orthogonal wavelet basis as
in (12), let s > 0, p ∈ [1,∞) and let X = ((Xl

j,k), ( j, k, l) ∈ I�) be an i.i.d. sequence
of p-exponential random variables with density φp as in (16). Let the random field
b : � → L2(Td) be given by

b(ω) :=
∑

( j,k,l)∈I�

η j X
l
j,k(ω)ψ l

j,k, ω ∈ �, where η j := 2
− j
(
s+ d

2− d
p

)
, j ∈ N0.

(17)

We call b a Bs
p-random variable.

The random variables b from Definition 2.3 are also referred to as Besov priors in
the literature on inverse problems. The following regularity results are well-known:

Proposition 2.4

1. ([24, Lemma 10], [11, Proposition 1]) Let b be a Bs
p-random variable for s > 0

and p ∈ [1,∞). Then, the following conditions are equivalent:

(i) ‖b‖Bt
p

< ∞ holds P-a.s.;

(ii) E

(
exp

(
ε‖b‖pBt

p

))
< ∞, ε ∈ (0, 1

4κ

)
;

(iii) t < s − d
p .

2. [11, Theorem 2.1] If, in addition, � forms a basis of Bt
p for a t < s − d

p , t /∈ N,
then it holds

E (exp (ε‖b‖Ct )) < ∞, ε ∈ (0, ε),

where ε > 0 is a constant depending on p, d, s and t.

Remark 2.5 Note that Bs
p-random variables as defined above only take values in Bt

p

for t < s − d
p based on the previous proposition. Nevertheless, we use the notion

Bs
p-random variables in the following, for a clearer emphasize on the dependence of

η j in (17) on s.
We derive a considerably stronger version of [11, Theorem 2.1] in Theorem 2.11

below, that implies in particular

E
(
exp

(
ε‖b‖pCt

))
< ∞, ε ∈ (0, ε),

for any p ≥ 1 and some ε > 0. In the Gaussian case with p = 2, this estimate would
be a consequence of Fernique’s theorem, however, we are not aware of a similar result
for arbitrary p ≥ 1 in the literature.
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We recall from [26, Theorem 1.37] that � forms an unconditional basis of Bt
p

(since p < ∞), if the scaling and wavelet functions φ and ψ satisfy φ,ψ ∈ Cα(Rd)

for α > t > 0 and the vanishing moment condition (2).

2.3 Besov random tree priors

Taking the cue from [23], we introduceBesov random tree priors in this subsection and
derive several regularity results for this Bs

p-valued random variable. We investigate

all results for periodic functions defined on the torus T
d in this subsection. For the

elliptic problem in Sect. 3, we will later introduce the corresponding Bs
p(D)-valued

random variables on physical domains D ⊂ R
d with D ⊆ T

d by their restrictions
from T

d (cf. Definition 3.6). The random tree structure in our prior construction is
based on certain set-valued random variables, so-called Galton-Watson (GW) trees.
For the readers’ convenience, definitions of discrete trees, GW trees, along with some
other useful results, are listed in Appendix A.

Definition 2.6 [23, Definition 3] Let �, s > 0, p ∈ [1,∞), X = ((Xl
j,k), ( j, k, l) ∈I�) and (η j , j ∈ N0) be as in Definition 2.3.

Let T denote the set of all trees with no infinite node (cf. Definition A.1) and let T :
� → T be a GW tree (cf. Definition A.3) with offspring distribution P = Bin(2d , β)

for β ∈ [0, 1], and independent of X . Furthermore, let IT be the set of wavelet indices
associated to T from (78).

We define the random tree index set IT (ω) := {( j, k, l)| ( j, k) ∈ IT (ω), l ∈ L j }
and

bT (ω) :=
∑

( j,k,l)∈IT (ω)

η j X
l
j,k(ω)ψ l

j,k, ω ∈ �. (18)

We refer to bT as a Bs
p-random variable with wavelet density β.

We have depicted a sample of a binomial GW tree and the associated set of wavelet
indices IT for a series expansion in one physical dimension (d = 1) in Fig. 1. Recall
that for d = 1 there holds L j = {1} for j ≥ 1.

Remark 2.7 Definition 2.6 actually slightly deviates from [23, Definition 3]. By defi-
nition of IT (ω), we include the constant functionψ

(0,...,0)
0,0 ≡ 1 ∈ L2(Td) in the series

expansion (18). Of course, adding the random constant X (0,...,0)
0,0 does not affect the

spatial regularity or integrability of bT . However, in our definition, series (18) has a
natural interpretation as orthogonal expansion of a random function with respect to
the (deterministic, fixed) basis �.

The tree structure in the “active” (i.e., with index in IT ) coefficients in the wavelet
representation of bT gives rise to random fractals on T

d , that occur whenever the tree
T in Definition 2.6 does not terminate after a finite number of nodes. It follows by
Lemma A.4, that the latter event occurs with positive probability if β ∈ (2−d , 1]. In
this case the Hausdorff dimension of the fractals is d + log2(β) ∈ (0, d], see [23,
Section 3] for further details.
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Fig. 1 Sample of a binomial GW tree T with offspring distribution P(2, β) with β = 0.5. Each box corre-
sponds to a noden of theGW tree, displayed are all nodeswith length |n| ≤ 3. The left entry in each box is the
noden ∈ T , givenby afinite sequenceof integers. The right entry is the node-to-wavelet coefficientmapn �→(
|n|, I2d,|n| ◦ I1d,|n|(n)

)
evaluated at n, that determines the associated wavelet indices ( j, k). Starting from

the “root node” � = (), the two children of each node are eliminated with probability 1−β, and independent
of each other. Once a node is eliminated (signified by an “(X)”), all of their offspring nodes are eliminated
as well. The remaining “surviving” nodes determine the associated random set of active wavelet indices

via IT :=
{(
|n|, I2d,|n| ◦ I1d,|n|(n)

) ∣∣ n ∈ T
}
= {(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 3), (3, 1), (3, 6)}.

Note that each n ∈ T is connected to the root node � through their ancestors, as indicated by the solid lines

Examples of realizations of a Bs
p-random variable on T

2 with varying wavelet density
β are shown in Fig. 2.

To treat elliptic inverse problems with bT as log-diffusion coefficient, we detail
the corresponding probability space of parameters. Let Q0 denote the univariate,
p-exponential measure on (R,B(R)) of the random variables Xl

j,k with Lebesgue
density as in (16). The product-probability space of the p-exponentials X is given by
(�p,Ap, Qp), where

�p := R
N, Ap :=

⊗
n∈N

B(R), and Qp :=
⊗
n∈N

Q0.

Now let s > 0 and p ∈ [1,∞) be fixed such that s > d
p . We define the weighted

�p-spaces

�
p
s :=

{
x =

(
xlj,k, ( j, k, l) ∈ I�

)
∈ R

N| ‖x‖s,p < ∞
}

, (19)

where

‖x‖s,p :=
⎛
⎝ ∑

( j,k,l)∈I�

2− j ps |xlj,k |p
⎞
⎠

1/p

. (20)
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Fig. 2 Samples of a Bs
p-valued random variable on T

2 = [0, 1]2 with s = p = 2 and wavelet density

β ∈ { 14 , 1
3 , 1

2 } (top row, from left to right) and β ∈ { 23 , 3
4 , 1} (bottom row, from left to right). All samples

are based on DB(5)-wavelets and the same array of random numbers, that have been sampled with a spatial
resolution of 29 × 29 equidistant grid points, and the expansion in (18) was truncated at N = 9 levels
of dyadic subdivision (cf. Sect. 4.1). By fixing the array of random numbers, the spatial grid and N , the
depicted “evolution” in the panels highlights the effect of an increasing wavelet density β. Note that the
case p = 2 and β = 1 in the bottom right corresponds to a Gaussian prior

Then (�
p
s , ‖·‖s,p) is a separable Banach space, for 1 ≤ p < ∞. Moreover, we observe

that for X ∼ Qp it holds

E(‖X‖ps,p) ≤
∑

( j,k,l)∈I�

2− j ps
E(|Xl

j,k |p)

≤ C
∞∑
j=0

2− j ps2d j (2d − 1) ≤ C
∞∑
j=0

2
− j p

(
s− d

p

)
< ∞,

since s > d
p , thusQp is concentrated on �

p
s .We therefore regard (�

p
s ,B(�

p
s ), Qp) as the

probability space of random coefficient sequences X in the expansions (17) and (18).
The set-valued random variable T is a GW tree, and hence takes values in the Polish
space (T, δT) of all trees with no infinite node. The metric δT and the associated
Borel σ -algebra B(T) with respect to T are stated explicitly in Definition A.2 in the
Appendix. The image measureQT of the GW tree T on (T,B(T)) then solely depends
on the parameters β and d of the offspring distribution P = Bin(2d , β), and is given
in Equation (76) in the Appendix. Hence, the parameter probability space of GW trees
is given by (T,B(T), QT ). To combine the random coefficients X with the GW tree
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T , we define the cartesian product � := �
p
s × T and equip � with the metric

d�((x1, t1), (x2, t2)) := ‖x1 − x2‖s,p + δT(t1, t2).

Proposition 2.8 The space (�, d�) is Polish with Borel σ -algebra given by B(�) =
B(�

p
s × T) = B(�

p
s )⊗ B(T).

Proof By Lemma [1, Lemma 2.1] the metric space (T, δT) with δT given in (74) is
complete and separable. Therefore, separability and completeness of (�, d�) follows
by [5, Corollary 3.39]. Moreover, B(�) = B(�

p
s × T) = B(�

p
s )⊗ B(T) holds by [5,

Theorem 4.44]. ��
We are now ready to define the probability space associated to the �

p
s × T-valued

random variable (X , T ): Let (�,A, P) be the product probabilty space given by

� := �
p
s × T, A := B(�

p
s )⊗ B(T), and P := Qp ⊗QT . (21)

We remark that the product structure of the measure P = Qp ⊗QT is tantamount to
stochastic independence of X and T . It still remains to identify a realization of the
random variable (X , T ) with the corresponding random tree prior bT . To this end, we
consider the canonical mapping

bT : � → L2(Td), ω �→
∑

( j,k,l)∈IT (ω)

η j X
l
j,k(ω)ψ l

j,k . (22)

The map bT : � → L2(Td) is indeed well-defined since ‖bT ‖L2(Td ) < ∞ holds due

to s > d
p . Moreover, bT isA/B(L2(Td))-measurable, as we show in Proposition 2.10

below. As bT is a L2(Td)-valued random variable, we may define the pushforward
probability measure of bT via

bT #P(B) := P(b−1T (B)), B ∈ B(L2(Td)). (23)

Thus, the associated probability space of Bs
p-randomvariables bT withwavelet density

β is

(L2(Td), B(L2(Td)), bT #P).

Remark 2.9 We know from Proposition 2.4 that bT #P is concentrated on Bt
p for any

t ∈ (0, s − d
p ). A more refined result that concentrates bT #P on Besov spaces Bt

q for
q ≥ 1 with smoothness index t = t(s, d, p, β, q) is given in Theorem 2.11 below.

We recall at this point that we have assumed Hölder-regularity � ⊂ Cα for some
α ≥ 1 in Sect. 2.1. For the remainder of this article, we will from now on implicitly
assume that the parameter s > 0 of a Bs

p-random variable satisfies α ≥ s > 0 for the
sake of presentation.
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Proposition 2.10 Let s > d
p , β ∈ [0, 1], and let bT be a Bs

p-random variable with

wavelet density β. Then bT : � → C(Td) and bT is (strongly) A/B(C(Td))-
measurable.

Proof Fix a t ∈ (0, s − d
p ) such that t /∈ N. The second part of Proposition 2.4 then

shows that bT ∈ Ct holds P-a.s., and thus bT : � �→ C(Td) follows, after possibly
modifying bT on a P-nullset.

As in Appendix A, we denote by U the set of all finite sequences in N and introduce
the subset UBin ⊂ U with entries in {1, . . . , 2d} as

UBin := {n ∈ U| ni ∈ {1, . . . , 2d} for i ∈ {1, . . . , |n|}}.

Note that T (ω) ⊂ UBin holds P-a.s., since P = Bin(2d , β). Now let Id, j be as in (77)
and recall from Appendix A.2 that ( j, k) ∈ IT (ω) if and only if there is n ∈ T (ω)

such that ( j, k) = (|n|,Id,|n|(|n|)). Hence, we may rewrite the series expansion (18)
as

bT (ω) =
∑

( j,k)∈IT (ω)

η j

∑
l∈L j

Xl
j,k(ω)ψ l

j,k

=
∑

n∈UBin

1{n∈T (ω)}η|n|
∑
l∈L|n|

Xl
|n|,Id,|n|(|n|)(ω)ψ l

|n|,Id,|n|(|n|).

As T : � → T is A/B(T)-measurable, it holds that 1{n∈T (·)} : � → {0, 1} is
measurable for any fixed n ∈ UBin. Also, the Xl

j,k are real-valued random variables

andψ l
j,k ∈ C(Td) by assumption. Thus, bT : � → C(Td) is measurable, and strongly

measurable as C(Td) is separable. ��

More insight in the pathwise regularity of Besov random tree priors, in particular
with regard to their Hölder regularity, is obtained by the following result.

Theorem 2.11 Let bT be a Bs
p-random variable with wavelet density β = 2γ−d as in

Definition 2.6 with γ ∈ (−∞, d].
1.) It holds that bT ∈ Lq(�; Bt

q), and hence bT ∈ Bt
q P-a.s., for all t > 0 and q ≥ 1

such that t < s + d−γ
q − d

p .

2.) Let s − d
p > 0 and t ∈ (0, s − d

p ). Then there is a εp > 0 such that

E

(
exp

(
ε‖b‖pCt

))
< ∞, ε ∈ (0, εp),

In particular, it holds bT ∈ Lq(�; Ct ) for any q ≥ 1.
3.) Let q ≥ 1 and s − d

p − min(γ,0)
q > 0. For any t ∈ (0, s − d

p − min(γ,0)
q ) it holds

bT ∈ Lq(�; Ct ).
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Proof (1) For given q ≥ 1 and t > 0 it holds by (13) that

‖bT ‖qBt
q
=

∑
( j,k,l)∈IT (ω)

2 jq(t+ d
2− d

q )
η
q
j |Xl

j,k(ω)|q =
∑

( j,k,l)∈IT (ω)

2 jq(t− d
q −s+ d

p )|Xl
j,k(ω)|q .

For any given j ∈ N, by Definition 2.6, the number of nodes v( j) on scale j in the
random tree T is binomial distributed (conditional on v( j − 1)) as

v( j) := #{k ∈ K j |( j, k, l) ∈ IT } ∼ Bin(2dv( j − 1), 2γ−d),

with initial value v(0) = 1. Now let (X j,m, j ∈ N0,m ∈ N) be an i.i.d. sequence of
p-exponential random variables, independent of v( j) for any j ∈ N, and recall that
l ∈ L j with |L0| = 2d and |L j | = 2d − 1 for ∈ N. We obtain by Fubini’s theorem,
Wald’s identity, E(v( j)) = (2dβ) j = 2 jγ , and since E

(|X j,m |q
)

< ∞ for any q > 0
that

E

(
‖bT ‖qBt

q

)
= E

⎛
⎝ ∞∑

j=0
2 jq(t− d

q−s+ d
p )

(2d−1)v( j)∑
m=1

|X j,m |q
⎞
⎠+ E

(|X0,2d |q
)

=
∞∑
j=0

2 jq(t− d
q−s+ d

p )
E

(
(2d − 1)v( j)

)
E
(|X j,m |q

)+ E
(|X0,2d |q

)

≤ 2dE
(|X1,1|q

) ∞∑
j=0

2 jq(t− d
q−s+ d

p+ γ
q )

,

with E
(|X1,1|q

)
< ∞. The series converges if t < s + d−γ

q − d
p , in which case

bT ∈ Lq(�; Bt
q), and hence bT ∈ Bt

q holds P-a.s.

(2) Now let q0 ≥ q ≥ 1, t0 > d
q0

and t = t0 − d
q0
, so that Bt0

q0 ↪→ Ct holds
by (15). The embedding follows by a direct comparison of the norms in (13), (14)
with t = t0 − d

q0
, and also shows that the corresponding embedding constant C0 > 0

is bounded by C0 ≤ 1.
We obtain with Hölder’s inequality and analogously to the first part the estimate

‖bT ‖qLq (�;Ct ) ≤ E

(
‖bT ‖q0Ct

) q
q0

≤ E

(
‖bT ‖q0

B
t0
q0

) q
q0

≤ 2
dq
q0 E

(|X1,1|q0
) q
q0

⎛
⎝ ∞∑

j=0
2
jq0(t0− d

q0
−s+ d

p+ γ
q0

)

⎞
⎠

q
q0

= 2
dq
q0 E

(|X1,1|q0
) q
q0

⎛
⎝ ∞∑

j=0
2
jq0(t−s+ d

p+ γ
q0

)

⎞
⎠

q
q0

.

(24)
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Now let t < s − d
p be fixed, and let γ ∈ (0, d]. For every fixed q ≥ max(2γ (s − d

p −
t)−1, 1), we choose q0 := q to obtain that

‖bT ‖qLq (�;Ct ) ≤ 2dE
(|X1,1|q

)⎛⎝ ∞∑
j=0

2 jq0(t−s+ d
p )/2

⎞
⎠

q
q0

≤ 2dE
(|X1,1|q

)⎛⎝ ∞∑
j=0

2− jγ

⎞
⎠

≤ CE
(|X1,1|q

)
,

(25)

with a constant C > 0 that is independent of q. We now define for given ε > 0, finite
n ∈ N and p ∈ [1,∞) the random variable

En(ω) :=
n∑

k=0

(ε‖bT (ω)‖pCt )k
k! , ω ∈ �.

Clearly, En(ω) → exp(ε‖bT (ω)‖pCt ) holds P-.a.s as n → ∞ and Inequality (25)

yields, for any n ∈ N and nγ := 1
p �2γ (s − d

p − t)−1�, that

E(En) =
n∑

k=0

εk

k!E(‖bT ‖pkCt ) ≤ C̃ +
n∑

k=nγ

εk

k!C
pk

E(|X1,1|pk)

= C̃ + E

⎛
⎝ n∑

k=nγ

(εC p|X1,1|p)k
k!

⎞
⎠ ,

where C̃ = C̃(γ, s, d, p, t) > 0. The monotone convergence theorem then shows that
for sufficiently small ε > 0 and t < s − d

p , it holds

E

(
exp(ε‖bT ‖pCt )

)
≤ C̃ + lim

n→∞E

⎛
⎝ n∑

k=nγ

(εC p|X1,1|p)k
k!

⎞
⎠

≤ C̃ + E
(
exp(εC p|X1,1|p)

)
< ∞.

(3) The claim for γ ∈ (0, d] follows by the previous part. For γ ∈ (−∞, 0], q ≥ 1
and t ∈ (0, s − d

p − γ
q ), we finally use q0 = q and t0 = t + d

q in (24) to obtain that

‖bT ‖Lq (�;Ct ) ≤ Cq
E
(|X1,1|q

)⎛⎝ ∞∑
j=0

2 jq(t−s+ d
p+ γ

q )

⎞
⎠ < ∞.

��
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Remark 2.12 [23, Theorems 4 and 5] state that bT ∈ Bt
p holds P-a.s. for all t ∈

(0, s−γ /p), and that bT /∈ Bs−γ /p
p occurs with probability 1− pβ > 0 for γ ∈ (0, d],

where pβ is the solution to the equation pβ = ((1− β)+ β pβ)2
d
(cf. Lemma A.4 in

the Appendix.) We emphasize that Theorem 2.11 significantly extends these previous
results, as we quantify precisely the regularity of bT in terms of Besov and Hölder-
Zygmund norms.

Recall that we may replace the Hölder-Zygmund spaces Ct in the second part of
Theorem 2.11 by the “usual” Hölder spaces Ct if t /∈ N (which is not true for integer
t). Theorem 2.11 shows that a wavelet density β = 2γ−d < 1 improves smoothness
in Bt

q , as the upper bound t < s + d−γ
q − d

p is decreasing in γ ∈ (−∞, d]. However,
given that γ > 0 we may not expect to gain any (pathwise) Hölder regularity beyond
t < s − d

p . This is not surprising with regard to Remark 2.7: bT admits an infinite

series expansion on random fractals in D for β > 2−d with positive probability.
Hence, the local Hölder-regularity of bT on such fractals corresponds to a Bs

p-random
variable b as in Definition 2.3 (with full wavelet density β = 1). In case that γ ≤ 0,
the series expansion of bT terminates almost surely after a finite number of terms.
As � ⊂ Cα , this shows that bT ∈ Cα almost surely if γ ≤ 0. Furthermore, we
may increase the smoothness exponent t for bT ∈ Lq(�; Ct ) to the admissible range
t < s − d

p − min(γ,0)
q . For large q, we see that essentially the restriction t < s − d

p
applies as for γ > 0. This in turn indicates that the bound

E

(
exp

(
ε‖b‖pCt

))
< ∞, ε ∈ (0, εp),

from part 2.) of Theorem 2.11 can not be improved to Hölder indices t ≥ s − d
p , even

if γ ≤ 0.

3 Linear elliptic PDEs with Besov random coefficients

In this section, we first recall well-posedness and regularity results for linear, second
order elliptic diffusion problems with random coefficient. Thereafter, we transfer the
results to a setting with Besov tree random diffusion coefficient by exploiting the
results from Sect. 2.

3.1 Well-posedness and regularity

Let D ⊂ R
d , d ∈ {1, 2, 3}, be a convex polygonal domain for d = 2, 3, and a finite

interval for d = 1, with the boundary ∂D consisting of a finite number of line or plane
segments. We consider the random elliptic problem to find u(ω) : D → R for given
ω ∈ � such that

−∇ · (a(ω)∇u(ω)) = f in D, u(ω) = 0 on ∂D. (26)
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The diffusion coefficient a in Problem (26) admits positive paths on D, i.e., a(ω) :
D→ R>0. Moreover, a is a random variable a : � → X, taking values in a suitable
Banach space X ⊂ L∞(D). The source term f : D → R is assumed to be a deter-
ministic function for the sake of simplicity, but may as well be modeled by a random
function f : D×� → R. For the variational formulation of Problem (26) we define
H := L2(D), V := H1

0 (D) and recall that ‖·‖V : V → R≥0, v �→ ‖∇v‖H defines a
norm on V by Poincare’s inequality. The weak formulation of Problem (26) for fixed
ω ∈ � is to find u(ω) ∈ V such that for any v ∈ V it holds∫

D
a(ω)∇u(ω) · ∇vdx =V ′ 〈 f , v〉V . (27)

Definition 3.1 The map ω �→ u(ω) ∈ V with u(ω) the solution of (27) is the pathwise
weak solution.

Existence and uniqueness of pathwise weak solutions are ensured by the following
theorem.

Theorem 3.2 Let a : � → L∞(D) be strongly A/B(L∞(D))-measurable such that

a−(ω) := essinfx∈D a(x, ω) > 0, P − a.s., (28)

and let f ∈ V ′. Then, there exists for all ω ∈ � a unique weak solution u(ω) ∈ V to
Problem (26). The map u : � → V is strongly A/B(V )-measurable.

Proof By the completeness of (�,A, P), we may assume without loss of generality
that a−(ω) > 0 and a(ω) ∈ L∞(D) holds for all ω ∈ �2.

Existence and uniqueness of a pathwise solution u(ω) now follows for all ω ∈ �

by the Lax-Milgram Lemma. To show strong measurability of u, we use Lipschitz
dependence of the coefficient-to-solution map: consider two diffusion coefficients
a1, a2 : � → L∞(D) that satisfy the assumption of the theorem with lower bounds
a1,−, a2,− > 0 as in (28) and denote by u1, u2 : � → V the associated unique weak
solutions. Equation (26) together with ‖v‖2V = ‖∇v‖2H and Hölder’s inequality yields
for any fixed coefficients a1, a2 ∈ L∞(D) such that ai,− := essinf x∈D ai (x) > 0 that

‖u1 − u2‖V ≤ ‖u2‖V
a1,−

‖a1 − a2‖L∞(D) ≤ ‖ f ‖V ′
a1,−a2,−

‖a1 − a2‖L∞(D). (29)

Therefore, the data-to-solution mapU : S → V , a �→ u is (Lipschitz) continuous
on the set S := {a ∈ L∞(D)| essinfx∈D a(x) > 0}. Since the pathwise weak solution
2 If this holds only P-.a.s., wemaymodify a : � → L∞(D) on a P-nullset to obtain a strongly measurable
modification ã : � → L∞(D) of a, so that essinfx∈D ã(x, ω) > 0 and ã ∈ L∞(D) holds for all ω ∈ �.
In fact, let

A0 := {ω ∈ �| a−(ω) ≤ 0 or a(ω) /∈ L∞(D)}.
Then P(A0) = 0 by assumption, and hence A0 ∈ A by completeness of (�,A, P). Thus, wemay consider,
for instance, the modification ã(ω) := a(ω)1{ω/∈A0} + 1{ω∈A0}. It is readily verified that ã is strongly
A/B(L∞(D))-measurable, and for all ω ∈ � it holds essinfx∈D ã(x, ω) > 0 and ã ∈ L∞(D).
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u : � → V of (26) may be written as u = U ◦ a, the claim follows with the strong
A/B(L∞(D))-measurability of a : � → L∞(D). ��
Lipschitz continuity (29) of the data-to-solution map will be essential in deriving error
estimates in Sect. 4 ahead, and also implies strong measurability of random solutions.

Proposition 3.3 Let a1, a2 : � → L∞(D) be strongly A/B(L∞(D))-measurable
such that

ai,−(ω) := essinfx∈D ai (x, ω) > 0, P − a.s. for i ∈ {1, 2}. (30)

Then, for every f ∈ V ′ exists for i ∈ {1, 2} and for all ω ∈ � a unique weak solution
ui (ω) ∈ V to Problem (26) (with a in place of ai ). There holds the continuous-
dependence estimate

‖u1 − u2‖V ≤ ‖ f ‖V ′
a1,−a2,−

‖a1 − a2‖L∞(D).

Proof This follows immediately with Theorem 3.2 and (29). ��
From the regularity analysis of deterministic linear elliptic problems it is well

known that Hs(D)-regularity of u may be derived for certain s > 1, provided that a
is Hölder continuous. The corresponding estimates usually do not reveal the explicit
dependence of constants on a(ω) or bounds on the Hölder norm ‖a(ω)‖Ct . For the
stochastic problem and the ensuing numerical analysis in Sects. 4 and 5, however, we
need the explicit dependence for given ω to ensure that all pathwise estimates also
hold in in Lq(�; Hs(D)) for suitable q ≥ 1. To obtain explicit estimates, we follow
the approach from [13, Chapter 3.3] for parametric elliptic PDEs, where regularity
estimates are derived via the K-method of function space interpolation.3 One obtains
in particular Hölder spaces Cr (D) by interpolation ([3, Lemma 7.36]):

Cr (D) = [L∞(D),W 1,∞(D)]r ,∞, r ∈ (0, 1).

3 Recall the K -method of interpolation of twoBanach spaces (A0, ‖·‖A0 ) and (A1, ‖·‖A1 )with continuous
embedding A1 ↪→ A0: their K-functional is defined by

K (a, z; A0, A1) := inf
a1∈A1

{‖a − a1‖A0 + z‖a1‖A1 }, a ∈ A0, z > 0.

For any r ∈ (0, 1) and q ∈ [1,∞] the interpolation space of order r with fine index q is

[A0, A1]r ,q =
{
a ∈ A0| ‖a‖[A0,A1]r ,q < ∞

}
,

where

‖a‖[A0,A1]r ,q :=
⎧⎨
⎩
(∫∞

0 z−rq K (a, z; A0, A1)q 1
z dz

) 1
q

, q ∈ [1,∞),

supz>0 z
−r K (a, z; A0, A1), q = ∞.

The set [A0, A1]r ,q is a (generally non-separable) Banach space.
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To investigate spatial regularity of solutions to (26), we introduce the normed space

W := {v ∈ V | �v ∈ H}, ‖v‖W := ‖�v‖H . (31)

Note that v = 0 ⇔ ‖v‖W = 0 follows by the maximum principle, since v ∈ V =
H1
0 (D)has vanishing trace.We formulate regularity results in terms of the interpolation

space

Wr := [V ,W ]r ,∞, r ∈ (0, 1). (32)

For a concise notation, we further set W 1 := W in the following.

Lemma 3.4 [13, Propositions 3.2 and 3.5] Let a : � → Cr (D) ⊂ L∞(D) be strongly
measurable for some r ∈ (0, 1] such that a−(ω) > 0 holds P-a.s. and let f ∈ H.
Then, there is a constant C = C(r ,D), such that it holds

‖u(ω)‖Wr ≤ C

a−(ω)

(
1+

(‖a(ω)‖Cr (D)

a−(ω)

)1/r
)
‖ f ‖H . (33)

All results from this subsection so far hold under the considerably weaker assump-
tion thatD ⊂ R

d is a bounded Lipschitz domain. However, sinceD is assumed convex,
we are able to embed Wr in (fractional) Sobolev spaces. This is made precise in the
following Lemma, which is in required for the finite element error analysis in Sect. 4.2.

Lemma 3.5 LetD be convex, Wr := [V ,W ]r ,∞ for r ∈ (0, 1) and let W 1 := W.Then,
it holds that W = W 1 ↪→ H2(D). Moreover, Wr ↪→ H1+r0(D) for any r0 ∈ (0, r).

Proof By convexity of D, we have that ‖v‖H2(D) ≤ CD‖v‖W holds for all v ∈ W ,
where CD only depends on the diameter of D, see, e.g., [16, Theorem 3.2.1.2]. Thus,
W ↪→ H2(D) ∩ V follows.

For the case r ∈ (0, 1), we recall that there is CV > 0, such that ‖v‖H1(D) ≤
CV ‖v‖V holds for all v ∈ V by Poincaré’s inequality.Moreover, we have ‖w‖H2(D) ≤
CD‖w‖W for anyw ∈ W , and henceW ⊂ H2∩V from the first part. For v ∈ V ⊂ H1

this yields

‖v‖[H1(D),H2(D)]r ,∞ = sup
z>0

z−r inf
w∈H2

{‖v − w‖H1(D) + z‖w‖H2(D)}

≤ sup
z>0

z−r inf
w∈W{‖v − w‖H1(D) + z‖w‖H2(D)}

≤ sup
z>0

z−r inf
w∈W{CV ‖v − w‖V + CDz‖w‖W }

≤ max(CV ,CD)‖v‖Wr .
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Hence, Wr ↪→ [H1(D), H2(D)]r ,∞. The claim now follows since for any ε ∈
(0, 1+ r) there holds

[H1(D), H2(D)]r ,∞ = [H1+r−ε(D), H1+r+ε(D)] 1
2 ,∞ ↪→ H1+r−ε(D),

see [3, Section 7.32]. ��

3.2 Besov random tree priors as log-diffusion coefficient

To formulate Problem (26) with a Besov random tree coefficient, we assume that
D ⊆ T

d . We follow [26, Section 2] and define, for given ω ∈ �, the random element
bT (ω) : D→ R as the restriction of a periodic function in Bs,per

p,p to the domainD. The
restriction ϕ|D of any ϕ ∈ S′(Rd) to D is in turn given by the element ϕ|D ∈ D′(D)

such that

D′(D)〈ϕ|D, v〉D(D) =S′(Rd )
〈ϕ, v0〉S(Rd ), v ∈ D(D),

where v0 ∈ D(Rd) ⊂ S(Rd) denotes the zero-extension of any v ∈ D(D).

Definition 3.6 Let D ⊆ T
d be a bounded, connected domain. Let bT be given in

Definition 2.6 for p ∈ [1,∞), s > 0 and β = 2γ−d ∈ [0, 1], and let prlper :
Bs
p,p(T

d) → Bs,per
p,p (Rd) denote the isomorphic extension operator from (11). Then

we define for any ω ∈ �

bT ,D(ω) := (prlper bT (ω))|D,

and call bT ,D a Bs
p(D)-valued random variable.

Remark 3.7 In case that D = T
d , we may readily use the identification bT ,D = bT .

Note that bT ,D is periodic in this case, in the sense that there exists an extension
prlper bT ,D ∈ Bs,per

p,p (Rd). IfD � T
d , however, bT ,D is not (necessarily) periodic, but

merely the restriction of a periodic function from the torus T
d .

Remark 3.8 The same procedure could be applied for general bounded domains
D �⊂ T

d , by extending Definition (2.6) from the torus T
d to a sufficiently large (peri-

odic) domain [−L, L]d for L > 1. This would increase the index-set K j of wavelet
coefficients by at most a constant factor on each dyadic scale j . However, all regu-
larity proofs from Sect. 2 are carried out similar in this setting, with minor changes
to absolute constants. For instance, the admissible range of ε in Proposition 2.4 may
become smaller if L > 1, but the smoothness parameter t ∈ (0, s − d

p ) is unaffected.

Therefore, assuming D ⊆ T
d for the sake of brevity does not have any substantial

impact on the following results.

We consider Problem (26), resp. its weak formulation (27), with a(ω) :=
exp (bT (ω)), where bT is a Bs

p-random variable with wavelet density β. That is,
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we model the log-diffusion by a Besov random tree prior to incorporate fractal struc-
tures. With this preparation, we are able to derive well-posedness and regularity of the
corresponding pathwise weak solution.

Theorem 3.9 Let a := exp
(
bT ,D

)
with bT ,D given in Definition 3.6 for p ∈ [1,∞),

s > 0 and β = 2γ−d ∈ [0, 1], so that sp > d. Furthermore, let f ∈ V ′.

(1) Then, there exists almost surely a unique weak solution u(ω) ∈ V to (26) and
u : � → V is strongly measurable.

(2) For sufficiently small κ > 0 in (16), there are constants q ∈ (1,∞) and C > 0
such that

‖u‖Lq (�;V ) ≤ C‖ f ‖V ′ < ∞
{

for q ∈ [1, q) if p = 1, and

for any q ∈ [1,∞) if p > 1.

(3) Let r ∈ (0, s− d
p )∩ (0, 1], f ∈ H and Wr as in (32). For sufficiently small κ > 0

in (16), there are constants q ∈ (1,∞) and C > 0 such that

‖u‖Lq (�;Wr ) ≤ C‖ f ‖H < ∞
{

for q ∈ [1, q) if p = 1 and

for any q ∈ [1,∞) if p > 1.

Proof 1.) As sp > d, Theorem 2.11 shows that bT ∈ C(Td) holds P-a.s. Moreover,
bT : � → C(Td) is strongly measurable by Proposition 2.10, and thus in particu-
lar strongly A/B(L∞(Td))-measurable, since B(C(Td)) ⊂ B(L∞(Td)). As bT ,D in
Definition 3.6 is the restriction of ext per bT toD ⊂ T

d , and a = exp ◦ bT ,D, it follows
that, a : � → C(D), and a is strongly A/B(L∞(D))-measurable such that a− > 0
holds P-a.s. Theorem 3.2 then guarantees the P-a.s. existence of a unique pathwise
weak solution u(ω). Moreover, u : � → V is strongly measurable and Equation (27)
shows that

‖u(ω)‖V ≤ ‖ f ‖V ′
a−(ω)

.

2.) To show the second part, we fix t ∈ (0, s − d
p ) and q ≥ 1 to see that

‖u‖qLq (�;V )
≤ E

(
a−q−

)
‖ f ‖qV ′

= E
((
essinfx∈D exp(−bT ,D(x))

)q) ‖ f ‖qV ′
= E

(
exp

(
essinfx∈D −qbT ,D(x)

)) ‖ f ‖qV ′
≤ E

(
exp

(
esssupx∈T

d qbT (x)
)) ‖ f ‖qV ′

= E

(
exp

(
q‖bT ‖L∞(Td )

))
‖ f ‖qV ′

≤ E
(
exp

(
q‖bT ‖Ct

)) ‖ f ‖qV ′ .
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We have used that exp(·) is strictly increasing for the second equality, and that bT (x) is
a centered randomvariable such that bT and−bT are equal in distribution. This implies
in turn that a− and ‖a‖L∞(D) are equal in distribution, which we used in the second
inequality. The last estimate is due to ‖bT ‖L∞(Td ) ≤ ‖bT ‖Ct for any t > 0. For p = 1,

we note that εp in the second part of Theorem 2.11 may be chosen as εp = (κC)−1,
where C > 0 is the constant in (25). Hence, for sufficiently small κ > 0, we may set
q := εp > 1 in the claim. In case that p > 1,Young’s inequality shows that for anyq ≥
1 there is an arbitrary small ε > 0 and a constant Cε = Cε(p, q) ∈ (0,∞) such that

q‖bT ‖Ct ≤ ε‖bT ‖pCt + Cε.

Thus,we have no restrictions on q ∈ [1,∞), which proves the second part of the claim.
3.) Let ‖·‖ denote the Euclidean norm on D. Observe that for any fixed r ∈ (0, 1)

we obtain by Taylor expansion and since exp(·) is strictly increasing that

‖ exp(bT ,D)‖Cr (D) = sup
x,y∈D, x �=y

| exp(bT ,D(x))− exp(bT ,D(y))|
‖x − y‖r + ‖ exp(bT ,D)‖L∞(D)

≤ ‖ exp(bT ,D)‖L∞(D)

(
sup

x,y∈D, x �=y

|bT ,D(x)− bT ,D(y)|
‖x − y‖r + 1

)

≤ exp(‖bT ,D‖L∞(D))
(
‖bT ,D‖Cr (D) + 1

)
.

(34)

We obtain further for r = 1 that

‖ exp(bT ,D)‖C1(D) ≤ exp(‖bT ,D‖L∞(D))
(
‖bT ,D‖C1(D) + 1

)
. (35)

For any fixed r ∈ (0, s − d
p ) ∩ (0, 1] Lemma 3.4 now shows that

‖u‖qLq (�;Wr )
≤ Cq

E

[
a−q−

(
1+ a

− 1
r− ‖ exp(bT ,D)‖

1
r

Cr (D)

)q]
‖ f ‖qH

≤ Cq
E

[
a−q−

(
1+ a

− 1
r− exp(‖bT ,D‖L∞(D))

1
r

(
‖bT ,D‖Cr (D) + 1

) 1
r
)q
]
‖ f ‖qH

≤Cq
E

[
a−q− 2q−1

(
1+a

−q
r− exp(‖bT ,D‖L∞(D))

q
r 2q−1

(
‖bT ,D‖

q
r

Cr (D)
+1
))]

‖ f ‖qH

≤ CE

[
exp(‖bT ,D‖L∞(D))

q+ 2q
r

(
‖bT ,D‖

q
r

Cr (D)
+ 1

)]
‖ f ‖qH , (36)

where we have used (34), (35) in the second step, applied Jensen’s inequality twice in
the third step, and used again that bT and −bT are equal in distribution together with
exp(‖bT ,D‖L∞(D)) ≥ 1 to derive the third estimate. We may further assume without
loss of generality that ‖bT ,D‖Cr (D) ≥ 1 to obtain with (36) and Hölder’s inequality

for q1, q2 > 1 such that 1
q1
+ 1

q2
= 1

‖u‖qLq (�;Wr )
≤ CE

[
exp

(
q1

(
q + 2q

r

)
‖bT ‖Cr

)] 1
q1

E

[
‖bT ‖

q2q
r

Cr

] 1
q2 ‖ f ‖qH , (37)
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where we have also used that ‖bT ,D‖L∞(D) ≤ ‖bT ‖Cr and that ‖bT ,D‖Cr (D) ≤‖bT ‖Cr for any r > 0. To bound the Hölder-norm ‖bT ‖Cr in (37), we first consider
the case r < 1. Then, we recall from Sect. 2.1 that Cr = Cr with equivalent norms,
thus ‖bT ‖Cr ≤ C‖bT ‖Cr . If r = 1, then s − d

p > 1, and we use the same argument to

derive the bound ‖bT ‖Cr ≤ ‖bT ‖Cr+ε ≤ C‖bT ‖Cr+ε for any ε ∈ (0, s − d
p − 1).

For p = 1, Theorem 2.11 now shows again that for sufficiently small κ > 0, there
are admissible choices q, q1, q2 ∈ [1,∞), dependent on r , such that the right hand
side in (37) is finite. The proof is concluded by noting that q ∈ [1,∞) may again be
arbitrary large in (37) if p > 1, independent of r . ��

4 Pathwise finite element approximation

4.1 Dimension truncation

To obtain a tractable approximation of bT in (18), we truncate the wavelet series
expansion after N ∈ N scales to obtain the truncated random tree Besov prior

bT ,N (ω) :=
∑

( j,k,l)∈IT (ω)
j≤N

η j X
l
j,k(ω)ψ l

j,k, ω ∈ �. (38)

The corresponding diffusion problem in weak form with truncated coefficient for
fixed ω ∈ � is to find uN (ω) ∈ V such that for all v ∈ V

∫
D
aN (ω)∇uN (ω) · ∇vdx =V ′ 〈 f , v〉V , (39)

where

aN : � → L∞(D), ω �→ exp(bT ,N (ω)|D). (40)

Existence, uniqueness, and regularity ofuN follows analogously as foru in the previous
section.

Corollary 4.1 Let N ∈ N, aN = exp
(
bT ,N |D

)
with bT ,N be given as in (38) for

p ∈ [1,∞), s > 0 and β = 2γ−d ∈ [0, 1], so that sp > d. Furthermore, let f ∈ V ′.
Then the following holds.

1.) There exists almost surely a unique weak solution uN (ω) ∈ V to the truncated
Problem (39) and uN : � → V is strongly measurable.

2.) For sufficiently small κ > 0 in (16), there are constants q ∈ (1,∞) and C > 0
such that for any N ∈ N

‖uN‖Lq (�;V ) ≤ C‖ f ‖V ′ < ∞
{

for q ∈ [1, q) if p = 1, and

for any q ∈ [1,∞) if p > 1.
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3.) Let r ∈ (0, s− d
p )∩ (0, 1] and f ∈ H. There are constants q ∈ (1,∞) and C > 0

such that for any N ∈ N

‖uN‖Lq (�;Wr ) ≤ C‖ f ‖H < ∞
{

for q ∈ [1, q) if p = 1 and

for any q ∈ [1,∞) if p > 1.

Proof The result follows analogously to Theorems 2.11 and 3.9, upon observing that
‖bT ,N (ω)‖Bt

q
≤ ‖bT (ω)‖Bt

q
holds P-a.s. for any t > 0, q ∈ [1,∞], and N ∈ N. ��

The important observation from Corollary 4.1 is that the bounds are independent of
N , which is crucial when estimating the finite element discretization error of uN in the
next subsection. We bound the truncation errors a − aN and u − uN in the remainder
of this section.

Proposition 4.2 Let a := exp
(
bT ,D

)
with bT ,D as given in Definition 3.6 with p ∈

(1,∞), s > 0, β = 2γ−d ∈ [0, 1] and such that sp > d+min(γ, 0). Let bT ,N and aN
be the approximations of bT and a for given N ∈ N as in (38) and (40), respectively.

1.) For any q ≥ 1 and t ∈ (0, s − d
p − min(γ,0)

q ) there is a constant C > 0 such that
for every N ∈ N it holds

‖bT ,D − bT ,N |D‖Lq (�;Ct (D)) ≤ C2
N
(
t−s+ d

p+min(γ,0)
q

)
.

2.) Moreover, for any q ≥ 1, ε > 0 and t ∈ (0, s − d
p − min(γ,0)

q ) there is a C > 0
such that for every N ∈ N it holds

‖a − aN‖Lq (�;Ct (D)) ≤ C2
N
(
t−s+ d

p+min(γ+ε,0)
q

)
.

Proof 1.) Let q0 ≥ q, t0 > d
q0

and t = t0 − d
q0
, so that Bt0

q0 ↪→ Ct . For any fixed
N ∈ N, we obtain with Hölder’s inequality analogously to the proof of Theorem 2.11
the estimate

‖bT ,D − bT ,N |D‖Lq (�;Ct (D)) ≤ ‖bT − bT ,N‖Lq (�;Ct )

≤ E

(
‖bT − bT ,N‖q0Ct

) 1
q0

≤ E

(
‖bT − bT ,N‖q0

B
t0
q0

) 1
q0

≤
⎛
⎝ ∞∑

j=N+1
2
jq0(t0− d

q0
−s+ d

p+ γ
q0

)

⎞
⎠

1
q0

= 2
N (t−s+ d

p+ γ
q0

)

⎛
⎝ ∞∑

j=1
2
jq0(t−s+ d

p+ γ
q0

)

⎞
⎠

1
q0

.

(41)
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Now let t < s − d
p and γ ∈ (0, d] in (41), and choose q0 = max

(
γ N , 2γ (s − d

p −
t)−1, q

)
(for sufficiently large, given N ) to obtain that

‖bT ,D − bT ,N |D‖Lq (�;Ct (D)) ≤ 2
N
(
t−s+ d

p

)
+1
⎛
⎝ ∞∑

j=1
2
jq0
(
t−s+ d

p

)
1
2

⎞
⎠

1
q0

≤ 2
N
(
t−s+ d

p

)
2

⎛
⎝ ∞∑

j=1
2
j
(
t−s+ d

p

)
1
2

⎞
⎠ .

(42)

The final bound in (42) is independent of q0 = q0(N ), which shows the first part of
the claim for γ ∈ (0, d]. For γ ∈ (−∞, 0], we use q0 = q in (41) to obtain for any
t ∈ (0, s − d

p − γ
q ) that

‖bT ,D − bT ,N |D‖Lq (�;Ct (D)) ≤ 2
N
(
t−s+ d

p+ γ
q

) ⎛⎝ ∞∑
j=1

2 jq(t−s+ d
p+ γ

q )

⎞
⎠

1
q

≤ C2
N
(
t−s+ d

p+ γ
q

)
. (43)

2.) To prove the second part, we observe that for any t ∈
(
0, s − d

p − min(γ,0)
q

)
there holds

‖a − aN‖Lq (�;Ct (D)) ≤ ‖ebT ,N |D(ebT ,D−bT ,N |D − 1)‖Lq (�;Ct (D))

≤ ‖ebT ,N |D‖Lq (�;Ct (D))‖ebT ,D−bT ,N |D − 1‖Lq (�;Ct (D)),

where the last equation follows by independence of bT − bT ,N and bT ,N . The first
factor in this expression is bounded analogously to ‖ebT ,D‖Lq (�;Ct (D)) by using the
estimates (34) (resp. (35)), Theorem 2.11 and Hölder’s inequality

‖ebT ,N |D‖Lq (�;Ct (D)) ≤ ‖ebT ,N |D‖Lq1q (�;L∞(D))

(
‖bT ,N |D‖Lq2q (�;Ct (D)) + 1

)
< ∞,

(44)

where q1, q2 > 1 are such that 1
q1
+ 1

q2
= 1 and the bound holds uniformly in N .

In addition, Taylor expansion yields

‖ebT ,D−bT ,N |D − 1‖Ct (D) = sup
x,y∈D, x �=y

|e(bT ,D−bT ,N |D)(x) − e(bT ,D−bT ,N |D)(y)|
‖x − y‖r

+ ‖ebT ,D−bT ,N |D − 1‖L∞(D)

≤ ‖ebT ,D−bT ,N |D‖L∞(D) sup
x,y∈D, x �=y

|(bT ,D − bT ,N |D)(x)− (bT ,D − bT ,N |D)(y)|
‖x − y‖r
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+ ‖ebT ,D−bT ,N |D‖L∞(D)‖bT ,D − bT ,N |D‖L∞(D)

≤ ‖ebT ,D−bT ,N |D‖L∞(D)‖bT ,D − bT ,N |D‖Ct (D).

From the proof of the second part of Theorem 3.9 it follows that ‖ebT ,D−bT ,N |D
‖Lq (�;L∞(D)) < ∞ is bounded uniformly with respect to N for all q ≥ 1.

Hölder’s inequality for p1, p2 > 1 such that 1
p1
+ 1

p2
= 1 thus shows together with

the truncation error in (43) that

‖a − aN‖Lq (�;Ct (D)) ≤ ‖ebT ,N |D(ebT ,D−bT ,N |D − 1)‖Lq (�;Ct (D))

≤ C‖ebT ,D−bT ,N |D‖L p1q (�;L∞(D))‖bT ,D − bT ,N |D‖L p2q (�;Ct (D))

≤ C2
N (t−s+ d

p+min(γ,0)
p2q

)

The claim follows for any ε > 0 by choosing p2 > 1 so small that min(γ, 0) ≤
p2 min(γ + ε, 0). ��
Remark 4.3 We emphasize that all estimates in Proposition 4.2 are independent of
D ⊂ T

d , as all uniform error bounds are derived with respect to T
d . Proposition 4.2

shows in particular that for any q ≥ 1 and t ∈ (0, s − d
p − min(γ,0)

q ) there is a C > 0
such that for any N ∈ N it holds

‖a − aN‖Lq (�;L∞(D)) ≤ C2−Nt .

This estimate is essential to bound the truncation error u − uN of the approximated
elliptic problem in (39), see Theorem 4.4 below. In the borderline case p = 1 with
sufficiently small κ > 0 and sp > d, we still recover the slightly weaker estimates

‖a − aN‖Lq (�;Ct (D)) ≤ C2
N
(
t−s+ d

p

)
, ‖a − aN‖Lq (�;L∞(D)) ≤ C2−t N (45)

for sufficiently small q ≥ 1 (depending on κ) and t ∈ (0, s − d
p ), independently of γ .

This may be seen from by letting p1 → 1 and p2 → ∞ in the last part of the proof
for Proposition 4.2.

Theorem 4.4 Let u be as in (26) with a = exp
(
bT ,D

)
and let uN be as in (26) with

aN = exp
(
bT ,N |D

)
given by (40). Furthermore, let bT ,D be such that p ∈ (1,∞),

s > 0, β = 2γ−d ∈ [0, 1], and sp > d ≥ d + min(γ, 0). Then, for any q ≥ 1 and
t ∈ (0, s − d

p − min(γ,0)
q ) there is a C > 0 such that for every N ∈ N and it holds

‖u − uN‖Lq (�;V ) ≤ C2−Nt .

Proof For fixed ω ∈ � and N ∈ N, we obtain by Proposition 3.3

‖u(ω)− uN (ω)‖V ≤ ‖ f ‖V ′
a−(ω)aN ,−(ω)

‖a(ω)− aN (ω)‖L∞(D),
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where aN ,−(ω) := essinfx∈D aN (ω, x). Taking expectations yields with Hölder’s
inequality

‖u − uN‖Lq (�;V ) ≤ ‖ f ‖V ′ ‖a−1− ‖Lq1 (�)‖a−1N ,−‖Lq2 (�)‖a − aN‖Lq3 (�;L∞(D)),

(46)

where q1, q2, q3 > 1 are such that 1
q =

∑3
i=1 1

qi
and ‖ f ‖V ′ < ∞. As in the proof

of part 2.) in Theorem 3.2, we conclude for any q1 ∈ [1,∞) and t ∈ (0, s − d
p ) with

Theorem 2.11 that

‖a−1− ‖Lq1 (�) ≤ ‖ exp(‖bT ,D‖L∞(D))‖Lq1 (�) ≤ ‖ exp(‖bT ‖Ct )‖Lq1 (�) < ∞.

Similarly, it follows for all q2 ∈ [1,∞) that

‖a−1N ,−‖Lq2 (�) ≤ ‖ exp(‖bT ,N‖Ct )‖Lq2 (�) ≤ ‖ exp(‖bT ‖Ct )‖Lq2 (�) < ∞,

where we emphasize that the last bound is uniform with respect to N . Proposition 4.2
and Remark 4.3 show for q3 ∈ [1,∞) and t ∈ (0, s − d

p − min(γ,0)
q3

) that

‖a − aN‖Lq3 (�;L∞(D)) ≤ C2−Nt .

This, together with (46), shows the claim, as q3 > q may be chosen arbitrary close to
q, and

‖a−1− ‖Lq1 (�) + ‖a−1N ,−‖Lq2 (�) ≤ C < ∞

holds for all q1, q2 ∈ [1,∞) with C = C(q1, q2) > 0, and uniform with respect to
N . ��
Remark 4.5 In view of Remark 4.3, we note that for p = 1 with sufficiently small
κ > 0 and sp > d there holds the slightly weaker estimate

‖u − uN‖Lq (�;V ) ≤ C2−Nt .

for sufficiently small q ≥ 1 (depending on κ) and t ∈ (0, s − d
p ), independently

of γ . This may also be seen by letting q1, q2 → 1
2q and q3 → ∞ in the proof of

Theorem 4.4.

4.2 Finite element discretization

The solution uN : � → V to Problem (39) with truncated diffusion coefficient is still
not fully tractable, as it takes values in the infinite-dimensional Hilbert space V . Thus,
we consider Galerkin-finite element approximations of uN in a finite-dimensional
subspace of V . Corollary 4.1 provides the necessary regularity of uN , independent of
the truncation index N , therefore we fix N ∈ N for the remainder of this section.
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We partition the convex, polytopal domain D ⊂ T
d , d ∈ {1, 2, 3} by

a sequence of simplices (intervals/triangles/tetrahedra) or parallelotopes (inter-
vals/parallelograms/parallelepipeds), denoted by (Kh)h∈H. The refinement parameter
h > 0 takes values in a countable index setH ⊂ (0,∞) and corresponds to the longest
edge of a simplex/parallelotope K ∈ Kh . We impose the following assumptions on
(Kh)h∈H to obtain a sequence of “well-behaved” triangulations.

Assumption 4.6 The sequence (Kh)h∈H satisfies:

1. Admissibility: For each h ∈ H, Kh consists of open, non-empty simplices/paral-
lelotopes K such that

• D =⋃
K∈Kh

K ,
• K1 ∩ K2 = ∅ for any two K1, K2 ∈ Kh such that K1 �= K2, and
• the intersection K 1 ∩ K 2 for K1 �= K2 is either empty, a common edge, a
common vertex, or (in space dimension d = 3) a common face of K1 and K2.

2. Shape-regularity: Let ρK ,in and ρK ,out denote the radius of the largest in- and
circumscribed circle, respectively, for a given K ∈ Kh . There is a constant ρ > 0
such that

ρ := sup
h∈H

sup
K∈Kh

ρK ,out

ρK ,in
< ∞.

Based on a given tesselation Kh , we define the space of piecewise (multi-)linear
finite elements

Vh :=
{
{v ∈ V | v|T is linear for all K ∈ Kh}, if Kh consists of simplices,

{v ∈ V | v|T is d-linear for all K ∈ Kh}, if Kh consists of parallelotopes.

Clearly, Vh ⊂ V is a finite-dimensional space and we define nh := dim(Vh) ∈ N.
This yields for fixed ω ∈ � the fully discrete problem to find uN ,h(ω) ∈ Vh such that
for all vh ∈ Vh ∫

D
aN (ω)∇uN ,h(ω) · ∇vhdx =V ′ 〈 f , vh〉V . (47)

Theorem 4.7 Let (Kh)h∈H be a sequence of triangulations satisfying Assumption 4.6,
and let uN and uN ,h be the pathwise weak solutions to (39) and (47). Furthermore,
let N ∈ N, aN be given as in (40) for p ∈ [1,∞) and s > 0, such that sp > d, and
with β = 2γ−d ∈ [0, 1].

For any f ∈ H, sufficiently small κ > 0 in (16) and any r ∈ (0, s − d
p ) ∩ (0, 1],

there are constants q ∈ (1,∞) and C > 0 such that for any N ∈ N and h ∈ H there
holds

‖uN − uN ,h‖Lq (�;V ) ≤ Chr
{

for q ∈ [1, q) if p = 1, and

for any q ∈ [1,∞) if p > 1.
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Proof We recall that aN ,−(ω) := essinfx∈D aN ,−(ω) > 0 and obtain byCea’s Lemma

‖uN (ω)− uh,N (ω)‖V ≤ ‖aN (ω)‖L∞(D)

aN ,−(ω)
‖ f ‖V ′ inf

vh∈Vh
‖uN (ω)− vh‖V . (48)

Now first suppose that p > 1. Since f ∈ H , it holds by Corollary 4.1 for any
q ≥ 1 that uN ∈ Lq(�;Wr ) for r ∈ (0, s − d

p )∩ (0, 1]. For 0 < s − d
p ≤ 1, we have

r ∈ (0, s − d
p ), and Lemma 3.5, shows uN ∈ Lq(�; H1+r0(D)) for any r0 ∈ (0, r).

It hence follows for r0 ∈ (0, r) that

inf
vh∈Vh

‖uN (ω)− vh‖V ≤ C‖uN (ω)‖H1+r0 (D)h
r0 . (49)

This is a standard result for first order Lagrangian FEM, see, e.g., [17, Theorems
8.62/8.69] or [9, Theorem 4.4.20]. The constant C > 0 in (49) depends on the shape-
regularity parameter ρ and onD, but is independent of uN and h. Combining (48) and
(49) shows with Hölder’s inequality

‖uN (ω)− uh,N (ω)‖Lq (�;V ) ≤ C‖ f ‖V ′ ‖aN‖L3q (�;L∞(D))‖a−1N ,−‖L3q (�)‖uN‖L3q (�;H1+r0 (D))h
r0

≤ C‖aN‖2L3q (�;L∞(D))
‖uN‖L3q (�;H1+r0 (D))h

r0

≤ C‖aN‖2L3q (�;L∞(D))
‖uN‖L3q (�;Wr )h

r0

≤ Chr0 .

(50)

We have used that aN ,− and ‖aN‖L∞(D) are equal in distribution for the second esti-
mate, and Lemma 3.5 in the third line. The last step follows for any q ∈ [1,∞)

by Corollary 4.1 and Proposition 4.2 since p > 1. Moreover, as a further conse-
quence of Corollary 4.1 and Proposition 4.2, the constant C > 0 in the final estimate
in (50) bounded independently of N and h. Since 0 < s − d

p ≤ 1, we may choose

r0 < r < s − d
p arbitrary close to s − d

p .

On the other hand, if s − d
p > 1 and r = 1, Lemma 3.5 implies that uN ∈

Lq(�; H2(D)). Estimates (49) and (50) then hold for r0 = r = 1, which proves the
claim in case that p > 1.

For p = 1 and given q ≥ 1, we need to assume in addition that κ > 0 be sufficiently
small such that Corollary 4.1 and (45) in Remark 4.3 hold with q replaced 3q. In this
case, the claim for p = 1 follows analogously as for p > 1. ��

In the proof of Theorem 4.7, we obtain exponential moments of power 3q by
Hölder’s inequality. For the case p = 1, we therefore need approximately that κ <
1
3q (up to summation constants) to counter-balance this exponent and obtain aN ∈
L3q(�; L∞(D)) and uN ∈ L3q(�;Wr ).

Theorem 4.8 Let the assumptions of Theorem 4.7 hold. For any f ∈ H, sufficiently
small κ > 0 in (16) and for any r ∈ (0, s− d

p )∩ (0, 1], there are constants q ∈ (1,∞)
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and C > 0 such that for any N ∈ N and h ∈ H there holds

‖uN − uN ,h‖Lq (�;H) ≤ Ch2r
{

for q ∈ [1, q) if p = 1, and

for any q ∈ [1,∞) if p > 1.

Proof The proof uses the well-known Aubin-Nitsche duality argument. Let eN ,h :=
uN − uN ,h and consider for fixed ω ∈ � the dual problem to find ϕ(ω) ∈ V such that
for all v ∈ V it holds

∫
D
aN (ω)∇ϕ(ω) · ∇vdx =V ′ 〈eN ,h(ω), v〉V . (51)

We need to investigate the regularity and integrability of ϕ as a first step. Lemma 3.4
shows that

‖ϕ(ω)‖Wr ≤ C

a−(ω)

(
1+

(‖a(ω)‖Cr (D)

a−(ω)

)1/r
)
‖eN ,h(ω)‖H . (52)

Let t ∈ (0, s− d
p ) be fixed. We integrate both sides of (52) and use Hölder’s inequality

as in the third part of Theorem 3.9 (cf. Inequality (37)) to obtain for q0 ≥ 1 and
q1, . . . , q3 ∈ [1,∞) such that 1 =∑3

i=1 1
qi

‖ϕ‖q0Lq0 (�;Wr )
≤ C E

[
exp

(
q1

(
q0 + 2q0

r

)
‖bT ‖Cr

)] 1
q1

· E
[
‖bT ‖

q2q0
r

Cr

] 1
q2

E
[‖eN ,h‖q0q3H

]1/q3 (53)

Note that we have again assumed that ‖bT ,D‖Cr (D) ≥ 1 without loss of generality to
derive (53).

By Theorems 2.11, 4.7 and Proposition 4.2, we now conlude that the right hand
side in (53) is finite and bounded uniformly in N for any q0 ≥ 1 if p > 1, as the
Hölder conjugates q1, . . . , q3 ∈ [1,∞) may be arbitrary large.

For p = 1, we further need that κ > 0 in (16) is sufficiently small, so that εp >

q0 max(q1(1+ 1
r ),

q2
r ) in Theorem 2.11 and that q ≥ q0q3 in Theorem 4.7. Given that

κ > 0 is sufficiently small, there is for any p ≥ 1 a q0 ≥ 1 such that ϕ ∈ Lq0(�;Wr ).
For the next step, we combine Equations (39) and (47) to show the Galerkin orthog-

onality

∫
D
aN (ω)∇eN ,h(ω) · ∇vhdx = 0, vh ∈ Vh . (54)
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Let Ph : V → Vh denote the V -orthogonal projection onto Vh . Testing with v =
eN ,h(ω) ∈ V in (51) then shows together with vh = Phϕ(ω) in (54) that

‖eN ,h(ω)‖2H =
∫
D
aN (ω)∇ϕ(ω) · ∇eN ,h(ω)dx

≤ ‖aN (ω)‖L∞(D)‖eN ,h(ω)‖V ‖(I − Ph)ϕ(ω)‖V .

(55)

Estimate (55) then yields for q ∈ [1,∞) with Hölder’s inequality

‖eN ,h‖Lq (�;H) ≤ ‖aN‖
L

3q
2 (�;L∞(D))

‖eN ,h‖
L

3q
2 (�;V )

‖(I − Ph)ϕ‖
L

3q
2 (�;V )

.

First, suppose again that p > 1, where ϕ ∈ Lq0(�;Wr ) holds for any q0 ≥ 1.
Proposition 4.2 and Theorem 4.7 yield

‖eN ,h‖Lq (�;H) ≤ Chr‖(I − Ph)ϕ‖
L

3q
2 (�;V )

,

where C > 0 is independent of N and h.
Lemma 3.5, ϕ ∈ Lq0(�;Wr ), and (49) further show that

‖eN ,h‖Lq (�;H) ≤ Chr+r0 , r0 ∈ (0, r) ∪ {�r}. (56)

The claim follows as inTheorem4.7, since r = r0 = 1 if s− d
p > 1, and r0 < r < s− d

p

may be arbitrary close to s − d
p otherwise.

For p = 1 and given q ≥ 1 on the other hand, we need to assume that κ > 0
is sufficiently small so that ϕ ∈ Lq0(�;Wr (D)) for q0 = 3q

2 , and that (45) and

Theorem 4.7 hold with q replaced by 3q
2 . The claim then follows as for p > 1

from (4.2). ��
Bounds on the overall approximation errors with respect to V and H now follow

as an immediate consequence of Theorems 4.4, 4.7, 4.8 and Remark 4.5.

Corollary 4.9 Let the assumptions of Theorem 4.7 hold, let f ∈ H, let t ∈ (0, s − d
p )

and assume given r ∈ (0, s − d
p ) ∩ (0, 1]. Then there holds:

1.) For p = 1 and sufficiently small κ > 0 in (16), there are constants q = q(κ) ∈
(1,∞) and C > 0 such that for any q ∈ [1, q), N ∈ N and h ∈ H there holds

‖u − uN ,h‖Lq (�;V ) ≤ C(2−t N + hr ),

‖u − uN ,h‖Lq (�;H) ≤ C(2−t N + h2r ).

2.) For p ∈ (1,∞) and any q ∈ [1,∞) there is a constant C > 0 such that for any
N ∈ N and h ∈ H there holds

‖u − uN ,h‖Lq (�;V ) ≤ C(2
N
(
−t+min(γ,0)

q

)
+ hr ),

‖u − uN ,h‖Lq (�;H) ≤ C(2
N
(
−t+min(γ,0)

q

)
+ h2r ).
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5 Multilevel Monte Carlo estimation

We consider Monte Carlo estimation of E(�(u)) for a given functional � and u as
solution to (27) with Besov random tree coefficient a. We replace u by a tractable
approximation uN ,h to evaluate �(uN ,h) ≈ �(u) and bound the overall error consist-
ing of the pathwise discretization from Sect. 4 and the statistical error of the Monte
Carlo approximation.

Assumption 5.1

1.) Let θ ∈ [0, 1], let � : H θ (D) → R be Fréchet-differentiable on H θ (D) and
denote by

� ′ : H θ (D) → L(H θ (D);R) = (H θ (D))′

the Fréchet-derivative of �. There are constants C > 0, ρ1, ρ2 ≥ 0 such that for
all v ∈ H θ (D)

|�(v)| ≤ C(1+ ‖v‖ρ1
H θ (D)

), ‖� ′(v)‖L(H θ (D);R) ≤ C(1+ ‖v‖ρ2
H θ (D)

). (57)

2.) For q := 2max(ρ1, ρ2 + 1), there holds u ∈ Lq(�; V ).
3.) (Kh)h∈H is a collection of triangulations satisfying Assumption 4.6.
4.) There are constants t > 0, r ∈ (0, 1] andC > 0 such that forq = 2max(ρ1, ρ2+1)

and any N ∈ N and h ∈ H it holds

‖u − uN ,h‖Lq (�;V ) ≤ C(2−t N + hr ), ‖u − uN ,h‖Lq (�;H) ≤ C(2−t N + h2r ).

Remark 5.2 Assumption 5.1 is natural, and includes in particular bounded linear func-
tions �, where ρ1 = 1 and ρ2 = 0. Item 2.) follows by Theorem 3.9 and Item 4.)
by Corollary 4.9, with no further restrictions whenever p > 1. Only in case that
p = 1, κ > 0 needs to be sufficiently small to ensure that all bounds hold for
q = 2max(ρ1, ρ2 + 1) ≥ 2.

5.1 Singlelevel Monte Carlo

We use Monte Carlo (MC) methods to approximate E(�(u)) for a given functional
�. To this end, we first consider the standard MC estimator for (general) real-valued
random variables.

Definition 5.3 LetY : � → R be a randomvariable and let (Y (i), i ∈ N) be a sequence
of i.i.d. copies of Y . For M ∈ N we define Monte Carlo estimator EM (Y ) : � → R

as

EM (Y ) := 1

M

M∑
i=1

Y (i). (58)
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As we are not able to sample directly from the distribution of u, we rely on i.i.d.
copies (u(i)

N ,h, i ∈ N) of the pathwise approximation uN ,h from Sect. 4. Thereby, in

addition to the statistical MC error of order O(M−1/2), we introduce a sampling bias
that depends on N and h.

Theorem 5.4 Let M ∈ N, let EM (�(uN ,h)) be the MC estimator as in (58), and let
Assumption 5.1 hold. Then, there is a constant C > 0, such that for any M, N ∈ N

and h ∈ H it holds

‖E(�(u))− EM (�(uN ,h))‖L2(�) ≤ C
(
M−1/2 + 2−t N + h(2−θ)r

)

Proof We split the overall error via

‖E(�(u))− EM (�(uN ,h))‖L2(�) ≤ ‖E(�(u))− EM (�(u))‖L2(�)

+ ‖EM (�(u))− EM (�(uN ,h))‖L2(�)

:= I + I I .

To bound I , we use independence of �(u)(i) and �(u)( j) for i �= j to see that

I 2 = E

⎛
⎝
(

E(�(u))− 1

M

M∑
i=1

�(u)(i)

)2⎞⎠

= E(�(u))2 − 2

M

M∑
i=1

E(�(u))2 + 1

M2

M∑
i, j=1

E

(
�(u)(i)�(u)( j)

)

= Var(�(u))

M
.

Assumption 5.1 further shows that

I ≤ ‖�(u)‖L2(�)

M1/2 ≤ C
1+ ‖u‖L2ρ1 (�;H θ (D))

M1/2 ≤ C
1+ ‖u‖L2ρ1 (�;V )

M1/2 ≤ CM−1/2,

where we have used that θ ≤ 1 and u ∈ L2ρ1(�; V ).
To bound I I , we use Equation (57) and derive the pathwise estimate

|�(u)−�(uN ,h)| =
∣∣∣∣
∫ 1

0
� ′(u + z(uN ,h − u))(u − uN ,h)dz

∣∣∣∣
≤
∫ 1

0
‖� ′(u + z(uN ,h − u))‖L(H θ (D);R)‖u − uN ,h‖H θ (D)dz

≤ C
(
1+ ‖u‖ρ2

H θ (D)
+ ‖u − uN ,h‖ρ2H θ (D)

)
‖u − uN ,h‖H θ (D)

≤ C
(
1+ ‖u‖ρ2

H θ (D)
+ ‖uN ,h‖ρ2H θ (D)

)
‖u − uN ,h‖H θ (D).

(59)
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By Assumption 5.1, there is a C > 0 such that for every N and every 0 < h ≤ 1 it
holds

‖uN ,h‖L2(ρ2+1)(�;H θ (D)) ≤ C‖u‖L2(ρ2+1)(�;H θ (D)) ≤ C‖u‖L2(ρ2+1)(�;V ) < ∞. (60)

Furthermore, as θ ∈ [0, 1], we have by the Gagliardo-Nirenberg interpolation inequal-
ity

‖u − uN ,h‖L2(ρ2+1)(�;H θ (D)) ≤ ‖u − uN ,h‖1−θ

L2(ρ2+1)(�;H)
‖u − uN ,h‖θL2(ρ2+1)(�;V )

≤ C(2−t N + h(2−θ)r ). (61)

Thus, Hölder’s inequality with conjugate exponents q1 = ρ2+1
ρ2

, q2 = ρ2 + 1 (and
q1 = ∞, q2 = 1 for ρ2 = 0) shows that

I I ≤ ‖�(u)−�(uN ,h)‖L2(�)

(59)≤ C(1+ ‖u‖Lq12ρ2 (�;H θ (D)) + ‖uN ,h‖Lq12ρ2 (�;H θ (D)))‖u − uN ,h‖Lq22(�;H θ (D))

(60)≤ C(1+ ‖u‖L2(ρ2+1)(�;V ))‖u − uN ,h‖L2(ρ2+1)(�;H θ (D))

(61)≤ C(2−t N + h(2−θ)r ).

(62)

��
The error contributions in Theorem 5.4 are balanced by choosing

M ≈ 22t N ≈ h−2(2−θ)r . (63)

With this choice, achieving the target accuracy ‖E(�(u)) − EM (�(uN ,h))‖L2(�) =
O(ε) requires sampling M = O(ε−2) high-fidelity approximations uN ,h with N =
O(

log(ε)
t ) scales and mesh refinement h = O(ε

1
(2−θ)r ). This is computationally chal-

lenging in dimension d ≥ 2 and for low-regularity problems, i.e., when t, r > 0 are
small. To alleviate the computational burden, we propose a multilevel Monte Carlo
extension of the estimator EM in the next subsection.

5.2 Multilevel Monte Carlo

The multilevel Monte Carlo (MLMC) algorithm was invented by Heinrich [18] to
compute parametric integrals, then rediscovered and popularized by Giles [14, 15],
and has since then found various applications in uncertainty quantification and beyond.

To apply this methodology to our model problem we fix a maximum refinement
level L ∈ N and consider a sequence of approximated solutions uN�,h�

with (N�, h�) ∈
N×H for � ∈ {1, . . . , L}. We assume that N1 < · · · < NL and h1 > · · · > hL , so that
the error u − uN�,h�

decreases with respect to the level �. For notational convenience,
we define �� := �(uN�,h�

) as the approximation of the quantity of interest �(u) on
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level �, and set�0 := 0. The basic idea of the MLMCmethod for estimating E(�(u))

is to exploit the telescopic expansion

E(�(u)) ≈ E(�L) = E(�L)− E(�0) =
L∑

�=1
E(�� −��−1) (64)

of the high-fidelity approximation �L . On each level �, the correction E(�� −��−1)
is estimated by (standard) MC estimator with M� samples. This yields the multilevel
Monte Carlo estimator

EL(�L) :=
L∑

�=1
EM�

(�� −��−1), (65)

with level-dependent numbers of samples M1, . . . , ML ∈ N. We assume that the
estimators EM�

(�� −��−1) are jointly independent across the levels � = 1, . . . , L .
Provided that Var(�� − ��−1) decays sufficiently fast in �, we choose M1 >

· · · > ML such that the majority of samples are generated cheaply on low levels
�, while only a few expensive samples for large � are necessary. This entails mas-
sive computational savings compared to a singlelevel Monte Carlo (SLMC) estimator
as in (58), that requires a large number of expensive samples on level L , and does
not exploit the level hierarchy whatsoever. The computational gain of the MLMC
method is precisely quantified under certain assumptions in Giles’ complexity the-
orem ([14, Theorem 3.1]). Given some ε > 0, Giles derives the optimal number of
refinement levels L and associated numbers of samples M1, . . . , ML that guarantee
‖E(�(u))−EL(�(u))‖L2(�) ≤ ε. The latter requires exact knowledge of all constants
in Assumption 5.1, and, furthermore, exact knowledge of the cost for sampling one
instance of ��. As this is not feasible a-priori, we choose a slightly different approach
to determine the MLMC parameters. We retain the optimal order of complexity as in
[14, Theorem 3.1].

Assumption 5.5 Let (Kh)h∈H be a sequence of triangulations satisfying Assump-
tion 4.6, and assume that h� ∈ H for any � ∈ N. Furthermore, in view of the multilevel
convergence analysis, we assume that there are 0 < cK ≤ cK < 1 and h0 > 0 such
that

c�
Kh0 ≤ h� ≤ c�

Kh0, � ∈ N. (66)

One sample of �� = �(uN�,h�
) with uN�,h�

∈ Vh�
and n� := dim(Vh�

) = O(h−d� ) is
realized in O(n�) work and memory.

Remark 5.6 Assumption 5.5 is natural and holds, for instance, with cK, cK ≈ 1
2 if the

meshKh�
is obtained fromKh�−1 by bisection of the longest edge of each K ∈ Kh�−1 .

We remark that in general, itmaybehard to achieve cK = cK,which iswhywe imposed
an upper and lower bound in (66). Simulating �� requires O(n�) = O(h−d� ) floating
point operations per sample when using multilevel solvers for continuous piecewise
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linear or multi-linear elements. We also refer to Lemma B.2 in Appendix B.3, where
we show that the expected cost of sampling bN ,T on the associated grid is of order
O(h−d� ) if β < 1.

Theorem 5.7 Let Assumptions 5.1 and 5.5 hold. For t, r and θ as in Assumption 5.1,
let ε ∈ (0, h(2−θ)r

0 ) and select the MLMC parameters in (65) for � ∈ {1, . . . , L} as

L := � log(ε)

(2− θ)r log(cK)
− log(h0)

log(cK)
�, M� := �

(
h�

hL

)2(2−θ)r

w��,

N� := �− log(h�)(2− θ)r

log(2)t
�. (67)

For given L ∈ N, choose the weights w� > 0 to determine M� such that
∑L

�=1 w−1� ≤
Cw < ∞, for sufficiently large, fixed Cw > 0 independent of L.

Then, there is a C > 0, such that for any ε ∈ (0, h(2−θ)r
0 ) it holds

‖E(�(u))− EL(�L)‖L2(�) ≤ Cε.

Proof We use the error splitting

‖E(�(u))− EL (�L )‖L2(�) ≤ ‖E(�(u))− E(�L ))‖L2(�) + ‖E(�L )− EL (�L )‖L2(�).

We obtain in the same fashion as for the term I I in the proof of Theorem 5.4 that

‖E(�(u))− E(�L)‖L2(�) ≤ ‖�(u)−�(uNL ,hL )‖L2(�)

≤ C(2−t NL + h(2−θ)r
L ) ≤ Ch(2−θ)r

L ,

where we have used 2−t NL ≤ h(2−θ)r
L by (67) in the last step. To bound the second

term, we expand E(�L) in a telescopic sum to obtain with (65)

‖E(�L)− EL(�L)‖2L2(�)
=

L∑
�=1

‖E(�� −��−1)− EM�
(�� −��−1)‖2L2(�)

=
L∑

�=1
M−1

� ‖�� −��−1‖2L2(�)
.

The first equality holds since the MC estimators EM1(�1), . . . , EML (�L − �L−1)
are jointly independent and unbiased in the sense that E(��−��−1) = E(EM�

(��−
��−1)). The triangle inequality and the estimate (62) (from the proof of Theorem 5.4)
then further yield

‖E(�L )− EL (�L )‖2L2(�)
≤ 2

L∑
�=1

M−1
�

[
‖�� −�(u)‖2L2(�)

+ ‖�(u)−��−1‖2L2(�)

]
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≤ C
L∑

�=1
M−1

�

[
2−2t N� + h2(2−θ)r

� + 2−2t N�−1 + h2(2−θ)r
�−1

]

≤ C
L∑

�=1
w−1� h2(2−θ)r

L ,

where we have used Assumption 5.5 and the choices for M� and N� in (67) in the
last step. As

∑L
�=1 w−1� ≤ Cw < ∞ is bounded independently of L , we conclude

with (66), L as in (67), and 0 < cK ≤ cK < 1 that

‖E(�(u))− EL(�L)‖L2(�) ≤ Ch(2−θ)r
L ≤ C(cLKh0)

(2−θ)r

≤ Cε
log(cK)

log(cK) h

(
1− log(cK)

log(cK)

)
(2−θ)r

0 ≤ Cε.

��
The computational advantages of theMLMCmethod are precisely quantified in the

next statement. Therein, the choice of w� plays a key role and depends on the relation
of variance decay and cost of sampling on each level.

Theorem 5.8 Let Assumptions 5.1 and 5.5 hold, and let ε > 0. Given t, r and θ and
ε > 0, set L, M� and N� as in Theorem 5.7 and choose the weight functions

w� =

⎧⎪⎨
⎪⎩

�1+ι if 2(2− θ)r > d

L if 2(2− θ)r = d

c(2(2−θ)r−d)(L−�)/2
K if 2(2− θ)r < d

, � ∈ {1, . . . , L},

where ι > 0 is an arbitrary small constant. Then, the MLMC estimator satisfies

‖E(�(u))− EL(�L)‖L2(�) ≤ Cε,

with computational cost CMLMC for ε → 0 of order

CMLMC =

⎧⎪⎨
⎪⎩
O(ε−2) if 2(2− θ)r > d

O(ε−2 log(ε)2) if 2(2− θ)r = d

O(ε
−2− d−2(2−θ)r

(2−θ)r ) if 2(2− θ)r < d.

Proof Since cK ∈ (0, 1), it holds in each scenario
∑L

�=1 w−1� ≤ C for a constant
C > 0, and uniform with respect to L . Therefore, we conclude by Theorem 5.7 that

‖E(�(u))− EL(�L)‖L2(�) ≤ Cε,

and it remains to derive the complexity in terms of ε.
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Assumption 5.5 implies that hL ≤ h�c
(L−�)
K h0. We obtain with (67) that

M� = �cK(�−L)2(2−θ)rw��. (68)

Let C� denote the work required to generate on sample of ��. As h� ≥ c�
Kh0, it holds

that

C� = O(dim(Vh�
)) = O(h−d� ) ≤ CcK

−d� (69)

Since we generate M� independent �� −��−1 on each level (and also generate inde-
pendent samples across all levels), the overall cost of theMLMC estimator is with (68)
and (69) bounded by

CMLMC :=
L∑

�=1
M�(C� + C�−1)

≤ C
L∑

�=1
c(�−L)2(2−θ)r
K w�(c

−d�
K + c−d(�−1)

K )

≤ Cc−L2(2−θ)r
K

L∑
�=1

(
c2(2−θ)r−d
K

)�

w�.

Now first suppose that 2(2 − θ)r − d > 0. Since cK ∈ (0, 1), the ratio test for sum
convergence shows that for any ι > 0 we obtain the uniform bound (with respect
L ∈ N)

L∑
�=1

(
c2(2−θ)r−d
K

)�

w� ≤
∑
�∈N

(
c2(2−θ)r−d
K

)�

�1+ι < ∞.

On the other hand, if 2(2− θ)r − d = 0, there holds with w� = L

L∑
�=1

(
c2(2−θ)r−d
K

)�

w� = L2.

Finally, for 2(2− θ)r − d < 0, it follows that there is a C > 0 such that

L∑
�=1

(
c2(2−θ)r−d
K

)�

w� = cL(2(2−θ)r−d)/2
K

L∑
�=1

c�(2(2−θ)r−d)/2
K ≤ CcL(2(2−θ)r−d)

K .
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Altogether, we obtain that there exists a constant C > 0 independent of L such that

CMLMC ≤ C

⎧⎪⎨
⎪⎩
c−L2(2−θ)r
K if 2(2− θ)r > d,

c−L2(2−θ)r
K L2 if 2(2− θ)r = d,

c−L2(2−θ)r
K cL(2(2−θ)r−d)

K if 2(2− θ)r < d.

With L from (67) it follows that cLK = O(ε
1

(2−θ)r h−10 ) for ε → 0. This shows the
following asymptotics for the ε-cost bounds as ε → 0

CMLMC (ε) =

⎧⎪⎨
⎪⎩
O(ε−2) if 2(2− θ)r > d,

O(ε−2 log(ε)2) if 2(2− θ)r = d,

O(ε
−2− d−2(2−θ)r

(2−θ)r ) if 2(2− θ)r < d.

��
Remark 5.9 The asymptotic complexity bounds for ε → 0 are of the same magnitude
as in [14, Theorem 3.1] and [10, Theorem 1], but only require knowledge of the
parameters r , t and θ , and not on further absolute constants. From Theorem 5.4, the
SLMC estimator requires for given ε > 0 a total of M ≈ ε−2 samples with refinement

parameters satisfying 2−t N ≈ h(2−θ)r ≈ ε. Hence, h = O(ε
1

(2−θ)r ) and, assuming
availability of a linear complexity solver such as multigrid, the computational cost

per sample is bounded asymptotically asO(dim(Vh)) = O(h−d) = O(ε
− d

(2−θ)r ). The
total cost of the SLMC estimator to achieve ε-accuracy is therefore

CSLMC (ε) = O(ε
−2− d

(2−θ)r ) > CMLMC (ε), as ε → 0. (70)

Consequently, under the stated assumptions, MLMC-FEM achieves a considerable
reduction in (asymptotic) ε-complexity, even in low-regularity regimes with 2(2 −
θ)r < d.

In case that 2(2−θ)r > d, the assumption that EM1(�1), . . . , EML (�L−�L−1) are
independentMCestimators is not required to derive the optimal complexity CMLMC =
O(ε−2). Instead, setting w� = �2(1+ι) is sufficient to compensate for the dependence
across discretiation levels. This could be exploited in a simulation to “recycle” samples
from coarser discretization levels in order to further increase efficiency. We refer, e.g.,
to the discussion in [7, Section 5.2].

6 Numerical experiments

We consider numerical experiments in the rectangular domain D := T
2 = (0, 1)2

and use the constant source function f ≡ 1. For the spatial discretization we use
bilinear finite elements that may be efficiently computed by exploiting their tensor
product-structure, see Appendix B.2 for details. The initial mesh width is given by
h0 = 1

2 and we use dyadic refinements with factor cK = cK = 1
2 to obtain a sequence
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Table 1 Parameters values for the random tree Besov priors in the numerical experiments

Parameter values s p κ β t s − d
p MLMC complexity for θ = 1

“smooth Gaussian” 2 2 1 1
2 1 1 O(ε−2| log(ε)|2)

“rough Gaussian” 3
2 2 1 1

2
1
2

1
2 O(ε−4)

“p-exponential” 2 8
5 1 3

4
3
4

3
4 O(ε

− 8
3 )

of tesselations (Kh, h = 2−�h0, � ∈ N) that satisfies Assumption 4.6 for the MLMC
algorithm.We further usemidpoint quadrature to assemble the stiffnessmatrix for each
realization of the diffusion coefficient. The resulting quadrature error does not domi-
nate the FE error convergence from Theorems 4.7 and 4.8, as we show in Lemma B.1
in the Appendix. For given N and a rectangular mesh Kh , we evaluate bT ,N at the
midpoint of each K ∈ Kh as described in Appendix B.3.

We investigate different parameter regimes of varying smoothness for the diffusion
coefficient, the values and resulting pathwise approximation rates r and t as in Corol-
lary 4.9 are collected in Table 1. In all experiments, we build the random field bT resp.
bT ,N based onDaubechieswaveletswith five vanishingmoments (“DB(5)-wavelets”),
with smoothness φ,ψ ∈ C1.177(R) (see [12, Section 7.1.2]). We consider the L2(D)-
norm of the gradient as quantity of interest (QoI), with associated functional given
by

� : H1(D) → [0,∞), u �→
(∫

D
|∇u|2dx

)1/2

,

so that Assumption 5.1 holds with θ = 1.
Given θ , r and t , we prescribe target accuracies ε = 2−rξ , ξ ∈ {5, . . . , 9} and

select, for given ε > 0, the MLMC parameters as in Theorem 5.7. The maximum
refinement level is denoted by Lε and the corresponding estimators by ELε (�Lε ).
We sample nML = 28 realizations of ELε (�Lε ) for every ε. As reference solution,
we use nre f = 24 realizations of ELref (�Lre f ) with parameters adjusted to achieve
εre f := 2−r11. We report for prescribed ε the realized empirical RMSE

RMSE(ε) =
⎛
⎜⎝ 1

nML

nML∑
i=1

⎛
⎝ELε (�Lε )(ωi )−

⎛
⎝ 1

nre f

nre f∑
j=1

ELref (�Lre f )(ω j )

⎞
⎠
⎞
⎠

2
⎞
⎟⎠

1
2

.

All computations are realized using MATLAB on a workstation with two Intel Xeon
E5-2697 CPUs with 2.7 GHz, a total of 12 cores, and 256 Gigabyte RAM.

We start with the “smooth Gaussian” case from Table 1. A sample of the dif-
fusion coefficient and the associated bilinear FE approximation of u is given in
Fig. 3, where we also plot the (average) CPU times against the realized RMSE. As
we see, the realized error is very close to the prescribed accuracy ε, which cor-
responds to the error estimate from Theorem 5.7. Moreover, the empirical results
are in line with the work estimates from Theorem 5.8, as is seen in the right
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Fig. 3 Sample of a Besov random tree prior/log-diffusion coefficient bT (left) and the corresponding finite
element approximation of u (middle) for the “smooth Gaussian” case in Table 1. Coefficient and solution in
the figures have been sampled on a grid with 29 × 29 equidistant points, and wavelet series truncation was
after N = 9 scales. Fractal structures in the log-diffusion caused by the wavelet density β = 1

2 are clearly
visible in the left plot. The realized RMSE vs. computational complexity is depicted in the right plot, the
curve shows the predicted asymptotic behavior of O(ε−2| log(ε)|2), as indicated by the dashed line

plot of Fig. 3, since the computational complexity is (asymptotically) of order
O(ε−2| log(ε)|2).

Next, we decrease the parameter s to obtain the “rough Gaussian” scenario from
Table 1. A sample of the diffusion coefficient and the associated bilinear FE approx-
imation of u is given in Fig. 4. Compared to Fig. 3, we now see more detailed, sharp
features in the diffusion coefficient, due to the slower decay factor of the wavelet basis.
Average CPU times vs. realized RMSE are given in Fig. 4. Again, the realized error
is of order O(ε), and the computational times are asymptotically of order O(ε−4), as
expected from Theorem 5.8.

Finally, we investigate the “p-exponential” scenario from Table 1, where we use a
heavier-tailed distribution of Xl

j,k and increase the wavelet density to β = 3
4 . We use

a standard Acceptance-Rejection algorithm to sample from the p-exponential density
for p = 1.6. A sample of the diffusion coefficient and the associated bilinear FE
approximation of u is given in Fig. 5. We observe that the variance of coefficient
and solution is increased, compared to the previous two examples. This is indicated
by the larger bars of the confidence intervals in the right plot of Fig. 5. The a-priori
accuracy has been scaled by a factor of three in this plot, for a better visual comparison
of realized and prescribed RMSE. Although absolute magnitude and variance of the
realizedRMSEhave increased,we still recover in linewithTheorem5.8 the asymptotic

error decay of order O(ε), together with CPU times of order O(ε− 8
3 ).

Our experiments show that sharper features in the prior model are achieved by
decreasing either s or p. We emphasize that the asymptotic complexity depends on the
differential dimension s − d

p as indicated in Table 1,the latter essentially corresponds
to the parameter r in Theorem 5.7. Consequently, the effect of lowering p on the
overall regularity is more pronounced in as the physical dimension d increases.

7 Conclusions

Wehave developed a computational framework for the efficient discretization of linear,
elliptic PDEs with log-Besov random field coefficients which are modelled by a mul-
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Fig. 4 Sample of a Besov random tree prior/log-diffusion coefficient bT (left) and the corresponding finite
element approximation of u (middle) for the “rough Gaussian” case in Table 1 Coefficient and solution in
the figures have been sampled on a grid with 29 × 29 equidistant points, and wavelet series truncation was
after N = 9 scales. The diffusion coefficient exhibits sharper features, as compared to the smooth case
Fig. 3. The realized RMSE vs. computational complexity is depicted in the right plot, the curve shows the
predicted asymptotic behavior of O(ε−4)

Fig. 5 Sample of a Besov random tree prior/log-diffusion coefficient bT (left) and the corresponding finite
element approximation of u (middle) for the “p-exponential” case in Table 1. Coefficient and solution in
the figures have been sampled on a grid with 29 × 29 equidistant points, and wavelet series truncation after
N = 9 scales. We still recover the predicted asymptotic error of order O(ε) with computational work of

order O(ε
− 8

3 )

tiresolution in the physical domain whose coefficients are p-exponential with random
choices of active coefficients according to GW-trees. The corresponding pathwise dif-
fusion coefficients generally admit only rather low path regularity, thereby mandating
low order Finite Element discretizations in the physical domain.We established strong
pathwise solution regularity, and FE error bounds for the corresponding single-level
Monte Carlo-FEM algorithm. The corresponding error vs. work bounds for the multi-
level Monte Carlo algorithm follow then in the standard way. We emphasize again
that higher order sampling methods seem to be obstructed by the GW-tree structure
which has recently been identified in [23] as well-suited for modelling diffuse media
such as clouds, fog and aerosols. The presently proposed MLMC-FE error analysis
for Elliptic PDEs with (log-) Besov random tree coefficients will imply corresponding
complexity bounds in multilevel Markov Chain Monte Carlo sampling strategies for
Bayesian Inverse Problems on log-Besov random tree priors, as considered for exam-
ple in imaging applications in [4, 11, 19, 24]. Details on their analysis and computation
will be developed elsewhere.
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A Galton-Watson trees

We provide some basic concepts of discrete trees, give a formal definition of Galton-
Watson trees, and record a result on their extinction probabilities. The presentation
follows [1, Section 2], with modified notation where necessary.

A.1 Notation and basic definitions

Let U :=⋃
n≥0 N

n be the set of all finite sequences of positive integers, where � := ()

denotes the empty sequence, and we use the convention N
0 = {�}. For any n ∈ U,

let |n| denote the length of n, with |�| := 0. For n,m ∈ U, we denote by nm the
concatenation of two sequences, with the convention n� = �n = n for all n ∈ U.
There exists a partial order, called the genealogical order, on U: we say that m � n,
whenever there is a n0 ∈ U such that mn0 = n. We say that m is an ancestor of n
and write m ≺ n if m � n and m �= n. The set of all ancestors of n is denoted by
An := {m ∈ U|m ≺ n} ⊂ U.
Definition A.1 [1, Section 2.1] A tree t is a subset t ⊂ U that satisfies

• � ∈ t,
• If n ∈ t, then An ⊂ t,
• For any n ∈ t, there exists Kn(t) ∈ N0 ∪ {∞}, such that for every n ∈ N, nn ∈ t
if, and only if, 1 ≤ n ≤ Kn(t).

We denote the set of all trees by T∞. Let |t| ∈ N ∪ {∞} be the cardinality of the
tree t ∈ T∞, and introduce the set of all finite trees by T0 := {t ∈ T| |t| < ∞}. The
set T0 is countable. The integer Kn(t) represents the number of offsprings in t at the
node n. The set of all trees without infinite nodes is a subset T∞ and denoted by

T := {t ∈ T∞|Kn(t) < ∞ for all n ∈ t.} (71)

For n ∈ t, the sub-tree Sn(t) of t above node n is defined as:

Sn(t) := {m ∈ U| nm ∈ t}. (72)
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We also need the restriction functions rn : T→ T, n ∈ N0 which are given by

rn(t) := {n ∈ t| |n| ≤ n}. (73)

With these preparations, we are in position to define metric and associated Borel
σ -algebra on T.

Definition A.2 [1, Section 2.1] Let

δT : T× T→ [0, 1], (t, t′) �→ 2− sup{n∈N0|rn(t)=rn(t′)}. (74)

Furthermore, define the σ -algebra

B(T) := σ

(⋃
t∈T

⋃
n∈N

r−1n (rn(t))

)
= σ

(⋃
t∈T

⋃
n∈N

{t′| δT(t, t′) ≤ 2−n}
)

. (75)

By [1, Lemma 2.1], (T, δ) is a complete and separable metric space. The countable
set of all finite trees T0 is dense in T: for all t ∈ T, we have rn(t) → t as n →∞ in
(T, δ). Further, δT is an ultra-metric (see [1, Section 2.1]), hence r−1n (rn(t)) is the set
of open (and closed) balls with center t and radius 2−n [1, Section 2.1] with respect
to δ. By separability, B(T) coincides with the Borel σ -algebra on T, that is generated
by all open sets on (T, δT). Given a probability space (�,A, P), we then call any
A/B(T)-measurable mapping τ : � → T a T-valued random variable. This allows
us to formalize Galton-Watson trees:

Definition A.3 (Galton-Watson(GW) tree with offspring distribution P) A T-valued
random variable T has the branching property if, for any n ∈ N, conditionally on
{k�(τ ) = n}, the sub-treesS1(T ), . . . ,Sn(T ) are independent and distributed as the
original tree τ .

Now let P be a probability distribution on N0, i.e., a probability measure on
(N0,B(N0)). A T-valued random variable T is called a Galton-Watson(GW) tree
with offspring distribution P if T has the branching property and if K�(T ) ∼ P.

According to [1, Equation (12)], the distribution QT of a GW tree T , restricted to
the set of finite trees, is given by

QT (T = t) =
∏
n∈t

P(Kn(t)), t ∈ T0, (76)

where the product on the right hand side is finite.

A.2 Randomwavelet trees and extinction probabilities

Nowwe consider again the d-dimensional torusT
d with wavelet basis� as in (12). To

relate the nodes of a GW tree to the wavelet indices in I� = { j ∈ N0, k ∈ K j , l ∈
L j }, we assume that T is a GW tree with offspring distribution P = Bin(2d , β) for
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some β ∈ [0, 1]. For a given realization T (ω) and node n ∈ T (ω), we identify the
length of n with the corresponding wavelet scale via j := |n| ∈ N0. Further, since P
is binomial, there are at most 2d j nodes n of length j in T (ω). Each of these nodes
has j entries in {1, . . . , 2d}. We assign an integer to all n ∈ T (ω) with |n| = j via the
bijection

I1d, j : {1, . . . , 2d} j → {1, . . . , 2d j }, n �→ 1+
j∑

i=1
2d( j−i)(ni − 1).

On the other hand, we assign for any {1, . . . , 2 jd} an index in K j = {0, . . . , 2 j − 1}d
via

I2d, j : {1, . . . , 2 jd} → K j , n �→
(
max(n − 2 j(i−1), 0) mod 2 j

)
i=1,...,d ,

which yields a one-to-one mapping

Id, j : {1, . . . , 2d} j → K j , n �→
(
I2d, j ◦ I1d, j

)
(n). (77)

Thus, each n ∈ T (ω) corresponds to a unique pair of indices ( j, k) via n �→
(|n|,I2d,|n| ◦I1d,|n|(n)). Collecting the pairs ( j, k) for all nodes in T yields the random
active index set

IT (ω) :=
⋃

n∈T (ω)

(
|n|,I2d,|n| ◦ I1d,|n|(n)

)
⊂ { j ∈ N0, k ∈ K j }. (78)

Then, only wavelets with indices IT (ω) := {( j, k, l)| ( j, k) ∈ IT (ω), l ∈ L j } ⊂ I�

are “activated” in the series expansion of a sample of bT in Definition 2.6.
It is then of course of interest whether theGW tree T terminates after a finite number

of nodes, in which case IT is finite, or if T has infinitely many nodes. In the latter case,
bT exhibits fractal structures onT

d , in areas where thewavelet expansion has infinitely
many terms. Let the extinction event of a GW tree T be denoted by E(T ) := {T ∈ T0}.
The extinction probability of GW trees are quantified in the following result:

Lemma A.4 [1, Corollary 2.5/Lemma 2.6] Let T : � → T be GW tree with offspring
distribution P and let ζ ∼ P.
1. If P(0) = 0, then QT (E(T )) = 0,
2. If P(0) ∈ (0, 1) and P(0)+ P(1) = 1, then QT (E(T )) = 1,
3. If P(0) ∈ (0, 1), P(0)+ P(1) < 1, and E(ζ ) ≤ 1, then QT (E(T )) = 1,
4. If P(0) ∈ (0, 1), P(0)+ P(1) < 1, and E(ζ ) > 1, then QT (E(T )) = q ∈ (0, 1).

Here q is the smallest root in [0, 1] of the equation E(qζ ) = q.

Lemma A.4 does not require a Binomial offspring distribution, but remains true for
arbitrary distributionsP onN0.Moreover,we conclude that aGW tree T with offspring
distribution P = Bin(2d , β) generates finite wavelet expansions via IT P-a.s. if and
only if β ∈ [0, 2−d ].
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A.3 Parametrization of binomial GW trees

Recall that (T, dT) is polish, but not normed. The product parameter space R
N × T

of the Besov random tree prior is thus not a Banach space, which is in turn a key
assumption for Bayesian inverse problems. However, it is possible to obtain suitable
parametrizations for GW trees with binomial offspring distribution, by exploiting the
connection to the continuous uniform distribution on (0, 1).

Let T be a GW tree with with offspring distribution P = Bin(2d , β) for β ∈ [0, 1],
let�U := [0, 1]N, and denote byPU the univariate uniform distribution on (0, 1)with
density fU (u) = 1{u∈(0,1)}(u). We equip �U with the countable product-σ -algebra
and product measure, given by

AU :=
⊗
n∈N

B((0, 1)), and QU :=
⊗
n∈N

PU , (79)

respectively, consider the probability space (�U ,AU , QU ), and a sequence U :=
(Uj,k, j ∈ N, k ∈ K j ) of i.i.d. uniform random variables defined on (�U ,AU , QU ).

Let j ∈ N, and consider the wavelet index ( j, k, l) ∈ I� . By (77), there is a unique
node n of length |n| = j associated to ( j, k) for k ∈ K j via ( j, k) = (|n|,I2d,|n| ◦
I1d,|n|(n)) = ( j,I2d, j ◦I1d, j (n)). Recall that An is the set of ancestors of n and note that
for each i ≤ j − 1, there exists a unique ancestor mi ∈ An of n with length |mi | = i .
We further introduce the notation m j := n for convenience. By independence of the
elements in the sequence U we obtain that

QU (n ∈ T ) = QU (m|n|−1 ∈ T , Uj,k ≤ β)

= QU (m|n|−1 ∈ T , Uj,I2d, j◦I1d, j (n)
≤ β)

= QU (m|n|−2 ∈ T , Uj−1,I2d, j−1◦I1d, j−1(m|n|−1)
≤ β, Uj,I2d, j◦I1d, j (n)

≤ β)

= QU (U1,I2d,1◦I1d,1(m1)
≤ β, . . . ,Uj,I2d, j◦I1d, j (n)

≤ β)

=
j∏

i=1
PU (Ui,I2d,i◦I1d,i (mi )

≤ β)

= β j .

Hence, we may parametrize T , i.e., the random index set IT , by the equivalence

( j, k, l) ∈ IT (ω) ⇐⇒ U1,I2d,1◦I1d,1(m1)
, . . . ,Uj−1,I2d, j−1◦I1d, j−1(m j−1), Uj,I2d, j ◦I1d, j (n)

≤ β

(80)

for each ( j, k, l) ∈ I� with j ≥ 1. Equation (80) hence shows that the parameter-
to-prior map of a B p

s -random variable with wavelet density β as in (18) is given
by
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(0, 1)N × R
N → B p

s , U × X �→
∑

( j,k,l)∈I�

η j X
l
j,kψ

l
j,k1{( j,k,l)∈IT (ω)}. (81)

In particular, the parametrization with respect to U ∈ (0, 1)N is discontinuous,
obstructing higher-order quadrature methods in the parameter domain, such as Quasi-
Monte Carlo.

B Finite element approximation

This appendix collects details on the (standard) implementation of the pathwise FE
discretization fromSect. 4. In particular, we analyze the quadrature error arising during
matrix assembly, describe an assembly routine based on tensorization for bilinear finite
elements on T

2, and comment on the efficient evaluation and sampling cost of aN .

B.1 Finite element quadrature error

Let h > 0 be the FE meshwidth and let {v1, . . . , vnh } be a suitable basis of Vh . As
uh,N =∑nh

i=1 uivi for a coefficient vector u, problem (47) is equivalent to the linear
system of equations

Auh = F . (82)

For any i, j ∈ {1, . . . , nh}, the entries of A and F are given by

Ai, j :=
∫
D
aN (ω)∇vi · ∇v j dx, and Fi :=V ′ 〈 f , vi 〉V , (83)

and have in general to be evaluated by numerical quadrature. Thereby, we commit a
variational crime in the assembling of A and F . As an resp. a is of low regularity, we
have to make sure to choose an appropriate quadrature method, that does not spoil the
convergence rate of the finite element approximation. It turns out that themidpoint rule
is sufficient for (d-)linear elements, as we show in the remainder of this subsection.
We restrict ourselves to the quadrature error analysis for the stiffness matrix A for
brevity, the corresponding analysis for the load vector F is carried out analogously.We
denote for any simplex/parallelotope K ∈ Kh its midpoint or barycenter by xmK ∈ K .
Furthermore, we define the piecewise constant approximation aN of an given by

aN (ω, x) := aN (ω, xmK ), x ∈ K , K ∈ Kh .

As we consider piecewise (d-)linear finite elements, approximating Ai j in (83) by
midpoint quadrature on each K is equivalent to solving the following discrete problem:
Find uN ,h(ω) ∈ Vh such that for all v ∈ V it holds

∫
D
aN (ω)∇uN ,h(ω) · ∇vhdx =V ′ 〈 f , vh〉V .
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There exists a.s. a unique solution uN ,h(ω) and the quadrature error is bounded in the
following.

Lemma B.1 Let the assumptions of Theorem 4.7 hold. For any f ∈ H, sufficiently
small κ > 0 in (16) and any r ∈ (0, s − d

p ) ∩ (0, 1], there are constants q ∈ (1,∞)

and C > 0 such that for any N ∈ N and h ∈ H there holds

‖uN ,h − uN ,h‖Lq (�;V ) + h−r‖uN ,h − uN ,h‖Lq (�;H) ≤ Chr{
for q ∈ [1, q) if p = 1, and

for any q ∈ [1,∞) if p > 1.

Furthermore, if s − d
p > 1, the statement holds for r = 1.

Proof There exists a.s. a unique solution uN ,h(ω) and the distance to uN ,h(ω) is readily
bounded with Proposition 3.3 by

‖uN ,h(ω)− uN ,h(ω)‖V ≤ ‖ f ‖V ′
aN (ω)aN (ω)

‖aN (ω)− aN (ω)‖L∞(D). (84)

Theorems2.11 andProposition4.2 show thataN ∈ L3q(�; Ct (D)) for all t ∈ (0, s− d
p )

and q ≥ 1
3 . For p > 1, we may again choose any q ∈ [ 13 ,∞), for p = 1 we have

q ∈ [ 13 , q), where q > 1 for sufficiently small κ > 0. This yields for q ∈ [1, q) with
Hölder’s inequality

‖uN ,h − uN ,h‖Lq (�;V ) ≤ C‖a2N ,−‖L3q/2(�)‖aN − aN‖L3q (�;L∞(D))

≤ C‖aN ,−‖2L3q (�)
‖aN‖L3q (�;Ct (D))h

min(t,1)

≤ Chr .

To prove the error with respect to H , we recall the duality argument from Theo-
rem 4.8: Let eN ,h := uN ,h − uN ,h and consider for fixed ω ∈ � the dual problem to
find ϕ(ω) ∈ V such that for all v ∈ V it holds∫

D
aN (ω)∇ϕ(ω) · ∇vdx =V ′ 〈eN ,h(ω), v〉V .

Analogously to the proof of Theorem 4.8, we derive the pathwise estimate

‖eN ,h(ω)‖2H ≤ ‖aN (ω)‖L∞(D)‖eN ,h(ω)‖V ‖(I − Ph)ϕ(ω)‖V .

Provided sufficiently integrability if p = 1, we find that ‖uN ,h − uN ,h‖Lq (�;H) ≤
Ch2r . ��
Note that r in Lemma B.1 is identical to r in Theorems 4.7 and 4.8. Hence the quadra-
ture error does not dominate the finite element convergence rate.We further emphasize
that Lemma B.1 holds for arbitrary piecewise (multi-)linear elements, regardless if we
use simplices or parallelotopes to discretize D.
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B.2 Bilinear finite element discretization

We focus on the rectangular domain D = T
2 = [0, 1]2 in this subsection. It is

convenient to use a spatial discretization based on bilinear finite elements. Let therefore
h = 1/n for a n ∈ N and consider the nodes xi := ih, i ∈ {0, . . . , n}. Then �h :=
{x0, . . . , xn} ⊂ [0, 1] defines an equidistant mesh of T

1. A rectangular tesselation
of Kh of T

2 is then given by the (n + 1)2 grid points �2
h := {(xi1 , xi2)| i1, i2 ∈

{0, . . . , n}} ⊂ T
2. Let

φi (x) := max

{
0, 1− |xi − h|

h

}
, x ∈ R, i ∈ {0, . . . , n}

be the one-dimensional hat function basis at the nodes in �h . Then, the space of
bilinear finite elements corresponding to �2

h resp. Kh is given by

Vh := spanR{φi1 ⊗ φi2 , i1, i2 ∈ {1, . . . , n − 1}}.

The dyads in the tensor product basis coincide with the pointwise products

φi1 ⊗ φi2(x) := φi1(x1)φi2(x2), x ∈ R
2.

Note that dim(Vh) = (n−1)2 due to the homogeneous Dirichlet boundary conditions.
Now let i, j ∈ {1, . . . , (n − 1)2} be indices such that vi = φi1 ⊗ φi2 ∈ Vh and
v j = φ j1 ⊗ φ j2 ∈ Vh . The entries of the associated stiffness matrix A ∈ R

(n−1)×(n−1)
are given by

Ai, j :=
∫

T
2
aN (ω, x)∇(φi1 ⊗ φi2)(x) · ∇(φ j1 ⊗ φ j2)(x)dx . (85)

We approximate the entries of A by midpoint quadrature on each square inKh , which
may be realized by replacing a in (85) by a suitable piecewise constant interpolation
at the midpoints as in Appendix 1. Let the midpoint of each square K = [xi1 , xi1+1]×
[xi2 , xi2+1] ∈ Kh be given by xmK = xmi1,i2 := (xi1+ h

2 , xi2+ h
2 ) for i1, i2 ∈ {0, . . . , n−

1} and define

aN (ω, x) := aN (ω, xmi1,i2), x ∈ [xi1 , xi1+1] × [xi2 , xi2+1].

With indices i, j as above this yields

Ai, j =
∫

T
2
aN (ω)∇(φi1 ⊗ φi2)(x) · ∇(φ j1 ⊗ φ j2)(x)dx

≈
∫

T
2
aN (ω)∇(φi1 ⊗ φi2)(x) · ∇(φ j1 ⊗ φ j2)(x)dx

=
∫ xi1+1

xi1−1

∫ xi2+1

xi2−1
aN (ω)∇(φi1 ⊗ φi2)(x) · ∇(φ j1 ⊗ φ j2)(x)dx
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= aN (ω, xmi1−1,i2−1)
[∫ xi1

xi1−1
φ′i1φ

′
j1dx1

∫ xi2

xi2−1
φi2φ j2dx2

+
∫ xi1

xi1−1
φi1φ j1dx1

∫ xi2

xi2−1
φ′i2φ

′
j2dx2

]

+ aN (ω, xmi1,i2−1)
[∫ xi1+1

xi1

φ′i1φ
′
j1dx1

∫ xi2

xi2−1
φi2φ j2dx2

+
∫ xi1+1

xi1

φi1φ j1dx1

∫ xi2

xi2−1
φ′i2φ

′
j2dx2

]

+ aN (ω, xmi1−1,i2)
[∫ xi1

xi1−1
φ′i1φ

′
j1dx1

∫ xi2+1

xi2

φi2φ j2dx2

+
∫ xi1

xi1−1
φi1φ j1dx1

∫ xi2+1

xi2

φ′i2φ
′
j2dx2

]

+ aN (ω, xmi1,i2)

[∫ xi1+1

xi1

φ′i1φ
′
j1dx1

∫ xi2+1

xi2

φi2φ j2dx2

+
∫ xi1+1

xi1

φi1φ j1dx1

∫ xi2+1

xi2

φ′i2φ
′
j2dx2

]
.

We define the matrices S and M via

Si1, j1 :=
∫ xi1

xi1−1
φ′i1φ

′
j1dx1 =

⎧⎪⎨
⎪⎩

1
h , i1 = j1,

− 1
h , i1 = j1 + 1,

0, else,

Mi1, j1 :=
∫ xi1

xi1−1
φi1φ j1dx1,=

⎧⎪⎨
⎪⎩

h
3 , i1 = j1,
h
6 , i1 = j1 + 1,

0, else.

for i1, j1 ∈ {1, . . . , n − 1}, and observe that

S$i1, j1 = S j1,i1 =
∫ xi1+1

xi1

φ′i1φ
′
j1dx1, M$

i1, j1 =M j1,i1 =
∫ xi1+1

xi1

φi1φ j1dx1.

This yields

Ai, j = aN (ω, xmi1−1,i2−1)(Si1, j1Mi2, j2 +Mi1, j1Si2, j2)

+ aN (ω, xmi1,i2−1)(S
$
i1, j1Mi2, j2 +M$

i1, j1Si2, j2)

+ aN (ω, xmi1−1,i2)(Si1, j1M
$
i2, j2 +Mi1, j1S

$
i2, j2)

+ aN (ω, xmi1,i2)(S
$
i1, j1M

$
i2, j2 +M$

i1, j1S
$
i2, j2),

(86)

and we only obtain a contribution to Ai, j if |i1 − j1|, |i2 − j2| ≤ 1. Hence, the
representation in (86) may be used for an efficiently assembly of A.
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B.3 Evaluation of aN

To assembleA via (86) it still remains to evaluate aN (ω) = exp(bN (ω)) at the quadra-
ture points in �2

h , or, more generally, at the d-dimensional grid �d
h := ⊗d

i=1�h ⊂
[0, 1]d . We recall that

bT ,N (ω) =
∑

( j,k,l)∈IT (ω)
j≤N

η j X
l
j,k(ω)ψ l

j,k, ω ∈ �.

The tensor-product representation of ψ l
j,k ∈ L2(T2) given in (5) and (4) then shows

bT ,N (ω, x) =
∑

( j,k,l)∈IT (ω)
j≤N

η j X
l
j,k(ω)2

d j
2

d⊗
i=1

ψ j+w,ki ,l(i)(x)

=
∑

( j,k,l)∈IT (ω)
j≤N

η j X
l
j,k(ω)2

d j
2

d∏
i=1

ψ j+w,ki ,l(i)(xi ), x ∈ T
d .

We define the vectors ψ j,ki ,l(i) := 2
j
2 ψ j+w,ki ,l(i)(x)|x∈� ∈ R

n and finally obtain

bT ,N (ω, x)
∣∣
x∈�2

h
=

∑
( j,k,l)∈IT (ω)

j≤N

η j X
l
j,k(ω)

d∏
i=1

ψ j,ki ,l(i) ∈ R
dn .

Therefore, it is sufficient to evaluate the scaled and shifted functions ψ j,k,l(i) on the
one-dimensional grid�h , the values of bN , resp. aN , at the d-dimensional grid�d

h are
then obtained by tensorization. Evaluatingψ j,k,l(i) eventually requires to approximate
the fractal functions φ and ψ at a discrete set of points. This is feasible to arbitrary
precision with the iterative Cascade algorithm, see, e.g., [12, Chapter 6.5]. Using
J ∈ N iterations in the Cascade algorithm yields approximate values of φ,ψ at 2J

dyadic grid points, which are then interpolated to obtain piece-wise linear or constant
approximation of continuous φ and ψ interpolation. The resulting error is of order
O(2−Jα) if φ,ψ ∈ Cα(R)with α ∈ (0, 1]. Consequently, we use J� := � N�t

α
� on each

level in the MLMC algorithm to match the midpoint quadrature error in Lemma B.1.
The cost of sampling bT ,N on a uniform, dyadic grid is quantified in the following.

Lemma B.2 Let h� = 2−(�+1) for � ∈ N0, let �d
h�
:= ⊗d

i=1�h�
⊂ [0, 1]d for d ∈ N,

and let Csample denote the random cost (in terms of work and memory required)
of sampling bT ,N with respect to the grid �d

h�
. Then, there is a constant C > 0,

independent of h� and N, such that

E(Csample) ≤ C

{
h−d� (N + 1) if β = 1, and

h−d� if β ∈ (0, 1).

Proof Given that ψ and φ are evaluated at the 2�+1 ∈ N grid points in �h�
, we need

to calculate 2d − 1 tensor products of scaled and translated vectors ψ j,ki ,l(i) ∈ R
2�+1

.
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Recall from the MRA in Sect. 2.1.2 that tensorization yields 2 jd one-periodic
wavelet functions ψ l

j,k on each scale j ∈ N0. Moreover, the support of ψ l
j+w,k has

diameter bounded by 2−d( j+1−w) in T
d for fixed index ( j, k, l) ∈ I� , where w ∈ N

is a scaling factor that only depends on the choice of φ and ψ .
Hence, the number of grid points lying in the support of ψ l

j,k is given by

|supp(ψ l
j+w,k) ∩�d

h�
| ≤ 2−d( j+1−w)2d(l+1) = 2d(l− j+w). (87)

Now we also fix a realization (T (ω), X(ω)) of the random tree T and the coefficients
X . If ( j, k, l) ∈ IT (ω), we multiply the corresponding 2d(l− j+w) grid points with
the coefficient Xl

j,k(ω). Otherwise, if ( j, k, l) /∈ IT (ω), there is no contribution to
bT ,N (ω) from this index.

Summing over all non-zero contributions and grid points thus requires computa-
tional cost of

Csample ≤ 2
∑

( j,k,l)∈IT (ω)
j≤N

2d(l− j+w) = 2
∑

( j,k,l)∈I�
j≤N

1{( j,k,l)∈IT (ω)}2d(l− j+w).

Since P = Bin(2d , β), it readily follows that P(( j, k, l) ∈ IT (ω)) = β j , which in
turn shows

E(Csample) = 2
N∑
j=0

2d j (2d − 1)β j2d(l− j+w)

≤
{
2dw+1(2d − 1)h−d� (N + 1) if β = 1, and
2dw+1(2d−1)

1−β
h−d� if β ∈ (0, 1).

��
Remark B.3 Lemma B.2 shows that for given β ∈ (0, 1), the expected cost of sam-
pling bN ,T is bounded by Ch−d� uniformly with respect to N ∈ N. Thus, the condition
that a sample of uN�,h�

may be realized with (expected) work O(h−d� ) from Assump-
tion 5.5 is indeed justified. On the other hand, we note that C = C(d, β) → ∞ as
β → 1, resulting in a possibly large hidden constant within the asymptotic costs in
Theorem 5.8. However, if we choose the error balancing N ∝ | log(h�)| according
to (63), we still recover the only slightly worse complexity bound ofO(h−d� | log(h�)|)
per sample in the limit β = 1.

References

1. Abraham, R., Delmas, J.-F.: An introduction to Galton-Watson trees and their local limits. arXiv
preprint arXiv:1506.05571, (2015)

2. Achdou, Y., Sabot, C., Tchou, N.: Diffusion and propagation problems in some ramified domains with
a fractal boundary. M2AN Math. Model. Numer. Anal. 40(4), 623–652 (2006)

3. Adams, R. A., Fournier, J. J.: Sobolev Spaces. Elsevier, 2nd edition, (2003)
4. Agapiou, S.,Dashti,M.,Helin, T.:Rates of contraction of posterior distributions based on p-exponential

priors. Bernoulli 27(3), 1616–1642 (2021)

123

http://arxiv.org/abs/1506.05571


Stochastics and Partial Differential Equations: Analysis and Computations (2024) 12:1574–1627 1627

5. Aliprantis, C.D., Border, K.: Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer, Berlin
(2006)

6. Barth, A., Schwab, C., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs
with stochastic coefficients. Numer. Math. 119(1), 123–161 (2011)

7. Barth, A., Stein, A.: A study of elliptic partial differential equations with jump diffusion coefficients.
SIAM/ASA J. Uncertain. Quant. 6(4), 1707–1743 (2018)

8. Berre, I., Doster, F., Keilegavlen, E.: Flow in fractured porous media: a review of conceptual models
and discretization approaches. Transp. Porous Media 130(1), 215–236 (2019)

9. Brenner, S. C., Scott, L. R.: TheMathematical Theory of Finite Element Methods, volume 3. Springer,
(2008)

10. Cliffe, K.A., Giles, M.B., Scheichl, R., Teckentrup, A.L.: Multilevel Monte Carlo methods and appli-
cations to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14(1), 3–15 (2011)

11. Dashti, M., Harris, S., Stuart, A.: Besov priors for Bayesian inverse problems. Inverse Probl. Imaging
6(2), 183–200 (2012)

12. Daubechies, I.: Ten Lectures on Wavelets. SIAM, (1992)
13. Dung, D., Nguyen, V., Schwab, C., Zech, J.: Analyticity and sparsity in uncertainty quantification for

PDEswithGaussian randomfield inputs. Technical Report 2022-02, Seminar forAppliedMathematics,
ETH Zürich, Switzerland, 2022. (to appear in Springer LNM (2023))

14. Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)
15. Giles, M.B.: Multilevel Monte Carlo methods. Acta Numer. 24, 259–328 (2015)
16. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. SIAM, (2011)
17. Hackbusch,W.: EllipticDifferential Equations: Theory andNumerical Treatment, volume 18. Springer,

2nd edition, (2017)
18. Heinrich, S.: Multilevel Monte Carlo methods. In International Conference on Large-Scale Scientific

Computing, 58–67. Springer, (2001)
19. Helin, T., Lassas, M.: Hierarchical models in statistical inverse problems and the Mumford-Shah

functional. Inverse Prob. 27(1), 015008, 32 (2011)
20. Herrmann, L., Schwab, C.: Multilevel quasi-Monte Carlo integration with product weights for elliptic

PDEs with lognormal coefficients. ESAIM: Math. Model. Numer. Anal. 53(5), 1507–1552 (2019)
21. Hoang, V.H., Schwab, C.: Sparse tensor Galerkin discretization of parametric and random parabolic

PDEs–analytic regularity and generalized polynomial chaos approximation. SIAM J. Math. Anal.
45(5), 3050–3083 (2013)

22. Hosseini, B., Nigam, N.: Well-posed Bayesian inverse problems: priors with exponential tails.
SIAM/ASA J. Uncertain. Quantif. 5(1), 436–465 (2017)

23. Kekkonen, H., Lassas, M., Saksman, E., Siltanen, S.: Random tree Besov priors – towards fractal
imaging. arXiv preprint arXiv:2103.00574, (2021)

24. Saksman, E., Lassas, M., Siltanen, S.: Discretization-invariant Bayesian inversion and Besov space
priors. Inverse Probl. Imaging 3(1), 87–122 (2009)

25. Triebel, H.: Theory of Function Spaces II.Modern Birkhäuser Classics. Birkhäuser, 2nd edition, (2000)
26. Triebel, H.: Function Spaces and Wavelets on Domains, volume 7 of EMS Tracts in Mathematics.

European Mathematical Society (EMS), Zürich, (2008)
27. Triebel, H.: Theory of Function Spaces IV, volume 107 of Monographs in Mathematics. Birkhäuser,

(2020)
28. Zech, J., Schwab, C.: Convergence rates of high dimensional Smolyak quadrature. ESAIM: Math.

Model. Numer. Anal. 54(4), 1259–1307 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2103.00574

	Multilevel Monte Carlo FEM for elliptic PDEs with Besov random tree priors
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Preliminaries and notation
	1.3 Layout of this paper

	2 Random variables in Besov spaces
	2.1 Wavelet representation of Besov spaces
	2.1.1 Univariate MRA
	2.1.2 Multivariate MRA
	2.1.3 Besov spaces and MRAs
	2.1.4 Notation

	2.2 Besov priors
	2.3 Besov random tree priors

	3 Linear elliptic PDEs with Besov random coefficients
	3.1 Well-posedness and regularity
	3.2 Besov random tree priors as log-diffusion coefficient

	4 Pathwise finite element approximation
	4.1 Dimension truncation
	4.2 Finite element discretization

	5 Multilevel Monte Carlo estimation
	5.1 Singlelevel Monte Carlo
	5.2 Multilevel Monte Carlo

	6 Numerical experiments
	7 Conclusions
	Acknowledgements
	A Galton-Watson trees
	A.1 Notation and basic definitions
	A.2 Random wavelet trees and extinction probabilities
	A.3 Parametrization of binomial GW trees

	B Finite element approximation
	B.1 Finite element quadrature error
	B.2 Bilinear finite element discretization
	B.3 Evaluation of aN

	References




