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Abstract

We consider in a smooth bounded and simply connected two dimensional domain
the convergence in the L? norm, uniformly in time, of the solution of the stochastic
second-grade fluid equations with transport noise and no-slip boundary conditions to
the solution of the corresponding Euler equations. We prove, that assuming proper
regularity of the initial conditions of the Euler equations and a proper behavior of
the parameters v and «, then the inviscid limit holds without requiring a particular
dissipation of the energy of the solutions of the second-grade fluid equations in the
boundary layer.

Keywords Inviscid limit - Turbulence - Transport noise - No-slip boundary
conditions - Boundary layer - Additive noise - Second-grade complex fluid

1 Introduction

The second-grade fluid equations are a model for viscoelastic fluids, with two param-

eters: o« > 0, corresponding to the elastic response, and v > 0, corresponding to
viscosity. Considering a constant density, p = 1, their stress tensor is given by

T =—pl +vA| +a’Ar — o’ A2,
where

Vu + VuT
Al:%’

Ay =3,A1 + A Vu+VuT Ay,
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being p the pressure and u the velocity field. Given this stress tensor, the equations of
motion for an incompressible homogeneous fluid of grade 2 are given by

0tv =vAu —curl(v) xu+Vp+ f

divu =0

v=1u—ao’Au (1)
ulogp =0

u(0) = uyg.

where f describes some external forces, possibly stochastic, acting on the fluid, see
[10, 36] for further details on the physics behind this system. The analysis of the
deterministic system started with [7]. They proved global existence and uniqueness
without restricting the problem to the two dimensional case. Setting, formally, « = 0
in Eq. (1) we can reduce the system to the well-known Navier—Stokes one:

ou=vAu—u-Vu+Vp+ f

divu =0 @)
ulagp =0
u(0) = ugp.

Thus (1) can be seen as a generalization of (2). Moreover, in [19], it has been shown
that second-grade fluid equations are a good approximation of the Navier—Stokes
system. Due to these good properties of the system it is a legitimate question trying to
understand if the second-grade fluid equations behave better than the Navier—Stokes
ones in problems related to turbulence, like the inviscid limit for domain with boundary
and no-slip boundary conditions. In fact, such question is far for being solved for
system (2) also in the deterministic framework. Partial results are available:

1. Unconditioned results. They are based on strong assumptions about the flows. For
example flows with radial symmetry [25, 26], or flows with analytic boundary
layers [29, 37].

2. Conditioned results. They are based on stating some criteria about the behavior
of the solutions of the Navier—Stokes equations in the boundary layer in order to
prove the inviscid limit. This line of research started with the famous work by Kato
[21], see [8, 43, 44] for other results. For what concerns the Stochastic framework
few results are available, see for example [28] for a generalization of the Kato’s
results to the additive noise case and a wider set of initial conditions and [3] for
some analysis on the validity of a Large Deviation Principle for the inviscid limit
of the Navier—Stokes equations in two-dimensional bounded domains perturbed
by additive noise.

The analysis of the inviscid limit for the deterministic second-grade fluid equations
is a partially well-understood topic. In particular, in [27], the authors show that the
behavior of the system changes considering different scaling between v and 2.
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If we set, formally, v = 0 in system (1) second-grade fluid equations reduce to the
so-called Euler-« equations:

otv=—curl(v) xu+Vp+ f

divu =0

v=u—a?Au 3)
ulogp =0

u(0) = uyg.

This system models the averaged motion of an ideal incompressible fluid when filtering
over spatial scales smaller than « and its well-posedness has been treated in [30, 39].
Euler-o equations, formally, satisfies the condition of [27, Theorem 3]. Therefore we
can expect that the inviscid limit holds also in this framework. Indeed, this is true as
has been showed in [24].

In this work, we will consider stochastic second-grade fluid equations and stochastic
Euler-« equations with transport noise which scales with respect to the elasticity. We
want to understand if the good behavior proved in [27] if v = O(«?) and in [24] if
v = (O is preserved also in this case. There are several motivations to consider transport
noise, as the effect of small scales on large scales in fluid dynamics problems, see [9,
13, 14, 18] for several discussions on this topic. A first issue related to the analysis of
the inviscid limit in the case of the transport noise is the well-posedness of the systems.
In fact the existence of strong probabilistic solutions of such systems is outside the
framework treated in [32, 34], thus we need to improve slightly these results thanks to
the properties of the transport noise. In the following v > 0 and we will always speak
of second-grade fluid equations even if v = 0.

The paper is organized as follows. In Sect. 2 we introduce the mathematical prob-
lem, we state our main theorems and we give some well-known results for the Euler
equations and the analysis of the stochastic second-grade fluid equations. In Sect. 3
we prove that the stochastic second-grade fluid equations with transport noise and
no-slip boundary conditions are well posed. In Sect. 4, thanks to the already proven
well-posedness and Hypothesis 6 below we improve the energy estimates obtained in
Sect. 3 in order to get some estimates crucial for the proof of Theorem 9. The proof
of our main theorem on the inviscid limit occupies Sect. 5. Lastly in Sect. 6 we add
some remarks for the analysis of the additive noise case.

2 Main results

Let us start this section introducing some general assumptions which will be always
adopted under our analysis even if not recalled.

Hypothesis 1 The following hold:

e 0<T < +o0.
e D is a bounded, smooth, simply connected domain.
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o (2, F,F;,P) is a filtered probability space such that (2, F, P) is a complete
probability space, (F;)se[0,7] is a right continuous filtration and F contains every
P null subset of 2.

For square integrable semimartingales taking value in separable Hilbert spaces U;, Us
we will denote by [M, N]; the quadratic covariation process. If M, N take values in
the same separable Hilbert space U with orthonormal basis u;, we will denote by
(M, N)); = jenl{M,uj)y, (N,u;i)yl;. Foreachk € N, 1 < p < oo we will
denote by L?”(D) and wk.p (D) the well-known Lebesgue and Sobolev spaces. We
will denote by C2°(D) the space of smooth functions with compact support and by

Wg "P(D) their closure with respect to the W7 (D) topology. If p = 2, we will write

H*(D) (resp. Hé‘(D) ) instead of WK-2(D) (resp. W§’2(D)). Let X be a separable
Hilbert space, denote by L”(F,, X) the space of p integrable random variables with
values in X, measurable with respect to F,. We will denote by L? (0, T'; X) the space
of measurable functions from [0, 7] to X such that

T 1/p
lullLro,1;x) == </ llu ()15 dt) <400, 1<p<o
0

and obvious generalization for p = oo. For any r, p > 1, we will denote by
LP(R2, F,P; L"(0, T; X)) the space of processes with values in X such that

1. u(-, t) is progressively measurable.
2. u(w, t) € X for almost all (w, r) and

B [, M 7.3 | < 00

Obvious generalizations for p = 0o or r = 00.

Set

H={feL*(D;R*, divf=0, f nlasp=0},
V=H}(D;R>»NH, DA =HD;RHNV,

Moreover we introduce the vector space
W={ueV: curllu —a’Au) € L*(D; R?)}

with norm ||u|3, = ||u||2+a2||w||§2(D;R2) + ||cur1(u—Au)||§2(D). It is well-known,

see for example [7], that we can identify W with the space
W={ueHD;R)HNV}
Moreover there exists a constant such that

lul: < C (||u||2 FIVul 2 oy + llcurl(u — Au)niz(m) : )
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We denote by (-, -) and ||-|| the inner product and the norm in H respectively. Other
norms and scalar products will be denoted with the proper subscript. On V we
introduce the norm ||u||%/ = |lul®* + “ZHV””iZ(D-M)‘ We will shortly denote by
lulls = llcurl(u — o Au) [l L2(p)- Obviously the following inequality holds foru € V,
where C), is the Poincare constant associated to D,

2
l[ully

o - 5
S || MHLZ(D;RZ) = 7 ()

a4 C2 ~

Denote by P the linear projector of L> (D; Rz) on H and define the unbounded linear
operator A : D(A) € H — H by the identity

(AU, w) = <AU, U))LZ(D;RZ) (6)
forall v € D(A), w € H. A will be called the Stokes operator. It is well-known (see
for example [42]) that A is self-adjoint, generates an analytic semigroup of negative
type on H and moreover V. = D ((—A) l/2)) . Denote by L* the space L* (D, Rz) NH,

with the usual topology of L* (D, Rz). Define the trilinear, continuous form b : L* x
V xL* - Ras

b(u, v, w) = (u, P(Vow)). 7

Now we introduce some assumptions on the stochastic part of the system.

Hypothesis 2 The following hold:

K is a (possibly countable) set of indexes.
or € Wh°(D; R?) N V satisfying

2
D okl < +00.
keK

ug € ﬂpzzLP(]‘-o, w).
{W,k }kek 1s a sequence of real, independent Brownian motions adapted to F;.

Let us consider the stochastic second-grade fluid equations below. Some physical
motivations for the introduction of transport noise in fluid dynamic models can be
found in [13, 18].

dv = (WAu — curl(v) x u + Vp)dt + 3 ;g (ox - Vu + Vi) o dWF
divu =0

v=u—a?Au

ulygp =0

u(0) = uop.
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We need to add the additional pressure term Y, _x V px od WK, the so-called turbulent
pressure, in the system above in order to deal with the fact that 3", _x o - Vi 0 d W}
is not divergence free, therefore an additional martingale term orthogonal to H must
be added to make the system feasible.

Introducing the Stokes operator, the previous equation can be rewritten as

du —a?Au) = (WAu — P(curl(v) x u))dt + Y jcx P(ok - Vu) o dWF
v=u—a?Au (8)
u(0) = ug

or the corresponding It6 form

d(u — o Au) = WAu — P(curl(v) x u))dt + ZkeK P(oy - Vu)thk
+1 Y hek Plok - V(U — a?A) "' P(oy - Vu)))dt

v=u—a’Au

u(0) = uop.

©))

Indeed each of the Stratonovich integrals in Eq. (8) can be rewritten, thanks to the
Stratonovich—It6 corrector associated to previous equation, in the following form:

P (o) - Vu) o dWF

1
= P(op - Vu)dW} + Ed[P(ak - Vu), W,

k 1 k
= P(oy - VuydW} + 5P (ok - Vdu, W ],)

= P(op - Vu)d Wk

1 . .
+-P|ox-Vd / (I =A™ " Poj - Vuydw!, w*
0

2 :
jeK P
= P(op - Vu)d Wk
|
+ 5P <ak v ((1 —a?A) " P (o - vu))) dr. (10)

We denote by F(u) = Y ycx Plox - V(U — a?A)"'P(0y - Vu))) and G*(u) =
P (oy - Vu). By Corollary 22 below

F e L(V:HNHYD;R?), GFeL(;H).

Definition 3 A stochastic process with weakly continuous trajectories with values in
W is a weak solution of Eq. (9) if

ueLP(Q,F,P; L0, T; W), Vp=2
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and P —a.s. forevery t € [0, T] and ¢ € W we have

t
(u(t) — up, ¢)v + /0 v{Vu(s), Vo) 2p.r2)

+ (curl(u(s) — ot2Au(s)) x u(s), ¢)L2(D)ds

t 1
= [ raen.aias+ Y [ (6. pawt,
0 kek 70
Theorem 4 Under Hypothesis 1-2, Eq. (9) has a unique solution in the sense of Defi-
nition 3. Moreover, almost surely, the stochastic process u has V continuous paths.

Remark 5 Actually we can weaken the integrability assumption of ug with respect
to P in order to get less integrable solution, but regular enough to prove that the
inviscid limit holds. Indeed ug € L*(Fy, W) is the minimal assumption to prove
either the well-posedness, see [2] and Sect. 3.2 below, and the inviscid limit, see
Sects. 4 and 5. However, we prefer to not stress this assumption in order to make our
results comparable to [34].

As stated in Sect. 1, the proof of Theorem 4 will be the object of Sect. 3. Usually,
in stochastic analysis, the well-posedness of a stochastic partial differential equation
is obtained considering some approximating sequence, {u"}yen, Which solves an
approximate equation in the original probability space and showing the tightness of
their law in some spaces of functions. Then, by Prokhorov’s theorem and Skorokhod’s
representation theorem, one can find an auxiliary probability space and a solution of
the limit equation in this auxiliary probability space, u. Lastly, by a Gyongy—Krylov
argument, one can recover that the limit process belongs to the original probability
space and that the approximating sequence converge in probability to u. See [1, 4, 13]
for some examples of this method. Here, we follow a different, perhaps, more direct
approach introduced by Breckner in [2] for Navier—Stokes equations with multiplica-
tive noise with particular regularity properties, but well-suited to treat transport noise,
which a priori does not satisfy the general assumptions of [2, Section 2]. This approach
uses, in particular, the properties of stopping times, some basic convergence principles
from functional analysis and some properties of fluid dynamic non-linearities. There-
fore, even if the results of [2] were related to Navier—Stokes equations, this approach
can be applied also to other fluid dynamic models, see [5, 34] for some examples to
different fluid dynamic systems. An important byproduct of this way of proceed is that
the approximations converge in mean square to the solution of the second-grade fluid
equations, see Theorem 33 below. This fact will be crucial in order to obtain some
apriori estimates on the solution, see Lemma 35 below.

Now we move to consider the inviscid limit problem and introduce a new set of
hypotheses.

Hypothesis 6 The following hold:
e v=20(?), 1 = 0@?).
e Uiy € H*(D;R?) N H for some s > 3.
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E[llug — ol | - 0; an
E @IV 12 oy | = 0(1; (12)
E [ 14§ 125 i) | = O, (13)

Let us consider the family of equations

du® — o®Au®) = (vAu® — P(curl(v%) x u®))dt + Y g P(ox - Vu®)dWF
+2 ek Plox - V(U — a®A) "' P oy - Vu®)))dt
v = u® — a?Au®
u®(0) = ug,
(14)

where oy are independent from v, v, « and ug are random variable satisfying the
assumptions of Theorem 4. Energy relations and the behavior of the H> norm of u®
play a crucial role in the analysis of the inviscid limit in the deterministic framework,
see Eqs. (3.2) and (3.7) in [27]. If we want to have some hope of replicating the approach
of [27] we need some estimates in that direction. This is exactly what happens. Indeed,
under Hypothesis 6, Egs. (3.2) and (3.7) in [27] continue to hold in the stochastic
framework, see Lemma 35 below. Therefore there is some hope to generalize the results
of [24, 27] to our stochastic framework. Now, let us consider the Euler equations

u+Viu-u+Vp=0(x,t) e Dx(0,T)
diviu =0

u-nlyp =0

u(0) = up.

15)

Definition 7 Givenug € H, wesay thatu € C(0, T; H) is a weak solution of Eq. (15)
if for every ¢ € C3°([0, T] x D) N cL(0,T1; H)

t t
(u(r), ¢(1)) = (uo, ¢(0)) +/0 (ﬁ(S),av¢(S))dS+[0 b(u(s), ¢(s), u(s))ds
for every ¢ € [0, T'] and the energy inequality

~ 2 = 2
lu@* < lluoll

holds.

For what concerns the well posedness of the Euler equations the following results hold
true, see [22, 41].
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Theorem8 Fix T > 0, s > 3. Let ug € H*(D; Rz) N H. Then there exist a unique
weak solution of (15) with initial condition uq such that

i € C([0,T1; H (D; R*)) n €' ([0, T1; H~'(D; R?))

and |lu(®)|| = lluoll, vt € [0, T].

Now we can state our main Theorem. According to the analysis started in [16] and
continued, recently, in [11, 12] the influence of the transport noise on the averaged
solution is related to the ¢2 norm of its coefficients, therefore we expect that the solution
of Eq. (14) converges to the solution of the Euler equations with null forcing term.

Theorem 9 Under Hypotheses 1-6, calling u® the solution of (14) and u the solution
of (15), it holds

lim E [ sup Ju®(r) — L_t(t)||2:| =0.
]

a=0 | ref0,T

Remark 10 If Wy € H N H'(D:;R?), the existence of a family ug satisfying
Egs. (11), (12), (13) is guaranteed by Proposition 1 of [24].

Remark 11 Due to the poor regularity of the coefficients F and G*, Eq. (9) are not
guaranteed to be well-posed from the results of [34]. Indeed, neither F nor G* satisfy
the assumptions of [33] or [34]. However, due to relation (47) and the good estimates
of Corollary 22, we will be able to prove in Lemmas 25 and 26 the same, actually
stronger, energy estimates that are available in [34]. These and Lemma 28 are the
main ingredients in order to prove the well-posedness of system (9). On the contrary
the well-posedness in the case of additive noise is completely solved by the results of
[34], thus in Sect. 6 we will only explain some remarks about the inviscid limit and
the well-posedness in the additive noise framework.

Remark 12 Both Theorems 4 and 9 continue to hold for v = 0. We will give the proof
of all the statements below in full details considering the case v > 0. However if
something in the proof changes considering v = 0 we will explain in a remark at the
end of each proof what we need to change in order to deal with the other case.

Remark 13 The arbitrariness in the choice of the parameters v and v allows us to
generalize to this stochastic framework, via Theorem 9, some results of [24, 27]. As
a byproduct of its proof we obtain that under Hypotheses 1-2—-6

o’E [Supte[o’]‘] ||Vua(t)||%2(D;R2)i| — 0.

Moreover, considering v = v > 0 we recover the scaling introduced by Kuksin [23]
which is relevant for the inviscid limit at the level of invariant measures. The scaling
above has been proved of being of interest also for the evolution of the solutions of the
stochastic Navier—Stokes equations in a Kato-type regime, see [17, Corollary 2.5.1].
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Remark 14 The results of these notes are in a certain sense complementary to what
we obtained in [28]. In [28] we required poor regularity on the initial conditions of
the Euler equations and the Navier—Stokes equations but we got a conditioned result.
On the contrary, in these notes we require strong regularity on the initial conditions
of the two problems and a special type of convergence of the initial conditions but we
arrive at a not conditioned result.

Remark 15 The assumption on v = O («?) is hidden in Eq. (14). For high frequencies

Au is a damping term in Eq. (14). In fact, for high frequencies v ~ —a?Au, thus the
equation becomes, formally,

—ozzatAu —VvAu+---=0.

Asking v = O(a?), means requiring that the damping coefficient does not blow-up.

We conclude this section with few notations that will be adopted: by C we will denote
several constant independent from v, & and oy, perhaps changing value line by line. In
the case C depends by v, « or oy we will add the dependence as a subscript. Sometimes
we will use the notation a < b, if it exists a constant independent from v and  such
that @ < Cb. In order to simplify the notation we will denote Sobolev spaces by H*,
forgetting domain and range.

3 Well-posedness

3.1 Preliminaries

Before starting with the analysis of Eq. (9), we need to recall some preliminaries
results on the nonlinear term in the second-grade fluid equations, the Stokes operator
A and the embedding between W and V. We will consider the Hilbert triple

WV W

We start recalling in a single lemma some classical facts on the nonlinear part of

Eq. (1). We refer to [7], [33, Lemma 2.4], [34, Lemma 2.4] for the proof of the various

Statements.

Lemma 16 For any smooth, divergence free ¢, v, w the following relation holds
(curlgp x v, w);2 = b(v, d, w) — b(w, P, v). (16)

Moreover for u, v, w the following inequalities hold

[curl (u — o Au) x v, wh 2| < Cllull s lvllv wllw a7

[(curl(u — o Au) x u, w);2| < Cllully wllw (18)
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Therefore there exists a bilinear operator B:W x V — W* such that
(é(u, v), w)yww = (P(curl(u — ozzAu) X V), w) (19)
which satisfies foru e V, ve W

1B, w)|lw+ < Cllully|vllw (20)
1B, w)||w+ < Cllul?. 1)

Lastly, foru e W, veV, weW
(Bu, v), wywew = —(Bu, w), v)ws w. (22)

We need a basis orthonormal either in W and in V in order to deal with the Galerkin
approximation of Eq. (9). The existence of such basis is guaranteed by the lemma
below. The first part is a consequence of the spectral theorem for self-adjoint compact
operators stated in [35], we refer to [6, Lemma 4.1] for the proof of the second part.

Lemma 17 The injection of W into V is compact. Let I be the isomorphism of W*
onto W, then the restriction of I to V is a continuous compact operator into itself.
Thus, there exists a sequence e; of elements of W which forms an orthonormal basis
in W, and an orthogonal basis in V. This sequence verifies:

foranyv e W (v,e;)w = Ai{v,e)v (23)

where Ajiy1 > A; > 0, i = 1,2,.... Thus /Aje; is an orthonormal basis of V.
Moreover e; belong to H*(D; R?).

We will use also some properties of the projection operator P and the solution map of
the Stokes operator. We refer to [42] for the proof of the lemmas below.

Lemma 18 The restriction of the projection operator P : L*(D;R?) — H to
H"(D; R?) is a continuous and linear map between H' (D; R?) and itself.

Lemma19 Let f € H™(D;R?). Then, there exists a unique couple (u, p), with p
defined up to an additive constant, solution of

u—azAu—l—Vp:f
divu =0
Lt|3D=0.

Moreover u = (I —a*A)~' f € H"2(D; R?), p € H"(D),

lull gmsz + NPl s < ClLf L

@ Springer



Stoch PDE: Anal Comp (2024) 12:1046-1099 1057

Lemma 20 The injection of V in H is compact. Thus there exists a sequence é; of
elements of H which forms an orthonormal basis in H and an orthogonal basis in V.
This sequence verifies

—A&; = A&

where )-i+1 >3 >0,i=1,2,.... Moreover ); — +0o0. Lastly & € C®(D; R?)
under our assumptions on D

Combining Lemmas 17 and 19 above, it follows that for each f € H lieN
(I —a?A) 7 frenw = 1(( —a? A ey =2l S, e). (24)

Moreover, Lemmas 18, 19, 20 above allow us to prove some useful estimates that
will be exploited along the paper. We will need Corollary 22 in order to evaluate the
regularity of the linear operators appearing in Eq. (9). Instead we will need Lemma
21 in order to quantify explicitly the dependence from « in several embeddings and
operators. This will be crucial in Sects. 4 and 5.

We recall first that by Poincaré inequality, Eq. (4), triangle inequality and Eq. (5)
the following relations hold:

lull?s < CAUIVul7, + lleurl@@ — Aw)|13,)

2 2
a”+1 (o
<C < — ) IVull?, + —lleurl(u — o? Au)|7, (25)
2
u
IVul7, < ”a!V- (26)

Before going on with the statements of Lemma 21 and Corollary 22 we recall the
definitions of the linear operators, F, {Gk}ke K , appearing in Eq. (9):

F(u) = % Z P(oy - V(I —a?A)"'P(oy - Vu))), G*w) = P(ox - Vu).
keK

Lemma2l Lethe H, uc€V, we VN H? then

k lluellv
IG @I < okl IVl 2 < llo ==, 27)
IVGEw)ll2 < Cllollyrellwll g2, (28)
(I —a?A) " h|| < |IR, 29)
B 1
(=M1 —a?A) | < = lIAll, (30)
o
B 1
I=AU — o> A) 'R < = |IA]l, 31)
o
(I — a?A) " (P(og - V) lw < Cllogllyreollw] 2. (32)
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Therefore, if u € V the following inequalities hold true

_ llully
(I —a?A) ' Poy - V)l < llokllpe I Vaull 2 < llowllzoe o
(33)
VU — a4 Plo - Vil < I gy (34)
o
5 [EA
|0 V(U = )T Plox - Vi) = — £Vl 2. (35)
_ Cllokll Lo low Ly I Vaell 2
1P ok - V(I —a*A) " Pox - Vi)l g1 < e )
Proof Inequalities (27), (28) are trivial. Indeed, by Lemma 18 it holds
llully

IG @)l = 1P(ox - Vi)l < llow - Vull 2 < logllzoe | Vull 2 < llox o

IVG*(w)ll2 = IVP(ox - Vw) | 2
< Cllox - Vw1
< Cllokll oo VW]l g1

< Cllollwreo lwll g2-

In order to prove inequalities (29), (30), (31) we exploit the Fourier decomposition
h =73 ;cn(h, éi)e;. Therefore it holds

_ (h, &)
I —o?A) ') =) ————— < ||,

ieN (1 +a25\1)2
I 20—y hP =3 —2 ey < e,
= (4 a24)? 4o
» 1
I—AU — oA )P =) mm &)? < —lInl.
ieN

For what concerns inequality (32), by definition of the norm in the space W it holds

(I — A~ (P(ok - Vw)II}y = 1T — «?A) (P ok - V)13,
+ Jleurl((I — &?>A)(I — > A)~!
(P (o - Vw))II72.

From Lemma 19, we know that

(I — @A)~ (P(og - Vw3 = (P(ok - Vw), (I — a*A) ' (P(0x - Vw)))
< okl Vw211 —a*A) " (P(ox - Vw))llv
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< ol lIVwl3., 37)
[|curl ((1 —a?A)I — o?A) (P (o - Vw))) .2
= [leurl(P (ox - Vw)lIz2 < Cllokllwrecllwll g2 (38)
Combining (37) and (38), inequality (32) follows.

Combining relation (27) with relations (29) and (30), inequalities (33) and (34)
follow immediately. Let us now prove Eq. (35). By Holder’s inequality and relation
(28) we have

1P (o - V(U — a*A) " Pox - Vi)l < llox - V(U — &> A) "' Poy - Vu)) |2
< lloxllz= IV (I = @A)~ P(oy - Vi)l 2

_ llowlje

Vu .
==, Vull 2

For what concerns the last one, by Lemma 18, 19 and relations (31) it holds

IP(ox - V(I —a*A) ' P(og - Vi) |l g1
< Cllox - V(I —*A) " P(oy - Vi) || 1
< Cllokllyr< V(U — a*A) " P(ox - Vu)) [ 1
< Cllokllwre (I — a*A) " P oy - V)| 2
< Clokllwrx AU — a*A) " P(op - Vu)|

A

C
< —llokllwrecll Pok - V)l
o

- Cllokllz=llokllw=lVull L2
< 5 .

o
Corollary 22 It holds
G e L(V;H), FeL(V;HnNH (D;R?).

In particular

llully

IG @l < Nlowll==, (39)
1
IF@I < 5= Y lowlZ I Vull2 (40)
keK
C
IF@)lm < = > okl lokllwee I Vull 2. (41)
o keK
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Lastly we recall two technical tools used in the proof of Theorem 9. We refer to [15]
for the proof of the interpolation inequality and to [38] for the proof of the stochastic
Gronwall’s Lemma.

Theorem 23 Each function f € H? satisfies the following inequality:

£l < CUALR AN 42)

Theorem 24 Let Z(t) and H(t) be continuous, nonnegative, adapted processes, V¥ (t)
a nonnegative deterministic function and M (t) a continuous local martingale such
that

t
Z(t) < / Y(s)Z(s)ds + M)+ H(t) Ytel0,T].
0

Then Z(t) satisfies the following inequality
t
E[Z(t)] < exp (/0 1#(s)ds> E [Supre[oyﬂ H(s)] . 43)

3.2 Galerkin approximation and limit equations
Let WV = span{eq, ..., ey} € W and PN . w — WV the orthogonal projector.

We start looking for a finite dimension approximation of the solution of Eq. (9). We
define

N
uN ()= cin®e

i=1

The c; n have been chosen in order to satisfy Ve;, 1 <i <N
t
W (1), ey — () er)y = vf (Vi (s). Vei) 2ds
0
t
- / bw™N (s), u™ (s) — a> AulN (s), ¢;)ds
0
t t
- a2/ blei, Au™ (s), u (s))ds +/ (FN(s), e)ds
0 0

t
+Z/ (GN(s), en)dWF P —as.
0

keK

where u(j)v = ZlN:l (uo, eiYwei, FN(s) = F (s)) and G5V (s) = G* ™ (s)). The
local well-posedness of this equation follows from classical results about stochastic
differential equations with locally Lipshitz coefficients, see for example [20, 40]. The
global well-posedness follows from the a priori estimates in Lemmas 25, 26.
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Lemma 25 Assuming Hypothesis 2, the following relations hold:
e The Ito’s formula
du |} = —2v[Vu |2, dt
=Y blow u™, (I = PMYUI —a?A) ' Plor - Vu))dr.  (44)
keK
e The inequality below holds uniformly in N
E [Supte[o,r]HMN(f)llﬁ] < Cp.a,up.foxleexs YP = 1. (45)
Proof If we apply the 1t6’s formula to ZlNzl i (uN (), e,-)%/, we get
N2 ' N2 N2 LN N
I O, +20 [ 190" © s = a1 +2 [PV, u¥ s
0
+ Z > ki / (GMN(s), ei)?ds
i=1 keK
t
+ 22/ (GEN (), uM (s))dWk.  (46)
k=1 0

In the last relation we exploited the fact that b(u™ (s), u (s), u™ (s)) = bu" (s),
AuM (s), u" (s)) = 0. Now we observe that for each k, (G¥V (s), u™V (s)) = 0. In fact

(GN(s), u (5)) = blog, u™ (s), u™ (5)) = 0.
Moreover we have

/(FN(S) uN(s) ds—i—ZZk/ GkN(s) el)zds

i=1 kek

==Y blox, u" (). (I = PM)I — o> A)~" P(oy - Vi (5))).
keK

In fact,

N N
Y iGN (), e)? =b <ok, M (s), " rieib(or, u™ (s), e») :
i=1

i=1

(47)

(48)
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It remains to show that

N
b (ok, uV (), Y hieibog, u¥ (s), ei)> b (00, (1 =)~ Plox - V' (), u)

i=1

= —b(og, uN (s), I — PVYUT — > A) "' P oy - VU (5))).

Thus it is enough to show that (Y"1 A;e;b(ox, u" (5), e;), v)y = (I —a>A) "' P(oy-
VuN(s))), v)y forall v € Vy, where Vy = span{ei}lN:l. The last claim is true, in fact

(I —a?A) " Pog - Vi (5))), v)v = b(ox, u (), v)

N N
b (O’k, MN(S), Z)\iei (e,-, U>U> = <Z Aieib(ok, MN(S), e,-), v> .
i=1 Vv

i=1

Therefore, combining Egs. (46), (47) and (48) we obtain

t
1 )13 + 2 /0 Vi (5)121ds

t
= llug Iy = /O blok, u™ (s), (I = PNY(I = o A)7' P(oy - Vu™ (s)))ds
keK

2
=< lluolly

t
+ Z”Uk”LOO/O IVu ()21 = PMYU = o®A) 7 P(o - Vul () llds
keK

t
< lluolly, + Z||Uk||L°°/O ™ I — o> A) 7 Ploy - Vil (5))lvds
keK

t
< lluolly + Z||Uk||L°°/O 1 )1y | P(or - Vu" (5))llds
keK

1 t
2 2 N 2
< |Iuollv+a E IIUkIILoo/ lu™()llyds.
keK 0

Thus, by Gronwall,

sup; (0. 711U~ O} < Cofoeex luoll - (49)

Taking the expected value of Eq. (49) we get the thesis for p < 2. If p > 2, raising to
the power p/2 both sides of Eq. (49) the thesis follows easily.

Lemma 26 Assuming Hypothesis 2, the following relation holds:
E I:Supze[o,T]”uN(t)”;/] = Cp,v,ot,u(),{ok}kgx’ Vp=>1 (50)
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where Cp o {0y )ik 18 @ constant independent from N.

Proof This proof is similar to Lemmas 2.4-2.5 of [33]. We will need some changes
due to the poor regularity of the coefficients F and G*. In the part where we will not
need any changes, we will refer to the equations in [33]. Let

oy = inf{e N Olly + [uV Ol = MYAT

and GV = (I — «2A)"'G* the solution of Stokes problem defined in Lemma
19. From the regularity of the eigenvectors e;, GX"V e H!, thus G*V € W and by
Egs. (24) and (32) the following relations hold true

(GN eiyw = 1 (GEN ey (51)
IG*Nlw < Cllokll oo lu™ |l 2. (52)
Let us call
qu = —vAul + curl(uN — azAuN) xu — FV.

From the regularity of the e;, we have that " € H!. Thus we can find a vV € W
such that vV = (I — «2A4)"1¢N. We rewrite shortly the weak formulation satisfied
by u®

dw" ey + @", eNdt = dwN i)y + WV, ei)vdt = Y (GEN, e)d W
keK

Multiplying each equation by A; we get

dw, ei)w + WV, eiywdt =y (GEN, ei)wd W)
keK

Now we apply the Itd’s formula to Z,N: 1 WV, ei)%v and we obtain
d(lu™I5 + [u™13)
+2 ((UN, uMyy + (curl@” — o?Au™), curl" — azAvN))Lz) dt

=2 Z(curl(ék’N — 2 AGHN), curl @ — &® Au™)) 2d WH

keK
N
+ Y RGN ey de 42 (GRN uN)yd Wi
keK i=1 keK

Exploiting the definition of v*, GHN, Eq. (47) and the classical fact that curl V.= 0
we get
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d(lu™ 13 + 1112 42 (<¢>N, u™y + (curl(¢™), curl (@ — azAuN))Lz) dt

N
=2 (curl(G*M), curl@" — o AuM)) 2d W + YD TAHGHN i) .
keK keK i=1
(53)
From Lemma 25 we already know that
du™ 5 = =20 Vu |17 ,dt
=Y blo. u™, (I = PNY(I —a?A) " P(oy - Vi)t
keK
Substituting this relation in the 1t6’s formula (53) we get
d(u™1?) +2 ((curl(qu), curl (u — azAuN))Lz) dt
=2 (curl(G*Y), curl@" — o AuN))2d WF
keK
N
+ )Y i +aDGHY i) . (54)
keK i=1

Analogously to Eq. (4.48) in [33], the relation below holds true
(curl ¢N, curl (u — otzAuN))Lz

2

v v o
= —2||uN||i - — curl u™ + — curl FV, curl(u — azAuN) .
o o % L2

Using this relation in the 1t6’s formula (54) and integrating between O and # < t Z{X we
get

¢ N
lu® @))2 + z—l;/o N 12 = DY i+ ADGEN (5). €i)ds

keK i=1
2

t

2

= Jul) |2 +f = eurlu (s) + = curl F¥(s), curl(u™ (s) — o® Au™ (5))) 1 2ds
0o o v

t
+2 Z / (curl(G*N (5)), curl(u® (s) — a® Au (5))) 2d WK
kek V0

t 21) t
< llud) 12 + / ;||cur1uN(s>||Lz||uN<s>||*ds+2 / lleurl FN ()|l 2 1™ () .ds
0 0

t
Z/ (curl(G*N (s)), curl @™ (s) — o> Au® (5))) 2d WE
keK 0
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Taking the supremum between O and r A T ﬁ in relation (55) and, then, the expected
value we get

N 2 v ATy N 2
E [sup, <, eyl ¥ 012 ] + B /0 lu™ (5)112ds
N2 AT 4y N N
< 2K [} 12] + E [ e @l ©)lds

rATlY
+4E / lcurl £V ()| 2 11u™ () ||ods
0

Z / o (curl(GFN (s)), curl(u” (s) — > AuM (5))) 2d WF
LlkeK

N2
ey 1

+4E

|

Z/ (curl(G*N (5)), curl(u® (s) — &> Au™ (5))) 2d WE
0

kekK :|
r/\'[ﬁ 2\)6 r/\'rlc; 2\1
+E U (—21 + 262) lu? (s)l2ds | + E / —— llcurlu™ (5)|17 ,ds
0 o 0 €]
r/\‘[AIZ 2
+E |:[ — ||curl FN(s)Ilizdsj|
0 €

N rath
+23 3 (i +2)E [f Y (GRN (s), ei)zds} . (56)
0

keK i=1

<2E

—

+ 4E SUP <rnrlY

Choosing €] = % and ) = # we arrive at

N y)2 v T N(oy)2
B [sup gyl O] + B[ [ e olas
< 28 [} 12]

t
Z/ (curl(G*N (s)), curl(u® (s) — a® Aul (5))) 2d WK
keK 0

rATﬁ 8 rATAIZ 8 ’
+E |:/ _ZHCUrluN(S)”izds] +E |:/ illcurl FN(S)”%”“
0 o 0 '

N rath
+2> Y (i +ADE [/ (GRN (s), e,')zds:| (57)
0

keK i=1

+ 4E [suptir“%
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From Egs. (48) and (33) we know that

ZZAE[/ o (GEN (), e,)zdsi|

keK i=1

_ZEU b(og, u (s), PN (I — 2A)_1P(ak-VuN(s)))ds]

keK

[ rraTd
< > llokll=E f MuwN(s)ann(I—azA)—le-wN(s»nvds}

keK L 0

raTl
< Y llowllz=E f ||VuN<s>||Lz||(1—a2A>—‘/2P<ok-wN<s>)||ds}

keK L 0
" praTly
<> lokli=E / IVu ()17 .ds | . (58)
keK L 0

Thanks to Egs. (51), (52), the interpolation estimate (42) and relation (25) we have

>y e [

N

(GFN (s), e,)zds:|

keK i=1
_ZZEU (GFN (s), e,)sti|
keK i=1
<) E [/ ||Gk’N(s)||%Vds:|
keK
Azl
< C D lokliiE [ / ||uN<s)||§,zds}
keK 0
racl
< C D lokliiE [ f ||wN<s>||Lz||uN<s)||Hsds}
kek 0
< C D lokliE
keK

r/\r}c,’ 052 +1 1
[ /0 ||VuN<s)||Lz( S IVu )l +;||uN<s>||*) ds

raty ol 141
< Yokl E [/ C—— IV @I + 5l )1 |

keK
(59)
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Thanks to Burkholder-Davis—Gundy inequality, Eq. (28), the interpolation inequal-
ity (42) and relation (25) we get

Zf (curl(G*N (5)), curl(@® (s) — a® Au (5))) 2d WF

keK

4K |:supt<rm

B 1/2
<CE (Z / lleurl GkN<s>||Lz||uN<s)n2ds>
keK

1/2
< CE | sup,, oy lu™ ()4 (Z/ llcurl GF- N(s)”deS>

keK

1 r N k,N

< 3E [sup, o, oyl 0)12] + € [Z / leurl G*¥ ()17 2ds
keK

] N rA‘[I{\,II N 5

<SE| sup,<mw||u (t)||*]+c > llokliyE f ™ ()112,2ds
keK

1 N 2

< 3E [sup o p ol 12
At o1+ 1 ¢
+ > okl [/ C——— VU )72 + 5 lu™ ) |
keK
(60)
Lastly, thanks to Eq. (41) we have
2
r/\rﬂlz 80[2
E —J|lcurl FN ()|1%,d < £ x .
[/0 —lleurl FY()II72ds | < —— anaknL llow .
ek
AT v 5
Ef IV ()[17.ds | - (61)
0

Combining estimates (58),(59),(60),(61) above we obtain

N

v =Y pelonlfo [ oot
]E[Sup,gA,glluN(l)lli]‘l' > —E /O

raTly
sc(E[nuéVni] Znoknwm [/ ||VuN<s>||iz]>

keK

C 2 r/\‘l’ﬁ )
+— | 2 loxl=liotllwie | E fo IVu® (5)112.ds | . (62)

keK

||uN<s>||ids}
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Therefore, choosing € small enough, by Eq. (49) we have

N 2 v AT N 2
E [sup, <, o I 1] + 55E /0 ™ (s)112ds

< Cy,a,{op )1k independent from M, N.

Last inequality proves the Lemma for p = 2, letting M to 400 thanks to monotone
convergence Theorem. Now we consider p > 4 and we restart from Eq. (4.79) in [33].

t
2-2
lu™ O < Cllud 17 + C</0 ™ ()12

X (2(curl FN(s), curl(uN(s) — ozzAuN(s)))Lz

N
£3 0 DG ) en?

keK i=1

2 2
+ —‘;(curlu’v(s), curl (™ (s) — > Au™ (5))) 2 — —leuN(s)lli
o o

p—4 {curl GV (s), curl @™ (s) — a? Au (5)))2, ) )2
+ d
> TAOIE *

p keK

P 2
+ (/ ||uN(s)||f/22Z(curle’N(s),curl(uN(s)—azAuN(s)))deWXk> .
0

keK

Let us consider all the terms, one by one. Arguing as before we have

N
DD i A AGEN (5), €)= Centopiex 1N O + el 9112,
keK i=1

[{curlu® (s), curl ™ () — o Au™ (5))) 2] < Co (1 + ™ () [1v) (1 + [[u™ () [|w),
[{curl FN (s), curl (™ (s) — a? Au™ (5))) 12 < Cofopex (1 + 1™ () I) (X + u™ () llw),
(curl GEN(s), curl@™ (s) — a? AuM (5)))?,

< Jleurl GKN (5)2
lu® (s)[12 L

< Ceafortiex (1 F 1™ )1V + ellu® ()13 -

Exploiting the relations above and the continuous embedding W — V we get
! 2-2 :
™ O1F < Cllug 12 + Cev.anforkiex ( f ™ )12 72+ nuN<s>||w>2ds>
0

2
t

T (/ ||uN(s)||£/22Z(curleW(s),curl(uN(s)—azAuN(s)»dewf) .
0

keK
Thus taking the supremum in time for # < r and the expected value of this we get the
thesis via Gronwall’s Lemma arguing exactly as in the proof of Lemma 4.3 in [33]

and exploiting previous estimate (60) on (curl G5V (s), curl (N (s) — a2 Au?N ($))) 2.
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Remark 27 In case of v = 0, arguing as above we get

rath
E [sup, <, oo 0™ 012] < 2E[ 1) 12] + E [ /0 ||uN<s)||3;ds}

t
Z/ (curl(G*N (s)), curl @™ (s) — o Au® (5))) 2d WF
keK 0

rATh
+4E / lcurl FY (513, d's
0

N raTh
+2> ) (i +ADE [/ (GEN (s), ei)zds:| . (63)
0

keK i=1

+4E |:supt5rmﬁ

Therefore, thanks to Lemma 25 and estimates (58),(59),(60),(61) we obtain
kel [ fr7on
E [sup, gy ¥ 02 ] = W2 E /0 ™ (s)12ds

vl @+ 2 ATy N o2
+C IE[lluo ||*]+ 2 Z\IUkHWLwE/O IVu™ ()}

keK

C 2 rAr}C; N 2
tA D lowllzllox i | E /0 V™ (s)ll72ds

keK

'./\ZI\IX 2
< Cutoies + CotoneanB| [ WV 0lds
0

S
< Coforhex + Calonhiex /0 E |:||MN(S)||21[O’TIZ](S)dS] ds. (64)

Since E [suplgﬂﬂz}/HuN(t)Hi] = E [suptS,||uN(t)||il[Oyrﬁ](t)], by Gronwall’s
Lemma

E [SuPze[o,Tmﬁ]””N(t)”%/v] =< Cq,{op)rex independent from M, N.

Last inequality proves the Lemma for p = 2, letting M to oo thanks to monotone
convergence Theorem. The case p > 4 can be treated as in the case v > 0, therefore
we do not add other details.

Let us now introduce the operator A= —-a2A) 1A, By Lemmas 16 and 19 the
weak formulation satisfied by the Galerkin approximations can be rewritten as

t
W (@), ei)y — (ul),eiyy = v/ (AuM (), ei)yds
0

t
—/ (B (s), u (5)), er)w+ wds
0
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t
+f (FN(s), ¢;)ds
0

t
+Z/ (G*N(s), e;)dWF P —a.s.
0

keK

Thanks to relations (45),(50) and the continuity of B, F and G, we know that exists
a subsequence of the Galerkin approximations, which we will denote again by u® just
for simplicity, and processes u and B* such that

uN S uin LP(Q, F, P, L0, T: W)), p>2
uN—=uin LP(Q, F,P; L9(0,T;V)), p, q =2
AuN—=Auin L2(Q, F,P; L?(0, T; V))

B!, uN)—~B*in L2(Q, F,P; L2(0, T; W*))
Fw™N)—F()in L*(Q, F,P; L>(0, T; HN H'))
G*u™N)—~G*(u) in L*(Q, F,P; L*(0, T; H))

(65)

The next step will be showing that B* = B(u,u). In this way the existence of a
solution of Eq. (9) will follow. In fact, we know that P — a.s. for each i € N, for each
tel0,T]

W), er)y — (o, ei)y = v/

t t
(Au(s), ei)yds — / (B*(s), e)we.wds
0 0

t
+/ (F(u(s)), ei)ds

0
t
+ /(Gk(u(s)),ei)dWS".
keK 0

For what concerns the continuity in V' we can argue in the following way via It6’s
formula and Kolmogorov continuity Theorem. From the weak formulation above we
get the weak continuity in V of u applying the Kolmogorov continuity Theorem for
the SDE satisfied by (u(?), e;)v, applying the Itd’s formula to ||u ||%, we get

dlully = =2v(|Vul?,dr — (B*, u)w= wdt.

From this, we get the continuity of ||u ||%, thanks to the integrability properties of u.
Weak continuity and continuity of the norm implies strong continuity, thus we have
the strong continuity of u as a process taking values in V. Weak continuity of u as a
process taking values in W follows from Lemma 1.4, p. 263 in [42]. Alternatively the
strong continuity in V' of u follows arguing as in [2] or [31].
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3.3 Existence, uniqueness and further results
To prove the existence of the solutions of Eq. (9) we need the following Lemma. As
stated in Sect. 2, this way of proceed has been introduced in [2] for Navier—Stokes

equations.

Lemma 28 Let

y =inf{t € [0, T]: lu@®llv + lu@®)ll« = M}AT

then
li<gy, W™ —u) = 0 in L*(Q, F,P; L*(0,T; V)).

Proof Let PV be the projection of W on WY = span{ey, ..., ex}. Thanks to domi-
nated convergence Theorem,

PYw—w inL"(Q,LI0,T;W)) if r, g€[l,4+00) and
we L (2, L0, T: W)). (66)

Consequently we have also convergence in L (€2, L9(0, T; V)). Moreover, if w €

W, i <N, (PNw,ej)y = (w,ei)y. Let Fu) = (I —a?A)"'Fu), GF) =
(I —a?A)~'G¥(u). From the weak formulation satisfied by u, foreachi < N, we get

t t
(PNu(t), ei)y — (ul) . ei)v =v/ <PNAu(s),e,~>vds—/ (B*(s), ei)w+ wds
0 0

t
+ / (F(u(s)), e;)vds
0

1
+Z/O (G*u(s)), er)dWk P —as.

keK

Exploiting the relation satisfied by u”, we get

t
(PNu(ty —u (), ei)y = v/ (PN A(u(s) — u (5)), e;)vds
0
t
+/ (B (s), u™ (s)) — B*(s), ei)w wds
0
t
+ [ (F(u(s)) — FN(s), ei)vds
0

t
+Z/ (G*(u(s)) — G*N(s), e )dWE P —a.s. (67)
keK 0
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Thanks to (67), applying the It6’s formula to o (£) | PN u(r) — u™ (1)|13,, where o (1) =
exp(—mt —mn fé llu(s)|I3,ds), we obtain

t
aIPNu) —u @I} +2v/ o () (Au(s) — u (), PNu(s) — u (s))vds
0

—ZZA,/ (G us) — G4V (), e}

i=1 keK

+2Z/ o ()G u(s)) = GEN (5), PVu(s) — u® (s))yd Wk

keK

—171/0 a(s)nPNu(s)—uN(s>||2Vds—n2/0 o ®OIPYu(s) — u ()} uls) 13 ds
t

+2f o () (BW" (s), u™ (s)) — B*(s), PN u(s) — u™ (s))we.wds
0

t
+2/ o ()(Fu(s)) — EN ), PNu(s) — u (s))vds. (68)
0

Let us analyze the terms in (68) one by one. We will not add details where the com-
putations are analogous to Lemma 3.9 in [34].

(AGu(s) — u" (), PNu(s) —u™(s)y
= (A(u(s) — u (5)), u(s) — ™ ())y — (Au(s) — u (5)), u(s) — PNu(s))y,

WHP%@) —uM )} < (Aw(s) — ul (), u(s) — u())v,

(F(u(s)) — FN(s), PNu(s) —u™(s))y
equation (40)
=<

Cl o 1) =V I < 2¢L M () = PN u)|5

+2C) e 1) = PN u(s)15,,

N
DY xilGruis) = G (s), ey = Y IPN(GF () — GEN I
i=1 kek keK

equation (27)
< 20T e 11N ) = PN Uy +2C8 4, Nuls) = PYu)|7,

2B (s), u (s)) — B*(s), PNu(s) — u™(s))ww
< C3IPNu(s) — u™ I NPY )u) 13y + 1PV uls) — u¥ ()1}
+2(B(PNu(s), PNu(s)) — B*(s), PNu(s) — u™ (s))w+.w.

{oktkek

Inserting these relations in equality (68) we obtain

oOIPYu) —u™ O3 + c2+ /a(v)ﬂP”u(v)—u”(v)nvdv

t
< 2v/ o () (Au(s) — u (), u(s) — PNu(s))vds
0
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t
+ /0 dso () 2CT o yx 16" (9) = PNu()|l5 +2C9 lu(s) = PNus)[15)

o, {ok}kek

t
+2Z/ o ($)(G*u(s) — GEN(s), PNuls) — u® () vd W
kekK 0

t t
—m/o a(s)nPNu(s)—u”(s>||2vds—n2/0 o ®OIPYuls) —u )1} uls)1yds
+/0 o(s)(@%ﬂP”u(s)—u”(s)||2v||PNu(s>||%V+||PNu(s>—uN(s>||2V
+2(B(PNu(s), PNu(s)) — B*(s), PNu(s) — uN(s))W*_W>ds

t
+ /0 o (ACE e 1Y () = PNu@) 5 +4CE g, 1u(s) — PN u(s)II3)ds.

Taking n; = 2C¢ +4ck + 1, = C% we get

a{oktkek o {oktkek

2 t
aOIPNu(t) —u™ )} + c;,—iaz /0 oI PNuls) — u® ()} ds
t
<2 f o (s){Au(s) — u (s)), u(s) — PNu(s))yds
0

t

+ c/ o ()|lu(s) — PNu(s)|13ds
0

1
+2Z/ o (s)(GFu(s)) — GV (s), PNu(s) — u (s))yd Wk
kek V0

t
+2/ o (s)(B(PNu(s), PNu(s)) — B*(s), PNu(s) — u" (s))w+ wds. (69)
0

Considering the expected value of (69) for t = tyy A r, r € [0, T], the stochastic
integral cancel out, thus we arrive at

E [a(rM ARNPYuea Ar) —u (o A r)||2v]
2U TMAT N N 5
+WE |:/0 g P uls) —u (s)||Vdsi|
< 2vE |:/TM ' a(s)(A(u(s) —u™(s)), u(s) — PNu(s))vd5:|
0
+ CE [/w ' o (s)|luls) — PNu(s)||%,dsi|
0

+2E |:/IM rG(S)(é(PNu(s), PNu(S)) — é*(s), PNu(s) — uN(S))W*'stj| .
0
(70)
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We want understand the behavior of the last term in the inequality above. From Lemma
26 and relation (66) we have

PVu—uV =PVu—u)+ u—u™)—0in L>(Q, F,P; L*(0, T; W)). (71)
Instead we have

- 0. (72)

1 U(EPNM,PNM —éu,u)‘
H (0.7aAr] ( ) , u) L2(Q,F P L2(0,T: W*))

In fact thanks to relation (66) and the boundedness properties of B (20),21),P—a.s.
for each ¢t € [0, T] it holds

H (0.0 Ar10) (é(PNu, PVu) — B, u))

L2(0,T; W*)

< Clull s, 7wy (PN = Dullao 75wy = 0.
Moreover

H (10,21 Ar10) (é(PNu, PNu) — Bu, u))

< Clu®l}y € LA, F,P; L*(0,T)).

L2(0,T; W*)

By dominated convergence Theorem we have the validity of relation (72). Combing the
weak convergence guaranteed by relation (71) and the strong convergence guaranteed
by (72) we obtain

ZIE [/TM rg(S)(é(PNu(s), PNM(S)) _ é(u(s), M(S)), PNM(S) _ MN(S)>W*’WdS}
0

— 0.

From this relation, by triangle inequality, we can analyze easily the last term in (70)
E MW o (SHBPYu(s), PNu(s)) = B*(s). PNu(s) - MN(S)>W*,WdS}
=E [/OW o () BPNu(s), PNu(s)) — Blu(s). u(s)), PNu(s) - MN(S))W*,wdS]
+E [/OTMM o () (B(s), u(s)) — B*(s), PNu(s) — uN(s)>W*,st] - 0. (73)
Thanks to the boundedness of ™ and relation (66)

E [/TM ' o () (A(s) — u (), u(s) — PNu(s))vds:|
0

< Nu(s) = PYu) 2.7 20 1:vy 1AW — ™l 120 7 p.1200.7:v)
N
< C”M —P u”Lz(Q,]:,]P;LZ(O,T;V)) — 0. (74)
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Combining (73) and (74) in relation (70) we obtain

E [U(rM ARNIPYuy Ar) —u (g A r)||2V]

2v

TMAF
e [ /0 @I PN uts) - uN(s)||%,dsi| S0 35

From relation (75), o (t) > Cpy > 0Vt < 1)y and the properties of PV via triangle
inequality the thesis follows considering r = T'.

Remark 29 The proof presented above works only in the case v > 0. In order to treat
the case v = 0 we start from relation (75). Then, triangle inequality allows to prove

E [a(rM A e Ar) — u® (o A r)||2v] ~0 Vrel0.T].  (76)

By dominated convergence theorem we can improve the pointwise convergence of
relation (76) in order to obtain Lemma 28. We omit the easy details at this stage, since
this argument will be described in full details in the proof of Corollary 30 below.

Combing Lemma 28 and the moment estimates for u and u” we get the following
Corollary.

Corollary 30 The subsequence u" satisfies

Jim (100 - umlf] = o, (77)
T 2
Jim | E[HuN(I)—u(t)HV] di = 0. (78)

Proof By relation (75) and triangle inequality we already know that

Jim B[ @ am) —u Annly | =0, (79)
T Aty
NETOOE [/O lu () — u(t)||%,dt:| =0. (80)

We start proving convergence (77). By definition of tj;, Lemma 26 and the weak-x
convergence of u” to u described by relation (65) and Markov’s inequality it follows
that

E[la" @) = u)l}]
E 10" ) = w1} ozt |+ [ 16 @) = u @1 1y |

E [l A ) =t AT I Lz | + B [l @) = w1 1y <

172
<E [ At — e A noly ] +E [1e¥ @) —uoly | Pew < '
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<E [ At = ut A} ]
1/2
+ CsupyenE [ 16X Ol | Poupcio,rylu®llw > M)

C
< E [ 1" A i) =t ATl | + 575 supyens E [ suprego ™ 01y |

Co,aup (o ek
M2

El

<E [||MN(I ATa) — ult A rM)||2V] n

where Cy ¢ ug, (o1 1kex 1S @ constant independent from M and N. If we fix € > 0 and

v,a,u(),

choose M large enough such that CM# < € then by relation (79) we have

limsupy_, ;o E [||MN(I) - ”(t)”%/] =€

From the arbitrariness of ¢, the first thesis follows. In order to obtain the other conver-
gence we apply dominated convergence Theorem. Indeed, by relation (77) we already
know that for each t € [0, T']

E [IIuN(t) - u(z)||2’v] )
Moreover, by Lemma 25, for each N

E 166 = ul} ] = 2B [1u" @1 ] + 28 [lu )1 ]

< Cpaulmier + 2E[ @1} ] € L'0. 7).

Therefore convergence (78) follows.

From Lemma 28, without any change with respect to the proof of Lemma 3.8 in
[34], we have that the Lemma below holds, thus u is a solution of problem (9) in the
sense of Definition 3.

Lemma31 B* = B(u,u) in L2(Q, F,P; L2(0, T; W*))
Now we can prove the uniqueness.
Theorem 32 The solution of problem (9) in the sense of Definition 3 is unique.

Proof Let u; and uy be two solutions. Let w be their difference, then for each ¢ € W
andt > 0

t

t
(w(n), ply = V/O (Vw(s), V@) 2ds —/0 b(ui (), ui(s) — &* Auy (s), p)ds

t t
—a? / b, Auy(s), ui(s))ds + f b(ua(s), ua(s) — & Aua(s), $)ds
0 0
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+02/0 b(¢,Au2(S),u2(S))ds+/0 (F(w(s)), p)ds

t
+Zf0 (G (w(s)), p)dWE P — as.

keK

Now we apply the Itd’s formula to compute ||w ||%/. Arguing as in the first part of the
proof of Lemma 35 we obtain

dwlly, = =2v[[Vw.dt + (b(w, w — aAw, uz) — b(uz, w — a Aw, w))dt.

Let us consider exp(— [y lua()[13,ds)[w®)[3 = o @)|w(®)|?, via It&’s formula
we get
d(o||lwlly) + 2vo||Vwl[7,dt = —o |ua |l w5 dt

+o(b(w, w —aAw, ur) — b(uy, w — aAw, w))dt
Combining relations (16) and (18) it follows that
b(w, w — a?Aw, u3) — b(uz, w — &> Aw, w)| < Cllwlly lluzllw-
Therefore
d@|lwll}y) < —olualfy lwlydr + Collwlly lluzllwdt < Ceollwlly.

where in the last step we applied Young’s inequality. From the last chain of inequalities,
via Gronwall’s Lemma we get the thesis.

N

Theorem 33 The entire Galerkin’s sequence u" satisfies

Jim B[ 6 - uoly | =o.

T
lim E[uuN(t)—u(t)nzV] dt = 0.

N—+o0 Jo

Proof Each subsequence u™* has a converging sub-subsequence u&* which satisfies
all previous Lemmas. By uniqueness of the solution of Eq. (9) and Corollary 30 then
the thesis follows.

Remark 34 Theorem 33 plays no role concerning the well-posedness of Eq. (9), but
it will be crucial for obtaining the energy estimates of Sect. 4, and thus for proving
Theorem 9.
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4 Energy estimates

Now we start considering Eq. (14) and assuming also Hypothesis 6. The goal of this
section is to prove the following lemma:

Lemma 35 Under Hypothesis 2—6, if u® is the solution of problem (14) in the sense
of Definition 3, then
13
O + &* [ Vu® ()17, + v/ IVu®($)1172ds = u§ | + [ Vu§[7,:  (81)
0

E [ supyejo, 114 013 | = 0D, (82)

Proof TFor the sake of simplicity we write u and u¢ instead of u®, ug since « is fixed
in this proof. Therefore all the asymptotic expansions and limits will be considering
N — +o0.

e Let &; be the eigenfunctions of the Stokes operator —A, and ; the corresponding
eigenvalues introduced in Lemma 20. Let, moreover, iV = ZlNzl(u, eie, =
PNu. Exploiting the weak formulation with test functions &; we get

(W), &) — > (u(t), A&;) — (uo, &) + o*(ug, Aé;)
= v/ot(u(s), Aéi)ds — /Otb(u(s),u(s) —a®Au(s), &)ds
- 012/1 b(&;, Au(s), u(s))ds + v /OZ(F(u), &;)ds
+«/_Zf (G*(u(s)), &)dWK P —a.s.

keK

Multiplying each equation by ¢; and summing up, we get

N
d@" — o Ai") = vAiaVdt = b, u — o Au, &) dt
i=1

N ot
2 / . .
-« E b(e;, Au,u)e; dt + E (F(u), e;)e; dt
i=170

=z

N
+V YD (G, &e; dwf.

keK i=1

Now we can apply the It6’s formula to the process
LN 2 210N (5112 1 MV iV
S U O + e IVaT (ON72) = ST — " A (1), &7 (1))

@ Springer



Stoch PDE: Anal Comp (2024) 12:1046-1099 1079

obtaining

&N O + 2 IVaN Ol llag I? + o[ Vag ||

t
5 5 v/o (VN (s), Vu® (s)) ; 2ds

t t
—/ b(u(s),u(s)—azAu(s),itN(s))—aZ/ b@"N (s), Au(s), u(s))ds
0 0

s ot
+ g/(; Z(P(Ok -V - (XZA)_IP(O/C - Vu(s)))), ﬁN(S))dS

keK

t
+ﬁ2/ (P(oy - Vu(s)), iV )dwk
0

keK

- . N
+ g Z/(; Z(P(Uk -Vu(s)), 5,')2(5,', - azA)_lé,')ds.

keK i=1

Thanks to the properties of the projector PN we get easily the first relation. The
only thing we need to prove is that

N
Y (P(ox - V), &) (@&, (I —a*A) ')
i=1

+ (P(oy - V(I — a®>A) " P(oy - Vu))), i) — 0.

The last relation is true, in fact

N
D (P ok - Vi), &) (&, (I — o A)7'&)
i=1
+ (P(ox - V(U — > A) " P(oy - Vu))), i)
N
=D (Plox- Vu), (I —o*A)~ ;)
i=1

+ (P(oy - V(U — a?A) ' P(og - Vu))), i)
— (I —a*A)"'P(oy - Vu), P(oy - Vu))

+ (P (oy - V(I — a*A) "' P (o - Vu))), u)
=0.

e From Theorem 33 and Eq. (5), we know that

T 1 T
| e[ o] as < o[8[ o ]as
1 T
= 07/0 E[||u(s)||2v]ds+o(1).
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Thus, from the It6 formula (81) the following relations hold true:

/OTE (196 @)12.] ds = S [uol?] + CE[IVuola] +0()  83)
E [suprcio.n IVl ] = & [uol?] + B [Vl (84)

According to inequality (25), in order to prove relation (82), it remains to study

E [suprejoryllu” 0)12]
Before going on we recall some notation. For each N € N

oy =inf{: [N Olly + 16¥ Ol = MY AT,

Thanks to the scaling factor V& appearing in front of the noise and exploiting the
asymptotic relation between v, ¥ and o? described by Hypothesis 6, if we choose

1

€ = 3
2 ZkEK ||Uk ” Wwl.oo

3

Equation (62) in Lemma 26 becomes
N2 ATy N 2
E[5up, oy oo ™ (012] + E fo ™ (5)[12ds

N2 2 r/\tﬁ N 2
(B[ ]+ (@ +1)E| [ vt o). 69
Therefore, thanks to Eq. (83), we have

N 2 r/\fﬁ N 2
E [sup, -, I 1] +E /0 e (5)]12ds

<c (E [ 12] + (@ +1) (E[”L;Oz”z} +E [nwoniz]» +o(1).

(86)

So far we showed that ™ € L2(Q2; L2([0, T1; HY), curl@® — «2Au®) €
L?(Q2, L*([0, T1; L?)). By monotone convergence Theorem, we can remove the
dependence from M in relation (86). Therefore

E [suptSTlluN(t)lli] <C (E [||M6v||i]
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+ (oﬂ + 1) <]E [” ;"2] +E [IIV 0||L2]>)

+o(1). &7

Thus, by Theorem 33 and the uniform bound (87) there exists a subsequence N
such that

u™M = win L2(Q; L*([0, T1; HYY)
curl @™ — @2 Aue) X gin L2(Q, L([0, TT; L?)).

If we take a test function ¢ € L2(2; L%(0, T; CX*(D))), we get easily

T
E [/0 (B (s), g(S)>L2dS}

T
= Jim ]E[/ (@ (s), curl (u™* (s) —azAuN"(s)))desi|
——+00 0

k——+00

T
= lim JEU ((1—azA)va(s),uNk)(s)>des]
0

T
=E [/ (I — M)V (s), u(s)))desi| .
0

Therefore ¢ = curl(u — a?Au) € L*(2, L([0, T]; L?)) and the following
inequality holds true

E [sup, 7 lu()I2] = € <hm+me [eg12]

+(a2+1)< [” uol” }—i—E[IIVuoIILz]))- (88)

Let us analyze better the first term. We denote by u(l)v 0 =ug — uf)v .

g 1 = llueg 13, — llueg “ 113
< lluoll? — llug* 113
< lluoll? + llud* 1%

< Nuoll? + luol}

< C(IVuoll3» + a*leurl Augll3 + lluoll* + (| Vugll3 )

< Clluol® + (1 4+ ) [ Vuoll7, + o [lugll3,)-
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In conclusion, combining the observation above, relations (25), (84) and (88) we
get

4 2 2 4
a +a”+1 l+a’ 4o
E [sup, < lu()1%: ] < € (—a6 E [luol?] + ———E [ Vuol . ]

+E [ luol33]) (89)

Thanks to the assumptions on u(j, see Hypothesis 6, the thesis follows.

Remark 36 In the case v = 0, relation (81) follows without any change with respect
to the main proof. For what concerns relation (82), Eq. (85) above is false in this
framework. However, introducing the proper scaling in front of the noise we can
restart from relation (63) obtaining

5 5 AT 5
E [50p, <, oo 6™ 012] < 2E [ 1 12] + E /0 ™ s 2ds

+ 40K |:supt<MT Z/ (curl(G*N (5)), curl(@® (s) — o Au (5))) 2d WE ]
keK
raTly N
+ 49K [f [|curl FN(s)uizds] +29 Z Z(}\i +AHE
0 kekK i=1
AT
[ / (GFN (s), ei)zds:| ) (90)
0
Therefore, comblmng estimates (58),(59),(60),(61), exploiting the asymptotlc relation
between 1 and o described by Hypothesis 6 and choosing € = W we
obtain v

raTh
E [sup,, oyl 0112 ] < 4E[ 1 12] + 62 [ / ||uN(s>||ids}
N

rAT)y
+ Clovkex (052 + 1) E [f
0

Therefore, thanks to Eq. (83), we have

||VuN<s>||’izds} . 9D

N

VATM
E [suptSrmﬁ ||uN(t)||§] < 4E [||u{)" ||§] +6E [/O
2 ||uoI|2
+ Clorlkex (a + 1) E o2 +E|[[Vu O“L2

+o(1). 92)

||uN(s>||ids]
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Arguing as in Remark 27, we can apply Gronwall’s Lemma in inequality (92) obtaining
E [sup, o 1Y 2] = Clonpecs (B[ 1l 12] + (o2 +1)

2
(E[HL;OZH }—FE[Iquolliz]))‘*‘o(l)' ©3)

Relation (93) is completely analogous to relation (86) above. Therefore we can follow
the same argument of the main proof in order to obtain estimate (82) and we omit the
details.

5 Proof of Theorem 9

In order to prove Theorem 9, we will follow the ideas of [27, 28]. We will start with a
weaker result with the supremum in time outside the expected value and then we will
move to the stronger one with the supremum in time inside the expected value.

Proof of Theorem 9 Let W = u“ — u, it satisfies P — a.s. for each ¢ € H and
te[0,T]

(W), ¢) — (W5, ¢)

t
= o (Au (1), ¢) — &> (Au, ) + v / (Au®(s), ¢)ds
0
t t
—/ b(u“(s),W“(s),q&)ds—/ b(We(s), u(s), p)ds
0 0
t t
—azf b(¢, Au“(s),u“(s))ds+a2/ bu®(s), Au®(s), ¢)ds
0 0

t t
5 [P ods +5 Y [ GHu o). drawk
0 0

keK

Following the idea of [21], let v the corrector of the boundary layer of width 4, i.e.
a divergence free vector field with support in a strip of the boundary of width § such
thatiu — v € V and

sup,jo.71 1181 vll < 82 sup, o718/ Vol S 872, 1€ {0, 1) (94)

Let § = §() such that

aZ
lim§ =0, lim — = 0. (95)

a—0 a—0
We want to write the Itd’s formula for || W (¢)||2. Let us take an orthonormal basis

of H, {e;} made by eigenvectors of A, let {—A;} the corresponding eigenvalues. Let
us consider the weak formulation with test functions ¢ = ¢;, let us call W*" =

@ Springer



1084 Stoch PDE: Anal Comp (2024) 12:1046-1099

YW ee, utt =Y (e, e, it =Yy (i, é)eiev" =Y i (v, &)é,

then, arguing as in the proof of Lemma 35, we get

t
Wer(t) — Wg’" = a?Au®" (1) — ozzAug’n + v/ Au®"(s)ds
0

t n

t n
- [ Y bt wew.aads - [ Y bwe s aéds
0 i=1 0 iz
/ Zb(e,,Au“(s) u®(s))ds

+a f Zb(u“(s) Au®(s), &)ds
+v/ Z Fu“(s)), ;)e;ds

+~/_Z/ Z(Gk(u“(s)) e dwk, (96)

keK
Therefore

WP = 2WN dWS") + ot ((Au", AutT),

+7 Z Xn:(G"(u“), ) 2dt

keK i=1

+o? Vi Y D (GRW®). &)d (@ WK, Au),. (97)

keK i=1

In the same way, considering the weak formulation satisfied by u*, we get

n
dAu®" = <vA(I — 2 A) T AU = bt u", &) A — o A) e ) t
i=1

n
—a? Zb(éi, Au, )A(I — > A) & dt
i=1

+ 7 Z(F(uo‘), VA —a?A) ' e;dr
i=1

VYD (G @AU — o A) T Ed W (98)

keK i=1
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Combining relation (96), (97), (98) we obtain

AW |12 = 202 (W™, dAu™") + 20(W™", Au®")dt

n n
- 2<W“~”, Zb(W“, i, éi)é,->dt - 2<W“~", Zb(u“, we, él-)éi>dt
i=l1

i=1

n
— 202 <W°"”, Z b(e;, Au®, Ma)éi>dl

i=1

n
+ 202 <W°"", Z bu®, Au”, éi)éi> dt

i=1

n
+20 ) (F@®), &)(W*", &)dt
i=1

+2v5 ) DGRy, &)W, &) d W)

kekK i=1

n
+a*p Y Y (GRw™). &) AU — o)V |1* dr

keK i=1

+9 )Y (GHw®). &)dr

keK i=1

+ oD Z Z(Gk(u“), e (AU — a®A) e, é:)dt.

keK i=1
Let us rewrite (W*", d Au®") in a different way

(Woc,n’ dAMa,n>

= " — ", dAu®"y = W*", d Au®")y — (@" — V", dAu®") — (V", d Au®")
— _((_A)1/2u0t,n’ d(_A)1/2u0[,n)

(=A@ — vy, d(=A) 2y — (", dAu®")

(A 2uer 2 (A 2un, (A 2un)),
=— +
2 2
+d{(=D)2@" — o), (—A)

_ <(_A)1/28t(l/—tn _ U}’l)’ (_A)1/2ua,n> _ d(vn, Auot,n> + (3[1)", Au()t,}'I)'

Therefore, we arrive to this final expression

s 2 2 2 s 2 2 2
WS ON = Wy " I =« [Vu™" 17> + o~ Vug " [172

t n
1102 Y [ Y6t we ). @RI P - o a) e s
0 =1

keK
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Now, letting n — 400, exploiting the regularity of u*, u, v and the continuity of

+202(V@" = v") (1), V" (1)) 12 — 203 (V@ — v")o, Vu") 2

t
— 2a2/ (Vg (" (s) — v"(s)), Vu®"(s))2ds
0

— 202 (V" (1), Au™" (1)) 2 + 202 (V3 Aul") o
t

t
+ 2a2/ (050" (s), Au®"(s))2ds + 21)/ (W (s), Au®"(s))ds
0

0

t n
- 2/ (W (), Y b(W(s), ii(s), &)&)ds
0

i=1

—2/ (W (s), Zb(u (s), W(s), &)&)ds

i=1

22 / W59, 3 b, A (5), 1 5))20)ds

i=1

+ 202 / (W (s), Zb(u“(s) Au®(s), &;)é;)ds

i=1

n t
+2v Zfo (F(u%(s)), &) (W*"(s), &)ds

+2\/_Z/ Z Gk(ua(s)) el)(Wotn(s) ez>de

keK

+a VZ/ Z (G*w*(5)), &) | AU — o A) & ds

keK

+VZ/ Z GH (). &)d

keK

+a VZ/ Z (G*® (), &) (AU — a*A)7'&;, &)ds

keK

the trilinear form b we arrive to the formula below

W1 + & Vu® )17, = WP + 2| Vu |17,

@ Springer

+a vZ/ I(=A)' 21 — a?A) "' G* u*(5)) P ds

keK
+ 203V (@i — v)(1), Vu® (1)) 2
—20%(V (it — v)o, Vul) ;2

¢
— 20:2/ (Vs (it(s) — v(s)), Vu®(s))2ds
0
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— 202 (u(t), Au® (1)) 12 + 20 (v, Aul) ;2

+ 207 /Or(asv(s), Au(s))2ds

+2v /Ot(W"‘(s), Au®(s))ds

- 2/(: b(WO(s), i(s), W(s)))ds
—2a? /Ot b(W(s), Au®(s), u® (s))ds
+ 2a? /Ot b(u(s), Au®(s), W¥(s))ds
+ 29 /0 t(F(u“(s)), W (s))ds

+2/5 Y [(GHaron. weenawk
0

keK

t
+atv Y [ 1A - @a) I GFar o Ias
0

keK
t
+iy f IG* @® ())|I*ds
keK 0
t
+a2aZ/ (AU —a?A)~'GF
keK 0

W*(s)), G (s)))ds
= 1/(t) + D(t) + I3(6) + Ls(t) + Is(t) + Is (1) + M (1),

where:
Ji _ a2 2 a2 2 — o
1(1) = IWG 17 + o [IVug ;2 +2e7(V(i — v) (1), Vu® (1)) 12
— 20V (it — v)o, Vul) 2 — 20> (v(1), Au®(1)) 2 + 2% (v, Aud); 2,

t
L) =e ) f I(=A)'2(1 — o> )7 GF ) |ds
0

keK

1
+atv 3 [1ad - @076t Pas
0

keK
t
#5316kt o s
keK 0
t
+a?P Z f (A — > A) 7GR (5)), GF(u¥(s)))ds
keK 0

t
+217/ (Fu®(s)), W¥(s))ds,
0
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L(t) = =20 fo (Y GiCs) — v(s). Vu®(s)) 2ds
+ 207 /0 (0. Au®(s)) 2ds,

Is(t) = 2v /0 W), A (s,

I5(t) = =2 fo DWE(s). is), W),

Is(t) = —2a? fo t b(WO(s), Au®(s), u®(s))ds
+ 20 fo b(5), AU (s), W (s))ds,

t
M) = 2ﬁ2/ (G (s)), Wo(s))dW¥.
0

keK

Our approach is almost completely pathwise. Therefore we need to estimate the
terms /;(¢), t € {1, ..., 6}. The analysis of /;(¢) follows by Young’s inequality, the
estimates on the boundary layer corrector (94) and the interpolation estimate (42)

1/2 1/2
L(0) < [WEI2 + o2 Vug |2, + Ca®8V 2 Vug 115 g1
- 1/2 1/2
+ CaP(1+ 87 )|Vu (1) 2 + Co®8 V() 1) () 117
+ Ca*(1+ 87D Vugl

< WP 4+ Ca® I Vu 17, + Co (14871 + Ca®s([u§ 13,5 + lu®®13,5)
2
+Csl? g %uwa(t)niz. (99)

The analysis of I(¢) follows by Young’s inequality and the results of Lemma 21,
Corollary 22. Indeed it holds

t
B0 = €3 Y lowle [ 19 0) 1 ds

kek
] t
+ = > lowllz / IWEIHIVu () 2ds
« kekK 0
t t
< Ch ) lloxli~ / IVu )7 2ds + ) llowlze f 1W< (s)11%ds
kekK B keK 0
v ? 2 ' 2
+(a) > llowllz /0 IV ()17 2ds. (100)
keK
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The analysis of I3(¢) follows by Young’s inequality, the estimates on the boundary
layer corrector (94) and the interpolation estimate (42)

t t
I3(1) < Ca?(1 +871/2) / VU (s)ll 2ds + Ca®s'/2 / VU )2 1 )13
0 0

t
< 08124 Cad(1 457 + Ca? [ IVu @I ds
0
t
+Ca68/ lu* ()1125ds. (101)
0

The analysis of /4(¢) is analogous to Egs. (3.20)—(3.22) in [27], it implies:

t t
21)/ (W*(s), Au®(s))ds < —21)/ ||Vu“(s)||izds
0 0

t
+c3(1+5*1/2)/ @ Vu® ()| 2ds
(04 0

C 51/2 t
= /a2||Au°‘(s)||des.
0

o

Therefore by the interpolation inequality (42) and Young’s inequality we have

t t t
21)/ (WO(s), Au®(s))ds < —Evf ||Vu“(s)||izds+c(x2/ IVu®(s)I17.ds
0 0 0
t ) 2
+ca65/0 ||u°‘(s)||§_13ds+C<a—2) 5172
v\2
+C(—) (14687, (102)
o

The analysis of I5(¢) follows immediately by Holder’s inequality:

t
I5(1) < IIﬁlle(o,T;H3>/0 W< (s)]1%ds. (103)

For what concerns the analysis of /¢(¢), preliminary we observe that

—202b(WY, Au®, u®) + 202bu®, Au®, W)
= 202b (i, Au®, u®) — 2a*bu®, Au®, u®)
+202b(u®, Au®, u®) — 202bu®, Au®, ii).

Arguing as in [24], Equations (4.18)—(4.19) we get

t
Is(t) < Ca* (1 + llitll oo o.7: 13)) / IVu® )17 2ds + Ca®lll} oo o 7175,
A 75
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t
fo lu®(s)||ds. (104)

Combining Egs. (99), (100), (101), (102), (103), (104) and exploiting our assumptions
on the behavior of v, 7, 2, see Hypothesis 6, we have the integral relation below:

2
IWOI + S 1V 011
< M(t) + Ca*(1+ 87" + C8'2 + |WS 1> + Co? | Vug 1%,
+ Ca®8 ([l 1175 + lu)*II;)

t
+ Cloghex f IW ()11 + o> Vu® ()17 2ds
0
t t
+ Caﬁaf lu* () 12,3ds + Ca2/ lu®(s)|ds. (105)
0 0
By the stochastic Gronwall’s Lemma 24 above we have:
upreqo, 71 B [IWE 1] + o supyego. 1y E [ 176012,

T T
< Clovhex (azE [ /0 ||u°‘(s)||2ds} +a% /0 lu () I32ds
+a S [supyeqo, 7114 (1% | ) + Clophn

(a2(1 +5 ) 4+82+E [||W8‘||2 + VU112, + o8 lu§ ||§13]) . (106)
Thanks to Hypothesis 6 and our assumptions on §, see Eq. (95), we have that
AU+ +524E [||ng||2 + | Vul2, + a65||ug||§13] —0. (107
Thanks to Lemma 35, we have that
T T
E [ /0 ||u°‘<s>||2ds] +a% /0 1 ()12 25
+ aSSE [sup,e[m||u“(t)||§,3] 0. (108)
Therefore
supycgo, ) E[ W01 | + o supyeo r E[ IV 013 ] > 0. (109)

Restarting from Eq. (105) and considering the expected value of the supremum of
both the terms in the left hand side we have

E [supyeio,ry WO 1] + @B [supyego 11 IVu 0113,
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T T
<C <a2E [/ ||u°‘(s)||2ds] +a68/ lu® ($)II3,5ds
0 0
a8 [supyego, 7y 14 (1) |

+C <a2(1 +5 ) +82+E [||Wg||2 + 2| Vud]?, + aﬁanugn%ﬁ])

T
+ CE [Supte[O,T] M(t)] + Clophiex B |:/0 ”Wa(s)”z + a2||Vu°‘(s)||%2ds:| .
(110)

We already proved that almost all the terms in the right hand side of Eq. (110) go to
0. Therefore in order to complete the proof we left to show that

t
E[sup;epo,ry M(D)] +E [ /O IWE I + aznwa(s)nizds} — 0.

By the weaker convergence described by Eq. (109) and Fubini Theorem

t
E [ f W ()2 +a2||w0‘<s)||izds} - 0.
0

For what concerns the other, the convergence follows by Burkholder—Davis—Gundy
inequality, Hypothesis 6, Eq. (109), Fubini Theorem and relation (27). Indeed

E [Supte[o,ﬂ M([)]

T 1/2
< CVIE (Z / ||G"<u“(s>)||2||W“(s)||2ds)
kek 70

1/2 T 1/2
sc(Znou&m) ﬁE[(/O ||w“<s>||iz||W°‘<s>||2ds) }

keK
1/2 T 1/2
<cC (Dwkniw) VIE [sup,qo,nnw(t)ug ( / I W“(s>||2ds> ]
keK 0
1/2 T 1/2 12
<c (Znauﬁm) E [ | ||W“(s>||2ds} (B[ suprero ry Va1 ])
keK 0
— 0.

Now the proof is complete.

Remark 37 Combining Lemma 35 and Theorem 9 we understand that, if v = 0(a2)
and U = O(a?), the assumptions on the behavior of the initial conditions ug in norm
H, H'! and H?3 are satisfied also for ¢ € [0, T].
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6 The case of additive noise

For what concerns the case with additive noise, as stated in Sect. 2, the well-posedness
is a well-known fact in case of v > 0 and we can prove a result completely analogous
to Theorem 9, following exactly the same argument. However, the restriction v > 0
can be omitted modifying slightly the proof of [34] as described in Remarks 27, 29 and
36. However, we do not stress this assumption in this section, therefore v > 0 in what
follows. What was crucial for the proof of Theorem 9 were the energy estimates of
Lemma 35. Thus in this section we want to explain a different approach to prove these
energy estimates in the case of additive noise. These computations are more similar to
what happens in the deterministic framework. We keep previous assumptions on the
coefficients o and the Brownian motions W¥. For generality reasons we consider the
equations without any scaling factor on the noise. Thus we consider

dv = (vAu — curl(v) x u + Vp)dt + Y g oxkd W}

divu =0
v=u—a?Au (111)
ulsgp =0
u(0) = ug

Before going on, we need to recall a result of [24].
Lemma38 Lerq € L2(D), there exists a unique ¢ € Hg(D) solution of
Ap—a?Np=gq
®lop = 0ndlop =0
which satisfies
(Vop, Vo) 2 + oe2(A¢, Av);2 = —(q, v) for each v € Hg.
Moreover, the solution map is continuous from L%(D) 10 Hg(D) N HY(D).

Thanks to this Lemma, we can define an operator K : L%*(D) — H3(D)N WOl (D)
which associates to each ¢ € L?(D) the vector field u = V¢, where ¢ is the solution
of the equation of Lemma 38.

Definition 39 A stochastic process u weakly continuous with values in W and con-
tinuous with values in V is a weak solution of Eq. (111) if

ueLP(Q, F,P; L®0,T; W)), Vp > 2.
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and P —a.s. forevery t € [0, T] and ¢ € D(A) we have

(), (I —a*A)¢) — (uo, (I — a*A)p)

t t
= v/ (u(s), Ap)ds — / b(u(s), u(s) — azAu(s), P)ds
0 0

1
_ a2/ b(¢, Auls), u(s))ds + 3 (or, $W.
0 keK

Arguing as in the first part of the proof of Lemma 35 we can prove the following result.

Lemma 40 Let u be a weak solution of problem (111) in the sense of Definition 39,
then the following relations hold true

L diu)? + oPdvul?, = (—2v||w||iz + > (o, U —a2A)—1ak>> di
keK

+2) ok, u)d Wf
keK

2. E[lu@I?] + B [IVu@)2; ] +2v /OE [1Vu)I2, ] ds

= E[lluol?] + E[IVuol3: | +1 Y (o, (1 = a2 )~ )
kek

T
3. E[sup,e[mnu(t)nz] +’E [supte[mnwa)niz] +2v/0 E[uwmuiz]ds

e (E (101 ] + o [ 19001 | + T Y tox, (1 = a2 4)~ o)
keK
r 172
+E (/ Z(ok, u(s))zds)
O kek

Let us introduce the vorticity formulation of (111), we denote s; = curl oy

dg + (;—z(q —curlu) +u - Vq) dt = g skdWk

divu =0

g = curl(u — o> Au) (112)
q(0) = qo := curl(ug — a®Aug)

ulagp =0

Definition 41 A stochastic process ¢, which is weakly continuous with values in
L2(D) and continuous with values in H (D), is a weak solution of Eq. (112) if

g € LP(Q, F,P; L®(0, T; L*(D))), Vp=>2.
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and P —a.s. foreveryt € [0, T] and ¢ € HOZ(D) we have

t
(@) §) — (o, ¢) = /0 /D u(s) - Vo (s) doeds

t
- 12/ /(q(s)—curlu(s))d) dxds
a= Jo JD
+ > s )W P—as.

keK

U= VJ-fp, ¢ obtained by Lemma 38, u € W.

Let us obtain a result about the equivalence between the solutions of these two
problems. Since we know from the results of [34] that problem (111) is well-posed,
then problem (112) is well-posed as well.

Proposition 42 Let u be a solution of (111) in the sense of Definition 39, then q :=
curl(u — e Au) is a solution of (112) in the sense of Definition 41. Conversely, if
q is a solution of (112) in the sense of Definition 41 then u = V+¢, ¢ obtained by
Lemma 38, is a solution of (111) in the sense of Definition 39.

Proof Definition 39 =—> Definition 41 is immediate taking ¢ = —V-1¢, ¢ € Hg(D)
as test function for problem (111).

Therefore it remains to show that Definition 41 = Definition 39. We take
U = VJ‘(/), v = u — a?Au, where @ is obtained by Lemma 38 and ¢ = —VlJ),
where ¢ € Hg(D). Then integrating by parts and exploiting that curl V- = A,
A¢ —a?A%p = g and q is a solution of (112) in the sense of Definition 41 we get

— (I = > Nu(t), V@) 2 + (I — & Ao, V=) 12

v [! -
- / (v(s) — u(s), V=$)ds
a= Jo

t t
+/ /(u(s)-V)VLq;v(s) dxds—a2/ /(V%-V)Au(s)u(s)dxds
0 JD 0 JD

+ Z(ok, VJ‘qS)WZk =0 P—a.s.
keK

From the last relation the thesis follows if we are able to prove the continuity prop-
erties of . The weak continuity of # with values in W follows immediately from the
regularity of ¢ and Lemma 38. Again by Lemma 38 we get the strong continuity of u
with values in V. In fact, via Lax—Milgram Lemma we get the regularity of the solution
mapping of the problem described in Lemma 38 between H ~>(D) and HOZ(D). Via
interpolation techniques we recover the regularity of the solution mapping between
H~Y(D) and H3*(D) N Hg(D), therefore the required regularity for u.

Approximating the process ¢ (¢) solution of (112) by the eigenvectors of the Lapla-
cian with Dirichlet boundary conditions and then arguing as in the first part of the
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proof of Lemma 35, we can obtain some It6’s formula and energy estimates. More-
over, if u € V we have ||Vu||i2 = |lcurl u||2L2. Thanks to Proposition 42, we know
that u appearing in problem (112) is a solution of problem (111). Therefore, thanks to
Lemma 40 we know that

2 /Ot E[IVu)I3: | ds < E [luol?] + @B | 1Vuol 2

+1) (o (I —a*A) o), (113)
keK
PE[IVu®I2,] < E[ Iuol?] + oE [1Vuoli:
+1) (o (I —a”A) ' oy) (114)
keK

and we can obtain the following energy relations.

Lemma 43 Let g be a weak solution of problem (112) in the sense of Definition 41,
then the following relations hold true

2v
1. dllq|)* = —=5(q —curlu, q)dt + Y _llse|> dr +2 (s, q)d W}
¢ kek keK
2
- o v
2 E[lg®I?] < e = 'E [ lgol?] + (1 = 7)Y lisel’?
kek
1
+ 5= (E[lnol?] + B [ 1Vuo3:
v
+T Y ow, (I — 042A)15k))
keK
5 E [supyeo il O] < B [llaol?] + Y IselPT
kek

- 1/2
+CE (Z/ (sk,q(s))2ds)
kek 70
+ 5 (B[ lol?] + = 100012,

+T ) {on. (I — oﬂA)—lak>> :

keK

Remark 44 We can control the H> norm of u via the H' norm of u and the L? norm
of g in the following way

lu@lgs < € (IVa@®)ll2 + lleurl Au(®)]|2)

<c (Ilq(;)ll n IICurlzit)Ile " ||Vu(t)||Lz>

o
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\%
=C(||q<;>|| NLZIOIE +||W<r>||Lz). 1)
o o

Therefore, thanks to Lemma 43 it holds

v

e o 1 _u
E [l | € B [lqol*] + —5 (1 = e Yl
keK

111 ,
+ (a2 + 6+ 501 ) ([ 1wol?]

+aE [IVuol 2] +T Y tor, 1 - a2A>—lok>> (116)
keK

1 1
E [suprco.r 8013 ] S —E [ Ig0ll2] + =5 Y Isell*T
- 172
> f (st q(s))zds>
0

kek
r 2o (
keK
+ (iﬁ + %) (E[Iuol?] + E 1012,
o o

+T ) (o (I — oﬂA)—lm)

kekK

1 1 r 2 2
+($+y> (ZEUO (o, 4(5)) ds] ) a1

keK

Remark 45 1f we consider the scaled equations with /7 in front of the noise, then
each oy and s is multiplied by V7 in Lemmas 40, 43 and Remark 44.

Thanks to Remark 44, if we consider the scaled equation with additive noise and initial
condition u{ satisfying Hypothesis 6, then the following result follows immediately.

Lemma 46 If we consider the stochastic second-grade fluid equations with additive
noise (111) scaled by P, under Hypothesis 2—6, if u® is the solution in the sense of
Definition 39 of the problem with initial condition u(j, then

T
B [supren e )17] + 0B [su o, IV + 20 [ 2 (19015 s
= o),

E [ sup,cpo, 1”113 | = 0D,

Looking carefully at the proof of Theorem 9, Lemma 46 contains the crucial bounds
on the norm of the solutions to obtain the inviscid limit. Therefore, following the same
ideas of Sect. 5, one can prove that the inviscid limit holds:
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Theorem 47 Under Hypotheses 1-6, calling u® the solution of the stochastic second-
grade fluid equations with additive noise (111) scaled by VD and i the solution of
(15), then

lim E| sup [|u®(t) —a(®)|? | = 0.
a—0 t€[0,T]
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