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Abstract
Positive recurrence of a d-dimensional diffusion with an additive Wiener process,
with switching andwith one recurrent and one transient regimes and variable switching
intensities is established under suitable conditions. The approach is based on embedded
Markov chains.
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1 Introduction

Let us consider the process (Xt , Zt ) with a continuous component X and discrete one
Z described by the stochastic differential equation in Rd

dXt = b(Xt , Zt ) dt + dWt , t ≥ 0, X0 = x, Z0 = z, (1)

for the component X , while Zt is a continuous-time conditionally Markov process
given X on the state space S = {0, 1}with positive intensities of respective transitions
λ01(x) =: λ0(x), & λ10(x) =: λ1(x); here the variable x signifies a certain (arbitrary
Borel measurable) dependence on the component X ; the trajectories of Z are assumed
to be càdlàg; the probabilities of jumps for Z are conditionally independent given the
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trajectory of the component X (see the precise description in what follows). Denote

b(x, 0) = b−(x), b(x, 1) = b+(x),

λ0 := sup
x,z

λ0(x), λ0 := inf
x,z

λ0(x), λ1 := sup
x,z

λ1(x), λ1 := inf
x,z

λ1(x).

It is assumed that

0 < λ0 ∧ λ1 ≤ λ0 ∨ λ1 < ∞. (2)

These conditions along with the boundedness of the function b in x suffice for the
process (Xt , Zt ) to be well-defined. A rigorous construction of the system (X , Z) of
this type may be given by the SDE system

dXt = b(Xt , Zt ) dt + dWt , t ≥ 0, X0 = x ∈ R
d ,

dZt = 1(Zt = 0)dπ0
t − 1(Zt = 1)dπ1

t , Z0 ∈ {0, 1}, (3)

where π i
t , i = 0, 1, are two Poisson processes with intensities λi (Xt ), i = 0, 1,

respectively. More precisely,

π i
t = π̄ i

φi (t)
,

where π̄ i
t , i = 0, 1, are, in turn, two standard Poisson processes with a constant

intensity one, independent of the Wiener process (Wt ) and of each other, and the time
changes

t �→ φi (t) :=
∫ t

0
λi (Xs)ds, i = 0, 1,

are applied to each of them, respectively.
By virtue of the assumption (2) the equation between the jumps only concerns the

diffusion part of the SDE (3), for which it is well-known since [13] that the equation
has a pathwise unique strong solution. The jump moments are stopping times with

respect to the filtration (F t = FW ,π0,π1

t , t ≥ 0), and the position of the system after
any jump (Xτ , Zτ ) is uniquely determined by the left limiting values (Xτ−, Zτ−):

Xτ = Xτ−, Zτ = 1(Zτ− = 0).

After any such jump, the diffusion part of the SDE is solved starting from the position
Xτ until the next jump, say, τ ′, of the component Z , and the moment of this next
jump is determined by the trajectories of π0

t and (or) of π1
t and by the intensity

λZs (Xs), s < τ ′. Since there might be only a finite numbers of jumps on any bounded
interval of time, then pathwise (and, hence, also weak) uniqueness follows on [0,∞).
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Therefore, the process (X , Z) exists and is markovian. Its (quasi-) generator has a
form

Lh(x, z) = 1

2
�xh(x, z) + b(x, z)∇xh(x, z) + λz(x) (h(x, z̄) − h(x, z)),

where z̄ := 1(z = 0) (that is, z̄ is not a z, the other state from {0, 1}).
For any t > 0 fixed let us define the function

v(s, x, z) := Es,x,z f (Xt , Zt ).

The vector-function v(s, x) = (v(s, x, 0), v(s, x, 1)) satisfies the system of PDEs

vs(s, x, 0) + L0v(s, x, 0) + λ0(x) (v(s, x, 1) − v(s, x, 0)) = 0, v(t, x, 0) = f (x, 0),

vs(s, x, 1) + L1v(s, x, 1) + λ1(x) (v(s, x, 0) − v(s, x, 1)) = 0, v(t, x, 1) = f (x, 1),

where

Li = 1

2
�x + 〈b(x, i),∇x 〉, i = 0, 1.

Due to the results of [12, Theorem 5.5] (see also [7]), its solution is continuous in the
variable s for any bounded and continuous f . Hence, the process is Feller’s (that is,
Ex,zh(Xt ) is continuous in x and, of course, bounded for any h ∈ Cb and any t > 0).
Since the process is Markov and càdlàg, then it is also strong Markov according to the
well-known sufficient condition.

The SDE solution is assumed ergodic under the regime Z = 0 and transient under
Z = 1. We are looking for sufficient conditions for positive recurrence of the strong
Markov process (Xt , Zt ). Such a problem was considered in [2] for the exponentially
recurrent case; for other references see [1, 5, 8, 11], and the references therein. Under
weak ergodic and transient conditions the setting was earlier investigated in [15]
for the case of the constant intensities λ0, λ1 (i.e., not depending on x). In [9] and
[10] other interesting results about the transience and recurrence for diffusions with
switching were established; in particular, examples were given of conditions under
which the solutions of the SDEs on the half line with reflection with two transient
“pure” regimes are recurrent, and, vice versa, where the solutions of the SDEswith two
recurrent “pure” regimes are transient. Here we tackle the case of a combination of one
transient and one recurrent regime. In the case of [15] the lengths of intervals between
successive jumps of the discrete component were all independent and independent of
the Wiener process. In the general case under the consideration in the present paper
they are not independent of W via the component X , and, hence, not independent
of each other. This difficulty will be overcome with the help of certain comparison
arguments.

The paper consists of the sections: Introduction, Main result, Auxiliaries, and Proof
of main result.
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2 Main result

Theorem 1 Let the drift b = (b+, b−) be bounded and Borel measurable, and let there
exist r−, r+, M > 0 such that

0 < λ0 ∧ λ1 ≤ λ̄0 ∨ λ̄1 < ∞, (4)

xb−(x) ≤ −r−, xb+(x) ≤ +r+, ∀ |x | ≥ M, (5)

and

2r− > d & λ1(2r− − d) > λ0(2r+ + d). (6)

Then the process (X , Z) is positive recurrent; moreover, there exists C > 0 such that
for all M1 large enough and all x ∈ R

d and for z = 0, 1

Ex,zτM1 ≤ C(x2 + 1), (7)

where

τM1 := inf(t ≥ 0 : |Xt | ≤ M1).

Remark 1 On the basis of the theorem 1 it may be proved that the process (Xt , Zt )

has a unique invariant measure (see [4, Sect. 4.4]), and for each nonrandom initial
condition x, z there is a convergence to this measure in total variation when t → ∞.
We leave a rigorous presentation of this claim till next publications for a wider class
of models.

3 Auxiliaries

Denote ‖b‖ = supx,z |b(x, z)|. Let M1 � M (the value M1 will be specified later).
Let

T0 := inf(t ≥ 0 : Zt = 0),

and

0 ≤ T0 < T1 < T2 < . . . ,

where Tn for each n ≥ 1 is defined by induction as

Tn := inf(t > Tn−1 : ZTn − ZTn− �= 0).

Let

τ := inf(Tn ≥ 0 : |XTn | ≤ M1).
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To prove the theorem it suffices to evaluate from above the value Ex,zτ because
τM1 ≤ τ . Let ε > 0, q < 1 be positive values satisfying the equality

λ0(2r+ + d + ε) = qλ1(2r− − d − ε) (8)

(see (6)). In the proof of the theorem it suffices to assume |x | > M .

Lemma 1 Under the assumptions of the theorem for any δ > 0 there exists M1 such
that

max

[
sup

|x |>M1

Ex,z

(∫ T1

0
1( inf

0≤s≤t
|Xs |≤M)dt |Z0=0

)
,

sup
|x |>M1

Ex,z

(∫ T0

0
1( inf

0≤s≤t
|Xs |≤M)dt |Z0=1

)]
< δ. (9)

Let us denote by Xi
t , i = 0, 1 the solutions of the equations

dXi
t = b(Xi

t , i) dt + dWt , t ≥ 0, Xi
0 = x . (10)

Proof of lemma 1 Let Z0 = 0; then T0 = 0. We have,

Px,0(Xt = X0
t , 0 ≤ t ≤ T1) = 1,

due to the uniqueness of solutions of the SDEs (1) (or (3)) and (10) and because of the
property of stochastic integrals [6, Theorem 2.8.2] to coincide almost surely (a.s.) on
the set where the integrands are equal. Therefore, we estimate for any |x | > M with
z = 0:

Ex,z

(∫ T1

0
1( inf

0≤s≤t
|Xs | ≤ M)dt |Z0 = 0

)
= Ex,z

∫ T1

0
1( inf

0≤s≤t
|X0

s | ≤ M)dt

= Ex,z

∫ ∞

0
1(t < T1)1( inf

0≤s≤t
|X0

s | ≤ M)dt =
∫ ∞

0
Ex,z1(t < T1)1( inf

0≤s≤t
|X0

s | ≤ M)dt

∀ t0>0=
∫ t0

0
Ex,z1(t < T1)1( inf

0≤s≤t
|X0

s | ≤ M)dt +
∫ ∞

t0
Ex,z1(t < T1)1( inf

0≤s≤t
|X0

s | ≤ M)dt

≤
∫ t0

0
Ex,z1( inf

0≤s≤t
|X0

s | ≤ M)dt +
∫ ∞

t0
Ex,z1(t < T1)dt

≤ t0Px,z( inf
0≤s≤t0

|X0
s | ≤ M) +

∫ ∞

t0
exp(−λ0t)dt .

Let us fix some t0, so that

t0 > −λ−1
0 ln(λ0δ/2).
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Then

∫ ∞

t0
e−λ0sds < δ/2.

Now, with this t0 already fixed, by virtue of the boundedness of b there exists M1 > M
such that for any |x | ≥ M1 we get

t0 Px,z( inf
0≤s≤t0

|X0
s | ≤ M) < δ/2.

Similarly, the bound for the second term in (9) follows if we replace the process X0

by X1 and the intensity λ0 by λ1. ��
Lemma 2 If M1 is large enough, then under the assumptions of the theorem for any
|x | > M1 for any k = 0, 1, . . .

Ex,z(X
2
T2k+1∧τ |Z0 = 0,FT2k ) ≤ Ex,z(X

2
T2k∧τ |Z0 = 0,FT2k )

− 1(τ > T2k)E(T2k+1 ∧ τ − T2k ∧ τ |Z0 = 0,FT2k )((2r− − d) − ε) (11)

≤ Ex,z(X
2
T2k∧τ |Z0 = 0,FT2k ) − 1(τ > T2k)λ̄

−1
0 ((2r− − d) − ε), (12)

Ex,z(X
2
T2k+2∧τ |Z0 = 1,FT2k+1) ≤ Ex,z(X

2
T2k+1∧τ |Z0 = 1,FT2k+1)

+ 1(τ > T2k+1)E(T2k+2 ∧ τ − T2k+1 ∧ τ |Z0 = 1,FT2k+1)((2r− + d) + ε) (13)

≤ Ex,z(X
2
T2k+1∧τ |Z0 = 1,FT2k+1) + 1(τ > T2k+1)λ

−1
1 ((2r+ + d) + ε). (14)

Corollary 1 If M1 is large enough, then under the assumptions of the theorem for any
|x | > M1 for any k = 0, 1, . . .

Ex,0X
2
T2k+1∧τ − Ex,0X

2
T2k∧τ

≤ −Ex,01(τ > T2k)Ex,0(T2k+1 ∧ τ − T2k ∧ τ |FT2k )((2r− − d) − ε)

= −Ex,0(T2k+1 ∧ τ − T2k ∧ τ)((2r− − d) − ε)

≤ −Ex,01(τ > T2k)λ̄
−1
0 ((2r− − d) − ε),

and

Ex,1X
2
T2k+2∧τ − Ex,1X

2
T2k+1∧τ

≤ Ex,11(τ > T2k+1)(T2k+2 ∧ τ − T2k+1 ∧ τ)((2r− + d) + ε)

= Ex,1(T2k+2 ∧ τ − T2k+1 ∧ τ)((2r− + d) + ε)

≤ Ex,11(τ > T2k+1)λ
−1
1 ((2r+ + d) + ε).

Proof of lemma 2 1. Recall that T0 = 0 under the condition Z0 = 0. We have,

T2k+1 = inf(t > T2k : Zt = 1).
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In other words, the moment T2k+1 may be treated as “T1 after T2k”. Under Z0 = 0 the
process Xt coincides with X0

t until the moment T1. Hence, we have on t ∈ [0, T1] by
Itô’s formula

dX2
t − 2XtdWt = (2Xtb−(Xt ) + d) dt ≤ (−2r− + d)dt,

on the set (|Xt | > M) due to the assumptions (5). Further, since 1(|Xt | > M) =
1 − 1(|Xt | ≤ M), we obtain

∫ T1∧τ

0
2Xtb−(Xt )dt

=
∫ T1∧τ

0
2Xtb−(Xt )1(|Xt | > M)dt +

∫ T1∧τ

0
2Xtb−(Xt )1(|Xt | ≤ M)dt

≤ −2r−
∫ T1∧τ

0
1(|Xt | > M)dt +

∫ T1∧τ

0
2M‖b‖1(|Xt | ≤ M)dt

= −2r−
∫ T1∧τ

0
1dt +

∫ T1∧τ

0
(2M‖b‖ + 2r−)1(|Xt | ≤ M)dt

≤ −2r−
∫ T1∧τ

0
1dt + (2M‖b‖ + 2r−)

∫ T1∧τ

0
1(|Xt | ≤ M)dt .

Thus, always for |x | > M1,

Ex,z

∫ T1∧τ

0
2Xtb−(Xt )dt

≤ −2r−Ex,z

∫ T1∧τ

0
1dt + (2M‖b‖ + 2r−)Ex,z

∫ T1∧τ

0
1(|Xt | ≤ M)dt

= −2r−E
∫ T1∧τ

0
1dt + (2M‖b‖ + 2r−)Ex,z

∫ T1∧τ

0
1(|Xt | ≤ M)dt

≤ −2r−E
∫ T1∧τ

0
1dt + (2M‖b‖ + 2r−)Ex,z

∫ T1

0
1(|Xt | ≤ M)dt

≤ −2r−E
∫ T1∧τ

0
1dt + (2M‖b‖ + 2r−)δ.

For a fixed ε > 0 let us choose δ = λ̄−1
0 ε/(2M‖b‖ + 2r−). Then, since |x | > M1

implies T1 ∧ τ = T1 on (Z0 = 0), and since

λ̄−1
0 ≤ Ex,0T1 ≤ λ−1

0 , (15)
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we get with z = 0

Ex,z X
2
T1∧τ − x2 ≤ −(2r− − d)Ex,z

∫ T1

0
dt + λ

−1
0 ε

= −(2r− − d)Ex,zT1 + λ
−1
0 ε

(15)≤ −λ
−1
0 ((2r− − d) − ε).

Substituting here x by XT2k andwritingEx,z(·|FT2k ) instead ofEx,z(·), andmultiplying
by 1(τ > T2k), we obtain the bounds (11) and (12), as required.

Note that the bound (15) follows straightforwardly from

Ex,0T1 =
∫ ∞

0
Px,0(T1 ≥ t)dt =

∫ ∞

0
Ex,0Px,0(T1 ≥ t |F X0

t )dt

= Ex,0

∫ ∞

0
exp(−

∫ t

0
λ0(X

0
s )ds)dt ≤

∫ ∞

0
exp(−

∫ t

0
λ0ds)dt

=
∫ ∞

0
exp(−tλ0)dt = λ−1

0 ,

and similarly

Ex,0T1 =
∫ ∞

0
Ex,0 exp

(
−

∫ t

0
λ0(X

0
s )ds

)
dt

≥
∫ ∞

0
exp(−

∫ t

0
λ0ds)dt =

∫ ∞

0
exp(−tλ0)dt = λ

−1
0 .

2. The condition Z0 = 1 implies the inequality T0 > 0. We have,

T2k+2 = inf(t > T2k+1 : Zt = 0).

In other words, the moment T2k+2 may be treated as “T0 after T2k+1”. Under the
condition Z0 = 1 the process Xt coincides with X1

t until the moment T0. Hence, we
have on [0, T0] by Itô’s formula

dX2
t − 2XtdWt = 2Xtb+(Xt )dt + dt ≤ (2r+ + d)dt,
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on the set (|Xt | > M) due to the assumptions (5). Further, since 1(|Xt | > M) =
1 − 1(|Xt | ≤ M), we obtain

∫ T0∧τ

0
2Xtb+(Xt )dt

=
∫ T0∧τ

0
2Xtb+(Xt )1(|Xt | > M)dt +

∫ T0∧τ

0
2Xtb+(Xt )1(|Xt | ≤ M)dt

≤ 2r+
∫ T0∧τ

0
1(|Xt | > M)dt +

∫ T0∧τ

0
2M‖b‖1(|Xt | ≤ M)dt

= 2r+
∫ T0∧τ

0
1dt +

∫ T1∧τ

0
(2M‖b‖ − 2r+)1(|Xt | ≤ M)dt

≤ 2r+
∫ T0∧τ

0
1dt + 2M‖b‖

∫ T0∧τ

0
1(|Xt | ≤ M)dt .

Thus, for |x | > M1 and with z = 1 we have,

Ex,z

∫ T0∧τ

0
2Xtb+(Xt )dt

≤ 2r+Ex,z

∫ T0∧τ

0
1dt + 2M‖b‖Ex,z

∫ T0∧τ

0
1(|Xt | ≤ M)dt

= 2r+Ex,z

∫ T0∧τ

0
1dt + 2M‖b‖Ex,z

∫ T1∧τ

0
1(|Xt | ≤ M)dt

≤ 2r+Ex,z

∫ T0∧τ

0
1dt + 2M‖b‖Ex,z

∫ T0

0
1(|Xt | ≤ M)dt

≤ 2r+Ex,z

∫ T0∧τ

0
1dt + 2M‖b‖δ.

For a fixed ε > 0 let us choose δ = λ−1
1 ε/(2M‖b‖). Then, since |x | > M1 implies

T0 ∧ τ = T0 on the set (Z0 = 1), we get (recall that z = 1)

Ex,z X
2
T0∧τ − x2 ≤ (2r+ + d)Ex,z

∫ T0

0
dt + λ−1

1 ε

= (2r+ + d)Ex,zT0 + λ−1
1 ε ≤ λ−1

1 ((2r+ + d) + ε).

Substituting here XT2k+1 instead of x and writing Ex,z(·|FT2k+1) instead of Ex,z(·),
and multiplying by 1(τ > T2k+1), we obtain the bounds (13) and (14), as required.
Lemma 2 is proved. ��

Proof of corollary 1 is straightforward by taking expectations.
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Lemma 3 If M1 is large enough, then under the assumptions of the theorem for any
k = 0, 1, . . .

Ex,z(X
2
T2k+2∧τ |Z0 = 0,FT2k+1) ≤ Ex,z(X

2
T2k+1∧τ |Z0 = 0,FT2k+1)

+1(τ > T2k+1)Ex,z(T2k+2 ∧ τ − T2k+1 ∧ τ |Z0 = 0,FT2k+1))((2r+ + 1) + ε))

(16)

≤ Ex,z(X
2
T2k+1∧τ |Z0 = 0,FT2k+1) + 1(τ > T2k+1)λ

−1
1 ((2r+ + 1) + ε)), (17)

and

Ex,z(X
2
T2k+1∧τ |Z0 = 1,FT2k ) ≤ Ex,z(X

2
T2k∧τ |Z0 = 1,FT2k )

+1(τ > T2k)Ex,z(T2k+1 ∧ τ − T2k ∧ τ |Z0 = 0,FT2k )) (18)

≤ Ex,z(X
2
T2k∧τ |Z0 = 1,FT2k ) − 1(τ > T2k)λ

−1
0 ((2r− − 1) − ε)). (19)

Corollary 2 If M1 is large enough, then under the assumptions of the theorem for any
k = 0, 1, . . .

Ex,0X
2
T2k+2∧τ − Ex,0X

2
T2k+1∧τ

≤ Ex,01(τ > T2k+1)(T2k+2 ∧ τ − T2k+1 ∧ τ)((2r+ + 1) + ε)

= Ex,0(T2k+2 ∧ τ − T2k+1 ∧ τ)((2r+ + 1) + ε)

≤ Ex,01(τ > T2k+1)λ
−1
1 ((2r+ + 1) + ε)),

and

Ex,1X
2
T2k+1∧τ − Ex,1X

2
T2k∧τ

≤ Ex,11(τ > T2k)(T2k+1 ∧ τ − T2k ∧ τ)

≤ −Ex,11(τ > T2k)λ
−1
0 ((2r− − 1) − ε)).

Proof of lemma 3 Let Z0 = 0; recall that it implies T0 = 0. If τ ≤ T2k+1, then (16)
is trivial. Let τ > T2k+1. We will substitute x instead of XT2k for a while, and will be
using the solution X1

t of the equation

dX1
t = b(X1

t , 1) dt + dWt , t ≥ T1, X1
T1 = XT1 .

For M1 large enough, since |x | ∧ |XT1 | > M1 implies T2 ≤ τ , and due to the assump-
tions (5) the double bound

1(|XT1 | > M1)(EXT1 ,1X
2
T2∧τ − X2

T1∧τ )

≤ 1(|XT1 | > M1)(EXT1 ,1(T2 − T1)((2r+ + d) + ε))

≤ +1(|XT1 | > M1)(λ
−1
1 ((2r+ + d) + ε))
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is guaranteed in the same way as the bounds (13) and (14) in the previous lemma. In
particular, it follows that for |x | > M1

(EXT1 ,1X
2
T2∧τ − X2

T1∧τ ) ≤ 1(|XT1 | > M1)(EXT1 ,1(T2 ∧ τ − T1 ∧ τ)((2r+ + d) + ε))

= +1(|XT1 | > M1)(λ
−1
1 ((2r+ + d) + ε)),

since |XT1 | ≤ M1 implies τ ≤ T1 and EXT1 ,1X2
T2∧τ − X2

T1∧τ = 0. So, on the set
|x | > M1 we have with z = 0

Ex,z(EXT1 ,1X
2
T2∧τ − X2

T1∧τ )

≤ Ex,z1(|XT1 | > M1)(EXT1 ,1(T2 ∧ τ − T1 ∧ τ)((2r+ + d) + ε)

≤ Ex,z1(|XT1 | > M1)(λ
−1
1 ((2r+ + 1) + ε)) ≤ λ−1

1 ((2r+ + d) + ε).

Now substituting back XT2k in place of x and multiplying by 1(τ > T2k+1), we obtain
the inequalities (16) and (17), as required.
For Z0 = 1 we have T0 > 0, and the bounds (18) and (19) follow in a similar way.
Lemma 3 is proved. ��
Proof of corollary 2 is straightforward by taking expectations. ��
Lemma 4 Under the assumptions of the theorem for any k = 0, 1, . . .

1(τ > T2k+1)EXT2k+1 ,1(T2k+2 ∧ τ − T2k+1 ∧ τ) ≥ 1(τ > T2k+1)λ̄
−1
1 ,

and

1(τ > T2k)EXT2k ,0(T2k+1 ∧ τ − T2k ∧ τ) ≤ 1(τ > T2k)λ
−1
0 ,

Proof of lemma 4 On the set τ > T2k+1 we have,

EXT2k+1 ,1(T2k+2 ∧ τ − T2k+1 ∧ τ) = EXT2k+1 ,1(T2k+2 − T2k+1) ∈ [λ̄−1
1 , λ−1

1 ].

Similarly, on the set τ > T2k

EXT2k ,0(T2k+1 ∧ τ − T2k ∧ τ) = EXT2k ,0(T2k+1 − T2k) ∈ [λ̄−1
0 , λ−1

0 ].

On the sets τ ≤ T2k+1 and τ ≤ T2k , respectively, both sides of the required inequalities
equal zero. Lemma 4 follows. ��

4 Proof of theorem 1

Consider the case Z0 = 0 where T0 = 0. Since the identity

τ ∧ Tn = τ ∧ T0 +
n−1∑
m=0

((Tm+1 ∧ τ) − (Tm ∧ τ))

123



1176 Stoch PDE: Anal Comp (2022) 10:1165–1179

we have,

Ex,z(τ ∧ Tn) = Ex,zτ ∧ T0 + Ex,z

n−1∑
m=0

((Tm+1 ∧ τ) − (Tm ∧ τ)).

Due to the convergence Tn ↑ ∞, we get by the monotone convergence theorem

Ex,zτ = Ex,zτ ∧ T0 +
∞∑

m=0

Ex,z((Tm+1 ∧ τ) − (Tm ∧ τ))

= Ex,zτ ∧ T0 +
∞∑
k=0

Ex,z((T2k+1 ∧ τ) − (T2k ∧ τ))

+
∞∑
k=0

Ex,z((T2k+2 ∧ τ) − (T2k+1 ∧ τ)). (20)

By virtue of the corollary 1, we have

Ex,z(T2k+1 ∧ τ − T2k ∧ τ) ≤ ((2r− − d) − ε)−1
(
Ex,z X

2
T2k+1∧τ − Ex,z X

2
T2k∧τ

)
.

Therefore,

Ex,0X
2
T2m+2∧τ − x2

≤ ((2r+ + d) + ε)

m∑
k=0

Ex,0(T2k+2 ∧ τ − T2k+1 ∧ τ)

− ((2r− − d) − ε)

m∑
k=0

Ex,0(T2k+1 ∧ τ − T2k ∧ τ)

=
m∑

k=0

(−((2r− − d) − ε)(Ex,0(T2k+1 ∧ τ − T2k ∧ τ) r

+((2r+ + d) + ε)Ex,0(T2k+2 ∧ τ − T2k+1 ∧ τ)
)
.

By virtue of Fatou’s lemma we get

x2 ≥ ((2r− − d) − ε)

m∑
k=0

(Ex,0(T2k+1 ∧ τ − T2k ∧ τ)

− ((2r+ + d) + ε)

m∑
k=0

Ex,0(T2k+2 ∧ τ − T2k+1 ∧ τ). (21)
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Note that 1(τ > T2k+1) ≤ 1(τ > T2k). So, Px,0(τ > T2k+1) ≤ Px,0(τ > T2k).
Hence,

λ0Ex,0(T2k+1 ∧ τ − T2k ∧ τ) − λ1Ex,0(T2k+2 ∧ τ − T2k+1 ∧ τ)

= λ0Ex,0(T2k+1 ∧ τ − T2k ∧ τ)1(τ ≥ T2k)

− λ1Ex,0(T2k+2 ∧ τ − T2k+1 ∧ τ)1(τ ≥ T2k+1)

= λ0Ex,01(τ > T2k)EXT2k
(T2k+1 ∧ τ − T2k ∧ τ)

− λ1Ex,01(τ > T2k+1)EXT2k+1
(T2k+2 ∧ τ − T2k+1 ∧ τ)

≥ λ0Ex,01(τ > T2k)λ
−1
0 − λ1Ex,01(τ > T2k+1)λ

−1
1

= Ex,01(τ > T2k) − Ex,01(τ > T2k+1) ≥ 0.

Thus,

Ex,0(T2k+2 ∧ τ − T2k+1 ∧ τ) ≤ λ0

λ1
Ex,0(T2k+1 ∧ τ − T2k ∧ τ).

Therefore, we estimate

((2r+ + d) + ε)

m∑
k=0

Ex,0(T2k+2 ∧ τ − T2k+1 ∧ τ)

≤ ((2r+ + d) + ε)
λ0

λ1

m∑
k=0

Ex,0(T2k+1 ∧ τ − T2k ∧ τ)

= q((2r− − d) − ε)

m∑
k=0

Ex,0(T2k+1 ∧ τ − T2k ∧ τ).

So, (21) implies that

x2 ≥ ((2r− − d) − ε)

m∑
k=0

(Ex,0(T2k+1 ∧ τ − T2k ∧ τ)

− ((2r+ + d) + ε)

m∑
k=0

Ex,0(T2k+2 ∧ τ − T2k+1 ∧ τ)

≥ (1 − q)((2r− − d) − ε)

m∑
k=0

(Ex,0(T2k+1 ∧ τ − T2k ∧ τ)

≥ 1 − q

2
((2r− − d) − ε)

m∑
k=0

(Ex,0(T2k+1 ∧ τ − T2k ∧ τ)

+ 1 − q

2q
((2r+ + d) + ε)

m∑
k=0

Ex,0(T2k+2 ∧ τ − T2k+1 ∧ τ).
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Denoting c := min

(
1 − q

2q
((2r+ + d) + ε),

1 − q

2
((2r− − d) − ε)

)
, we conclude

that

x2 ≥ c
2m∑
k=0

Ex,0(Tk+1 ∧ τ − Tk ∧ τ).

So, as m ↑ ∞, by the monotone convergence theorem we get the inequality

∞∑
k=0

Ex,0(Tk+1 ∧ τ − Tk ∧ τ) ≤ c−1x2.

Due to (20), it implies that
Ex,0τ ≤ c−1x2, (22)

as required. Recall that this bound is established for |x | > M1, while in the case of
|x | ≤ M1 the left hand side in this inequality is just zero.
In the case of Z0 = 1 (and, hence, T0 > 0), we have to add the value Ex,zT0 satisfying
the bound Ex,1T0 ≤ λ−1

1 to the right hand side of (22), which leads to the bound (7),
as required. Theorem 1 is proved. ��

Remark 2 The results of the paper may be extended to the equation

dXt = b(Xt , Zt ) dt + σ(Xt , Zt ) dWt , t ≥ 0, X0 = x, Z0 = z, (23)

with a Borelmeasurable σ under the assumptions of the existence of a strong solutions,
or of a weak solution which is weakly unique (because the strong Markov property
is needed), in addition to the standing balance type conditions replacing (5) and (6)
(while (4) is still valid): a(x, z) = σσ ∗(x, z) and

2xb(x, 0) + Tr (a(x, 0)) ≤ −R−, 2xb(x, 1) + Tr (a(x, 1)) ≤ +R+, ∀ |x | ≥ M,

(24)

with some R−, R+ > 0, and

λ1R− > λ0R+, (25)

where the definitions of λ1 and λ0 do not change. The proofs will now involve the
diffusion coefficient and will use the assumptions (24) and (25), but otherwise will
remain the same as in the case of the unit diffusion matrix.

Data availability Data sharing is not applicable to this article as no datasets were generated or analysed
during the current study.
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