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Abstract
We prove existence of solutions and its properties for a one-dimensional stochastic
partial differential equations with fractional Laplacian and non-Lipschitz coefficients.
The method of proof is eatablished by Kolmogorov’s continuity theorem and tightness
arguments.
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1 Introduction

Stochastic partial differential equationswith fractional Laplacian appear inmanyfields
such as physics, fractal medium, image analysis, risk management and other fields
(see Debbi [4], Mueller [12] and Xie [15]). In this paper, we discuss the existence and
uniqueness of solutions to the initial value problem for the following stochastic partial
differential equation which is denoted by SPDE:

⎧
⎨

⎩

∂X

∂t
(t, x) = −(−�)α/2X(t, x) + |X(t, x)|γ Ẇ (t, x), t ≥ 0, x ∈ R,

X(0, x) = f (x),
(1.1)

where−(−�)α/2 is the fractional Laplacianwith order 1 < α < 2, f is an initial value,
Ẇ (t, x) is a space-time white noise on [0,∞) × R, and γ is a parameter satisfying
1/2 < γ < 1.
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Wewill explain some known results related to (1.1). Consider the case where α = 2
and coefficients of noise are Lipschitz continuous, that is,

⎧
⎨

⎩

∂X

∂t
(t, x) = �X(t, x) + a(X(t, x))Ẇ (t, x), t ≥ 0, x ∈ R,

X(0, x) = f (x),
(1.2)

where a : R → R is Lipschitz continuous. Equation (1.2) was studied by Funaki [7]
and Walsh [18]. They showed the unique existence of a solution to (1.2) and spatial
regularity of the solution. LaterMueller–Perkins [11] and Shiga [17] studied the SPDE
(1.2) without assuming the Lipschitz continuty of coefficients a. They imposed the
following growth condition on a(u):

|a(u)| ≤ C(|u| + |u|θ ), u ∈ R (1.3)

for some 0 < θ < 1. They showed the existence of probability space (�̄, F̄ , P̄) on

which there is a space-time white noise ˙̄W (t, x) such that (1.2) with Ẇ (t, x) replaced

by ˙̄W (t, x) has a mild solution X(t, x). In addition, they proved that, if f is positive,
then any solution X(t, x) to (1.2) is positive for all t ≥ 0 and x ∈ R. Moreover, it was
shown that, if f (x) is sufficiently rapidly decreasing as x → ∞, then any solution
X(t, x) to (1.2) is also sufficiently rapidly decreasing. Mytnik [13] proved the weak
uniqueness of solutions to the following equation which is a special one of (1.2):

∂X

∂t
(t, x) = �X(t, x) + |X(t, x)|γ Ẇ (t, x), t ≥ 0, x ∈ R, (1.4)

with 1/2 < γ < 1. The idea of his proof is based on a duality argument developed by
Ethier–Kurtz [5]. Mytnik [14] studied the dual process Y described by the following
SPDE:

∂Y

∂t
(t, x) = �Y (t, x) + |Y (t, x)|1/γ L̇(t, x), t ≥ 0, x ∈ R, (1.5)

where L̇ is a stable noise on R × R+ with nonnegative jumps. He coordinated a
probability space (�̃, F̃ , P̃) on which there exists a stable noise L̇ and random field
Y (t, x), where Y (t, x) is a mild solution of (1.5).

Recently SPDEs with fractional Laplacian have been discussed by several authors
(see; e.g. Chen [1], Debbi [4], Niu–Xie [15]). Consider (1.2) with � replaced by
−(−�)α/2 for 1 < α < 2 and Lipschitz continuous coefficients of noise, that is,

⎧
⎨

⎩

∂X

∂t
(t, x) = −(−�)α/2X(t, x) + a(X(t, x))Ẇ (t, x), t ≥ 0, x ∈ R,

X(0, x) = f (x),
(1.6)

where a : R → R is Lipschitz continuous. Chen [1], Debbi [4] and Niu–Xie [15] have
shown the unique existence of mild solution to (1.6) and its regularity.
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However, it is still an open problem to show the existence and uniqueness of solution
to (1.6) without assuming the Lipschitz continuty of a(u). The purpose of this paper
is to establish the existence and weak uniqueness of a mild solution to (1.1) which is
a special case of (1.6) where a(u) = |u|γ with 1

2 < γ < 1. We intend to use similar
aguments to Mueller–Perkins [11], Shiga [17], and Mytnik [13]. The large difference
between the fractional Laplacian and the usual Laplacian can be found in the decay
properties of fundamental solutions as x → ∞. Since the fundamental solution of the
usual Laplacian has an exponential decay property, the solution X(t, x) to (1.2) has
the exponential decay property if the condition (1.3) holds. Similarly the fundamental
solution of fractional Laplacian decays polynomially, we can show that the solution
to (1.1) has the polinomial decay property if the condition (1.3) holds. To prove the
uniqueness of solution to (1.4) Mytnik [13] used the exponential decay property. It
is enough to use the polynomial decay property in order to prove the uniqueness of
solution to (1.1).

This paper is organized as follows: in Sect. 2 we prepare some tools and lemma to
prove our main results. In Sect. 3, we show the existence and uniqueness of solution
by applying the Banach fixed point theorem with Lipschitz continuous coefficients
a(X). In addition, we follow the argument of Mueller–Perkins [11] and Shiga [17] to
prove positivity and polynomial decay properties of solutions to (1.6). From Sect. 4 we
begin with consideration (1.1). We prove the existence of solution to (1.1) by tightness
arguments. In fact, we can prove a uniqueness of solution in the distributional sense
by applying to duality method. Since the proof is almost same as the paper [5], we
omit the detail.

2 Preliminaries

2.1 Fractional differential operator

For 1 < α ≤ 2, let −(−�)α/2 be a fractional differential operator defined by the
Fourier transform F :

F((−�)α/2X)(ξ) = |ξ |αF(X)(ξ), X ∈ D((−�)α/2), ξ ∈ R,

where

F(X)(ξ) =
∫

R

X(x)e−i xξdx .

Let G(t, x) be a fundamental solution to the Cauchy problem

⎧
⎨

⎩

∂G

∂t
(t, x) = −(−�)α/2G(t, x),

G(0, x) = δ0(x),
(2.1)
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where δ0 denotes the Dirac measure. Then G(t, x) can be expressed using the Fourier
transform:

G(t, x) =
∫

R

exp
{−iξ x − t |ξ |α} dξ

and has the following properties (cf. Debbi–Dozzi [4] and Kotelenez [9]):

Lemma 2.1 Let G(t, x) be the fundamental solution of (2.1) and define

λ(x) = (1 + |x |2) 1
2 , x ∈ R.

Then there exists a constant Cα > 0 such that for all 0 ≤ s ≤ t ≤ T , x ∈ R, and
0 < ρ ≤ (α + 1)/2, the following properties hold:

(i)
∂nG

∂xn
(t, x) = t−

n+1
α

∂nG(1, ξ)

∂ξn
|
ξ=t− 1

α x
.

(ii)
∫

R

G(t, x)λρ(x)dx < ∞.

(iii)|G(1, x)| ≤ Cα(1 + |x |1+α)−1.

(iv)

∣
∣
∣
∣
∂nG

∂xn
(1, x)

∣
∣
∣
∣ ≤ Cα

1 + |x |α+n−1

(1 + |x |α+n)2
.

Hereafter, we sometimes write G(t, x − y) = G(t, x, y). Note that there exists a
constant C1,C2 > 0 such that λ−ρ(y) ≤ C1λ

ρ(x − y)λ−ρ(x) and from Lemma 2.1
(ii) we obtain the estimate

∫

R

G(t, x, y)λ−ρ(y)dy ≤ C2λ
−ρ(x).

2.2 Definition of the solution

Let (�,F ,Ft , P) be a complete probability space with filtration and Ẇ (t, x) be an
{Ft }-space-time Gaussian white noise with covariance given by

E[Ẇ (t, x)Ẇ (t ′, x ′)] = δ(t − t ′)δ(x − x ′)

for t, t ′ ≥ 0 and x, x ′ ∈ R. For an {Ft }-predictable functional φ(t, x, ω) : [0,∞) ×
R × � → R satisfying

E

[∫ t

0

∫

R

φ2(s, x, ω)dxds

]

< ∞ for all t > 0, (2.2)
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we can define stochastic integral (cf. Walsh [18])

∫ t

0

∫

R

φ(s, x, ω)W (dx, ds),

with quadratic variational process

∫ t

0

∫

R

φ2(s, x, ω)dxds.

The Eq. (1.1) makes sense if we integrate the equation in time and space and use the
initial condition.

Definition 2.1 An (Ft )-adapted random field {X(t, x), t ≥ 0, x ∈ R} is said to be
a solution in the sense of generalized functions of (1.1) if for any φ ∈ C∞

0 (R), the
following equality holds:

∫

R

X(t, x)φ(x)dx =
∫

R

f (x)φ(x)dx −
∫ t

0

∫

R

X(s, x)(−�)α/2φ(x)dxds

+
∫ t

0

∫

R

|X(s, x)|γ φ(x)W (dx, ds) a.s. (2.3)

Using the Green function, we can describe a solution of (1.1) in a mild form.

Definition 2.2 An (Ft )-adapted random field {X(t, x), t ≥ 0, x ∈ R} is said to be
a mild solution of (1.1) with initial function f if the following stochastic integral
equation holds:

X(t, x) =
∫

R

G(t, x, y) f (y)dy +
∫ t

0

∫

R

G(t − s, x, y)|X(s, y)|γ W (dy, ds) a.s.,

(2.4)

where G(t, x, y) denotes the Green function of (2.1).

We introduce a martingale problem induced by (1.1).

Definition 2.3 Let S be a Banach space. A solution to martingale problem for (1.1)
we mean a measurable process X with values in S defined on some probability space
(�,F , P, {Ft }) with a filtration satisfyng for all φ ∈ D(−�)α/2

〈Xt , φ〉 − 〈X0, φ〉 +
∫ t

0
〈Xs, (−�)α/2φ〉ds (2.5)

is an F X
t square integrable martingale with the quadratic variation given by

∫ t

0

∫

R

|X(s, y)|2γ φ(y)2dyds.
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Definition 2.4 Let S be a Banach space and X1 and X2 be S-valued mild solutions to
the SPDE (1.1) with the same initial value. We say that the SPDE (1.1) has pathwise
uniqueness if

P(|X1(t, ·) − X2(t, ·)|S = 0, ∀t ≥ 0) = 1.

holds.

To this end, it is required that all the terms in (2.4) and (2.3) are well defined. Here,
a relationship between a solution in the sense of generalized functions and a mild
solution is well known (cf. [18]).

Proposition 2.1 A solution in the sense of generalized functions of (1.1) is equivalent
to the mild solution.

A solution to the martigale problem and a mild solution in weak sense are equivalent
(cf. [7]).

Proposition 2.2 The following (1) and (2) are equivalent.

(1) X(t, x) is a solution to the martigale problem for (1.1).
(2) There exists an {Ft }-space-time Gaussian white noise Ẇ (t, x) and stochastic pro-

cess X(t, x) such that X(t, x) is a mild solution of the SPDE (1.1) on a suitable
probability space with filtration (�,F , P, {Ft }).

3 Some properties of solutions in Lipschitz case

3.1 Existence and uniqueness of mild solutions

In order to prove the existence and uniqueness to SPDE (1.1), we first consider the
case where coefficients are Lipschitz continuous:

∂Xt

∂t
= −(−�)α/2Xt + a(Xt )Ẇ (t, x) (3.1)

where a : R → R is Lipschitz continuous. Using the Green function, we can write
the solution of Eq. (3.1) in a mild form:

X(t, x) =
∫

R

G(t, x, y) f (y)dy +
∫ t

0

∫

R

G(t − s, x, y)a(X(s, y))W (dy, ds).(3.2)

For any 0 < ρ < (α + 1)/2, define a weighted L2-norm defined by

‖X‖L2
ρ

=
(∫

R

|X(x)|2λ−ρ(x)dx

)1/2

.
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Theorem 3.1 Assume that f ∈ L2
ρ(R)anda : R → R is aLipschitz function satisfying

linear growth condition, that is, there exists C > 0 such that

|a(u)| ≤ C(1 + |u|), for all u ∈ R. (3.3)

Then (3.2) admits the pathwise unique mild solution X(t, x)(t,x)∈[0,T ]×R such that for
each T > 0,

sup
0≤t≤T

E[‖X(t, ·)‖2L2
ρ
] < ∞.

For every 0 < ρ < (α + 1)/2, define a function space

Cρ(R) :=
{

g ∈ C(R) : sup
x∈R

λρ(x)g(x) < ∞
}

.

The regularity of solution to (3.1) is well known (cf. [4], [15]).

Theorem 3.2 Under the conditions of Theorem 3.1 with the initial condition f ∈
Cρ(R), the solution X(t, x) of (3.1) has the continuous modification on [0,∞) × R.
In addition, the solution X(t, x) to (3.1) has the β-Hölder continuous modification for
t ∈ [0,∞) and η-Hölder continuous modification for x ∈ R with β ∈ (0, α−1

2α ) and
η ∈ (0, α−1

2 ).

3.2 Positivity of solution

We will follow Shiga’s arguments [17] to prove the positivity of the solution to (3.1).
At first, we need to prepare a boundness of the solution to (3.1).

Lemma 3.1 Assume that for every T > 0 there exists CT > 0 and such that

|a(u)| ≤ CT (|u| + |u|1/2), u ∈ R. (3.4)

Then for p ≥ 1 can be written by p = 2m, m ∈ N ∪ {0} and 0 < ρ < (α + 1)/2, the
mild solution X(t, x) to (3.2) with initial condition f ∈ Cρ(R) satisfies

sup
0≤t≤T

∫

R

E[|X(t, x)|p]λρ(x)dx < ∞. (3.5)

Proof Assume that p = 1. Then for every 0 < ρ < (α + 1)/2 and t ≥ 0, we have

∫

R

E[|X(t, x)|λρ(x)dx] =
∫

R

∣
∣
∣
∣

∫

R

G(t, x, y) f (y)λρ(x)dy

∣
∣
∣
∣ dx

≤ C
∫

R

| f (y)| λρ(y)dy < ∞. (3.6)
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We will apply an induction argument. For p ≥ 2, using the Burkhorder’s inequality,
the Hölder’s inequality shows that

E[|X(t, x)|p]

≤ Cp

{∣
∣
∣
∣

∫

R

G(t, x, y) f (y)dy

∣
∣
∣
∣

p

+ E

∣
∣
∣
∣

∫ t

0

∫

R

G(t − s, x, y)2a(X(s, y))2dyds

∣
∣
∣
∣

p/2
}

≤ Cp,T

{∣
∣
∣
∣

∫

R

G(t, x, y) f (y)dy

∣
∣
∣
∣

p

+ E
∫ t

0

∫

R

G(t − s, x, y)2 |a(X(s, y))|p dyds
}

.

≤ Cp,T

{∣
∣
∣
∣

∫

R

G(t, x, y) f (y)dy

∣
∣
∣
∣

p

+ E
∫ t

0

∫

R

G(t − s, x, y)2[|X(s, y)|p + |X(s, y)|p/2]dyds
}

.

Multiply both sides by λρ(x) and integrate with variable x , we obtain that

∫

R

E[|X(t, x)|p]λρ(x)dx

≤ Cp,T

{

1 + E
∫ t

0

∫

R

[|X(s, y)|p + |X(s, y)|p/2]
∫

R

G(t − s, x, y)2λρ(x)dxdyds

}

≤ Cp,T

{

1 + E
∫ t

0

∫

R

[|X(s, y)|p + |X(s, y)|p/2](t − s)−1/αλρ(y)dyds

}

≤ Cp,T

{

1 + sup
0≤s≤t

∫

R

E[|X(s, y)|p + |X(s, y)|p/2]λρ(y)dy
∫ t

0
(t − s)−1/αds

}

.

Setting p = 2, (3.6) and Grownwall’s lemma imply that

sup
0≤t≤T

∫

R

E[|X(t, x)|2]λρ(x)dx < ∞.

From an induction argument, we complete the proof for p = 2m with m ∈ N∪ {0}. 
�

Remark 3.1 We can get in a similarly way to the proof of Lemma 3.1 and Hölder’s
inequality together,

sup
0≤t≤T

sup
x∈R

E[|X(t, x)|pλ(x)ρ] < ∞ for all p ≥ 2. (3.7)

For any 0 < ρ < (α + 1)/2 define the function space C+
ρ (R) by

C+
ρ (R) :=

{

g ∈ C(R) : g ≥ 0, sup
x∈R

λρ(x)g(x) < ∞
}

.
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Theorem 3.3 Let X(t, x) be the mild solution of (3.2) with the initial function f ∈
C+

ρ (R). Assume that a(u) satisfies the condition (3.4). In particular, a(0) = 0. Then,
we have

P(X(t, x) ≥ 0; t ≥ 0, x ∈ R) = 1.

Proof For every ε > 0, choose non-negative, symmetric and smooth function ρε(x)
such that

ρε(x) = 0 for |x | ≥ ε and
∫

R

ρ2
ε (x)dx = 1.

Define

W ε
x (t) =

∫ t

0

∫

R

ρε(x − y)W (dy, ds).

Notice that, for every x ∈ R, W ε
x (t) is a one-dimensional Brownian motion. Set

�ε = (G(ε) − I )/ε for ε > 0 where G(ε) f (x) = (G(ε, ·) ∗ f ) (x). We consider the
following equation

Xε(t, x) = f (x) +
∫ t

0
(�εXε(s, x)) ds +

∫ t

0
a (Xε(s, x)) dW

ε
x (s).

Since a(u) is Lipschitz continuous and �ε is a bounded operator on L2(R), the above
equation has the unique strong solution and continuous version(cf. [2]). From now on,
we claim that

P (Xε(t, ·) ≥ 0, ∀t ≥ 0) = 1. (3.8)

Let an = −2(n2 + n + 2)−1 be a non-increasing sequence. Immediately, we obtain
that an → 0 as n → ∞ and

∫ an
an−1

x−2dx = n. Letψn(x) be a nonnegative continuous
function such that

supp(ψn) = (an−1, an), 0 ≤ ψn(x) ≤ 2

nx2
and

∫ an

an−1

ψn(x)dx = 1.

Define

�n(x) =
∫ x

0

∫ y

0
ψn(z)dzdy.

Then we can get �n(x) ∈ C2(R) with �′′
n(x) = ψn(x) , −1 ≤ �′

n(x) =∫ x
0 ψn(z)dz ≤ 0 for x < 0 and �n(x) = 0 for x ≥ 0. Note that, for x < 0 there exists
n0 ∈ N such that for all n ≥ n0 we have an > x . About �n we can get the following
properties as n → ∞,

�n(x) → −min{x, 0} =: φ(x), �′
n(x) → −1(x < 0).
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By ItOo′s formula

�n(Xε(t, x)) = �n( f (x)) +
∫ t

0
�′

n(Xε(s, x))�εXε(s, x)ds

+
∫ t

0
�′

n(Xε(s, x))a(Xε(s, x))dW
ε
x (s)

+1

2

∫ t

0
�′′(Xε(s, x))a

2(Xε(s, x))ds.

From the Lipschitz condition and a(0) = 0,

�′′(Xε(s, x))a(Xε(s, x))
2 ≤ C�′′(Xε(s, x))X

2
ε (s, x) ≤ C/n.

Hence

E[�n(Xε(s, x))] ≤ E
∫ t

0
�′

n(Xε(s, x))�εXε(s, x)ds + C

n
t .

Taking the limit as n → ∞ and by monotone convergence theorem

E[φ(Xε(t, x))] ≤ E
∫ t

0
−1(Xε(s, x) < 0)�εXε(s, x)ds

= 1

ε

∫ t

0
E [1(Xε < 0)Xε(s, x)] ds

−1

ε

∫ t

0

∫

R

G(ε, x, y)E [1(Xε(s, x) < 0)Xε(s, y)] dyds

For the second term, we notice that

−1

ε

∫ t

0

∫

R

G(ε, x, y)E [1(Xε(s, x) < 0)Xε(s, y)] dyds

≤ −1

ε

∫ t

0

∫

R

G(ε, x, y)E [1(Xε(s, x) < 0, Xε(s, y) < 0)Xε(s, y)] dyds

= 1

ε

∫ t

0

∫

R

G(ε, x, y)E [1(Xε(s, x) < 0, Xε(s, y) < 0) |Xε(s, y)|] dyds

≤ 1

ε

∫ t

0

∫

R

G(ε, x, y)E [1(Xε(s, y) < 0)|Xε(s, y)|] dyds.

Then, since |x |1(x < 0) = φ(x), we get

E [φ(Xε(t, x))] ≤ 1

ε

∫ t

0

∫

R

G(ε, x, y)E [φ(Xε(s, y))] dyds.
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Therefore, by Grownwall’s lemma for supx∈R E(φ(Xε(t, x))), we obtain

E[φ(Xε(t, x))] = 0

for every t > 0 and x ∈ R, which yields (3.8). Let

Gε(t) = exp t�ε = e−t/ε
∞∑

n=0

(t/ε)n

n! G(nε) = e−t/ε I + Rε(t)

Rε(t, x, y) = e−t/ε
∞∑

n=1

(t/ε)n

n! G(nε, x, y).

We will prove that

lim
ε→0

sup
0≤t≤T

sup
x∈R

E |Xε(t, x) − X(t, x)|2 = 0.

To prove this fact, we need the following lemma (cf. Appendix of [1]).

Lemma 3.2 (i)

∫

R

|Rε(t, x, y) − G(t, x, y)|dy ≤ e−t/ε + C(ε/t)1/2 ∀t > 0, ε > 0.

(ii) For some α > 0 and β > 0

∫

R

Rε(t, x, y)
2dy ≤ Ct−1/α ∀ > 0.

(iii)

lim
ε→∞

∫ t

0

∫

R

(Rε(t, x, y) − G(t, x, y))2 = 0 ∀t > 0, x ∈ R.

Notice that, Xε(t, x) can be written in the following mild form:

Xε(t, x) =
∫

R

Gε(t, x, y) f (y)dy +
∫ t

0

∫

R

e− (t−s)
ε a(uε(s, x))dW

ε
x (s)

+
∫ t

0

∫

R

Rε(t − s, x, y)a(Xε(s, y))dW
ε
y (s)

where the last term equals to

∫ t

0

∫

R

(∫

R

Rε(t − s, x, z)a(Xε(s, z))ρε(y − z)dz

)

W (dy, ds).
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Since f is bounded, it follows that for every T > 0 (see Remark 3.1),

sup
0<ε≤1

sup
0≤t≤T

sup
x∈R

E
[
|Xε(t, x)|2

]
< ∞ (3.9)

sup
0≤t≤T

sup
x∈R

E
[
|X(t, x)|2

]
< ∞. (3.10)

Then we have

E
[
|Xε(t, x) − X(t, x)|2

]
≤ C

{

Gε(t) f (x) − G(t) f (x)|2

+E

[∫ t

0
e−2(t−s)/ε|a(Xε(s, x))|2ds

]

+
∫ t

0

∫

R

E

[∣
∣
∣
∣

∫

R

Rε(t − s, x, y)[a(Xε(s, z)) − a(X(s, z))]ρε(y − z)dz

∣
∣
∣
∣

2
dyds

]

+
∫ t

0

∫

R

E

[∣
∣
∣
∣

∫

R

Rε(t − s, x, y)[a(X(s, z)) − a(X(s, y))]ρε(y − z)dz

∣
∣
∣
∣

2
dyds

]

+
∫ t

0

∫

R

E

[∣
∣
∣
∣

∫

R

[Rε(t − s, x, z) − G(t − s, x, z)] a(X(s, y))ρε(y − z)dz

∣
∣
∣
∣

2
dyds

]

+
∫ t

0

∫

R

E

[∣
∣
∣
∣

∫

R

[G(t − s, x, z) − G(t − s, x, y)] a(X(s, y))ρε(y − z)dz

∣
∣
∣
∣

2
dyds

]}

=: C
6∑

i=1

In(t, x, ε).

By using Lemma 3.2 and boundness of f (x)

I1(t, x, ε) = C

∣
∣
∣
∣

∫

R

Rε(t, x, y) f (y)dy −
∫

R

G(t, x, y) f (y)dy

∣
∣
∣
∣

2

≤ C

(∫

R

|Rε(t, x, y) − G(t, x, y)|dy
)2

≤ C
(
e

−2t
ε + (ε/t)

2
3

)
.

As for I2(t, x, ε)

I2(t, x, ε) ≤ C
∫ t

0
e−2(t−s)/εE[Xε(s, x)

2]ds.

This inequality and (3.9) imply that

lim
ε→0

sup
0≤t≤T

sup
x∈R

I2(t, x, ε) = 0.
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By the Hölder’s inequality, the Lipschitz continuty of function a(x) and Lemm 3.2,
we have

I3(t, x, ε) ≤ C
∫ t

0

∫

R

E

(∫

R

Rε(t − s, x, z)|Xε(s, z) − X(s, z)|ρε(y − z)dz

)2

dyds

≤ C
∫ t

0

∫

R

E

(∫

R

Rε(t − s, x, z)2|Xε(s, z) − X(s, z)|2ρε(y − z)dz

)

dyds

≤ C
∫ t

0
(t − s)−

1
α sup
y∈R

E
[
|Xε(s, y) − X(s, y)|2

]
ds,

and similarly

I4(t, x, ε) ≤ C
∫ t

0

∫

R

∫

R

G(t − s, x, z)2E
[
|X(s, z) − X(s, y)|2

]
ρε(y − z)dydzds.

According to the inequality

E[|X(s, z) − X(s, y)|2 ≤ C
{
s−1/α|y − z| + |y − z|α−1

}
,

the definition of ρε gives that

I4(t, x, ε) ≤ C
∫ t

0

∫

R

∫

R

G(t − s, x, z)2[s−1/α|y − z| + |y − z|α−1]ρε(y − z)dydzds

≤ C
∫ t

0

∫

R

G(t − s, x, y)2
[
s−1/αε + εα−1

]

≤ C
∫ t

0
(t − s)−1/α[s−1/αε + εα−1] ≤ C(t1−2/αε + εα−1).

By Hölder’s inequality and (3.10),

I5(t, x, ε) ≤ C
∫ t

0

∫

R

∫

R

[|Rε(t − s, x, z) − G(t − s, x, z)|2ρε(y − z)dz]dyds,

and applying Lemma 3.2 we obtain

lim
ε→0

sup
0≤t≤T

sup
x∈R

I5(t, x, ε) = 0.
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In a same way, we have

I6(t, x, ε) ≤ C
∫ t

0

∫

R

∫

R

[|G(t − s, x, z) − G(t − s, x, y)|2ρε(y − z)dz]dyds

= C
∫ t

0

∫

R

[

G(t − s, x, y)2 −
∫

R

{2G(t − s, x, y)G(t − s, x, z)ρε(y − z)

+G(t − s, x, z)2ρε(y − z)}dz
]

dyds.

Applying the fact

lim
ε→0

∫

R

G(t − s, x, z)ρε(y − z)dz = G(t − s, x, y) uniformly for y ∈ R,

we can get

lim
ε→ 0

sup
0≤t≤T

sup
x∈R

I6(t, x, ε) = 0.

Now, we set

M(t, ε) = sup
x∈R

‖Xε(t, x) − X(t, x)‖22.

Then there exists some constant C > 0 such that

M(t, ε) ≤ C
∫ t

0
(t − s)−1/αM(s, ε) + H(T , ε) + Ĥ(t, ε),

where

H(T , ε) = C
∑

n=2,5,6

sup
0≤t≤T

sup
x∈R

In(t, x, ε),

Ĥ(t, x, ε) = C
{
(e−t/ε + (ε/t)1/2) + (t1−2/α + εα−1)

}
.

Therefore, Grownwall’s inequality implies that

M(t, ε) → 0 as ε → 0,

and thus completes the proof of Theorem 3.3. 
�

3.3 Polynomial decay

In this section, we show that the solution of (3.1) has modification in the class Cρ(R).
The following lemma is a variant of a Kolmogorov’s continuity criterion theorem.
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Lemma 3.3 (i) Suppose that for every 0 < ρ < (α + 1)/2 there exist p > 0, γ > 2
and Cρ > 0 such that

E[|X(t, x) − X(t ′, x ′)|p] ≤ Cρ(|t − t ′|γ + |x − x ′|γ )λ−ρ(x),

for 0 ≤ t, t ′ ≤ 1 and x, x ′ ∈ R with |x − x ′| ≤ 1. Then X(t, ·) has Cρ-valued
continuous version P-a.s.

(ii) Let {Xn(t, ·); t ≥ 0, n ∈ N} be a sequence of continuous Cρ-valued processes.
Suppose that for every 0 < ρ < (α + 1)/2 and T > 0 there exists p > 0, γ > 2
and Cρ > 0 such that

E[|Xn(t, x) − Xn(t
′, x ′)|p] ≤ Cρ(|t − t ′|γ + |x − x ′|γ )λ−ρ(x),

for t, t ′ ∈ [0, T ] and x, x ′ ∈ R with |x − x ′| ≤ 1. Then the sequence of probability
distributions on C([0,∞);Cρ(R)) induced by Xn(·) is tight.

Theorem 3.4 Under the conditions of Lemma 3.1, X(t, ·) has Cρ(R) valued continu-
ous version P-a.s.

Proof Since f ∈ Cρ(R), it is enough to prove that for all 0 < ρ < (α + 1)/2 there
exist p > 0, γ > 2 and Cρ > 0 such that

E[|X(t, x) − X(t ′, x ′)|p] ≤ C(|t − t ′|γ + |x − x ′|γ )λ−ρ(x), (3.11)

for X(t, x) = ∫ t
0

∫

R
G(t − s, x, y)a(X(s, y))W (dy, ds), 0 ≤ t, t ′ ≤ 1 and x, x ′ ∈ R

with |x − x ′| ≤ 1. We first show (3.11) with t = t ′. From the Burkholder’s inequality
and the Hölder’s inequality, we have for every p = 2m, m ∈ N,

E[|X(t, x) − X(t, x ′)|p]

≤ CpE

[∫ t

0

∫

R

(G(t − s, x, y) − G(t − s, x ′, y))2a(X(s, y))2dyds

] p
2

≤ CpE

(∫ t

0

∫

R

∣
∣G(t − s, x, y) − G(t − s, x ′, y)

∣
∣2 a(X(s, y))pλρ(

p
2 −1)(y)dyds

)

×
(∫ t

0

∫

R

∣
∣G(t − s, x, y) − G(t − s, x ′, y)

∣
∣2 λ−ρ(y)dyds

) p−2
2

,

where ρ < α+1
p−2 . Lemma 3.1 implies that

E

(∫ t

0

∫

R

∣
∣G(t − s, x, y) − G(t − s, x ′, y)

∣
∣2 a(X(s, y))pλρ(

p
2 −1)(y)dyds

)

< ∞.
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From Lemma 2.1

∣
∣G(t, x, y) − G(t, x ′, y)

∣
∣ ≤ C |x − x ′|Gx (t, x(θ), y)

= C |x − x ′|t −2
α Gx (1, (x(θ) − y)t

−1
α )

≤ C |x − x ′|t −2
α ,

where x(θ) = x + (1 − θ)x ′ for 0 < θ < 1. Therefore, for every κ < α − 1

∫ t

0

∫

R

∣
∣G(t − s, x, y) − G(t − s, x ′, y)

∣
∣2−κ+κ

λ−ρ(y)dyds

≤ C |x − x ′|κ
∫ t

0
(t − s)−

2
α
κ

∫

R

(
|G(t − s, x, y)|2−κ + |G(t − s, x ′, y)|2−κ

)
λ−ρ(y)dyds.

Note that,

∫

R

G(t, x, y)2−κλ−ρ(y)dy ≤ Ct−
1−κ
α λ−ρ(x),

so we have

∫ t

0

∫

R

∣
∣G(t − s, x, y) − G(t − s, x ′, y)

∣
∣2−κ+κ

λ−ρ(y)dyds

≤ C |x − x ′|κ
∫ t

0
(t − s)−

1+κ
α dsλ−ρ(x).

Choosing p = 2m satisfying that p−2
2 κ > 2, we can get (3.11) with t = t ′. Next, we

prove (3.11) with x = x ′. In the same way as above, for 0 ≤ t ≤ t ′ ≤ T , we can show
that

E[|X(t, x) − X(t ′, x)|p]

≤ Cp

{

E

[∫ t

0

∫

R

(G(t ′ − s, x, y) − G(t − s, x, y))2a(X(s, y))2dyds

] p
2

+E

[∫ t ′

t

∫

R

G(t ′ − s, x, y)2a(X(s, y))2dyds

] p
2 }

≤ Cp

{

E

(∫ t ′

t

∫

R

G(t ′ − s, x, y)2a(X(s, y))pλρ(
p
2 −1)(y)dyds

)
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×
(∫ t ′

t

∫

R

∣
∣G(t ′ − s, x, y)

∣
∣2 λ−ρ(y)dyds

) p−2
2

+E

(∫ t

0

∫

R

∣
∣G(t ′ − s, x, y) − G(t − s, x, y)

∣
∣2 a(X(s, y))pλρ(

p
2 −1)(y)dyds

)

×
(∫ t

0

∫

R

∣
∣G(t ′ − s, x, y) − G(t − s, x, y)

∣
∣2 λ−ρ(y)dyds

) p−2
2
}

,

for ρ < α+1
p−2 . Immediately, we can get from Lemma 2.1

∫ t ′

t

∫

R

∣
∣G(t ′ − s, x, y)

∣
∣2 λ−ρ(y)dyds ≤ C

∫ t ′

t
(t ′ − s)−1/α

∫

R

G(t − s, x, y)λ−ρ(y)dy

≤ C(t − t ′)1−
1
α λ−ρ(x).

Hence combining with (3.5)

CpE

(∫ t ′

t

∫

R

G(t ′ − s, x, y)2a(X(s, y))pλ−ρ(y)dyds

)

×
(∫ t ′

t

∫

R

∣
∣G(t ′ − s, x, y)

∣
∣2 λ−ρ(y)dyds

) p−2
2

≤ Cp,T ,α(t − t ′)(1−
1
α
)
p−2
2 λ−ρ

p−2
2 (x).

From now on, we claim that

∫ t

0

∫

R

∣
∣G(t ′ − s, x, y) − G(t − s, x, y)

∣
∣2 λ−ρ(y)dyds ≤ (t − t ′)(1−

1
α
)λ−ρ(x).

The change of variable s = θv with θ = t ′ − t ,

∫ t

0

∫

R

∣
∣G(t ′ − t + s, x, y) − G(s, x, y)

∣
∣2 λ−ρ(y)dyds

=
∫ t/θ

0

∫

R

|G(θ(v + 1), x, y) − G(θv, x, y)|2λ−ρ(y)θdydv

≤
∫ t/θ

0

∫

R

θ1−
2
α |G(v + 1, θ− 1

α (x − y))

−G(v, θ− 1
α (x − y))|2λ−ρ(y)dydv.

Note that,

λ(y) = (1 + |y|2)1/2 =
(

1 +
∣
∣
∣θ

1
α θ− 1

α y
∣
∣
∣
2
)1/2

≤ C

(

1 +
∣
∣
∣θ

− 1
α y
∣
∣
∣
2
)1/2

.
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Again, by the change of variable z = θ− 1
α (x − y), we have

∫ t

0

∫

R

∣
∣G(t ′ − s, x, y) − G(t − s, x, y)

∣
∣2 λ−ρ(y)dydv

≤ θ1−
1
α λ−ρ(x)

∫ t/θ

0

∫

R

|G(v + 1, z) − G(v, z)|2λρ(z)dzdv.

Therefore, to prove (3.11) we need to show that

∫ ∞

0

∫

R

|G(v + 1, z) − G(v, z)|2λρ(z)dzdv < ∞.

Let us write
∫ ∞

0

∫

R

|G(v + 1, z) − G(v, z)|2λρ(z)dzdv

=
∫ 1

0

∫

R

|G(v + 1, z) − G(v, z)|2λρ(z)dzdv

+
∫ ∞

1

∫

R

|G(v + 1, z) − G(v, z)|2λρ(z)dzdv.

The first integral is finite, since

∫ 1

0

∫

R

|G(v + 1, z) − G(v, z)|2λρ(z)dzdv

≤ C
∫ 1

0

∫

R

v− 1
α |G(v, z)|λρ(z)dzdv < ∞.

For the second termone,we useLemma2.1 and the change of variable z = (1+v)1/αz′

∫ ∞
1

∫

R

|G(v + 1, z) − G(v, z)|2λρ(z)dzdv

=
∫ ∞
1

∫

R

|G(1, (1 + v)− 1
α z) × (1 + v)− 1

α − G(1, v− 1
α z) × v− 1

α |2λρ(z)dzdv

=
∫ ∞
1

∫

R

v− 2
α

∣
∣
∣
∣
∣
G(1, z′) ×

(
v

1 + v

) 1
α − G

(

1,

(
1 + v

v

) 1
α

z′
)∣
∣
∣
∣
∣

2

(1 + v)
1
α λρ(z′)dz′dv.

Further,

∣
∣
∣
∣
∣
G(1, z′) ×

(
v

1 + v

) 1
α − G

(

1,

(
1 + v

v

) 1
α

z′
)∣
∣
∣
∣
∣

2

≤ C

⎡

⎣

∣
∣
∣
∣
∣
G(1, z′) − G

(

1,

(
1 + v

v

) 1
α

z′
)∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣
1 −

(
v

1 + v

) 1
α

∣
∣
∣
∣
∣

2
∣
∣G(1, z′)

∣
∣2

⎤

⎦ ,
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and by Lemma 2.1

∫ ∞

−∞

∣
∣
∣
∣
∣
G(1, z) − G

(

1,

(
1 + v

v

) 1
α

z

)∣
∣
∣
∣
∣

2

λρ(z)dz

=
∫ ∞

−∞

∣
∣
∣
∣
∣

∫ z

(
1+v
v

) 1
α
z
Gξ (1, ξ)dξ

∣
∣
∣
∣
∣

2

λρ(z)dz

≤ C

[∫ −1

−∞

∣
∣
∣
∣
∣

∫ z

(
1+v
v

) 1
α
z

1 + |ξ |α
(
1 + |ξ |α+1

)2 dξ

∣
∣
∣
∣
∣

2

λρ(z)dz

+
∫ 0

−1

∣
∣
∣
∣
∣

∫ z

(
1+v
v

) 1
α
z

1 + |ξ |α
(
1 + |ξ |α+1

)2 dξ

∣
∣
∣
∣
∣

2

λρ(z)dz

+
∫ 1

0

∣
∣
∣
∣
∣
∣
∣

∫
(
1+v
v

) 1
α
z

z

1 + |ξ |α
(
1 + |ξ |α+1

)2 dξ

∣
∣
∣
∣
∣
∣
∣

2

λρ(z)dz

+
∫ ∞

1

∣
∣
∣
∣
∣
∣
∣

∫
(
1+v
v

) 1
α
z

z

1 + |ξ |α
(
1 + |ξ |α+1

)2 dξ

∣
∣
∣
∣
∣
∣
∣

2

λρ(z)dz

]

.

Notice that,

∫ z

(
1+v
v

) 1
α
z

1 + |ξ |α
(
1 + |ξ |α+1

)2 dξ ≤ C
(
1 + |z|α+1

)2

∫ z

(
1+v
v

) 1
α
z
|ξ |αdξ on z ∈ (−∞,−1)

∫
(
1+v
v

) 1
α
z

z

1 + |ξ |α
(
1 + |ξ |α+1

)2 dξ ≤ C
(
1 + |z|α+1

)2

∫
(
1+v
v

) 1
α
z

z
|ξ |αdξ on z ∈ (1,∞).

Thus we can estimate

∫ ∞

−∞

∣
∣
∣
∣
∣
G(1, z) − G

(

1,

(
1 + v

v

) 1
α

z

)∣
∣
∣
∣
∣

2

λρ(z)dz

≤ C

(

1 +
∫ ∞

1

∣
∣
∣
∣

zα+1

(1 + zα+1)2

∣
∣
∣
∣

2

λρ(z)dz

) ∣
∣
∣
∣
∣
1 −

(
v + 1

v

) α+1
α

∣
∣
∣
∣
∣

2

.
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Since 0 < ρ < (α + 1)/2, we have

∫

R

∣
∣
∣
∣
∣
G(1, z) ×

(
v

1 + v

) 1
α − G

(

1,

(
1 + v

v

) 1
α

z

)∣
∣
∣
∣
∣

2

λρ(z)dz

≤ C

⎛

⎝

∣
∣
∣
∣
∣
1 −

(
v + 1

v

) α+1
α

∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣
1 −

(
v + 1

v

) 1
α

∣
∣
∣
∣
∣

2
⎞

⎠ .

By the mean value theorem, we can get

∣
∣
∣
∣
∣
1 −

(
v + 1

v

) α+1
α

∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣
1 −

(
v + 1

v

) 1
α

∣
∣
∣
∣
∣

2

≤ Cv−2.

Hence
∫ ∞

1

∫

R

|G(v + 1, z) − G(v, z)|2λρ(z)dzdv

≤ C
∫ ∞

1
v

−2(α+1)
α (1 + v)1/αdv.

Since −2(α + 1)/α + 1/α < −1, the last integral is finite and thus completes the
proof of Theorem 3.4. 
�

4 Existence in non-Lipschitz case

In this section, we consider SPDE (1.1). We prove the existence of solutions by using
the results in the previous section.

Theorem 4.1 Let f ∈ C+
ρ (R) be an initial function. Then for every T > 0, there

exist an {Ft }-space-time Gaussian white noise Ẇ (t, x) and C([0, T ];C+
ρ (R)) valued

solutions X to (2.3) with X(0) = f on a suitable probability space with filtration
(�,F , P, {Ft }).
Proof Let an(u) be a sequence of Lipschitz functions such that

an(u) =

⎧
⎪⎨

⎪⎩

n1−γ |u| if |u| <
1

n
,

|u|γ if |u| ≥ 1

n
.

(4.1)

The sequence an(u) converge to |u|γ uniformly in u ∈ R as n → ∞. Then by
Theorem 3.1, 3.3 and 3.4 for every 0 < ρ < (α +1)/2, there exist the unique C+

ρ (R)-
valued solution Xn to (3.1) with an(u) for each n ≥ 1.

The solution Xn holds the moment condition (3.11), and it follows from Lemma 3.3
that the family of probability distributions on C

([0, T ];C+
ρ (R)

)
induced by {Xn} is
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tight. This means that there exists a subsequence {nk}k∈N and a random field X ∈
C
([0, T ];C+

ρ (R)
)
such that

Xnk ⇒ X on C
([0, T ];C+

ρ (R)
)
.

By Skorohod representation theorem (cf. [5]), we can find some random fields Yn,Y ∈
C
([0, T ];C+

ρ (R)
)
on some probability space (�̄, F̄ , (F̄t )0≤t≤T , P̄), such that

Yn → Y P̄ − a.s. on C
([0, T ];C+

ρ (R)
)
,

and

Xn = Yn in law, X = Y in law.

Then we can get for every φ ∈ D((−�)α/2)

Mn
φ(t) :=

∫ t

0

∫

R

φ(y)an(Xn(s, y))W (dy, ds)

=
∫

R

Xn(t, y)φ(y)dy +
∫ t

0

∫

R

(−�)α/2φ(y)Xn(s, y)dyds

−
∫

R

φ(y) f (y)dy

in law=
∫

R

Yn(t, y)φ(y)dy +
∫ t

0

∫

R

(−�)α/2φ(y)Yn(s, y)dyds

−
∫

R

φ(y) f (y)dy

→
∫

R

X(t, y)φ(y)dy +
∫ t

0

∫

R

(−�)α/2φ(x)X(s, y)dyds

−
∫

R

φ(y) f (y)dy

Note that, by (3.7)

sup
0≤t≤T

sup
n∈N

E[|Mn
φ(t)|2] < ∞.

Hence, (Mn
φ)n∈N is a sequence of uniformly integrable martingales, and therefore,

there exists a martingale Mφ such that

Mn
φ(·) ⇒ Mφ(·),

and

Mφ(t) =
∫

R

X(t, y)φ(y)dy +
∫ t

0

∫

R

(−�)α/2φ(y)X(s, y)dyds −
∫

R

φ(y) f (y)dy.
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It follows from (4.1) we can get as n → ∞,

〈Mn
φ, Mn

φ〉t →
∫ t

0

∫

R

φ2(y)|X(s, y)|2γ dyds,

and so that

〈Mφ, Mφ〉t =
∫ t

0

∫

R

φ2(y)|X(s, y)|2γ dyds.

This means that there corresponds a martingale measure M(dx, dt)with the quadratic
measure

Q(dt, dy) = |X(t, y)|2γ dydt .

Take an S ′(R)-valued standard Wiener process W̄t independent of Xs(dx). We set

Wt (φ) =
∫ t

0

∫

R

1

|X(s, y)|γ 1{X(s,y) �=0}φ(y)M(dy, ds)

+
∫ t

0

∫

R

1{X(s,y)=0}φ(y)W̄ (dy, ds).

From the definition of M and W we can show that

∫ t

0

∫

R

φ(y)|X(s, y)|γ W (dy, ds) =
∫ t

0

∫

R

φ(y)1{X(s,y) �=0}M(dy, ds)

=
∫ t

0

∫

R

φ(y)M(dy, ds) −
∫ t

0

∫

R

φ(y)1{X(s,y)=0}M(dy, ds).

Since the last term equals to 0 a.s., we have

Mφ(t) =
∫ t

0

∫

R

|X(s, y)|γ φ(y)W (dy, ds).

Thus we complete the proof of Theorem 4.1. 
�
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