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Abstract
We consider the stochastic Navier–Stokes equations in T

3 with multiplicative white
noise.We construct a unique local strong solution with initial data in L p, where p > 5.
We also address the global existence of the solution when the initial data is small in
L p, with the same range of p.

Keywords Stochastic Navier-Stokes equations · Local existence · Global existence ·
Strong solutions

1 Introduction

In this paper we address the global well-posedness of the stochastic Navier–Stokes
equation (SNSE)

du(t, x) = ν�u(t, x) dt − P(
(u(t, x) · ∇)u(t, x)

)
dt + σ(u(t, x)) dW(t), (1.1)

∇ · u = 0, (t, x) ∈ (0,∞) × T
3, (1.2)

u(0, x) = u0(x), x ∈ T
3, (1.3)

on the 3D torus T
3 = [0, 1]3, where ∇ · u0 = 0 and

∫
T3 u0 = 0. Here, u is the

velocity field of a stochastic flow, ν is the viscosity, and P is the Leray (also called
Helmholtz-Hodge) orthogonal projection onto the mean zero divergence-free fields.
The stochastic term σ(u)dW(t) denotes an infinite-dimensional and possibly degen-
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erate multiplicative white noise which is understood in the Itô sense. Note that in the
formulation (1.1) the pressure term has been eliminated by utilizing the projector P .

The stochastic forcing driving the Navier–Stokes equation represents a perturbation
during the flow evolution and thus the SNSE may be argued to be a realistic model
for fluids. Consequently, much effort has been devoted to studying its well-posedness;
cf. [4,9,21,22] for results on mild solutions of the SNSE with Lévy-type jump noise,
and [1,5,6,19] for results on mild formulation subject to white noise. The existence
of a global L2 martingale solution to the SNSE with Stratonovich noise in R

3 was
proven in [18], and the existence of a martingale solution in L8/d(0, T ; L4), where
d = 2, 3, was shown in [2] for the SNSE with noise that is colored in space.

There are fewer available results on the existence of strong (pathwise) solutions,
and most were established in a Hilbert space setting. For example, within the Hilbert
setting, [17] proved the global existence of a strong solution for the 2D SNSE with
additive white noise. Also, Flandoli [7] proved the result in the 3D case. For the SNSE
with multiplicative noise, Fernando and Sritharan showed in [10] the existence of a
global strong solution in a 2D unbounded domain in a Hilbert space, while in [12]
Glatt-Holtz and the third author established the existence of a maximal strong solution
in a 3D bounded domain by assuming the H1 regularity for the initial data. In [14],
Kim proved the existence with a large probability of a global strong solution to the
SNSE with non-degenerate noise, assuming smallness in Hs(R3).

Inspired by results on the deterministic Navier–Stokes equation in L p Banach
spaces [8,13], we aim to find a global L p strong solution to (1.1)–(1.3) in three space
dimensions. We show that a unique solution exists for small initial velocity. To be
precise, we prove

P(τM = ∞) ≥ 1 − C−1
p M−p

E[‖u0‖p
p],

where τM = inf{t > 0 : ‖u(t)‖p > M} and u evolves in L p(�, C([0, τM ), L p)).
Note that we do not impose any structural assumptions on the multiplicative noise,
allowing it to be degenerate. In [3], Barbu and Röckner obtained the existence and
uniqueness of a global mild solution in L p (3/2 < p < 2) to the vorticity equation
associated with the SNSE. They worked with a convolution-type finite-dimensional
noise and small initial vorticity. The convolution structure is needed for obtaining a
commutative C0 noise operator, which is essential for transforming the vorticity equa-
tion into a random equation. Also, in [11], Glatt-Holtz and Vicol used multiplicative
and linear noise to treat the 3D stochastic Euler equation.

As has been shown in many existing results, a major obstacle when seeking global
solutions is a combination of a multiplicative noise and the convective nonlinearity
(u · ∇)u. To overcome this difficulty, authors usually introduce stopping times of
ascending u-norms to, in a sense, linearize this term in a specified function space. The
stopping time argument proves to be a powerful tool for obtaining the local existence,
but showing the non-degeneracy of these stopping times is a major problem. In this
paper, we truncate the noise and (u · ∇)u at ‖u‖p = δ0 at some level δ0 > 0 (not
necessarily small). We first use a stochastic heat equation (SHE) with additive noise
(see [20]) to obtain the global solution to the truncated SNSE. Then we establish the
existence of a local strong solution of (1.1)–(1.3) by sending δ0 → ∞ along integer
values and utilizing pathwise uniqueness. Finally, we fix δ0 > 0 sufficiently small and
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estimate the probability distribution of eat‖u‖p
p for a small a > 0. We show that (1.1)

agrees with a truncated SNSE for all time on a large part of the probability space if
the initial velocity is small, obtaining thus a global solution to (1.1)–(1.3).

Working in a function space of low regularity imposes several challenges. First, we
need to obtain a global L p solution to the SHE and then adapt it to the truncated SNSE.
Considering that [20] only provides a W m,p solution to the SHE (cf. [20, Chapter 4])
and the W m,p estimate obtained in [20] does not support the L p convergence of
approximating solutions, we extend [20] to obtain an L p a priori estimate for the
SHE. Next, the regularity of the drift function in this L p estimate must be strictly
less than L p, because the drift corresponds to (u · ∇)u when one relates the truncated
SNSE to the SHE in the fixed point argument, and (u ·∇)u is less regular than u itself.
We utilize the dissipative term to make such an estimate possible. But at a cost, the
use of the dissipative term generates a non-linear term |∇(|u|p/2)|2, which prevents
convergence in the strong topology.Hence,we resort to theweak lower-semicontinuity
of Hilbert space norms and fulfill the requirement of passing the limit for this term
(cf. Lemma 4.4 below). The third difficulty is due to the structure of (u · ∇)u and the
introduced truncation. To overcome this, we apply the fixed point iteration twice. The
main trick is to introduce a square of the cut-off, which allows us to treat the difference
via a special splitting (cf. (5.19)–(5.20) below). Note that a high-regularity truncation
on the SNSE is required by the iteration, while a low-regularity norm is preferable for
showing the convergence of the iterated solutions. Overall, we can obtain convergence
when p > 5. It would be desirable to obtain our theorems in the range p > 3 and for
p ≥ 3 for small data (as in [13] in the deterministic case), but this remains open (for
the case of additive noise, see however [19]).

We note that all the results also apply to the Stratonovich noise under some modifi-
cations on the assumptions on the noise. When interpreted in the Stratonovich sense,
(1.1) has an equivalent Itô formulation

du(t, x) = ν�u(t, x) dt − P(
(u(t, x) · ∇)u(t, x)

)
dt

+1

2
Tr(Dσ(u(t, x))σ (u(t, x))) dt + σ(u(t, x)) dW(t).

By assuming that σ and Dσ are bounded and globally Lipschitz in L p, all the results
and proofs apply without change.

The paper is organized as follows. In Sect. 2, we introduce the notation and prelimi-
naries on stochastic calculus. In Sect. 3, we state our assumptions and the main results.
Theorems on the SHE are collected in Sect. 4. The global existence and uniqueness
of a strong solution to the truncated SNSE is established in Sect. 5, where we also
obtain the local existence of solutions up to a stopping time. The global existence of
solutions for small data is obtained in Sect. 6.
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2 Notation and preliminaries

2.1 Basic notation

Let T ∈ (0,∞). For a scalar function u = u(t, x) on [0, T )×T
3, we denote its partial

derivatives by ∂t u = ∂u/∂t , and ∂i u = ∂u/∂xi . Also, we denote its gradient with
respect to x by ∇u = (∂1u, . . . , ∂du).

WeuseC∞(T3) for the set of infinitely differentiable functions onT
3 andD′(T3) for

the space of distributions (C∞(T3))′. Note thatwe haveC∞(T3) ⊆ L p(T3) ⊆ D′(T3)

for 1 ≤ p ≤ ∞. The usual L p norms are denoted by ‖ · ‖p.
The m-th Fourier coefficient of an L1 function f on T

3 is defined as

F f (m) = f̂ (m) =
∫

T3
f (x)e−2π im·x dx, m ∈ Z

3,

and the corresponding Fourier series (Fourier inversion) of g at x ∈ T
3 is

(F−1g)(x) =
∑

m∈Z3

g(m)e2π im·x .

Recall that F can be extended to D′(T3) and F−1F = Id on D′(T3). For s ∈ R and
f ∈ D′(T3), we denote

J s f (x) =
∑

m∈Z3

(1 + 4π2|m|2)s/2 f̂ (m)e2π im·x , x ∈ T
3

and
∂s f (x) =

∑

m∈Z3

|m|s f̂ (m)e2π im·x , x ∈ T
3.

We define W s,p(T3) to be the class of functions f ∈ D′(T3) such that

‖ f ‖s,p = ‖J s f ‖p < ∞, s ∈ R, p > 1.

For the L2 based spaces, we abbreviate Hs(T3) = W s,2(T3). Recall that there exists
a positive constant C independent of f such that

1

C
‖ f ‖s,p ≤ ‖ f ‖p + ‖∂s f ‖p ≤ C‖ f ‖s,p, s ≥ 0, 1 < p < ∞.

The Leray orthogonal projection P is defined by

(̂Pu) j (m) =
d∑

k=1

(
δ jk − m j mk

|m|2
)

ûk(m), j = 1, 2, . . . , d. (2.1)
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Using the Riesz transforms

R j = − ∂

∂x j
(−�)−

1
2 , j = 1, 2, . . . , d,

the Eq. (2.1) for P may be rewritten as

(Pu) j (x) =
d∑

k=1

(δ jk + R j Rk)uk(x), j = 1, 2, . . . , d,

from where

(
(I − P)u

)
j (x) = −

d∑

k=1

R j Rkuk(x), j = 1, 2, . . . , d.

For convenience, we write

W s,p
sol = {P f : f ∈ W s,p}. (2.2)

As usual, C represents a generic positive constant, whose value may increase from
line to line, with explicit dependence indicated when necessary. We consider p fixed,
so C is allowed to depend on p without an explicit mention.

2.2 Preliminaries on stochastic analysis

Let (�,F , (Ft )t≥0, P) be a complete probability space with an augmented filtration
(Ft )t≥0 generated by a cylindrical Brownian motion W. We assume that W is an
H-valued process for some real separable Hilbert space H, which may be infinite
dimensional. Choosing a complete orthonormal basis {ek}k≥1 for H, we formally
write W(t, ω) = ∑

k≥1 Wk(t, ω)ek , where {Wk : k ∈ N} is a collection of mutually
independent 1D Brownian motions.

LetY be another real separableHilbert space. Denote by l2(H,Y) the set ofHilbert-
Schmidt operators fromH toY , i.e., G ∈ l2(H,Y) if and only if G is a linear bounded
operator mapping from H to Y such that

‖G‖2l2(H,Y)
=

dimH∑

k=1

|Gek |2Y < ∞.

In our context, Y denotes either R or R
d , and ‖ · ‖l2 is used interchangeably for

‖ · ‖l2(H,R) and ‖ · ‖l2(H,Rd ) when there is no risk of confusion. Note that any operator
in l2(H,Y) is compact and l2(H,Y) is a separable Hilbert space endowed with a
scalar product

123



Stoch PDE: Anal Comp (2022) 10:160–189 165

(A, B)l2(H,Y) =
dimH∑

k=1

(Aek, Bek)Y , A, B ∈ l2(H,Y).

Next, by the Burkholder–Davis–Gundy (BDG) inequality, for G ∈ l2(H,Y) and
1 ≤ p < ∞,

E

[

sup
s∈[0,t]

∣∣∣
∣

∫ s

0
G dWr

∣∣∣
∣

p

Y

]

≤ CE

[(∫ t

0
‖G‖2l2(H,Y)

dr

)p/2
]

.

Using this fact and letting (J s f )ek = J s( f ek), we introduce Banach spaces

W
s,p =

{
f : T

3 → l2(H,Y) : f ek ∈ W s,p(T3) for each k, and
∫

T3
‖J s f ‖p

l2(H,Y)
dx < ∞

}
,

with respect to the norm

‖ f ‖Ws,p =
(∫

T3
‖J s f ‖p

l2(H,Y)
dx

)1/p

,

for s ≥ 0 and 1 < p < ∞. Also, W
0,p is abbreviated as L

p. Letting (P f )ek =
P( f ek), where P is the Leray projector, we have P f ∈ W

s,p if f ∈ W
s,p. Define

W
s,p
sol = {P f : f ∈ W

s,p}.
We assume for (1.1) that σ maps W s,p

sol intoW
s,p
sol , where W s,p

sol was introduced in (2.2),
and that it maps the set of mean zero fields onto itself.

3 Assumptions andmain results

We seek a strong (pathwise) solution to (1.1)–(1.3) in L p(T3) for p sufficiently large.
Here, we say a solution to a stochastic partial differential equation (SPDE) is strong
if, almost surely relative to the given stochastic basis, it satisfies the SPDE in the
distributional sense and it evolves in the designated function space (cf. [11,12,15] and
references therein). This notion demonstrates a pathwise behavior rather than a law
property, which distinguishes it from the martingale solution whose probability law
fits the equation.

Suppose σ and g are (l2(H, R))d -valued operators, namely, σ and g have d com-
ponents and each component is l2(H, R)-valued. Let A be an operator that is usually
unbounded and

u(t, x) = u0(x) +
∫ t

0
(Au(r , x) + f (r , x)) dr +

∫ t

0

(
σ(u(r , x)) + g(r , x)

)
dW(r),

(3.1)
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ad-dimensional stochastic evolutionpartial differential equationon (�,F , (Ft )t≥0, P).
Different notions of solutions are defined as follows.

Definition 3.1 (Local Strong Solution) A pair (u, τ ) is a local strong L p solution
to (3.1) if τ is a positive stopping time P-almost surely, the stochastic process u is
adapted with respect to Ft , it belongs to L p(�; C([0, τ ∧ T ], L p)), and satisfies

(u(t), φ) = (u0, φ) +
∫ t

0
(Au(r) + f (r), φ) dr

+
∫ t

0

(
σ(u(r)) + g(r), φ

)
dW(r) a.e. (t, ω),

(3.2)

for all φ ∈ C∞(T3).

In our applications below, the term (Au(r), φ) is interpreted using integration by
parts.

Definition 3.2 (Maximal Strong Solution) A pair (u, τ ) is a maximal strong L p

solution to (3.1) if there exists an increasing sequence of stopping times τn with
τn ↑ τ a.s. such that each pair (u, τn) is a local strong solution,

sup
0≤t≤τn

‖u(t)‖p
p +

∫ τn

0

∫

T3
|∇(|u(t)|p/2)|2 dxdt < ∞,

and

sup
0≤t≤τ

‖u(t)‖p
p +

∫ τ

0

∫

T3
|∇(|u(t)|p/2)|2 dxdt = ∞,

on the set {τ ≤ T }.
For the local existence, we assume

3∑

i=1

‖σi (u)‖Lp =
3∑

i=1

(∫

T3
‖σi (u)‖p

l2
dx

)1/p

≤ C(‖u‖p + 1) (3.3)

and
3∑

i=1

‖σi (u) − σi (v)‖Lp ≤ C‖u − v‖p. (3.4)

The following statement is the main result on the local existence of strong solutions.

Theorem 3.1 (Local strong solution up to a stopping time) Let p > 5 and u0 ∈
L p(�; L p). Then there exists a unique maximal strong solution (u, τ ) to (1.1)–(1.3)
such that

E

⎡

⎣ sup
0≤s≤τ

‖u(s, ·)‖p
p +

∫ τ

0

∑

j

∫

T3
|∂ j (|u j (s, x)|p/2)|2 dxds

⎤

⎦ ≤ CE
[‖u0‖p

p + 1
]
,
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where C > 0 is a constant depending on p.

The theorem is proven at the end of Sect. 5.
In the next statement, we address the global existence of solutions, for which we

impose, in addition to (3.4), a superlinearity assumption

3∑

i=1

‖σi (u)‖Lp ≤ ε0‖u‖p, (3.5)

where ε0 > 0.

Theorem 3.2 (Global strong solution for small data) Suppose that (3.4) and (3.5) hold
with ε0 ∈ (0, 1] sufficiently small. Let (u, τ ) be the solution provided in Theorem 3.1.
For every ε ∈ (0, 1] there exists δ > 0 such that if

E[‖u0‖p
p] ≤ δ, (3.6)

then
P(τ = ∞) ≥ 1 − ε.

The proof of Theorem 3.2 is given in Sect. 6.

4 Stochastic heat equation on the torus

In this section, we prove the global existence of an L p solution to the stochastic heat
equation

du(t, x) = �u(t, x) dt + f (t, x) dt + g(t, x) dW(t), (4.1)

u(0, x) = u0(x) a.s., x ∈ T
d (4.2)

on [0, T ] × T
d , where d ∈ N. The functions u, u0, f , and g are assumed to be scalar

valued and have mean zero in x . The white noise W was introduced above, the drift f
is a predictable process evolving in W −1,q , where the range of q is stated below, the
noise coefficient g takes values in l2(H, R), and u0 is F0-measurable.

Using the terminology in [20], the Eq. (4.1) is super-parabolic. Also, the a
priori estimates for Theorems 4.1.2 and 4.1.4 in [20] remain true on the torus
without change. Thus if u0 ∈ L p′

(�; W m,p′
), f ∈ L p′

(� × [0, T ], W m,p′
), and

g ∈ L p′
(� × [0, T ], W

m,p′
) for some m ∈ N and p′ ≥ 2, then there exists

u ∈ L p′
(� × [0, T ]; CweakW m,p′

) satisfying (4.1)–(4.2) in the sense of (3.2). If
in addition (m − k)p′ > d, then u has a version that belongs to C0,k

b ([0, T ] × T
d)

P-almost surely. This conclusion of global existence relies on a high regularity of the
forcing term f , which needs to be relaxed to apply to the stochastic Navier–Stokes
equations.
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Theorem 4.1 Let 2 < p < ∞ and 0 < T < ∞. Suppose that u0 ∈ L p(�, L p(Td)),
f ∈ L p(� × [0, T ], W −1,q(Td)), and g ∈ L p(� × [0, T ], L

p(Td)) have x-mean
zero (ω, t) a.s., with

dp

p + d − 2
< q ≤ p, (4.3)

provided d ≥ 2, or 1 < q ≤ p if d = 1. Then there exists a unique maximal solution
u ∈ L p(�; C([0, T ], L p)) to (4.1)–(4.2) such that

E

[

sup
0≤t≤T

‖u(t, ·)‖p
p +

∫ T

0

∫

Td
|∇(|u(t, x)|p/2)|2 dxdt

]

≤ CE

[
‖u0‖p

p +
∫ T

0
‖ f (s, ·)‖p

−1,q ds +
∫ T

0
‖g(s)‖p

Lp ds

]
,

(4.4)

where C > 0 depends on T and p.

Recall that we use the notation

‖g(t)‖p
Lp =

∫

Td
‖g(t, x)‖p

l2(H,R)
dx .

Introduce the standard convolution function ρ ∈ C∞
0 (Rd) such that supp ρ ⊆ {x ∈

R
d : |x | ≤ 1} and ∫

Rd ρ(x) dx = 1. Assume also that ρ is nonnegative and radial. Set
ρε = ε−dρ(·/ε).

The next lemma is needed when approximating the forcing term in (4.1).

Lemma 4.2 Let q ∈ (1,∞). If f ∈ W −1,q(Td), then f ∗ ρε → f in W −1,q(Td) as
ε → 0.

Proof of Lemma 4.2 The mapping S = −� + I is a Banach space isomorphism
S : W 1,q(Td) → W −1,q(Td), which commutes with the convolution operator. Thus
the statement follows by applying S to (S−1 f ) ∗ ρε → S−1 f in W 1,q .

Remark 4.3 Note that the above proof implies that if f ∈ L p(� × [0, T ], W −1,q),
then f ∗ ρε → f in L p(� × [0, T ], W −1,q).

The following lemma is essential when passing to the limit in the inequality (4.4).

Lemma 4.4 Let p ≥ 2. If

un → u in L p(�; L∞([0, T ], L p)) as n → ∞

and

∇(|un(ω, t, x)|p/2) are uniformly bounded in L2(� × [0, T ], L2), (4.5)
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then

lim inf
n→∞ E

[∫ T

0

∫

Td
|∇(|un(ω, t, x)|p/2)|2 dxdt

]

≥ E

[∫ T

0

∫

Td
|∇(|u(ω, t, x)|p/2)|2 dxdt

]

.

(4.6)

Proof of Lemma 4.4 First, there exists a subsequence {unk }k∈N of {un}n∈N such that

lim
k

E

[∫ T

0

∫

Td
|∇(|unk (ω, t, x)|p/2)|2 dxdt

]

= lim inf
n

E

[∫ T

0

∫

Td
|∇(|un(ω, t, x)|p/2)|2 dxdt

]

.

(4.7)

Observe that, by (4.7), it suffices to prove (4.6) for a subsequence of {unk }k . For
simplicity of notation, relabel {unk }k as {un}n . Passing to a subsequence, we may
assume that |un|p/2 → |u|p/2 a.e. in � × T

d × (0, T ), and thus, by the Dominated
Convergence Theorem, we get

|un|p/2 → |u|p/2 in L2(� × [0, T ], L2).

By (4.5), we may pass to a subsequence and assume that

∇(|un(ω, t, x)|p/2) → g weakly in L2(� × [0, T ], L2) as n → ∞,

for some g ∈ L2(� × [0, T ], L2), which also implies

lim inf
n→∞ E

[∫ T

0

∫

Td
|∇(|un(ω, t, x)|p/2)|2 dxdt

]
≥ E

[∫ T

0

∫

Td
|g|2 dxdt

]
,

by the weak lower-semicontinuity of the Hilbert space norm. In order to obtain (4.6),
we only need to prove that g and ∇(|u|p/2) agree as elements in L2(� × [0, T ], L2).
To establish this, let ϕ ∈ C∞(Td) be arbitrary. Then, for all j = 1, . . . , d, we have

(
g j , ϕ

) = lim
n

(
∂ j (|un |p/2), ϕ

) = − lim
n

(|un |p/2, ∂ j ϕ
) = −(|u|p/2, ∂ j ϕ

) = (
∂ j (|u|p/2), ϕ

)
,

where (·, ·) represents the inner product on L2(� × [0, T ], L2). Thus we obtain that
g(t, ω) and ∇(|u(t, ω)|p/2) agree in L2(Td) (t, ω)-a.e.

Proof of Theorem 4.1 Denote uε
0 = u0 ∗ ρε , f ε = f ∗ ρε , and gε = g ∗ ρε . By

Young’s inequality, we have uε
0 ∈ L p′

(�; W m,p′
), f ε ∈ L p′

(�×[0, T ], W m,p′
), and

gε ∈ L p′
(� × [0, T ], W

m,p′
) for m ∈ N0 and 2 ≤ p′ < ∞. Note that uε

0 → u0 in
L p(�, L p), f ε(t, ·) → f (t, ·) in L p(� × [0, T ], W −1,q), and gε(t, ·) → g(t, ·) in
L p(� × [0, T ], L

p) as ε → 0. Now, consider

duε(t, x) = �uε(t, x) dt + f ε(t, x) dt + gε(t, x) dWt , (4.8)

uε(0, x) = uε
0(x) a.s. (4.9)
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Clearly, assumptions of Theorem 4.1.4 in [20] are fulfilled. Therefore, there exists
uε ∈ L p(� × [0, T ], W m,p) satisfying (4.8)–(4.9) in the sense of Definition 3.1. By
Corollary 4.1.4 in [20], uε has a modification that belongs to C0,n

b ([0, T ] × T
d) P-

a.s. if m > n + d/p. We shall choose m sufficiently large and use the continuously
differentiable modification of uε .

Applying the Itô formula to h(y) = |y|p with y = uε(t, x), we get

|uε(t)|p = |uε
0|p + p

∫ t

0
|uε(r)|p−2uε(r)

(
�uε(r) + f ε(r)

)
dr

+ p
∫ t

0
|uε(r)|p−2uε(r)gε(r) dWr

+ p(p − 1)

2

∫ t

0
|uε(r)|p−2‖gε(r)‖2l2(H,R)

dr .

We integrate both sides of the equation in x and apply the stochastic Fubini theorem
obtaining

‖uε(t)‖p
p = ‖uε

0‖p
p + p

∫ t

0

∫

Td
|uε(r)|p−2uε(r)

(
�uε(r) + f ε(r)

)
dxdr

+ p
∫ t

0

∫

Td
|uε(r)|p−2uε(r)gε(r) dxdWr

+ p(p − 1)

2

∫ t

0

∫

Td
|uε(r)|p−2‖gε

i (r)‖2l2 dxdr .

(4.10)

For the dissipative term, we have

p
∫

Td
|uε |p−2uε�uε dx = −p(p − 1)

∫

Td
|uε |p−2|∇uε |2 dx = − 4(p − 1)

p

∫

Td
|∇|uε |p/2|2 dx .

(4.11)

It then follows from (4.10) and (4.11) that

‖uε(t)‖p
p + 4(p − 1)

p

∫ t

0

∫

Td
|∇(|uε(r)|p/2)|2 dxdr

≤ ‖uε
0‖p

p + p
∫ t

0

∣
∣∣∣

∫

Td
|uε(r)|p−2uε(r) f ε(r) dx

∣
∣∣∣ dr

+ p(p − 1)

2

∫ t

0

∫

Td
|uε(r)|p−2‖gε(r)‖2l2 dxdr

+ p

∣∣∣∣

∫ t

0

∫

Td
|uε(r)|p−2uε(r)gε(r) dxdWr

∣∣∣∣

= ‖uε
0‖p

p + I1 + I2 + I3.

(4.12)
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With q ′ = q/(q − 1), we have

I1≤C
∫ t

0
‖ f ε‖−1,q‖|uε |p−2uε‖1,q ′ dr≤C

∫ t

0
‖ f ε(r)‖−1,q (‖|uε |p−2uε‖q ′+‖∇(|uε |p−2uε)‖q ′ ) dr ,

(4.13)

where, recall, we allow C to depend on p throughout. Since
∫
Td uε = 0, we have, as

in [16], a Poincaré type inequality

‖|uε |p−2uε‖q ′ ≤ C‖∇(|uε |p−2uε)‖q ′ (4.14)

when p, q ′ ∈ (1,∞). In [16, Lemma 3] the inequality

‖|v|p−1‖q ′ ≤ C‖∇(|v|p−1)‖q ′ (4.15)

was proven for v such that
∫
T3 v = 0, but the same proof works (by means of a

contradiction argument) for (4.14) as well. By (4.13) and (4.14), we get

I1 ≤ C
∫ t

0
‖ f ε‖−1,q‖∇(|uε |p−2uε)‖q ′ dr . (4.16)

Now, note that

‖∇(|uε |p−2uε)‖q ′ ≤ C
∥
∥|uε |p/2−1∇(|uε |p/2)

∥
∥

q ′ ≤ C
∥
∥|uε |p/2−1∥∥

r̄

∥
∥∇(|uε |p/2)

∥
∥
2

= C‖uε‖(p−2)/2
r̄(p−2)/2‖∇(|uε |p/2)‖2 = C‖|uε |p/2‖(p−2)/p

r̄(p−2)/p‖∇(|uε |p/2)‖2,
(4.17)

where 1/r̄ + 1/2 = 1/q ′, i.e.,
1

r̄
+ 1

q
= 1

2
. (4.18)

(The assumptions on the exponents p and q imply q > 2.) It is easy to check that the
condition (4.3) gives

2 ≤ r̄(p − 2)

p
<

2d

d − 2
,

when d ≥ 2. By the Gagliardo-Nirenberg inequality and (4.15), with p − 1 and q ′
replaced by p/2 and 2 respectively, we have with w = |uε |p/2 the inequality

‖w‖r̄(p−2)/p ≤ C‖w‖1−α
2 ‖∇w‖α

2 ,

where α = d(1/2 − p/r̄(p − 2)), and thus using (4.17), we get

‖∇(|uε |p−2uε)‖q ′ ≤ C‖|uε |p/2‖(1−α)(p−2)/p
2 ‖∇(|uε |p/2)‖1+α(p−2)/p

2 . (4.19)

123



172 Stoch PDE: Anal Comp (2022) 10:160–189

From (4.16)–(4.19), we thus obtain

I1 ≤ C
∫ t

0
‖ f ε‖−1,q‖|uε |p/2‖(1−α)(p−2)/p

2 ‖∇(|uε |p/2)‖1+α(p−2)/p
2 dr

≤ δ

∫ t

0
‖∇(|uε |p/2)‖22 dr + δt sup

0≤r≤t
‖u(r , ·)‖p

p + Cδ

∫ t

0
‖ f ε‖p

−1,q dr
(4.20)

with δ > 0 arbitrarily small, where we applied Young’s inequality in the last step.
Next, for the term I2 in (4.12), we write

I2 = p(p − 1)

2

∫ t

0

∫

Td
|uε(r)|p−2‖gε(r)‖2

l2
dxdr ≤ δ

∫ t

0
‖uε(r)‖p

p dr + Cδ

∫ t

0
‖gε(r)‖p

Lp dr .

Finally, we consider the last term in (4.12). UsingMinkowski’s integral inequality, we
have

E

⎡

⎣

(∫ T

0

∥∥
∥∥

∫

Td
|uε(r)|p−2uε(r)gε(r) dx

∥∥
∥∥

2

l2
dr

)1/2
⎤

⎦

≤ E

⎡

⎣
(∫ T

0

(∫

Td

∥∥|uε(r)|p−2uε(r)gε(r)
∥∥

l2 dx

)2

dr

)1/2
⎤

⎦

= E

⎡

⎣
(∫ T

0

(∫

Td
|uε(r)|p−1‖gε(r)‖l2 dx

)2

dr

)1/2
⎤

⎦

≤ E

[

sup
r∈[0,T ]

‖uε(r)‖p/2
p

(∫ T

0

(∫

Td
|uε(r)|p−2‖gε(r)‖2l2 dx

)
dr

)1/2]

,

(4.21)

where we abbreviated l2 = l2(H, R). Therefore,

E

⎡

⎣

(∫ T

0

∥∥∥∥

∫

Td
|uε(r)|p−2uε(r)gε(r) dx

∥∥∥∥

2

l2
dr

)1/2
⎤

⎦

≤ E

[

sup
r∈[0,T ]

‖uε(r)‖p/2
p

(∫ T

0

(∫

Td
|uε(r)|p−2‖gε(r)‖2l2 dx

)
dr

)1/2]

≤ 1

8p
E

[

sup
r∈[0,T ]

‖uε(r)‖p
p

]

+ CE

[∫ T

0

∫

Td
|uε(r)|p−2‖gε(r , x)‖2l2 dxdr

]

≤ 1

4p
E

[

sup
r∈[0,T ]

‖uε(r)‖p
p

]

+ CT E

[∫ T

0

∫

Td
‖gε(r , x)‖p

l2
dxdr

]
,
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where we used Young’s inequality in the last step. Note that the far right side is finite
by (4.1.21) in [20]. Thus, from the BDG inequality, we get

E

[

sup
t∈[0,T ]

∣
∣∣∣

∫ t

0

∫

Td
|uε(r)|p−2uε(r)gε(r) dxdWr

∣
∣∣∣

]

≤ 1

4p
E

[

sup
r∈[0,T ]

‖uε(r)‖p
p

]

+ CE

[∫ T

0
‖gε(r)‖p

Lp dr

]
.

(4.22)

Now, setting δ in (4.20) to be sufficiently small, taking the supremum over t ∈ [0, T ]
on both sides of (4.12), and then computing the expectation, we obtain

E

[

sup
t∈[0,T ]

(
‖uε(t)‖p

p + 1

p

∫ t

0

∫

Td
|∇(|uε(r)|p/2)|2 dxdr

)]

≤ 1

2
E

[

sup
r∈[0,T ]

‖uε(r)‖p
p

]

+ E[‖uε
0‖p

p] + CE

[∫ T

0
(‖ f ε(r)‖p

−1,q + ‖gε(r)‖p
Lp ) dr

]
,

which implies

E

[

sup
t∈[0,T ]

‖uε(t)‖p
p

]

≤ 2E[‖uε
0‖p

p] + CE

[∫ T

0
(‖ f ε(r)‖p

−1,q + ‖gε(r)‖p
Lp ) dr

]

(4.23)
and

1

2p
E

[∫ T

0

∫

Td
|∇(|uε(r)|p/2)|2 dxdr

]

≤ 1

4
E

[

sup
r∈[0,T ]

‖uε(r)‖p
p

]

+ 1

2
E[‖uε

0‖p
p] + CE

[∫ T

0
(‖ f ε(r)‖p

−1,q + ‖gε(r)‖p
Lp ) dr

]
.

In summary,

E

[

sup
t∈[0,T ]

‖uε(t)‖p
p +

∫ T

0

∫

Td
|∇(|uε(r)|p/2)|2 dxdr

]

≤ CE

[
‖uε

0‖p
p +

∫ T

0
(‖ f ε(r)‖p

−1,q + ‖gε(r)‖p
Lp ) dr

]
.

(4.24)
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Note that the derivation of (4.23) does not depend on ε. Thus, we may apply the same
procedure to uε − uε′

and obtain

E

[

sup
t∈[0,T ]

‖uε(t) − uε′
(t)‖p

p

]

≤ CE

[
‖uε

0 − uε′
0 ‖p

p +
∫ T

0
(‖ f ε(r) − f ε′

(r)‖p
−1,q + ‖gε(r) − gε′

(r)‖p
Lp ) dr

]
.

Since eachuε belongs to L p(�; C([0, T ], L p)) and they converge in L p(�; L∞([0, T ],
L p)), they have a limit in L p(�; C([0, T ], L p)), and there exists a subsequence uεn

which converges to that limit in L∞([0, T ], L p) almost surely. We denote this limit
by u and we now prove that it is a strong L p solution to (4.1)–(4.2). Since

(uε(t), φ) = (uε
0, φ) +

∫ t

0
((�uε(r) + f ε(r)), φ) dr +

∫ t

0
(gε(r), φ) dWr , (t, ω)-a.e.,

for all φ ∈ C∞(Td) and all ε > 0, by the Hölder inequality and the dominated
convergence theorem, we have

(uεn (t), φ) − (uεn
0 , φ) → (u(t), φ) − (u0, φ)

and

∫ t

0

(
(uεn (r),�φ) + ( f εn (r), φ)

)
dr →

∫ t

0

(
(u(r),�φ) + ( f (r), φ)

)
dr

for a.e. (t, ω) as n → ∞. By the BDG inequality,

E

[

sup
t∈[0,T ]

∣∣∣
∣

∫ t

0
(gεn (r) − g(r), φ) dWr

∣∣∣
∣

]

≤ CE

[(∫ T

0
‖(gεn (r) − g(r), φ)‖2l2 dr

)1/2]

≤ CE

[(∫ T

0

(∫

Td
‖gεn (r) − g(r)‖2l2 dx

)
‖φ‖22 dr

)1/2]

≤ C‖φ‖2E
⎡

⎣

(∫ T

0

(∫

Td
‖gεn (r) − g(r)‖p

l2
dx

)2/p

dr

)1/2
⎤

⎦

≤ C‖φ‖2E
[∫ T

0
‖gεn (r) − g(r)‖p

Lp dr

]
,
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which converges to 0 as n → ∞. This implies that for a further subsequence, which
we still denote by uεn , we have

∫ t

0
(gεn (r), φ) dWr

n→∞−−−→
∫ t

0
(g(r), φ) dWr , (t, ω)-a.e.

Using Lemma 4.4 and letting n → ∞ in (4.24), we obtain (4.4).
Suppose u1, u2 are two strong L p solutions to (4.1)–(4.2). Then v = u1 − u2

satisfies

dv(t, x) = �v(t, x) dt,

v(0, x) = 0 a.s.

on [0, T ] × T
d . Then v ≡ 0 P-a.s.

For convenience we also state the vector-valued version of the previous theorem.
Thus, consider (4.1)–(4.2) on T

d but with u, f , g, and u0 being R
D-valued, where

D ∈ N. Then, under the assumptions of Theorem 4.1, we have

E

⎡

⎣ sup
0≤t≤T

‖u(t, ·)‖p
p +

D∑

j=1

∫ T

0

∫

Td
|∇(|u j (t, x)|p/2)|2 dxdt

⎤

⎦

≤ CE

⎡

⎣‖u0‖p
p +

∫ T

0
‖ f (t, ·)‖p

−1,q dt +
D∑

j=1

∫ T

0

∫

Td
‖g j (t, x)‖p

l2(H,R)
dxdt

⎤

⎦ .

(4.25)

5 Stochastic truncated Navier–Stokes equation

From here on, we restrict our considerations to the space dimension 3, although all
the statements can be adjusted to any dimension d ≥ 2. Also, with a constant δ0 > 0
which is not necessarily small, denote by ϕ : [0,∞) → [0, 1] a decreasing smooth
function such that ϕ ≡ 1 on [0, δ0/2] and ϕ ≡ 0 on [δ0,∞). In addition, we assume

|ϕ(t1) − ϕ(t2)| ≤ C

δ0
|t1 − t2|, t1, t2 ≥ 0.

We consider a stochastic Navier–Stokes equations on [0, T ] × T
3, truncated by this

function, which reads

du(t, x) = �u(t, x) dt − ϕ(‖u(t)‖p)
2P(

(u(t, x) · ∇)u(t, x)
)

dt

+ ϕ(‖u(t)‖p)
2σ(u(t, x)) dWt ,

∇ · u(t, x) = 0,

u(0, x) = u0(x) a.s., x ∈ T
3,

(5.1)
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where σ is (l2(H, R))3-valued, u0 ∈ L p(�; L p) is F0-measurable with p > 5, and
∇ · u0 = 0 with

∫
T3 u0 dx = 0 a.s. assumed throughout. Our goal in this section is to

find the unique global solution for (5.1) by applying a fixed point argument.
We note that the reason for the square in the two factors containing ϕ(‖u(t)‖p) in

(5.1) is the splitting (5.19)–(5.20) (and similarly (5.26)–(5.27)), which assures that
every term is linearized either by matching u(n) with ϕ(n) or u(n−1) with ϕ(n−1).

Theorem 5.1 Let p > 5 and u0 ∈ L p(�; L p). For every T > 0, there exists a unique
strong solution u ∈ L p(�; C([0, T ], L p)) to (5.1) such that

E

⎡

⎣ sup
0≤s≤T

‖u(s, ·)‖p
p +

∑

j

∫ T

0

∫

T3
|∇(|u j (s, x)|p/2)|2 dxds

⎤

⎦ ≤ CE
[‖u0‖p

p
] + CT .

(5.2)

In order to solve (5.1), we use the iteration

du(n) − �u(n) dt = −ϕ(‖u(n)‖p)ϕ(‖u(n−1)‖p)P
(
(u(n−1) · ∇)u(n−1)) dt

+ ϕ(‖u(n)‖p)ϕ(‖u(n−1)‖p)σ (u(n−1)) dWt ,

∇ · u(n) = 0,

u(n)(0) = u0 a.s., x ∈ T
3,

(5.3)

where u(0) is the strong solution to

du(0)(t, x) − �u(0)(t, x) dt = 0,

∇ · u(0)(t, x) = 0,

u(0)(0, x) = u0(x) a.s., x ∈ T
3.

Utilizing the results from theprevious section,weconclude thatu(0) ∈ L p(�; C([0, T ],
L p)) and

E

⎡

⎣ sup
0≤t≤T

‖u(0)(t, ·)‖p
p +

∑

j

∫ T

0

∫

T3
|∇(|u(0)

j (t, x)|p/2)|2 dxdt

⎤

⎦ ≤ CE[‖u0‖p
p].

(5.4)
We need to prove that at each step n, there exists a unique solution u(n) ∈
L p(�; C([0, T ], L p)) to (5.3), which is uniformly bounded in a manner consistent
with (5.4). Thus we first consider the equation

du − �u dt = −ϕ(‖u‖p)ϕ(‖v‖p)P
(
(v · ∇)v) dt + ϕ(‖u‖p)ϕ(‖v‖p)σ (v) dWt ,

∇ · u = 0,

u(0, x) = u0, a.s., x ∈ T
3,

(5.5)

123



Stoch PDE: Anal Comp (2022) 10:160–189 177

where v is divergence-free and satisfies

E

⎡

⎣ sup
0≤t≤T

‖v j (t, ·)‖p
p +

∑

j

∫ T

0

∫

T3
|∇(|v(t, x)|p/2)|2 dxdt

⎤

⎦ ≤ CE[‖u0‖p
p] + CT .

(5.6)
In order to solve (5.5), we employ the iteration procedure

du(n) − �u(n) dt = −ϕ(‖u(n−1)‖p)ϕ(‖v‖p)P
(
(v · ∇)v

)
dt

+ ϕ(‖u(n−1)‖p)ϕ(‖v‖p)σ (v) dWt ,

∇ · u(n) = 0,

u(n)(0) = u0, a.s., x ∈ T
3,

(5.7)

for v which is divergence-free and satisfies (5.6). Note that u(n) in (5.7) is not the same
as in (5.3).

We shall prove the existence by obtaining an exponential rate of convergence for
the fixed point iteration, for both (5.7) and (5.3), and then claiming that a sequence of
random variables converges to zero a.s. if their expectation approaches zero rapidly.
For this purpose, the following auxiliary result is essential.

Lemma 5.2 Let ξn be a sequence of nonnegative random variables such that E[ξn] ≤
ηn, for n ∈ N, where η ∈ (0, 1). Then, ξn → 0 almost surely.

Proof of Lemma 5.2 Denote the probability event {ω ∈ � : ξn(ω) ≥ 1/m} by Am
n . If

ξn(ω) does not converge to zero as n → ∞, then ω ∈ ∪∞
m=1 ∩∞

n=1 ∪∞
k=n Am

k . For each
fixed m ∈ N,

∞∑

n

P(Am
n ) ≤ m

∞∑

n

E[ξn] < ∞,

and thus P(lim supn→∞ Am
n ) = 0 by the Borel-Cantelli Lemma. Hence,

P(∪∞
m=1 ∩∞

n=1 ∪∞
k=n Am

k ) = lim
m→∞ P(lim sup

n→∞
Am

n ) = 0,

completing the proof.

Remark 5.3 This conclusion can be extended from expectation and the probability
measure to integration with respect to any finite measure. In particular, we could use
the integration on � × [0, T ] with respect to the product measure.

For convenience, we abbreviate

ϕ(n) = ϕ(‖u(n)‖p), n ∈ N,

ϕv = ϕ(‖v‖p),

for the rest of the section. The next lemma asserts uniform boundedness of u(n), which
is needed in the fixed point argument.
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Lemma 5.4 Let p > 5, n ∈ N, and T > 0. Suppose u0 ∈ L p(�; L p) and
assume that for each n ∈ {1, 2, . . . , k − 1}, there exists a unique solution u(n) ∈
L p(�; C([0, T ], L p)) to the initial value problem (5.7), where v and u(n) satisfy
(5.6). Then for n = k, the initial value problem (5.7) also has a unique solution
u(k) ∈ L p(�; C([0, T ], L p)), and moreover,

E

⎡

⎣ sup
0≤t≤T

‖u(k)(t, ·)‖p
p+

∑

j

∫ T

0

∫

T3
|∇(|u(k)

j (t, x)|p/2)|2 dxdt

⎤

⎦ ≤CE
[‖u0‖p

p
]+CT .

(5.8)

Proof Let n = k. We apply Theorem 4.1 (cf. the inequality (4.25)) to the equation

du(n)
j − �u(n)

j dt = −ϕ(n−1)ϕv

(P(
(v · ∇)v

))
j dt

+ ϕ(n−1)ϕvσ j (v) dWt , j = 1, 2, 3.
(5.9)

We write the first term on the right side of (5.9) as

−
∑

i

ϕ(n−1)ϕv∂i
(P(

viv
))

j dt .

In order to apply (4.25), we need to estimate

CE

[∫ T

0
‖ϕ(n−1)ϕvviv‖p

q ds

]
≤ CE

[∫ T

0
ϕ(n−1)ϕv‖vi‖p

r ‖v‖p
l ds

]

≤ CE

[∫ T

0
ϕ(n−1)ϕv‖vi‖p

r ‖v‖p
p ds

]
≤ Cδ

p
0 E

[∫ T

0
ϕ(n−1)ϕv‖vi‖p

r ds

]
,

(5.10)

where
3p

p + 1
< q ≤ p (5.11)

and
1

r
+ 1

l
= 1

q
.

For the last inequality in (5.10) we require

l ≤ p (5.12)

and then use ϕv‖v‖p
p ≤ Cδ

p
0 ϕv . In order to bound the last expression in (5.10), we also

need r < 3p. When we consider below the differences of iterates (cf. (5.21)–(5.23)
below), we however need a stronger inequality

r ≤ p. (5.13)
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For the sake of exposition, we fix the exponents at this point as

q = (3p + η0)/(p + 1) and r = l = 2q.

The parameter η0 > 0 is chosen so that

3p + η0

p + 1
<

p

2
, (5.14)

which is possible when p > 5. It remains to estimate the last term in (5.9) (cf. (4.25)),
i.e.,

E

[∫ T

0

∫

Td
‖ϕ(n−1)ϕvσ (v)‖p

l2(H,Rd )
dxds

]
≤ CE

[∫ T

0
ϕv(‖v‖p

p + 1) ds

]
≤ CT ,

using sub-linear growth of the noise (3.3), and we obtain (5.8).

Lemma 5.5 Let p > 5 and suppose that u0 ∈ L p(�; L p). Then there exists t ∈ (0, T ]
such that the initial value problem (5.5), where v satisfies (5.6), has a unique strong
solution u ∈ L p(�; C([0, t], L p)), which satisfies

E

⎡

⎣ sup
0≤s≤t

‖u(s, ·)‖p
p +

∑

j

∫ t

0

∫

T3
|∇(|u j (s, x)|p/2)|2 dxds

⎤

⎦ ≤ CE
[‖u0‖p

p
] + Ct .

(5.15)

Proof of Lemma 5.5 We employ the fixed point argument on the iteration (5.7). The
difference z(n) = u(n+1) − u(n) satisfies

dz(n)
j − �z(n)

j dt =
∑

i

∂i fi j dt + g j dWt , j = 1, 2, 3, (5.16)

where

fi j = −(ϕ(n) − ϕ(n−1))ϕv(P(viv)) j

and

g j = (
ϕ(n) − ϕ(n−1))ϕvσ j (v) dWt .

In addition to (5.16), we have

∇ · z(n) = 0,

z(n)(0) = 0 a.s., x ∈ T
3.
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Note that

|ϕ(n) − ϕ(n−1)| ≤ C

δ0

∣∣∣‖u(n)‖p − ‖u(n−1)‖p

∣∣∣ ≤ C

δ0
‖u(n) − u(n−1)‖p = C

δ0
‖z(n−1)‖p.

(5.17)
Now, we apply (4.25). The second term on the right side of (4.25) is estimated as

C
∑

i

E

[∫ t

0
‖(ϕ(n) − ϕ(n−1))ϕvviv‖p

q ds

]
≤ C

δ
p
0

E

[∫ t

0
ϕ p

v ‖z(n−1)‖p
p‖v‖p

r ‖v‖p
l ds

]

≤ CE

[∫ t

0
‖z(n−1)‖p

p ds

]
≤ C t E

[

sup
s∈[0,t]

‖z(n−1)‖p
p

]

,

where we used (5.12) and (5.13) in the second inequality. For the last term in (4.25),
we estimate

CE

[∫ t

0

∫

Td
‖g(s, x)‖p

l2(H,Rd )
dxds

]
≤ Cδ0E

[∫ t

0
‖z(n−1)‖p

p ds

]

≤ Cδ0E

[∫ t

0
‖z(n−1)‖p

pds

]
≤ C t E

[

sup
s∈[0,t]

‖z(n−1)‖p
pds

]

.

This concludes the proof of existence of a fixed point for (5.5) on [0, t] in L p
ωL∞

t L p
x

if t > 0 is sufficiently small. It is standard to adapt the contraction argument above
to the proof of uniqueness, and we omit the details. We denote this unique fixed
point by u. Observing the exponential rate of convergence, we apply Lemma 5.2 and
obtain ϕ(‖u(n)(t)‖p) → ϕ(‖u(t)‖p) for a.e.-(ω, t). Then, by applying the dominated
convergence theorem, we obtain that u is indeed a solution to (5.7). Thus, (5.15) holds
by Lemma 4.4.

Proof of Theorem 5.1 Consider the iteration (5.3), i.e.,

du(n) − �u(n) dt = −ϕ(n)ϕ(n−1)P(
(u(n−1) · ∇)u(n−1)) dt

+ ϕ(n)ϕ(n−1)σ (u(n−1)) dWt ,

∇ · u(n) = 0,

u(n)(0) = u0, a.s., x ∈ T
3

on (0, T ] × T
3. First assume that T is a sufficiently small constant as determined in

Lemma 5.5 above; at the end of the proof, we extend the solution to the full range
by the pathwise uniqueness. Lemma 5.5 implies the existence of a unique maximal
solution u(n), which satisfies

E

⎡

⎣ sup
0≤t≤T

‖u(n)(t, ·)‖p
p +

∑

j

∫ T

0

∫

T3
|∇(|u(n)

j (t, x)|p/2)|2 dxdt

⎤

⎦ ≤ CT ,δ0 + CE
[‖u0‖p

p
]
.

(5.18)
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In order to apply the fixed point technique, we consider the difference

v(n) = u(n+1) − u(n),

for which

dv(n) − �v(n) ds +
(
ϕ(n+1)ϕ(n)P(

(u(n) · ∇)u(n)
) − ϕ(n)ϕ(n−1)P(

(u(n−1) · ∇)u(n−1))
)

ds

=
(
ϕ(n+1)ϕ(n)σ (u(n)) − ϕ(n)ϕ(n−1)σ (u(n−1))

)
dWs ,

∇ · v(n) = 0,

v(n)(0) = 0 a.s.

We rewrite the first equation as

dv
(n)
j − �v

(n)
j dt =

∑

i

∂i fi j dt + g j dWt , j = 1, 2, 3,

where

fi j = −ϕ(n+1)ϕ(n)
(P(u(n)

i u(n))
)

j + ϕ(n)ϕ(n−1)(P(u(n−1)
i u(n−1))

)
j

= −ϕ(n)(ϕ(n+1) − ϕ(n))(P(u(n)
i u(n))) j − ϕ(n)(ϕ(n) − ϕ(n−1))(P(u(n)

i u(n))) j

− ϕ(n)ϕ(n−1)(P(v
(n−1)
i u(n))) j − ϕ(n)ϕ(n−1)(P(u(n−1)

i v(n−1))) j

= f (1)
i j + f (2)

i j + f (3)
i j + f (4)

i j

(5.19)

and

g j = ϕ(n+1)ϕ(n)σ j (u
(n)) − ϕ(n)ϕ(n−1)σ j (u

(n−1))

= ϕ(n)(ϕ(n+1) − ϕ(n))σ j (u
(n)) + ϕ(n)(ϕ(n) − ϕ(n−1))σ j (u

(n))

+ ϕ(n)ϕ(n−1)(σ j (u
(n)) − σ j (u

(n−1))
)

= g(1)
j + g(2)

j + g(3)
j .

(5.20)
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We first apply (4.25) to all the terms on the far right side of (5.19). Now, choose the
exponents q, r , and l as in (5.11)–(5.14). Regarding the first term in (5.19), we have

E

[∫ T

0
‖ f (1)‖p

q ds

]
≤ C

∑

i

E

[∫ T

0
(ϕ(n+1) − ϕ(n))p(ϕ(n))p‖u(n)

i u(n)‖p
q ds

]

≤ C

δ
p
0

E

[∫ T

0
‖v(n)‖p

p(ϕ
(n))p‖u(n)‖p

r ‖u(n)‖p
l ds

]

≤ Cδ
p
0 E

[∫ T

0
‖v(n)‖p

p ds

]

(5.21)

by

|ϕ(n+1) − ϕ(n)| ≤ C

δ0

∣∣∣‖u(n+1)‖p − ‖u(n)‖p

∣∣∣ ≤ C

δ0
‖u(n+1) − u(n)‖p = C

δ0
‖v(n)‖p,

as in (5.17), and where we also used (5.12) and (5.13) in the last inequality in (5.21).
As in (5.21), we have

E

[∫ T

0
‖ f (2)‖p

q ds

]
≤ Cδ

p
0 E

[∫ T

0
‖v(n−1)‖p

p ds

]
. (5.22)

Similarly,

E

[∫ T

0
‖ f (3)‖p

q ds

]
+ E

[∫ T

0
‖ f (4)‖p

q ds

]
≤ Cδ

p
0 E

[∫ T

0
‖v(n−1)‖p

p ds

]
.

(5.23)

Summarizing (5.21), (5.22), and (5.23), we get

E

[∫ T

0
‖ f ‖p

q ds

]
≤ Cδ0 T E

[

sup
s∈[0,T ]

‖v(n−1)‖p
p

]

+ Cδ0 T E

[

sup
s∈[0,T ]

‖v(n)‖p
p

]

.

Next, we turn to the three terms in (5.20). For the first one, we have

CE

[∫ T

0

∫

Td
‖g(1)(s, x)‖p

l2(H,Rd )
dxds

]

≤ CE

[∫ T

0

∫

Td
(ϕ(n))p(ϕ(n+1) − ϕ(n))p‖σ(u(n))‖p

l2(H,Rd )
dxds

]

≤ C

δ
p
0

E

[∫ T

0
(ϕ(n))p‖v(n)‖p

p(‖u(n)‖p
p + 1) ds

]

≤ Cδ0E

[∫ T

0
‖v(n)‖p

p ds

]
,

(5.24)
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and similarly,

CE

[∫ T

0

∫

Td
‖g(2)(s, x)‖p

l2(H,Rd )
dxds

]
+ CE

[∫ T

0

∫

Td
‖g(3)(s, x)‖p

l2(H,Rd )
dxds

]

≤ Cδ0E

[∫ T

0
‖v(n−1)‖p

p ds

]
.

(5.25)

We may summarize (5.24) and (5.25) as

CE

[∫ T

0

∫

Td
‖g(s, x)‖p

l2(H,Rd )
dxds

]

≤ Cδ0 T E

[

sup
s∈[0,T ]

‖v(n−1)‖p
p

]

+ Cδ0 T E

[

sup
s∈[0,T ]

‖v(n)‖p
p

]

.

Therefore, we obtain the existence of a fixed point u of (5.1) in L p
ωL∞

t L p
x on

[0, t∗], where t∗ ∈ (0, T ) is a sufficiently small constant. Since each u(n) ∈
L p(�; C([0, t∗], L p)), so is u. By Lemma 5.5,

(u(n)(s), φ) = (u0, φ) +
∫ s

0
(u(n)(r),�φ) dr

+
∑

j

∫ s

0

(
ϕ(n)ϕ(n−1)P(

u(n−1)
j u(n−1)), ∂ jφ

)
dr

+
∫ s

0
(ϕ(n)ϕ(n−1)σ (u(n−1)), φ) dWr , (s, ω)-a.e.,

for all φ ∈ C∞(T3). The exponential convergence rate and Remark 5.3 imply that
ϕ(‖u(n)(s)‖p), ϕ(‖u(n−1)(s)‖p) → ϕ(‖u(s)‖p) for a.e. (s, ω). Together with the
divergence free condition, the Hölder inequality, and the dominated convergence the-
orem, we get

∫ s

0
(u(n)(r),�φ) dr +

∑

j

∫ s

0
(ϕ(n)ϕ(n−1)P(u(n−1)

j u(n−1)), ∂ jφ) dr

→
∫ s

0

(
(u(r),�φ) + (ϕ2P(uu j ), φ)

)
dr

for a.e. (s, ω) as n → ∞. Also, by the BDG inequality and assumptions on σ ,

E

[

sup
s∈[0,t∗)

∣
∣∣∣

∫ s

0
(ϕ(n)ϕ(n−1)σ (u(n−1)) − ϕ2σ(u), φ) dWr

∣
∣∣∣

]

≤ E

⎡

⎣
(∫ t∗

0
‖(ϕ(n)ϕ(n−1)σ (u(n−1)) − ϕ2σ(u), φ)‖2l2 dr

)1/2
⎤

⎦ .
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Moreover, the right side goes to zero exponentially fast as n → ∞. This implies

∫ s

0
(ϕ(n)ϕ(n−1)σ (u(n−1)), φ) dWr

n→∞−−−→
∫ s

0
(ϕ2σ(u), φ) dWr , (s, ω)-a.e.

Letting n → ∞, we obtain that u solves (5.1). On the other hand, the inequality (5.2)
follows by using Lemma 4.4 on (5.18). This completes the existence.

To prove the uniqueness, suppose that (5.1) has two strong solutions u, v ∈
L p(�; C([0, t∗], L p)). Then w = u − v satisfies

dw − �w dt = −(
ϕ2

uP
(
(u · ∇)u

) − ϕ2
vP

(
(v · ∇)v

))
dt + (

ϕ2
uσ(u) − ϕ2

vσ (v)
)

dWt ,

∇ · w = 0,

w(0) = 0, a.s.

on (0, t∗]×T
3, where ϕv = ϕ(‖v‖p) and ϕu = ϕ(‖u‖p). As before, we write the first

equation component-wise as

dw j − �w j dt =
∑

i

∂i fi j dt + g j dWt , j = 1, 2, 3,

where

fi j = −ϕ2
u

(P(ui u)
)

j + ϕ2
v

(P(viv)
)

j

= −ϕu(ϕu − ϕv)(P(ui u)) j − ϕuϕv(P(wi u)) j

− ϕuϕv(P(viw)) j − ϕv(ϕu − ϕv)(P(viv)) j

(5.26)

and

g j = ϕ2
uσ j (u) − ϕ2

vσ j (v)

= ϕu(ϕu − ϕv)σ j (u) + ϕv(ϕu − ϕv)σ j (v) + ϕuϕv

(
σ j (u) − σ j (v)

)
.

(5.27)

We now show similarly as above that

E

[

sup
s∈[0,t∗]

‖w‖p
p

]

≤ CE

[∫ t∗

0
‖ f ‖p

q ds

]

+ CE

[∫ t∗

0

∫

Td
‖g(s, x)‖p

l2(H,Rd )
dxds

]

≤ Cδ0 t∗ E

[

sup
s∈[0,t∗]

‖w‖p
p

]

,

and obtain the pathwise uniqueness by setting t∗ sufficiently small. Thus, we have
obtained a unique strong solution of (5.1) in L p(�; C([0, t∗], L p)).

Now, we turn to the global existence. First, note that the deterministic time
t∗ > 0 from above does not depend on the initial data. Now, let T > 0 be arbi-
trary and let n∗ be a positive integer such that T /n∗ < t∗. Denote ti = iT /n∗ for
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i ∈ {0, 1, . . . , n∗}. Applying the existence and pathwise uniqueness inductively on
[ti , ti+1], i ∈ {0, 1, . . . , n∗}, we obtain a unique strong solution to (5.1) on [0, T ] and
(5.2) holds.

Proof of Theorem 3.1 For n = 1, 2, . . ., denote by u(n) the solution of the truncated
SNSE (5.1) with δ0 = n. Also, introduce the stopping times

τn(ω) =
{
inf

{
t > 0 : ‖u(n)(t, ω)‖p ≥ n/2

}
, if ‖u(n)(0, ω)‖p < n/2,

0, if ‖u(n)(0, ω)‖p ≥ n/2.

By uniqueness, the sequence is non-decreasing a.s. and u(m) = u(n) on [0, τm ∧ τn].
Let τ = limn τn ∧T . Then,P(τ > 0) = 1. Also, for any integer n ∈ N, define u = u(n)

on [0, τn ∧ T ]. It is easy to check that (u, τ ) satisfies all the required properties.

6 Global solutions and energy decay

The truncated stochastic Navier–Stokes equations reads

du(t, x) = �u(t, x) dt − ϕ(‖u(t)‖p)
2P(

(u(t, x) · ∇)u(t, x)
)

dt

+ ϕ(‖u(t)‖p)
2σ(u(t, x))dWt ,

∇ · u(t, x) = 0,

u(0, x) = u0(x) a.s., x ∈ T
3

(6.1)

on [0,∞)×T
3 with div u0 = 0 and

∫
T3 u0 dx = 0 a.s.Note that in the previous section,

we have proved the global well-posedness of this initial value problem. Recall that
δ0 > 0 and that ϕ : [0,∞) → [0, 1] is a decreasing smooth function with ϕ ≡ 1 on
[0, δ0/2] and ϕ ≡ 0 on [δ0,∞). In addition, we assumed

|ϕ(t1) − ϕ(t2)| ≤ C

δ0
|t1 − t2|, t1, t2 ≥ 0.

We shall set δ0 > 0 sufficiently small. Note that when ‖u‖p is below δ0/2, the initial
value problem (1.1)–(1.3) coincides with this cut-off model. Hence, an estimate of the
likelihood that ‖u‖p exceeds δ0/2 determines the time of existence for the solution to
(1.1)–(1.3). The next result is essential for estimating that likelihood.

Theorem 6.1 Let p > 5. Then the global solution u ∈ L p(�; C([0,∞), L p)) to (6.1)
satisfies

E

[

sup
s∈[0,∞)

eas‖u(s)‖p
p +

∫ ∞

0
eas

∑

i

‖∇(|ui (s)|p/2)‖22 ds

]

≤ CE[‖u0‖p
p], (6.2)

provided a, δ0, ε0 > 0 are sufficiently small constants.
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Recall that the constant ε0 > 0 is in the condition (3.5).

Proof Let T > 0. Applying the Itô-Wentzel formula to Fi (t) = eat‖ui (t)‖p
p, for a

fixed i ∈ {1, 2, 3}, we obtain

d(eat‖ui (t)‖p
p) = aeat‖ui (t)‖p

p dt + eat d(‖ui (t)‖p
p). (6.3)

Utilizing the Itô expansion in the proof of Theorem 4.1 (cf. (4.12)) and (6.3), we have

eat‖ui (t)‖p
p + 4(p − 1)

p

∫ t

0
eas

∫

T3
|∇(|ui (s)|p/2)|2 dxds

= ‖u0i‖p
p − p

∫ t

0
easϕ2

∫

T3
|ui |p−2ui (P(u · ∇)u)i dxds

+ p
∫ t

0
easϕ2

∫

T3
|ui |p−2uiσi (u) dxdWs

+ p(p − 1)

2

∫ t

0
easϕ4

∫

T3
|ui |p−2‖σi (u)‖2l2 dxds + a

∫ t

0
eas‖ui (s)‖p

p ds.

(6.4)

Now, choose q, r , and l as in (5.11)–(5.14) and r̄ as in (4.18). By integration by parts,
we have

peasϕ2
∣∣∣
∣

∫

T3
|ui (s)|p−2ui (s)(P(u · ∇)u)i dx

∣∣∣
∣

= peasϕ2

∣∣∣∣∣∣

∑

j

∫

T3
∂ j (|ui (s)|p−2ui (s))(P(u j u))i dx

∣∣∣∣∣∣

≤ Ceasϕ2‖∇(|ui (s)|p/2)‖2‖|ui |(p−2)/2‖r̄‖u j‖r‖u‖l

≤ Cδ0easϕ‖∇(|ui (s)|p/2)‖2‖|ui |(p−2)/2‖r̄‖u j‖p,

using ϕ‖u‖p ≤ δ0 in the last step. As in the proof of Theorem 4.1 above, we get

∣∣∣
∣

∫ t

0
peasϕ2

∫

T3
|ui (s)|p−2ui (s)(P(u · ∇)u)i dxds

∣∣∣
∣

≤ δ

∫ t

0
eas

∑

i

‖∇(|ui (t)|p/2)‖22 ds + Cδδ
κ
0

∫ t

0
eas‖u(s)‖p

p ds,
(6.5)

where δ > 0 is arbitrary and where κ > 0 is a constant depending on p. Note that
the first term on the right side may be absorbed in the dissipative term if δ > 0 is
sufficiently small. Also, by using the Poincaré type inequality

‖|v|p/2‖2 ≤ C‖∇(|v|p/2)‖2, (6.6)
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for v such that
∫
Td v dx = 0, as in (4.15), the second term in (6.5) may also be

absorbed if δ0 > 0 is sufficiently small. Regarding the fourth term in (6.4), we use the
superlinearity assumption on the noise (3.5) and obtain

p(p − 1)

2
easϕ4

∫

T3
|ui (s)|p−2‖σi (u)‖2l2 dx ≤ Cε20easϕ4‖u(s)‖p

p.

This term can be controlled in the same way as the last term in (6.5). Likewise, the
last term in (6.4) may also be absorbed in the dissipative part if a > 0 is sufficiently
small constant (independent of p). Combining the estimates above and absorbing the
second, fourth, and fifth terms on the right-hand side of (6.4), we arrive at

1

2
eat‖ui (t)‖p

p + 1

2

∫ t

0
eas‖∇(|ui (s)|p/2)‖22 ds

≤ ‖ui (0)‖p
p + p

∣∣∣∣

∫ t

0

∫

T3
easϕ2|ui (s)|p−2ui (s)σi (u) dxdWs

∣∣∣∣

since 4(p − 1)/p ≥ 1/2. Hence,

E

[

sup
t∈[0,T ]

eat‖ui (t)‖p
p

]

+ E

[∫ T

0
eas‖∇(|ui (s)|p/2)‖22 ds

]

≤ 2E
[‖ui (0)‖p

p
] + C pE

[

sup
t∈[0,T ]

∣∣∣∣

∫ t

0
easϕ2

∫

T3
|ui (s)|p−2ui (s)σi (u) dxdWs

∣∣∣∣

]

.

(6.7)

For the last term in (6.7), we apply the same approach as in (4.21)–(4.22), except that
we use the assumption (3.5). We thus obtain

C pE

[

sup
t∈[0,T ]

∣
∣
∣∣

∫ t

0
easϕ2

∫

T3
|ui (s)|p−2ui (s)σi (u) dxdWs

∣
∣
∣∣

]

≤ Cδε0E

[∫ T

0
easϕ2‖u(s)‖p

pds

]
.

Using also (6.6), by taking ε0 > 0 sufficiently small, the right-hand side may be
absorbed in the left side of (6.7). Therefore,

E

[

sup
s∈[0,T ]

eas‖u(s)‖p
p +

∫ T

0
eas

∑

i

‖∇(|ui (s)|p/2)‖22 ds

]

≤ CE[‖u0‖p
p],

and (6.2) follows upon sending T → ∞.

Now, we are ready to prove the main theorem on the global existence of solutions
for small data.
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Proof of Theorem 3.2 Let ε0, δ0, a > 0 be as in Theorem 6.1. Assume that (3.6) holds
for some δ > 0. By Markov’s inequality, we have

P

(

sup
t∈[0,∞)

eat‖u(t)‖p
p ≥ δ0

2

)

≤ C

δ0
E[‖u0‖p

p] ≤ Cδ

δ0
.

The assertion is then obtained by choosing δ > 0 sufficiently small.
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