

On the energy transfer to high frequencies in the damped/driven nonlinear Schrödinger equation

Guan Huang[1](http://orcid.org/0000-0002-3273-213X) · Sergei Kuksin2,3,4

Received: 26 August 2020 / Revised: 26 August 2020 / Accepted: 5 December 2020 / Published online: 2 January 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract

We consider a damped/driven nonlinear Schrödinger equation in \mathbb{R}^n , where *n* is arbitrary, $\mathbb{E}u_t - v\Delta u + i|u|^2u = \sqrt{v}\eta(t, x), v > 0$, under odd periodic boundary conditions. Here $\eta(t, x)$ is a random force which is white in time and smooth in space. It is known that the Sobolev norms of solutions satisfy $||u(t)||_m^2 \leq Cv^{-m}$, uniformly in $t \geq 0$ and $v > 0$. In this work we prove that for small $v > 0$ and any initial data, with large probability the Sobolev norms $||u(t, \cdot)||_m$ with $m > 2$ become large at least to the order of $v^{-\kappa_{n,m}}$ with $\kappa_{n,m} > 0$, on time intervals of order $\mathcal{O}(\frac{1}{v})$. It proves that solutions of the equation develop short space-scale of order ν to a positive degree, and rigorously establishes the (direct) cascade of energy for the equation.

Keywords NLS · Sobolev norms · Energy cascading

1 Introduction

In this work we study a damped/driven nonlinear Schrödinger equation

$$
u_t - v\Delta u + i|u|^2 u = \sqrt{v}\eta(t, x), \quad x \in \mathbb{R}^n,
$$
\n(1.1)

i.e. a CGL equation without linear dispersion, with cubic Hamiltonian nonlinearity and a random forcing. The dimension *n* is any, $0 < v \le 1$ is the viscosity constant

Sergei Kuksin Sergei.Kuksin@imj-prg.fr

 \boxtimes Guan Huang huangguan@tsinghua.edu.cn

¹ Yau Mathematical Sciences Center, Tsinghua University, Beijing, China

² Institut de Mathémathiques de Jussieu–Paris Rive Gauche, CNRS, Université Paris Diderot, UMR 7586, Sorbonne Paris Cité, F-75013 Paris, France

³ School of Mathematics, Shandong University, Jinan, Shandong, China

⁴ Saint Petersburg State University, Universitetskaya nab., St. Petersburg, Russia

and the random force η is white in time t and regular in x . The equation is considered under the odd periodic boundary conditions,

$$
u(t, ..., x_j, ...)=u(t, ..., x_j+2\pi, ...)=-u(t, ..., x_j+\pi, ...), \quad j=1, ..., n.
$$

The latter implies that *u* vanishes on the boundary of the cube of half-periods K^n = $[0, \pi]^n$,

$$
u\mid_{\partial K^n}=0.
$$

We denote by $\{\varphi_d(\cdot), d = (d_1, \ldots, d_n) \in \mathbb{N}^n\}$ the trigonometric basis in the space of odd periodic functions,

$$
\varphi_d(x) = \left(\frac{2}{\pi}\right)^{\frac{n}{2}} \sin(d_1x_1) \cdots \sin(d_nx_n).
$$

The basis is orthonormal with respect to the normalised scalar product $\langle \langle \cdot, \cdot \rangle \rangle$ in $L_2(K^n, \pi^{-n}dx)$,

$$
\langle\!\langle u, v \rangle\!\rangle = \int_{K^n} \langle u(x), v(x) \rangle \pi^{-n} dx,\tag{1.2}
$$

where $\langle \cdot, \cdot \rangle$ is the real scalar product in $\mathbb{C}, \langle u, v \rangle = \Re u\bar{v}$. It is formed by eigenfunctions of the Laplacian:

$$
(-\Delta)\varphi_d = |d|^2 \varphi_d.
$$

The force $\eta(t, x)$ is a random field of the form

$$
\eta(t,x) = \frac{\partial}{\partial t}\xi(t,x), \quad \xi(t,x) = \sum_{d \in \mathbb{N}^n} b_d \beta_d(t)\varphi_d(x). \tag{1.3}
$$

Here $\beta_d(t) = \beta_d^R(t) + i\beta_d^I(t)$, where $\beta_d^R(t)$, $\beta_d^I(t)$ are independent real-valued standard Brownian motions, defined on a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a filtration ${\mathcal{F}}_t; t \geq 0$. The set of real numbers ${b_d, d \in \mathbb{N}^n}$ is assumed to form a non-zero sequence, satisfying

$$
0 < B_{m_*} < \infty, \quad m_* = \min\{m \in \mathbb{Z} : m > n/2\},\tag{1.4}
$$

where for a real number *k* we set

$$
B_k := \sum_{d \in \mathbb{N}^n} |d|^{2k} |b_d|^2 \leq \infty.
$$

For $m \geq 0$ we denote by H^m the Sobolev space of order m, formed by complex odd periodic functions, equipped with the homogeneous norm,

$$
||u||_m = ||(-\Delta)^{\frac{m}{2}}u||_0,
$$

where $\|\cdot\|_0$ is the L^2 -norm on K^n , $\|u\|_0^2 = \langle\langle u, u \rangle\rangle$ (see [\(1.2\)](#page-1-0)). If we write $u \in H^m$ as Fourier series, $u(x) = \sum_{d \in \mathbb{N}^n} u_d \varphi_d(x)$, then $||u||_m^2 = \sum_{d \in \mathbb{N}^n} |d|^{2m} |u_d|^2$.

Equation (1.1) with small *v* belongs to a group of equations, describing turbulence in the CGL equations. These equations have got quite a lot of attention in physical literature as models for turbulence in various media, e.g. see [\[3,](#page-24-0) Chapter 5]. In particular $-$ as a natural model for hydrodynamical turbulence since Eq. (1.1) is obtained from the Navier-Stokes system by replacing the Euler term $(u \cdot \nabla)u$, which is a quadratic Hamiltonian nonlinearity, by $i|u|^2u$, which is a cubic Hamiltonian nonlinearity, see [\[13](#page-24-1)].

The global solvability of Eq. [\(1.1\)](#page-0-0) for any space dimension *n* is established in [\[8](#page-24-2)[,10](#page-24-3)]. It is proved there that if

$$
u(0, x) = u_0(x),
$$
\n(1.5)

where $u_0 \in H^m \cap C(K^n)$, $m \in \mathbb{N}$, and if $B_m < \infty$, then the problem [\(1.1\)](#page-0-0), [\(1.5\)](#page-2-0) has a unique strong solution $u(t, x)$ in H^m which we write as $u(t, x; u_0)$, or $u(t; u_0)$, or $u_v(t; u₀)$. Its norm satisfies

$$
\mathbb{E} \|u(t; u_0)\|_m^2 \le C_m v^{-m}, \quad t \ge 0,
$$

where C_m depends on $||u_0||_m$, $|u_0|_\infty$ and B_m , B_{m*} . Furthermore, denoting by $C_0(K^n)$ the space of continuous complex functions on K^n , vanishing at ∂K^n , we have that the solutions $u(t, x)$ define a Markov process in $C_0(K^n)$. Moreover, if the noise $\eta(t, \cdot)$ is non-degenerate in the sense that in (1.3) all coefficients b_d are non-zero, then this process is mixing.[1](#page-2-1)

Our goal is to study the growth of higher Sobolev norms for solutions of Eq. [\(1.1\)](#page-0-0) as $v \to 0$ on time intervals of order $\mathcal{O}(\frac{1}{v})$. The main result of this work is the following.

Theorem 1 *For any real number m* > 2*, in addition to [\(1.4\)](#page-1-2), assume that* $B_m < \infty$ *. Then there exists* $\kappa_{n,m} > 0$ *such that for every fixed quadruple* ($\delta, \kappa, \mathcal{K}, T_0$)*, where*

$$
\kappa\in(0,\kappa_{n,m}),\quad \delta\in(0,\frac{1}{8}),\quad \mathscr{K},T_0>0,
$$

there exists a $v_0 > 0$ *with the property that if* $0 < v \le v_0$ *, then for every* $u_0 \in$ *H*^{*m*} ∩ $C_0(K^n)$ *, satisfying*

$$
|u_0|_{\infty} \leq \mathcal{K}, \quad ||u_0||_m \leq \nu^{-\kappa m}, \tag{1.6}
$$

the solution $u(t, x; u_0)$ *is such that*

¹ We note that solutions of eqs. [\(1.1\)](#page-0-0) with complex ν behave differently, and solubility of those equations with large *n* is unknown.

(1)
$$
\mathbb{P}\left\{\sup_{t\in[t_0,t_0+T_0\nu^{-1}]} \|u_v^{\omega}(t)\|_m > \nu^{-m\kappa}\right\} \ge 1-\delta, \quad \forall t_0 \ge 0.
$$

(2) If m is an integer, $m \geq 3$ *, then a possible choice of* $\kappa_{n,m}$ *is* $\kappa_{n,m} = \frac{1}{35}$ *, and there exists* $C \geq 1$ *, depending on* $\kappa < \frac{1}{35}$ *,* \mathcal{K} *, m,* $B_{m_{*}}$ *and* B_{m} *, such that*

$$
C^{-1} \nu^{-2mk+1} \le \mathbb{E} \left(\nu \int_{t_0}^{t_0 + \nu^{-1}} \|u_\nu(s)\|_m^2 ds \right) \le C \nu^{-m}, \quad \forall \, t_0 \ge 0. \tag{1.7}
$$

A similar result holds for the classical C^k -norms of solutions:

Proposition 2 *For any integer m* \geq 2 *in addition to ([1.4](#page-1-2)) assume that* $B_m < \infty$ *. Then for every fixed triplet K, K, T*₀ > 0 *and any* $0 < \kappa < 1/16$ *we have*

$$
\mathbb{P}\left\{\sup_{t\in[t_0,t_0+T_0\nu^{-1}]}|u_{\nu}^{\omega}(t;u_0)|_{C^m}>K\nu^{-mk}\right\}\to 1 \text{ as } \nu\to 0,
$$
 (1.8)

*for each t*⁰ \geq 0*, if u*⁰ *satisfies* $|u_0|_{\infty} \leq K$ *,* $|u_0|_{C^m} \leq v^{-\kappa m}$ *. The rate of convergence depends only on the triplet and* κ*.*

For a proof of this result see the extended version of our work [\[6\]](#page-24-4). Due to [\(1.8\)](#page-3-0), for any $m > 2 + n/2$ we have

$$
\mathbb{P}\left\{\sup_{T_0\leq t\leq t_0+T_0\nu^{-1}}\|u(t)\|_m\geq K\nu^{-\lfloor m-\frac{n}{2}\rfloor\kappa}\right\}\to 1 \text{ as } \nu\to 0,
$$

for every $K > 0$ and $0 < \kappa < 1/16$, where for $a \in \mathbb{R}$ we denote $|a| = \max\{n \in \mathbb{Z} :$ $n < a$. This improves the first assertion of Theorem [1](#page-2-2) for large *m*.

We have the following two corollaries from Theorem [1,](#page-2-2) valid if the Markov process defined by the Eq. (1.1) is mixing:

Corollary 3 Assume that $B_m < \infty$ for all m and $b_d \neq 0$ for all d. Then Eq. ([1.1](#page-0-0)) *is mixing and for any* κ < 1/35 *and* $0 \lt v \le v_0$ *its unique stationary measure* μ_v *satisfies*

$$
C^{-1} \nu^{-2m\kappa+1} \le \int \|u\|_m^2 \mu_\nu(du) \le C \nu^{-m}, \quad 3 \le m \in \mathbb{N}.
$$
 (1.9)

Here C and $ν_0$ *are as in Theorem [1.](#page-2-2)*

Corollary 4 *Under the assumptions of Corollary* [3](#page-3-1)*, for any* $u_0 \in C^\infty$ *we have*

$$
\frac{1}{2}C^{-1}\nu^{-2m\kappa+1} \leq \mathbb{E}||u(s; u_0)||_m^2 \leq 2C\nu^{-m}, \quad 3 \leq m \in \mathbb{N},
$$

if $s \geq T(v, u_0, \kappa, B_m, B_{m_*})$ *, where* C *is the same as in* [\(1.9\)](#page-3-2)*.*

 $\textcircled{2}$ Springer

Theorem [1](#page-2-2) rigorously establishes the energy cascade to high frequencies for solu-tions of Eq. [\(1.1\)](#page-0-0) with small *v*. Indeed, if $u_0(x)$ and $\eta(t, x)$ are smooth functions of *x* (or even trigonometric polynomials of *x*), then in view of [\(1.7\)](#page-3-3) for $0 < v \ll 1$ and $t \gtrsim v^{-1}$ a substantial part of the energy $\frac{1}{2} \sum |u_d(t)|^2$ of a solution $u(t, x; u_0)$ is carried by high modes u_d with $|d| \gg 1$. Relation [\(1.7\)](#page-3-3) (valid for all integer $m \ge 3$) also means that the averaged in time space-scale l_x of solutions for [\(1.1\)](#page-0-0) satisfies $l_x \in [v^{1/2}, v^{1/35}]$, and goes to zero with *v* (see [\[1](#page-24-5)[,9](#page-24-6)]). We recall that the energy cascade to high frequencies and formation of short space-scale is the driving force of the Kolmogorov theory of turbulence, see [\[5\]](#page-24-7).

We mention that in the work [\[12](#page-24-8)] the stochastic CGL equation

$$
u_t - (v + i)\Delta u + i|u|^2 u = \sqrt{v}\eta(t, x), \quad 0 < v \le 1,\tag{1.10}
$$

with linear dispersion and white in time random force η as in [\(1.3\)](#page-1-1) was considered under the odd periodic boundary conditions, and the inviscid limiting dynamics as $\nu \rightarrow 0$ was examined. However, since the limiting Eq. $(1.10)_{\nu=0}$ $(1.10)_{\nu=0}$ is a regular PDE in difference with the Eq. $(1.1)_{v=0}$ $(1.1)_{v=0}$, the results on the inviscid limit in [\[12](#page-24-8)] differ in spirit from those in our work, and we do not discuss them now.

Deterministic versions of the result of Theorem [1](#page-2-2) for Eq. [\(1.1\)](#page-0-0) with $\eta = 0$, where v is a small non-zero complex number such that $\Re v \ge 0$ and $\Im v \le 0$ are known, see [\[9](#page-24-6)]. In particular, if ν is a positive real number and u_0 is a smooth function of order one, then for any integer $m \geq 4$ a solution $u_v(t, x; u₀)$ satisfies estimates [\(1.7\)](#page-3-3) with the averaging $v \mathbb{E} \int_t^{t+v^{-1}} \dots ds$ replaced by $v^{1/3} \int_0^{v^{-1/3}} \dots ds$, with the same upper bound and with the lower bound $C_m v^{-k_m m}$, where $\kappa_m \to 1/3$ as $m \to \infty$. Moreover, it was then shown in [\[2](#page-24-9)] that the lower bounds remain true with $\kappa = 1/3$, and that the estimates $\sup_{t\in[0,|v|^{-1/3}]} ||u(t)||_{C^m} \geq C_m |v|^{-m/3}, m \geq 2$, hold for smooth solutions of Eq. [\(1.1\)](#page-0-0) with $\eta = 0$ and any non-zero complex "viscosity" ν .

The better quality of the lower bounds for solutions of the deterministic equations is due to an extra difficulty which occurs in the stochastic case: when time grows, simultaneously with increasing of high Sobolev norms of a solution, its L_2 -norm may decrease, which accordingly would weaken the mechanism, responding for the energy transfer to high modes. Significant part of the proof of Theorem [1](#page-2-2) is devoted to demonstration that the *L*₂-norm of a solution cannot go down without sending up the second Sobolev norm.

If $\eta = 0$ and $\nu = i\delta \in i\mathbb{R}$, then [\(1.1\)](#page-0-0) is a Hamiltonian PDE (the defocusing Schrödinger equation), and the L_2 -norm is its integral of motion. If this integral is of order one, then the results of [\[9\]](#page-24-6) (see there Appendix 3) imply that at some point of each time-interval of order $\delta^{-1/3}$ the C^m -norm of a corresponding solution will become $\geq \delta^{-m\kappa}$ if $m \geq 2$, for any $\kappa < 1/3$. Furthermore, if $n = 2$ and $\delta = 1$, then due to [\[4\]](#page-24-10) for $m > 1$ and any $M > 1$ there exists a $T = T(m, M)$ and a smooth $u_0(x)$ such that $||u_0||_m < M^{-1}$ and $||u(T; u_0)||_m > M$.

The paper is organized as follows. In Sect. [2,](#page-5-0) we recall the results from $[8,10]$ $[8,10]$ $[8,10]$ on solutions of the Eq. [\(1.1\)](#page-0-0). Next we show in Sect. [3](#page-8-0) that if the noise η is non-degenerate, the L^2 -norm of a solution of Eq. (1.1) cannot stay too small on time intervals of order $\mathcal{O}(\frac{1}{v})$ with high probability, unless its H^2 -norm gets very large

(see Lemma [12\)](#page-8-1). Then in Sect. [4](#page-12-0) we derive from this fact the assertion (1) of Theorem [1.](#page-2-2) We prove assertion (2) and both corollaries in Sect. [5.](#page-20-0)

Constants in estimates never depend on ν , unless otherwise stated. For a metric space *M* we denote by $\mathcal{B}(M)$ the Borel σ -algebra on *M*, and by $\mathcal{P}(M)$ – the space of probability Borel measures on *M*. By $\mathcal{D}(\xi)$ we denote the law of a r.v. ξ , and by $|\cdot|_p$ – the norm in $L_p(K^n)$.

2 Solutions and estimates

Strong solutions for the Eq. (1.1) are defined in the usual way:

Definition 5 Let $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t>0}, \mathbb{P})$ be the filtered probability space as in the introduction. Let u_0 in [\(1.5\)](#page-2-0) be a r.v., measurable in \mathcal{F}_0 and independent from the Wiener process ξ (e.g., $u_0(x)$ may be a non-random function). Then a random process $u(t) = u(t; u_0) \in C_0(K^n)$, $t \in [0, T]$, adapted to the filtration, is called a strong solution of (1.1) , (1.5) , if

(1) a.s. its trajectories *u*(*t*) belong to the space

$$
\mathcal{H}([0,T]) := C([0,T], C_0(K^n)) \cap L^2([0,T], H^1);
$$

(2) we have

$$
u(t) = u_0 + \int_0^t (v\Delta u - i|u|^2 u)ds + \sqrt{v}\,\xi(t), \quad \forall t \in [0, T], \quad a.s.,
$$

where both sides are regarded as elements of *H*−1.

If (1)-(2) hold for every $T < \infty$, then $u(t)$ is a strong solution for $t \in [0, \infty)$. In this case a.s. *u* ∈ *C*([0, ∞), *C*₀(K^n)) ∩ $L^2_{loc}([0, \infty), H^1)$.

Everywhere below when we talk about solutions for the problem (1.1) , (1.5) we assume that the r.v. u_0 is as in the definition above.

The global well-posedness of Eq. (1.1) was established in $[8,10]$ $[8,10]$:

Theorem 6 *For any* $u_0 \in C_0(K^n)$ *the problem* ([1.1](#page-0-0)), ([1.5](#page-2-0)) has a unique strong solution $u^{\omega}(t, x; u_0)$, $t > 0$. The family of solutions $\{u^{\omega}(t; u_0)\}\$ defines in the space $C_0(K^n)$ a *Fellerian Markov process.*

In $[8,10]$ $[8,10]$ $[8,10]$ the theorem above is proved when (1.4) is replaced by the weaker assumption $B_* < \infty$, where $B_* = \sum |b_d|$ (note that $B_* \le C_n B_{m_*}^{1/2}$).

The transition probability for the obtained Markov process in $C_0(K^n)$ is

$$
P_t(u,\Gamma)=\mathbb{P}\{u(t;u)\in \Gamma\},\quad u\in C_0(K^n),\ \Gamma\in \mathscr{B}(C_0(K^n)),
$$

and the corresponding Markov semigroup in the space $\mathcal{P}(C_0(K^n))$ of Borel measures on $C_0(K^n)$ is formed by the operators $\{\mathcal{B}_t^*, t \geq 0\}$,

$$
\mathcal{B}_t^*\mu(\Gamma)=\int_{C_0(K^n)}P_t(u,\Gamma)\mu(du),\quad t\in\mathbb{R}.
$$

Then $B_t^* \mu = \mathcal{D}u(t; u_0)$ if u_0 is a r.v., independent from ξ and such that $\mathcal{D}(u_0) = \mu$.

Introducing the slow time $\tau = vt$ and denoting $v(\tau, x) = u(\frac{\tau}{v}, x)$, we rewrite Eq. (1.1) in the following form, more convenient for some calculations:

$$
\frac{\partial v}{\partial \tau} - \Delta v + i v^{-1} |v|^2 v = \tilde{\eta}(\tau, x), \tag{2.1}
$$

where

$$
\tilde{\eta}(\tau,x) = \frac{\partial}{\partial \tau} \tilde{\xi}(\tau,x), \quad \tilde{\xi}(\tau,x) = \sum_{d \in \mathbb{N}^n} b_d \tilde{\beta}_d(\tau) \varphi_d(x),
$$

and $\tilde{\beta}_d(\tau) := \nu^{1/2} \beta_d(\tau \nu^{-1}), d \in \mathbb{N}^d$, is another set of independent standard complex Brownian motions.

Let $\Upsilon \in C^{\infty}(\mathbb{R})$ be any smooth function such

$$
\Upsilon(r) = \begin{cases} 0, & \text{for } r \leq \frac{1}{4}; \\ r, & \text{for } r \geq \frac{1}{2}. \end{cases}
$$

Writing $v \in \mathbb{C}$ in the polar form $v = re^{i\Phi}$, where $r = |v|$, and recalling that $\langle \cdot, \cdot \rangle$ stands for the real scalar product in \mathbb{C} , we apply Itô's formula to $\Upsilon(|v|)$ and obtain that the process $\Upsilon(\tau) := \Upsilon(|v(\tau)|)$ satisfies

$$
\begin{split} \Upsilon(\tau) &= \Upsilon_0 + \int_0^{\tau} \Big[\Upsilon'(r) (\nabla r - r | \nabla \Phi|^2) \\ &+ \frac{1}{2} \sum_{d \in \mathbb{N}^n} b_d^2 \Big(\Upsilon''(r) \langle e^{i\Phi}, \varphi_d \rangle^2 + \Upsilon'(r) \frac{1}{r} (|\varphi_d|^2 - \langle e^{i\Phi}, \varphi_d \rangle^2) \Big) \Big] ds + \mathbb{W}(\tau), \end{split} \tag{2.2}
$$

where $\Upsilon_0 = \Upsilon(|v(0)|)$ and $\mathbb{W}(\tau)$ is the stochastic integral

$$
\mathbb{W}(\tau) = \sum_{d \in \mathbb{N}^n} \int_0^{\tau} \Upsilon'(r) b_d \varphi_d \langle e^{i\Phi}, d\tilde{\beta}_d(s) \rangle.
$$

In [\[10\]](#page-24-3) Eq. [\(2.1\)](#page-6-0) is considered with $v = 1$ and, following [\[8](#page-24-2)], the norm $|v(t)|_{\infty}$ of a solution v is estimated via $\Upsilon(t)$ (since $|v| \leq \Upsilon + 1/2$). But the nonlinear term $i\nu^{-1}|v|^2v$ does not contribute to Eq. [\(2.2\)](#page-6-1), which is the same as the Υ -equation (2.3) in [\[10\]](#page-24-3) (and as the corresponding equation in [\[8,](#page-24-2) Section 3.1]). So the estimates on $|\Upsilon(t)|_{\infty}$ and the resulting estimates on $|v(t)|_{\infty}$, obtained in [\[10\]](#page-24-3), remain true for solutions of (2.1) with any *v*. Thus we get the following upper bound for quadratic exponential moments of the L_{∞} -norms of solutions:^{[2](#page-7-0)}

Theorem 7 *For any* $T > 0$ *there are constants* $c_* > 0$ *and* $C > 0$ *, depending only on B*[∗] *and T*, *such that for any r.v.* $v_0^ω ∈ C_0(K^n)$ *as in Definition* [5](#page-5-1)*, any* $τ ≥ 0$ *and any* $c \in (0, c_*]$ *, a solution* $v(\tau; v_0)$ *of Eq.* ([2.1](#page-6-0)*)* satisfies

$$
\mathbb{E}\exp(c\sup_{\tau\leq s\leq \tau+T}|v(s)|_{\infty}^{2})\leq C\mathbb{E}\exp(5c\left|v_{0}\right|_{\infty}^{2})\leq\infty.
$$
 (2.3)

In [\[10](#page-24-3)] the result above is proved for a deterministic initial data v_0 . The theorem's assertion follows by averaging the result of [\[10](#page-24-3)] in v_0^{ω} .

The estimate [\(2.3\)](#page-7-1) is crucial for derivation of further properties of solutions, including the given below upper bounds for their Sobolev norms, obtained in the work [\[8](#page-24-2)]. Since the scaling of the equation in $[8]$ $[8]$ differs from that in (2.1) and the result there is a bit less general than in the theorem below, a sketch of the proof is given in Appendix B.

Theorem 8 *Assume that* $B_m < \infty$ *for some* $m \in \mathbb{N}$ *, and* $v_0 = v_0^v \in H^m \cap C_0(K^n)$ *satisfies*

$$
|v_0|_{\infty} \le M, \quad ||v_0||_m \le M_m v^{-m}, \quad 0 < v \le 1.
$$

Then

$$
\mathbb{E}\|v(\tau;v_0)\|_m^2 \le C_m v^{-m}, \quad \forall \tau \in [0,\infty),\tag{2.4}
$$

where $C_{M,m}$ *also depends on* M *,* M_m *and* B_m *,* B_{m*} *.*

Neglecting the dependence on *ν*, we have that if $B_m < \infty$, $m \in \mathbb{N}$, and a r.v. $v_0^{\omega} \in H^m \cap C_0(K^n)$ satisfies $\mathbb{E} ||v_0||_m^2 < \infty$ and $\mathbb{E} \exp(c |v_0|^2) < \infty$ for some $c > 0$, then Eq. (2.1) has a solution, equal v_0 at $t = 0$, such that

$$
\mathbb{E} \|v(\tau; v_0)\|_m^2 \le e^{-t} \mathbb{E} \|v_0\|_m^2 + C, \quad \tau \ge 0,
$$
\n(2.5)

$$
\mathbb{E}\sup_{0\leq\tau\leq T}\|v(\tau;v_0)\|_m^2\leq C',\tag{2.6}
$$

where $C > 0$ depend on *c*, v , $\mathbb{E} \exp(c |v_0|^2)$, B_{m*} and B_m , while C' also depends on $\mathbb{E} \|v_0\|_m^2 < \infty$ and *T*. See Appendix B.

As it is shown in $[10]$ $[10]$, the estimate (2.3) jointly with an abstract theorem from $[11]$ $[11]$, imply that under a mild nondegeneracy assumption on the random force the Markov process in the space $C_0(K^n)$, constructed in Theorem [6,](#page-5-2) is mixing:

Theorem 9 *For each* $v > 0$ *, there is an integer* $N = N(B_*, v) > 0$ *such that if* $b_d \neq 0$ for $|d| \leq N$, then the Eq. ([1.1](#page-0-0)) is mixing. I.e. it has a unique stationary *measure* $\mu_{\nu} \in \mathcal{P}(C_0(K^n))$, and for any probability measure $\lambda \in \mathcal{P}(C_0(K^n))$ we *have* $\mathcal{B}_t^* \lambda \rightarrow \mu_v$ *as* $t \rightarrow \infty$ *.*

² In [\[8\]](#page-24-2) polynomial moments of the random variables $\sup_{z \leq s \leq \tau+T} |v(s)|_{\infty}^2$ are estimated, and in [\[10](#page-24-3)] these results are strengthened to the exponential bounds (2.3) .

Under the assumption of Theorem [8,](#page-7-2) for any $u_0 \in H^m$ the law $\mathcal{D}u(t; u_0)$ of a solution $u(t; u_0)$ is a measure in H^m . The mixing property in Theorem [9](#page-7-3) and [\(2.4\)](#page-7-4) easily imply

Corollary 10 *If under the assumptions of Theorem* [9](#page-7-3) $B_m < \infty$ *for some* $m \in \mathbb{N}$ *and* $u_0 \in H^m$, then $\mathcal{D}(u(t; u_0)) \rightarrow \mu_v$ in $\mathcal{P}(H^m)$.

In view of Theorems [7,](#page-7-5) [8](#page-7-2) with $v_0 = 0$ and the established mixing, we have:

Corollary 11 *Under the assumptions of Theorem* [9](#page-7-3), *if* $v^{st}(\tau)$ *is the stationary solution of the equation, then*

$$
\mathbb{E}\exp(c_*\sup_{\tau\leq s\leq \tau+T}|v^{st}(s)|_\infty^2)\leq C,
$$

where the constant $C > 0$ *depends only on T* and B_* . If in addition $B_m < \infty$ for some $m \in \mathbb{N} \cup \{0\}$, then $\mathbb{E} \|v^{st}(\tau)\|_m^2 \leq C_m v^{-m}$, where C_m depends on B_* and B_m .

Finally we note that applying Itô's formula to $||v^{st}(\tau)||_0^2$, where v^{st} is a stationary solution of (2.1) , and taking the expectation we get the balance relation

$$
\mathbb{E} \|v^{st}(\tau)\|_{1}^{2} = B_{0}.
$$
 (2.7)

We cannot prove that $\mathbb{E} \|v^{st}(\tau)\|_0^2 \geq B' > 0$ for some *v*-independent constant *B'*, and cannot bound from below the energy $\frac{1}{2} \mathbb{E} \| v(\tau; v_0) \|_0^2$ of a solution v by a positive ν-independent quantity. Instead in next section we get a weaker conditional lower bound on the energies of solutions.

3 Conditional lower bound for the *L***2-norm of solutions**

In this section we prove the following result:

Lemma 12 *Let* $B_2 < \infty$ *and* $u(\tau; u_0)$ *, where* $u_0 \in H^2 \cap C_0(K^n)$ *is non-random, be a solution of Eq. ([2.1](#page-6-0)). Take any constants* $\chi > 0, \Gamma \ge 1, \tau_0 \ge 0$, *and define the stopping time*

$$
\tau_{\Gamma} := \inf \{ \tau \geq \tau_0 : ||u(\tau)||_2 \geq \Gamma \}
$$

(as usual, $\tau_{\Gamma} = \infty$ *if the set under the inf-sign is empty). Then*

$$
\mathbb{E}\int_{\tau_0}^{\tau \wedge \tau_{\Gamma}} \mathbb{I}_{[0,\chi]}(\|u(s)\|_0)ds \le 2(1+\tau-\tau_0)B_0^{-1}\chi\Gamma,
$$
 (3.1)

for any $\tau > \tau_0$ *.*

Proof We establish the result by adapting the proof from [\[16\]](#page-24-12) (also see [\[11](#page-24-11), Theorem 5.2.12]) to non-stationary solutions. The argument relies on the concept of local time for semi-martingales (see e.g. $[14, Chapter VI.1]$ $[14, Chapter VI.1]$ for details of the concept). By $[\cdot]_b$ we denote the quasinorm $[u]_b^2 = \sum_d |u_d|^2 b_d^2$.

Without loss of generality we assume $\tau_0 = 0$. Otherwise we just need to replace $u(\tau, x)$ by the process $\tilde{u}(\tau, x) := u(\tau + \tau_0, x)$, apply the lemma with $\tau_0 = 0$ and with *u*₀ replaced by the initial data $\tilde{u}_0^{\omega} = u^{\omega}(\tau_0; u_0)$, and then average the estimate in the random \tilde{u}_0^{ω} .

Let us write the solution $u(\tau; u_0)$ as $u(\tau) = \sum_{d \in \mathbb{N}^n} u_d(\tau) \varphi_d$. For any fixed function $g \in C^2(\mathbb{R})$, consider the process

$$
f(\tau) = g(||u(\tau \wedge \tau_{\Gamma})||_0^2).
$$

Since

$$
\partial_u g(\|u\|_0^2) = 2g'(\|u\|_0^2)\langle\langle u, \cdot \rangle\rangle, \quad \partial_{uu} g(\|u\|_0^2) = 4g''(\|u\|_0^2)\langle\langle u, \cdot \rangle\rangle\langle\langle u, \cdot \rangle\rangle
$$

+2g'(\|u\|_0^2)\langle\langle \cdot, \cdot \rangle\rangle,

then by Itô's formula we have

$$
f(\tau) = f(0) + \int_0^{\tau \wedge \tau_{\Gamma}} A(s)ds + \sum_{d \in \mathbb{N}^n} b_d \int_0^{\tau \wedge \tau_{\Gamma}} 2g'(\|u(s)\|_0^2) \langle u_d(s), d\beta_d(s) \rangle, \tag{3.2}
$$

$$
A(s) = 2g'(\|u\|_0^2)\langle\langle u, \Delta u - \frac{1}{v}i|u|^2u\rangle\rangle + 2\sum_d b_d^2(g''(\|u\|_0^2)|u_d|^2 + g'(\|u\|_0^2))
$$

= $-2g'(\|u\|_0^2)\|u\|_1^2 + 2g''(\|u\|_0^2)[u]_b^2 + 2g'(\|u\|_0^2)B_0, \quad u = u(s).$ (3.3)

Step 1: We firstly show that for any bounded measurable set $G \subset \mathbb{R}$, denoting by \mathbb{I}_G its indicator function, we have the following equality

$$
2\mathbb{E}\int_{0}^{\tau \wedge \tau_{\Gamma}}\mathbb{I}_{G}(f(s))\left(g'(\|u(s)\|_{0}^{2})\right)^{2}\!\{u(s)\}_{b}^{2}ds = \int_{-\infty}^{\infty}\mathbb{I}_{G}(a)
$$
\n
$$
\left[\mathbb{E}(f(\tau)-a)_{+} - \mathbb{E}(f(0)-a)_{+} - \mathbb{E}\int_{0}^{\tau \wedge \tau_{\Gamma}}\mathbb{I}_{(a+\infty)}(f(s))A(s)ds\right]da.
$$
\n(3.4)

Let $L(\tau, a)$, $(\tau, a) \in [0, \infty) \times \mathbb{R}$, be the local time for the semi martingale $f(\tau)$ (see e.g. $[14, Chapter VI.1]$ $[14, Chapter VI.1]$. Since in view of (3.2) the quadratic variation of the process $f(\tau)$ is

$$
d\langle f, f\rangle_s = \sum_d (2g'(\|u\|_0^2)|u_d|b_d)^2 = 4(g'(\|u\|_0^2))^2[u]_b^2,
$$

 $\textcircled{2}$ Springer

then for any bounded measurable set $G \subset \mathbb{R}$, we have the following equality (known as the occupation time formula, see $[14, Corollary VI.1.6]$ $[14, Corollary VI.1.6]$),

$$
\int_0^{\tau \wedge \tau_{\Gamma}} \mathbb{I}_G(f(s)) 4(g'(\|u(s)\|_0^2))^2 [u(s)]_b^2 ds = \int_{-\infty}^{\infty} \mathbb{I}_G(a) L(\tau, a) da. \tag{3.5}
$$

For the local time $L(\tau, a)$, due to Tanaka's formula (see [\[14](#page-24-13), Theorem VI.1.2]) we have

$$
(f(\tau) - a)_{+} = (f(0) - a)_{+}
$$

+
$$
\sum_{d \in \mathbb{N}^{n}} b_{d} \int_{0}^{\tau \wedge \tau_{\Gamma}} \mathbb{I}_{(a, +\infty)}(f(s)) 2g'(\|u(s)\|_{0}^{2}) \langle u_{d}(s), d\beta_{d}(s) \rangle_{(3.6)}
$$

+
$$
\int_{0}^{\tau \wedge \tau_{\Gamma}} \mathbb{I}_{(a, +\infty)}(f(s)) A(s) ds + \frac{1}{2} L(\tau, a).
$$

Taking expectation of both sides of (3.5) and (3.6) we obtain the required equality (3.4) . **Step 2:** Let us choose $G = [\rho_0, \rho_1]$ with $\rho_1 > \rho_0 > 0$, and $g(x) = g_{\rho_0}(x) \in C^2(\mathbb{R})$ such that $g'(x) \ge 0$, $g(x) = \sqrt{x}$ for $x \ge \rho_0$ and $g(x) = 0$ for $x \le 0$. Then due to the factors $\mathbb{I}_{G}(f)$ and $\mathbb{I}_{G}(a)$ in [\(3.4\)](#page-9-1), we may there replace $g(x)$ by \sqrt{x} , and accordingly replace $g(\|u\|_0^2)$, $g'(\|u\|_0^2)$ and $g''(\|u\|_0^2)$ by $\|u\|_0$, $\frac{1}{2}\|u\|_0^{-1}$ and $-\frac{1}{4}\|u\|_0^{-3}$. So the relation [\(3.4\)](#page-9-1) takes the form

$$
\mathbb{E} \int_0^{\tau \wedge \tau_{\Gamma}} \mathbb{I}_G(f(s)) \|u(s)\|_0^{-2} [u(s)]_b^2 = 2 \int_{\rho_0}^{\rho_1} \left[\mathbb{E}(f(\tau) - a)_+ - \mathbb{E}(f(0) - a)_+ \right] da
$$

\n
$$
- 2 \int_{\rho_0}^{\rho_1} \left\{ \mathbb{E} \int_0^{\tau \wedge \tau_{\Gamma}} \mathbb{I}_{(a, +\infty)} \Big(f(s)\Big) \Big[\frac{2}{2 \|u(s)\|_0} (B_0 - \|u(s)\|_1^2) - \frac{2}{4 \|u(s)\|_0^3} [u(s)]_b^2 \Big] ds \right\} da.
$$

Since the l.h.s. of the above equality is non-negative, we have

$$
\int_{\rho_0}^{\rho_1} \left[\mathbb{E} \int_0^{\tau \wedge \tau_{\Gamma}} \mathbb{I}_{(a, +\infty)} \Big(f(s) \Big) \frac{1}{\|u(s)\|_0^3} \Big(B_0 \|u(s)\|_0^2 - \frac{1}{2} [u(s)]_b^2 \Big) ds \right] da
$$
\n
$$
\leq \int_{\rho_0}^{\rho_1} \mathbb{E} \Big[\Big((f(\tau) - a)_{+} - (f(0) - a)_{+} \Big) + \int_0^{\tau \wedge \tau_{\Gamma}} \mathbb{I}_{(a, +\infty)} \Big(f(s) \Big) \frac{\|u(s)\|_1^2}{\|u(s)\|_0} ds \Big] da.
$$
\n(3.7)

Noting that

$$
B_0||u||_0^2 - \frac{1}{2}[u(s)]_b^2 = \sum_{d \in \mathbb{N}^n} (B_0 - \frac{1}{2}b_d^2)|u_d|^2 \ge \frac{B_0}{2}||u||_0^2,
$$

that by the definition of the stopping time τ_{Γ}

$$
(f(\tau) - a)_+ - (f(0) - a)_+ \le \Gamma,
$$

and that by interpolation,

$$
\int_0^{\tau \wedge \tau_{\Gamma}} \frac{\|u(s)\|_1^2}{\|u(s)\|_0} ds \leq \int_0^{\tau \wedge \tau_{\Gamma}} \|u(s)\|_2 ds \leq (\tau \wedge \tau_{\Gamma})\Gamma,
$$

we derive from [\(3.7\)](#page-10-2) the relation

$$
\frac{B_0}{2}\int_{\rho_0}^{\rho_1}\left(\mathbb{E}\int_0^{\tau\wedge\tau_{\Gamma}}\mathbb{I}_{(a,+\infty)}(f(s))\|u(s)\|_0^{-1}ds\right)da\leq(\rho_1-\rho_0)\Gamma\big(1+\tau).
$$

When $\rho_0 \to 0$, we have $g(x) \to \sqrt{x}$ and $f(\tau) \to ||u(\tau \wedge \tau)||_0$. So sending ρ_0 to 0 and using Fatou's lemma we get from the last estimate that

$$
\int_0^{\rho_1} \mathbb{E} \int_0^{\tau \wedge \tau_{\Gamma}} \mathbb{I}_{(a,\infty)} \Big(||u(s)||_0 \Big) ||u(s)||_0^{-1} ds da \leq 2\rho_1 (1+\tau) B_0^{-1} \Gamma.
$$

As the l.h.s. above is not smaller than

$$
\frac{1}{\chi}\int_0^{\rho_1}\mathbb{E}\int_0^{\tau\wedge\tau_{\Gamma}}\mathbb{I}_{(a,\chi]}(\|u(s)\|_0)dsda,
$$

then

$$
\frac{1}{\rho_1} \int_0^{\rho_1} \mathbb{E} \int_0^{\tau \wedge \tau_{\Gamma}} \mathbb{I}_{(a,\chi]}(\|u(s)\|_0) ds da \le 2(1+\tau) B_0^{-1} \Gamma \chi. \tag{3.8}
$$

By the monotone convergence theorem

$$
\lim_{a\to 0} \mathbb{E} \int_0^{\tau \wedge \tau_{\Gamma}} \mathbb{I}_{(a,\chi]}(\|u(s)\|_0) ds = \mathbb{E} \int_0^{\tau \wedge \tau_{\Gamma}} \mathbb{I}_{(0,\chi]}(\|u(s)\|_0) ds,
$$

so we get from (3.8) that

$$
\mathbb{E}\int_0^{\tau \wedge \tau_{\Gamma}} \mathbb{I}_{(0,\chi]}(\|u(s)\|_{0}) ds \le 2(1+\tau)B_0^{-1}\Gamma \chi. \tag{3.9}
$$

Step 3: We continue to verify that

$$
\mathbb{E} \int_0^{\tau \wedge \tau_{\Gamma}} \mathbb{I}_{\{0\}}(\|u(s)\|_0) ds = 0.
$$
 (3.10)

To do this let us fix any index $d \in \mathbb{N}^n$ such that $b_d \neq 0$. The process $u_d(\tau)$ is a semimartingale, $du_d = v_d ds + b_d d\beta_d$, where $v_d(s)$ is the *d*-th Fourier coefficient of $\Delta u + \frac{1}{v}i|u|^2u$ for the solution $u(\tau) = \sum_d u_d(\tau)\varphi_d$ which we discuss. Consider the stopping time

$$
\tau_R = \inf\{s \leq \tau \wedge \tau_{\Gamma} : |u(s)|_{\infty} \geq R\}.
$$

Due to [\(2.3\)](#page-7-1) and [\(2.6\)](#page-7-6), $\mathbb{P}(\tau_R = \tau \wedge \tau_\Gamma) \to 1$ as $R \to \infty$. Let us denote $u_d^R(\tau) =$ $u_d(\tau \wedge \tau_R)$. To prove [\(3.10\)](#page-11-1) it suffices to verify that

$$
\pi(\delta) := \mathbb{E} \int_0^{\tau \wedge \tau_{\Gamma}} \mathbb{I}_{\{|u_d(s)| < \delta\}} ds \to 0 \text{ as } \delta \to 0.
$$

If we replace above u_d by u_d^R , then the obtained new quantity $\pi^R(\delta)$ differs from $\pi(\delta)$ at most by $\mathbb{P}(\tau_R < \tau \wedge \tau_\Gamma)$. The process u_d^R is an Ito process with a bounded drift. So by [\[7,](#page-24-14) Theorem 2.2.2, p. 52], $\pi^R(\delta)$ goes to zero with δ. Thus, given any $\varepsilon > 0$, we firstly choose *R* sufficiently big and then δ sufficiently small to achieve $\pi(\delta) < \varepsilon$, for a suitable $\delta(\varepsilon) > 0$. So [\(3.10\)](#page-11-1) is verified. Jointly with [\(3.9\)](#page-11-2) this proves [\(3.1\)](#page-8-2).

4 Lower bounds for Sobolev norms of solutions

In this section we work with Eq. (1.1) in the original time scale t and provide lower bounds for the H^m -norms of its solutions with $m > 2$. This will prove the assertion (1) of Theorem [1.](#page-2-2) As always, the constants do not depend on ν , unless otherwise stated.

Theorem 13 *For any integer m* \geq 3*, if B_m* $< \infty$ *and*

$$
0 < \kappa < \frac{1}{35}, \quad T_0 \ge 0, \quad T_1 > 0,
$$

then for any r.v. $u_0(x) \in H^m \cap C_0(K^n)$ *, satisfying*

$$
\mathbb{E}\|u_0\|_m^2 < \infty, \quad \mathbb{E}\exp(c\|u_0\|_{\infty}^2) \le C < \infty \tag{4.1}
$$

for some c, C > 0, we have

$$
\mathbb{P}\left\{\sup_{T_0 \le t \le T_0 + T_1 \nu^{-1}} \|u(t; u_0)\|_{m} \ge K \nu^{-m\kappa}\right\} \to 1 \text{ as } \nu \to 0,
$$
 (4.2)

for every $K > 0$ *.*

Proof Consider the complement to the event in (4.2) :

$$
Q^{\nu} = \left\{\sup_{T_0 \le t \le T_0 + \frac{T_1}{\nu}} \|u(t)\|_m < K \nu^{-m\kappa}\right\}.
$$

We will prove the assertion [\(4.2\)](#page-12-1) by contradiction. Namely, we assume that there exists a $\gamma > 0$ and a sequence $v_i \rightarrow 0$ such that

$$
\mathbb{P}(Q^{\nu_j}) \ge 5\gamma \quad \text{for} \quad j = 1, 2, \dots,
$$
 (4.3)

and will derive a contradiction. Below we write Q^{ν_j} as Q and always suppose that

$$
\nu\in\{\nu_1,\nu_2,\ldots\}.
$$

The constants in the proof may depend on K , K , γ , B _{*m* \vee *m*^{*}}, but not on ν .

Without lost of generality we assume that $T_1 = 1$. For any $T_0 > 0$, due to [\(2.5\)](#page-7-6) and [\(2.3\)](#page-7-1) the r.v. $\tilde{u}_0 := u(T_1)$ satisfies [\(4.1\)](#page-12-2) with *c* replaced by *c*/5. So considering $\tilde{u}(t, x) = u(t + T_0, x)$ we may assume that $T_0 = 0$.

Let us denote $J_1 = [0, \frac{1}{v}]$. Due to Theorem [7,](#page-7-5)

$$
\mathbb{P}(\mathcal{Q}_1) \ge 1 - \gamma, \quad \mathcal{Q}_1 = \{\sup_{t \in J_1} |u(t)|_{\infty} \le C_1(\gamma)\},
$$

uniformly in *ν*, for a suitable $C_1(\gamma)$. Then, by the definition of Q and Sobolev's interpolation,

$$
||u^{\omega}(t)||_{l} \le C_{l,\gamma} v^{-l\kappa}, \quad \omega \in Q \cap Q_{1}, \ t \in J_{1}, \tag{4.4}
$$

for $l \in [0, m]$ (and any $v \in \{v_1, v_2, \dots\}$).

Denote $J_2 = [0, \frac{1}{2\nu}]$ and consider the stopping time

$$
\tau_1 = \inf\{t \in J_2 : \|u(t)\|_2 \ge C_{2,\gamma} v^{-2\kappa}\} \le \frac{1}{2\nu}.
$$

Then $\tau_1 = \frac{1}{2\nu}$ for $\omega \in Q \cap Q_1$. So due to [\(3.1\)](#page-8-2) with $\Gamma = C_{2,\gamma} \nu^{-2\kappa}$, for any $\chi > 0$, we have

$$
\mathbb{E}\big(v\int_{J_2} \mathbb{I}_{[0,\chi]}(\|u(s)\|_0) ds \mathbb{I}_{Q\cap Q_1}(\omega)\big) = \mathbb{E}\big(v\int_0^{\frac{1}{2\nu}\wedge\tau_1} \mathbb{I}_{[0,\chi]}(\|u(s)\|_0) ds \mathbb{I}_{Q\cap Q_1}(\omega)\big) \leq \mathbb{E}\big(v\int_0^{\frac{1}{2\nu}\wedge\tau_1} \mathbb{I}_{[0,\chi]}(\|u(s)\|_0) ds\big) \leq C \nu^{-2\kappa} \chi.
$$

Consider the event

$$
\Lambda = \{ \omega \in \mathcal{Q} \cap \mathcal{Q}_1 : ||u(s)||_0 \leq \chi, \ \forall s \in J_2 \}.
$$

Due to the above, we have,

$$
\mathbb{P}(\Lambda) \leq 2\mathbb{E}\big(v\int_{J_2} \mathbb{I}_{[0,\chi]}(\|u(s)\|_0) ds \mathbb{I}_{Q\cap Q_1}(\omega)\big) \leq 2Cv^{-2\kappa}\chi.
$$

So $\mathbb{P}(\Lambda) \leq \gamma$ if we choose

$$
\chi = c_3(\gamma)\nu^{2\kappa}, \quad c_3(\gamma) = \gamma(2C)^{-1}.
$$
 (4.5)

 \mathcal{D} Springer

Let us set

$$
Q_2 = (Q \cap Q_1) \setminus \Lambda, \quad \mathbb{P}(Q_2) \ge 3\gamma, \tag{4.6}
$$

and for χ as in [\(4.5\)](#page-13-0), consider the stopping time

$$
\tilde{\tau}_1=\inf\{t\in J_2:\|u(t)\|_0\geq \chi\}.
$$

Then $\tilde{\tau}_1 \leq \frac{1}{2\nu}$ for all $\omega \in Q_2$. Consider the function

$$
v(t, x) := u(\tilde{\tau}_1 + t, x), \quad t \in [0, \frac{1}{2v}].
$$

It solves Eq. [\(1.1\)](#page-0-0) with modified Wiener processes and with initial data $v_0(x)$ = $u^{\omega}(\tilde{\tau}_1, x)$, satisfying

$$
||v_0^{\omega}||_0 \ge \chi = c v^{2\kappa} \quad \text{if} \quad \omega \in \mathcal{Q}_2. \tag{4.7}
$$

Now we introduce another stopping time, in terms of $v(t, x)$:

$$
\tau_2 = \inf\{t \in [0, \frac{1}{2\nu}] : ||v(t)||_m \ge K\nu^{-m\kappa}\} \le \frac{1}{2\nu}.
$$

For $\omega \in Q_2$, $\tau_2 = \frac{1}{2\nu}$ and in view of [\(4.4\)](#page-13-1)

$$
||v^{\omega}(t)||_{l} \le C_{3}(\gamma)v^{-l\kappa}, \quad t \in [0, \frac{1}{2\nu}], \ l \in [0, m], \quad \forall \omega \in Q_{2}.
$$
 (4.8)

Step 1: Let us estimate from above the increment $\mathcal{E}(t, x) = |v(t \wedge \tau_2, x)|^2 - |v_0(x)|^2$. Due to Itô's formula, we have that

$$
\mathcal{E}(t, x) = 2\nu \int_0^{t \wedge \tau_2} \left(\langle v(s, x), \Delta v(s, x) \rangle + \sum_{d \in \mathbb{N}^n} b_d^2 \varphi_d^2(x) \right) ds + \sqrt{\nu} M(t, x),
$$

$$
M(t, x) = \int_0^{t \wedge \tau_2} \sum_{d \in \mathbb{N}^n} b_d \varphi_d(x) \langle v(s, x), d\beta_d(s) \rangle.
$$

We treat *M* as a martingale $M(t)$ in the space $H¹$. Since in view of [\(A.3\)](#page-21-0) for $0 \leq s < \tau_2$ we have

$$
||v(s)\varphi_d||_1 \leq C(|v(s)|_{\infty} ||\varphi_d||_1 + |v(s)||_1 |\varphi_d|_{\infty}) \leq C(\zeta d + \zeta^{(m-1)/m} v^{-\kappa}),
$$

where $\zeta = \sup_{0 \le s \le \frac{1}{\nu}} |u(s)|_{\infty}$ (the assertion is empty if $\tau_2 = 0$), then for any $0 < \frac{1}{\nu}$ $T_* \leq \frac{1}{2\nu}$

$$
\mathbb{E} \|M(T_*)\|_1^2 \le \int_0^{T_*} \mathbb{E} \sum_d b_d^2 \|\varphi_d v(s)\|_1^2 ds \le C T_* \nu^{-2\kappa}, \tag{4.9}
$$

where we used that $B_1 < \infty$. So by Doob's inequality

$$
\mathbb{P}\Big(\sup_{0\leq s\leq T_*} \|M(s)\|_1^2 \geq r^2\Big) \leq CT_* r^{-2} \nu^{-2\kappa}, \quad \forall r > 0. \tag{4.10}
$$

Let us choose

$$
T_* = v^{-b}, \quad b \in (0, 1),
$$

where *b* will be specified later. Then $1 \leq T_* \leq \frac{1}{2\nu}$ if ν is sufficiently small, so due to [\(4.10\)](#page-15-0)

$$
\mathbb{P}(\mathcal{Q}_3) \ge 1 - \gamma, \quad \mathcal{Q}_3 = \{ \sup_{0 \le \tau \le T_*} \|M(\tau)\|_1 \le C_4(\gamma) \nu^{-\kappa} \sqrt{T_*} \},
$$

for a suitable $C_4(\gamma)$ (and for $\nu \ll 1$); thus $\mathbb{P}(Q_2 \cap Q_3) \geq 2\gamma$. Since $\|\langle \nu, \Delta \nu \rangle\|_1 \leq$ $C|v|_{\infty} ||v||_3$ by [\(A.2\)](#page-20-1) and $||\sum_d b_d \varphi_d||_1 \leq C$, then in view of [\(4.8\)](#page-14-0) and the definition of *Q*3,

$$
\|\mathscr{E}^{\omega}(\tau)\|_{1} \le C(\gamma)(\nu^{1-3\kappa}T_{*} + \nu^{\frac{1}{2}-\kappa}T_{*}^{1/2}), \qquad \forall \tau \in [0, T_{*}], \ \ \forall \omega \in Q_{2} \cap Q_{3}.
$$
\n(4.11)

Step 2: For any $x \in K^n$, denoting $R(t) = |v(t, x)|^2$, $a(t) = \Delta v(t, x)$ and $\xi(t) =$ $\xi(t, x)$, we write the equation for $v(t) := v(t, x)$ as an Itô process:

$$
dv(t) = (-iRv + va)dt + \sqrt{v} d\xi(t).
$$
 (4.12)

Setting $w(t) = e^{i \int_0^t R(s) ds} v(t)$, we observe that w also is an Itô process, $w(0) = v_0$ and $dv = e^{-i \int_0^t R(s) ds} dw - i Rv dt$. From here and [\(4.12\)](#page-15-1),

$$
w(t) = v_0 + v \int_0^t e^{i \int_0^s R(s') ds'} a(s) ds + \sqrt{v} \int_0^t e^{i \int_0^s R(s') ds'} d\xi(s).
$$

So $v(t \wedge \tau_2) = v(t \wedge \tau_2, x)$ can be written as

$$
v(t \wedge \tau_2, x) = I_1(t \wedge \tau_2, x) + I_2(t \wedge \tau_2, x) + I_3(t \wedge \tau_2, x), \tag{4.13}
$$

where

$$
I_1(t, x) = e^{-i \int_0^t |v(s,x)|^2 ds} v_0, \quad I_2(t, x) = \nu \int_0^t e^{-i \int_s^t |v(s',x)|^2 ds'} \Delta v(s, x) ds,
$$

$$
I_3(t, x) = \sqrt{\nu} e^{-i \int_0^t |v(s',x)|^2 ds'} \int_0^t e^{i \int_0^s |v(s',x)|^2 ds'} d\xi(s, x).
$$

Our next goal is to obtain a lower bound for $||v(T_*)||_1$ when $\omega \in Q_2 \cap Q_3$, using the above decomposition [\(4.13\)](#page-15-2).

Step 3: We first deal with the stochastic term $I_3(t)$. For $0 \le s \le s_1 \le T_* \wedge \tau_2$ we set

$$
W(s, s_1, x) := \exp\left(i \int_s^{s_1} |v(s', x)|^2 ds'\right), \quad F(s, s_1, x) := \int_s^{s_1} |v(s', x)|^2 ds'; \quad (4.14)
$$

then $W(s, s_1, x) = \exp(iF(s, s_1, x))$. The functions *F* and *W* are periodic in *x*, but not odd. Speaking about them we understand $\|\cdot\|_m$ as the non-homogeneous Sobolev norm, so $||F||_m^2 = ||F||_0^2 + ||(-\Delta)^{m/2}F||_0^2$, etc. We write *I*₃ as

$$
I_3(t) = \sqrt{\nu} \,\overline{W}(0, t \wedge \tau_2, x) \int_0^{t \wedge \tau_2} W(0, s, x) d\xi(s, x). \tag{4.15}
$$

In view of $(A.1)$,

$$
\|\exp(iF(s,s_1\cdot))\|_{k} \le C_k(1+|F(s,s_1,\cdot)|_{\infty})^{k-1} \|F(s,s_1,\cdot)\|_{k}, \quad k \in \mathbb{N}. \tag{4.16}
$$

For any $s \in J = [0, T_* \wedge \tau_2)$, by [\(A.3\)](#page-21-0) and the definition of τ_2 , we have that $v := v(s)$ satisfies

$$
\| |v|^2 \|_1 \le C |v|_{\infty} \|v\|_1 \le C |v|_{\infty} \|v\|_0^{1-1/m} \|v\|_m^{1/m} \le C' |v|_{\infty}^{2-1/m} v^{-\kappa} \tag{4.17}
$$

(this assertion is empty if $\tau_2 = 0$ since then $J = \emptyset$). So for $s, s_1 \in J$,

$$
|F(s, s_1, \cdot)|_{\infty} \le |s_1 - s| \sup_{s' \in J} |v(s')|_{\infty}^2, \quad ||F(s, s_1, \cdot)||_k
$$

$$
\le C v^{-\kappa k} |s_1 - s| \big(\sup_{s' \in J} |v(s')|_{\infty} \big)^{2 - k/m}
$$

for $k \leq m$. Then, due to [\(4.16\)](#page-16-0),

$$
||W(0, s \wedge \tau_2, \cdot)||_1 \le C'T_*\nu^{-\kappa}(1 + \sup_{s \in J} |v(s)|_\infty^2). \tag{4.18}
$$

Consider the stochastic integral in [\(4.15\)](#page-16-1),

$$
N(t,x) = \int_0^t W(0,s,x)d\xi(s,x).
$$

The process $t \mapsto W(0, t, x)$ is adapted to the filtration $\{\mathcal{F}_t\}$, and

$$
dW(0, t, x) = i|v(t, x)|^2 W(0, t, x)dt.
$$

So integrating by parts (see, e.g., [\[14](#page-24-13), Proposition IV.3.1]) we re-write *N* as

$$
N(t,x) = W(0,t,x)\xi(t,x) - i\int_0^t \xi(s,x)|v(s,x)|^2W(0,s,x)ds,
$$

² Springer

and we see from [\(4.15\)](#page-16-1) that

$$
I_3(t) = \sqrt{\nu} \xi(t \wedge \tau_2, x) + i \sqrt{\nu} \int_0^{t \wedge \tau_2} \xi(s, x) |\nu(s, x)|^2 W(s, t \wedge \tau_2, x) ds.
$$
\n(4.19)

Due to [\(1.4\)](#page-1-2) and since $B_m < \infty$, the Wiener process $\xi(t, x)$ satisfies

$$
\mathbb{E} \|\xi(T_*, x)\|_1^2 \leq C B_1 T_*,
$$

and

$$
\mathbb{E}\sup_{0\leq t\leq T_*}|\xi(t,\cdot)|_{\infty}\leq \sum_{d\in\mathbb{N}^n}b_d(\mathbb{E}\sup_{0\leq t\leq T_*}|\beta_d(t)\varphi_d|_{\infty})\leq CB_*\sqrt{T_*},
$$

(we recall that $B_* = \sum_{d \in \mathbb{N}^n} |b_d| < \infty$). Therefore,

$$
\mathbb{P}(Q_4) \ge 1 - \gamma, \quad Q_4 = \{ \sup_{0 \le t \le T_*} (\|\xi(t)\|_1 \vee |\xi(t)|_\infty) \le C T_*^{1/2} \},
$$

with a suitable $C = C(\gamma)$. Let

$$
\tilde{Q} = \bigcap_{i=1}^4 Q_i,
$$

then $\mathbb{P}(\tilde{Q}) \ge \gamma$. As $\tau_2 = T_*$ for $\omega \in \tilde{Q}$, then due to [\(4.17\)](#page-16-2), [\(4.18\)](#page-16-3), [\(4.19\)](#page-17-0) and [\(A.3\)](#page-21-0), for $\omega \in \tilde{Q}$ we have

$$
\sup_{0 \le t \le T_*} \|I_3^{\omega}(t)\|_1 \le \sqrt{\nu} \sup_{0 \le t \le T_*} \left(\|\xi^{\omega}(t)\|_1 + \int_0^t \|\xi^{\omega}(s)|v^{\omega}(s)|^2 W^{\omega}(s,t)\|_1 ds \right) \tag{4.20}
$$

$$
\le C T_*^{5/2} \nu^{\frac{1}{2} - \kappa}.
$$

Setp 4: We then consider the term $I_2 = \nu \int_0^{t \wedge \tau_2} \overline{W}(s, t \wedge \tau_2, x) \Delta v(s, x) ds$. To bound its H^1 -norm we need to estimate $||W \Delta v||_1$. Since

$$
\|\partial_x^a W \partial_x^b v\|_0 \le C \|W\|_3^{1/3} \|v\|_3^{2/3} |v|_{\infty}^{1/3} \quad \text{if} \quad |a| = 1, |b| = 2,
$$

(see $[17,$ Proposition 3.6]), we have

$$
||W\Delta v||_1 \leq C(||v||_3 + ||W||_3^{1/3}||v||_3^{2/3}|v|\infty^{1/3}).
$$

Then in view of [\(4.16\)](#page-16-0) and [\(4.8\)](#page-14-0), for $\omega \in \tilde{Q}$

$$
||W\Delta v||_1 \le C\left(\nu^{-3\kappa} + (T_*^3 \nu^{-3\kappa})^{1/3} \nu^{-2\kappa}\right) \le C \nu^{-3\kappa} T_*,
$$

² Springer

and accordingly

$$
\sup_{0 \le t \le T_*} \|I_2^{\omega}(t)\|_1 \le \nu \sup_{0 \le t \le T_*} \int_0^t \|W^{\omega}(s, T_*) \Delta v^{\omega}(s)\|_1 ds \le C \nu^{1-3\kappa} T_*^2, \quad \forall \omega \in \tilde{Q}.\tag{4.21}
$$

Step 5: Now we estimate from below the H^1 -norm of the term $I_1^{\omega}(T_*, x)$, $\omega \in \tilde{Q}$. Writing it as $I_1^{\omega}(T_*, x) = e^{-i T_* |v_0(x)|^2} e^{-i \int_0^{T_*} \mathcal{E}(s, x) ds} v_0(x)$ wee see that

$$
||I_1^{\omega}(T_*)||_1 \ge ||\nabla(\exp(-iT_*|v_0|^2)v_0||_0 - ||\nabla(\exp(-i\int_0^{T_*}\mathscr{E}(s)ds))v_0||_0 - ||v_0||_1.
$$

This first term on the r.h.s is

$$
T_{*}||v_{0}\nabla(|v_{0}|^{2})||_{0}=T_{*}\frac{2}{3}||\nabla|v_{0}|^{3}||_{0}\geq CT_{*}||v_{0}|^{3}||_{0}\geq CT_{*}||v_{0}||_{0}^{3}\geq CT_{*}\nu^{6\kappa},\quad C>0,
$$

where we have used the fact that $u|_{\partial K^n} = 0$, Poincaré's inequality and [\(4.7\)](#page-14-1).

For $\omega \in \tilde{Q}$ and $0 \leq s \leq T_*$, in view of [\(4.11\)](#page-15-3), the second term is bounded by

$$
\left\| \left(\int_0^{T_*} \nabla \mathscr{E}(s) ds \right) v_0 \right\|_0 \le C T_* |v_0|_\infty \sup_{0 \le s \le T_*} \| \mathscr{E}(s) \|_1 \le C T_* (v^{1-3\kappa} T_* + v^{\frac{1}{2} - \kappa} T_*^{1/2}).
$$

Therefore, using [\(4.11\)](#page-15-3), we get for the term $I_1^{\omega}(T_*)$ the following lower bound:

$$
||I_1^{\omega}(T_*)||_1 \geq C\Big(\nu^{6\kappa}T_*-T_*\big(\nu^{1-3\kappa}T_*+\nu^{\frac{1}{2}-\kappa}T_*^{1/2}\big)-\nu^{-\kappa}\Big).
$$

Recalling $T_* = v^{-b}$ we see that if we assume that

$$
\begin{cases} 6\kappa - b < -\kappa, \\ 6\kappa - b < 1 - 3\kappa - 2b, \\ 6\kappa - b < 1/2 - \kappa - \frac{3}{2}b, \end{cases} \tag{4.22}
$$

then for $\omega \in \tilde{Q}$,

$$
||I_1^{\omega}(T_*)||_1 \ge C \nu^{6\kappa} T_*, \quad C > 0,
$$
\n(4.23)

provided that ν is sufficiently small.

Step 6: Finally, remembering that $\tau_2 = T_*$ for $\omega \in \tilde{Q}$ and combining the relations [\(4.20\)](#page-17-1), [\(4.21\)](#page-18-0) and [\(4.23\)](#page-18-1) to estimate the terms of [\(4.13\)](#page-15-2), we see that for $\omega \in \tilde{Q}$ we have

$$
||v^{\omega}(T_{*})||_{1} \ge ||I_{1}^{\omega}(T_{*})||_{1} - ||I_{2}^{\omega}(T_{*})||_{1} - ||I_{3}^{\omega}(\tau_{*})||_{1} \ge \frac{1}{2}C_{1}v^{6\kappa - b}, \quad C_{1} > 0, \tag{4.24}
$$

² Springer

if we assume in addition to [\(4.22\)](#page-18-2) that

$$
6\kappa - b < \frac{1}{2} - \kappa - \frac{5}{2}b,\tag{4.25}
$$

and ν is small. Note that this relation implies the last two in [\(4.22\)](#page-18-2).

Combining (4.8) and (4.24) we get that

$$
\nu^{-b+7\kappa} \le C_2^{-1},\tag{4.26}
$$

for all sufficiently small ν. Thus we have obtained a contradiction with the existence of the sets Q^{ν_j} as at the beginning of the proof if (for a chosen κ) we can find a $b \in (0, 1)$ which meets [\(4.22\)](#page-18-2), [\(4.25\)](#page-19-0) and

$$
-b+7\kappa<0.
$$

Noting that this is nothing but the first relation in [\(4.22\)](#page-18-2), we see that we have obtained a contradiction if

$$
\kappa < \frac{1}{7}b, \quad \kappa < \frac{1}{14} - \frac{3}{14}b,
$$

for some $b \in (0, 1)$. We see immediately that such a *b* exists if and only if $\kappa < \frac{1}{35}$. Ч

Amplification If we replace the condition $m \geq 3$ with the weaker assumption

$$
\mathbb{R}\ni m>2,
$$

then the statement [\(4.2\)](#page-12-1) remains true for $0 < \kappa < \kappa(n, m)$ with a suitable (less explicit) constant $\kappa(n, m) > 0$. In this case we obtain a contradiction with the assumption [\(4.3\)](#page-12-3) by deriving a lower bound for $||v(T_*)||_{\alpha}$, where $\alpha = \min\{1, m - 2\} \in (0, 1]$, using the decomposition [\(4.13\)](#page-15-2). The proof remains almost identical except that now, firstly, we bound $\|I_2\|_{\alpha}$ (α < 1) from above using the following estimate from [\[15](#page-24-16), Theorem 5, p. 206] (also see there p. 14):

$$
||W\Delta u||_{\alpha} \leq C||u||_{2+\alpha} (|W|_{\infty} + |W|_{\infty}^{1-\frac{2\alpha}{n}} ||W||_{2}^{\frac{2\alpha}{n}});
$$

and, secondly, estimate $||I_1^{\omega}(T_*)||_{\alpha}$ ($\alpha < 1$) from below as

$$
||I_1^{\omega}(T_*)||_{\alpha} \geq ||I_1^{\omega}(T_*)||_1^{2-\alpha} ||I_2^{\omega}(T_*)||_2^{-1+\alpha},
$$

which directly follows from Sobolev's interpolation. See [\[6](#page-24-4)] for more details.

5 Lower bounds for time-averaged Sobolev norms

In this section we prove the assertion (2) of Theorem [1.](#page-2-2) We provide each space *Hr*, $r > 0$, with the scalar product

$$
\langle\!\langle u,v\rangle\!\rangle_r := \langle\!\langle (-\Delta)^{\frac{r}{2}}u, (-\Delta)^{\frac{r}{2}}v\rangle\!\rangle,
$$

corresponding to the norm $||u||_r$. Let $u(t) = \sum u_d(t)\varphi_d$ be a solution of Eq. [\(1.1\)](#page-0-0). Applying Itô's formula to the functional $||u||_m^2$, we have for any $0 \le t < t' < \infty$ the relation

$$
||u(t')||_{m}^{2} = ||u(t)||_{m}^{2} + 2\int_{t}^{t'} \langle\langle u(s), v\Delta u(s) - i|u(s)|^{2}u(s)\rangle\rangle_{m}ds
$$

+ 2vB_m(t'-t) + 2 $\sqrt{v}M(t, t')$, (5.1)

where *M* stands for the real scalar product is the stochastic integral

$$
M(t, t') := \int_t^{t'} \sum_{d \in \mathbb{N}^n} b_d |d|^{2m} \langle u_d(s), d\beta_d(s) \rangle.
$$

Let us fix a $\gamma \in (0, \frac{1}{8})$. Due to Theorems [7](#page-7-5) and [13,](#page-12-4) for small enough ν there exists an event $\Omega_1 \subset \Omega$, $\mathbb{P}(\Omega_1) \geq 1 - \gamma/2$, such that for all $\omega \in \Omega_1$ we have:

- a) $\sup_{0 \le t \le \frac{1}{\nu}} |u^{\omega}(t)|_{\infty} \le C(\gamma)$, for a suitable $C(\gamma) > 0$;
- b) there exist $t_{\omega} \in [0, \frac{1}{3\nu}]$ and $t'_{\omega} \in [\frac{2}{3\nu}, \frac{1}{\nu}]$ satisfying

$$
||u^{\omega}(t_{\omega})||_{m}, \ ||u^{\omega}(t'_{\omega})||_{m} \geq \nu^{-m\kappa}.
$$
 (5.2)

Since for the martingale $M(0, t)$ we have that

$$
\mathbb{E}|M(0, \tfrac{1}{\nu})|^2 \leq B_m \mathbb{E}\int_0^{\frac{1}{\nu}} \|u(s)\|_m^2 ds =: X_m,
$$

then by Doob's inequality

$$
\mathbb{P}(\Omega_2) \ge 1 - \frac{\gamma}{2}, \qquad \Omega_2 = \left\{ \sup_{0 \le t \le \frac{1}{\nu}} |M(0, t)| \le c(\gamma) X_m^{1/2} \right\}.
$$

Now let us set $\hat{\Omega} = \Omega_1 \cap \Omega_2$. Then $\mathbb{P}(\hat{\Omega}) \ge 1 - \gamma$ for small enough ν , and for any $\omega \in \hat{\Omega}$ there are two alternatives:

 \mathcal{D} Springer

(i) there exists a $t_{\omega}^{0} \in [0, \frac{1}{3\nu}]$ such that $||u^{\omega}(t_{\omega}^{0})||_{m} = \frac{1}{3}\nu^{-\kappa m}$. Then from [\(5.1\)](#page-20-2) and (5.2) in view of $(A.4)$ we get

$$
\frac{8}{9}v^{-2mk} + 2v \int_{t_0}^{t_0'} \|u^{\omega}(s)\|_{m+1}^2 ds \le C(m, \gamma) \int_0^{\frac{1}{v}} \|u^{\omega}(s)\|_{m}^2 ds + 2B_m + 2\sqrt{v}c(\gamma)X_m^{1/2}.
$$

(ii) There exists no $t \in [0, \frac{1}{3v}]$ with $||u^{\omega}(t)||_m = \frac{1}{3}v^{-\kappa m}$. In this case, since $||u^{\omega}(t)||_m$ is continuous with respect to *t*, then due to [\(5.2\)](#page-20-1) $||u^{\omega}(t)||_m > \frac{1}{3}v^{-m\kappa}$ for all $t \in [0, \frac{1}{3v}]$. This leads to the relation

$$
\frac{1}{27}\nu^{-2m\kappa-1} \leq \int_0^{\frac{1}{\nu}} \|u^{\omega}(s)\|_m^2 ds.
$$

In both cases for $\omega \in \hat{\Omega}$ we have:

$$
\frac{1}{27}\nu^{-2m\kappa} \leq C'(m,\gamma)\int_0^{\frac{1}{\nu}}\|u(s)\|_m^2ds + 2B_m + \nu c(\gamma)^2 + X_m.
$$

It implies that

$$
\mathbb{E}\nu\int_0^{\frac{1}{\nu}}\|u(\tau)\|_m^2d\tau\geq Cv^{-2m\kappa+1}
$$

(for small enough ν), and gives the lower bound in [\(1.7\)](#page-3-3).

The upper bound follows directly from Theorem [8.](#page-7-2)

Proof of Corollaries [3](#page-3-1) *and* [4](#page-3-4) Since $B_k < \infty$ for each *k* and all coefficients b_d are non-zero, then Eq. [\(1.1\)](#page-0-0) is mixing in the spaces H^m , $m \in \mathbb{N}$, see Corollary [10.](#page-8-3) As the stationary solution v^{st} satisfies Corollary [11](#page-8-4) with any *m*, then for each $\mu \in \mathbb{N}$ and *M* > 0, interpolating the norm $||u||_{\mu}$ via $||u||_{0}$ and $||u||_{m}$ with *m* sufficiently large we get that the stationary measure μ_{ν} satisfies

$$
\int \|u\|_{\mu}^{M} \mu_{\nu}(du) < \infty \quad \forall \mu \in \mathbb{N}, \ \forall M > 0. \tag{5.3}
$$

Similar, in view of [\(2.5\)](#page-7-6) and Theorem [7,](#page-7-5)

$$
\mathbb{E}\|u(t;u_0)\|_{\mu}^M \le C_{\nu}(u_0) \quad \forall t \ge 0,
$$
\n(5.4)

for each $u_0 \in C^\infty$ and every μ and M as in [\(5.3\)](#page-21-0). Now let us consider the integral in [\(1.7\)](#page-3-3) and write it as

$$
J_t := \nu \int_t^{t+\nu^{-1}} \mathbb{E} \|u(s)\|_m^2 ds.
$$

Replacing the integrand in J_t with $\mathbb{E}(\|u_v(s)\|_m \wedge N)^2$, $N \ge 1$, using the convergence

$$
\mathbb{E}\big(\|u(s;v_0)\|_m\wedge N\big)^2\to\int\big(\|u\|_m\wedge N\big)^2\mu_v(du)\quad\text{as}\quad s\to\infty\quad\forall\,N,\quad(5.5)
$$

which follows from Corollary [10,](#page-8-3) and the estimates (5.3) , (5.4) we get that

$$
J_t \to \int \|u\|_m^2 \mu_\nu(du) \quad \text{as} \quad t \to \infty. \tag{5.6}
$$

This convergence and [\(1.7\)](#page-3-3) imply the assertion of Corollary [3.](#page-3-1)

Now the convergence (5.5) jointly with estimates (5.3) , (5.4) and (1.8) imply Corol- \Box

Acknowledgements GH is supported by NSFC (Significant project No.11790273) in China and SK thanks the *Russian Science Foundation* for support through the grant 18-11-00032.

Appendix A. Some estimates

For any integer $l \in \mathbb{N}$ and $F \in H^l$ we have that

$$
\|\exp(iF(x))\|_{l} \le C_{l}(1+|F|_{\infty})^{l-1} \|F\|_{l}.
$$
\n(A.1)

Indeed, to verify $(A.1)$ it suffices to check that for any non-zero multi-indices $\beta_1, \ldots, \beta_{l'}$, where $1 \le l' \le l$ and $|\beta_1| + \cdots + |\beta_{l'}| = l$, we have

$$
\|\partial_x^{\beta_1} F \cdots \partial_x^{\beta_{l'}} F\|_0 \le C |F|_{\infty}^{l'-1} \|F\|_l.
$$
 (A.2)

But this is the assertion of Lemma 3.10 in [\[17](#page-24-15)]. Similarly,

$$
||FG||_{r} \leq C_{r}(|F|_{\infty}||G||_{r} + |G|_{\infty}||F||_{r}), \quad F, G \in H^{r}, \quad r \in \mathbb{N}, \tag{A.3}
$$

see [\[17,](#page-24-15) Proposition 3.7] (this relation is known as Moser's estimate). Finally, since for $|\beta| \le m$ we have $|\partial_x^{\beta} v|_{2m/\beta} \le C |v|_{\infty}^{1-|\beta|/m} ||v||_{m}^{|\beta|/m}$ (see relation (3.17) in [\[17\]](#page-24-15)), then

$$
|\langle\langle |v|^2 v, v\rangle\rangle_m| \leq C_m \|v\|_m^2 |v|_\infty^2, \qquad |\langle\langle |v|^2 v, v\rangle\rangle_m| \leq C_m' \|v\|_{m+1}^{\frac{2m}{m+1}} |v|_\infty^{\frac{2m+4}{m+1}}.
$$
 (A.4)

Appendix B. Proof of Theorem [8](#page-7-2)

Applying Ito's formula to a solution $v(\tau)$ of Eq. [\(2.1\)](#page-6-0) we get a slow time version of the relation (5.1) :

$$
||v(\tau)||_m^2 = ||v_0||_m^2 + 2\int_0^{\tau} \left(-||v||_{m+1}^2 - v^{-1} \langle \langle i|v|^2 v, v \rangle \right) ds + 2B_m \tau + 2M(\tau), \quad \text{(B.1)}
$$

where $M(\tau) = \int_0^{\tau} \sum_d b_d |d|^{2m} \langle v_d(s), d\beta_d(s) \rangle$. Since in view of [\(A.4\)](#page-21-1)

$$
\mathbb{E} |\langle |v|^2 v, v \rangle \rangle_m \leq C_m \big(\mathbb{E} \|v\|_{m+1}^2 \big)^{\frac{m}{m+1}} \mathbb{E} (|v|_{\infty}^{2m+4})^{\frac{1}{m+1}},
$$

then denoting $\mathbb{E}||v(\tau)||_r^2 =: g_r(\tau), r \in \mathbb{N} \cup \{0\}$, taking the expectation of [\(B.1\)](#page-20-2), differentiating the result and using [\(2.3\)](#page-7-1), we get that

$$
\frac{d}{d\tau}g_m \le -2g_{m+1} + C_m \nu^{-1} g_{m+1}^{\frac{m}{m+1}} + 2B_m \le -2g_{m+1} \left(1 - C'_m \nu^{-1} g_m^{-\frac{1}{m}} + 2B_m\right), \quad \text{(B.2)}
$$

since $g_m \leq g_0^{1/(m+1)} g_{m+1}^{m/(m+1)} \leq C_m g_{m+1}^{m/(m+1)}$. We see that if $g_m \geq (2\nu^{-1}C'_m)^m$, then the r.h.s. of $(\overrightarrow{B.2})$ is

$$
\leq -g_{m+1} + 2B_m \leq -C_m^{-1} g_m^{(m+1)/m} + 2B_m \leq -\bar{C}_m v^{-m-1} + 2B_m, \quad (B.3)
$$

which is negative if $v \ll 1$. So if

$$
g_m(\tau) < (2\nu^{-1} C'_m)^m \tag{B.4}
$$

at $\tau = 0$, then [\(B.4\)](#page-21-1) holds for all $\tau \ge 0$ and [\(2.4\)](#page-7-4) follows. If $g_m(0)$ violates (B.4), then in view of [\(B.2\)](#page-20-1) and [\(B.3\)](#page-21-0), for $\tau > 0$, while [\(B.4\)](#page-21-1) is false, we have that

$$
\frac{d}{d\tau}g_m \leq -C_m g_m^{(m+1)/m} + 2B_m,
$$

which again implies (2.4) . Besides, in view of $(B.2)$,

$$
\frac{d}{d\tau}g_m\leq -g_m+C_m(\nu,|v_0|_\infty,B_{m_*},B_m).
$$

This relation immediately implies [\(2.5\)](#page-7-6).

Now let us return to Eq. $(B.1)$. Using Doob's inequality and (2.4) we find that

$$
\mathbb{E}(\sup_{0\leq\tau\leq T}|M(\tau)|^2)\leq C<\infty.
$$

Next, applying [\(A.4\)](#page-21-1) and Young's inequality we get

$$
\int_0^{\tau} \left(-\|v\|_{m+1}^2 - v^{-1} \langle \langle i|v|^2 v, v \rangle \rangle_m \right) ds \leq C_m \int_0^{\tau} |v(s)|_{\infty}^{2m+3} ds, \quad \forall \ 0 \leq \tau \leq T.
$$

Finally, using in $(B.1)$ the last two displayed formulas jointly with (2.3) we obtain $(2.6).$ $(2.6).$

References

- 1. Bartuccelli, M., Gibbon, J., Oliver, M.: Length scales in solutions of the complex Ginzburg–Landau equation. Physica D **89**, 267–286 (1996)
- 2. Biryuk, A.: Lower bounds for derivatives of solutions for nonlinear Schrödinger equations. Proc. A R. Soc. Edinburgh **139**, 237–251 (2009)
- 3. Bohr, T., Jensen,M., Paladin, G., Vulpiani, A.: Dynamical Systems Approach to Turbulence. Cambridge University Press, Cambridge (1998)
- 4. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math. **181**, 39–113 (2010)
- 5. Frisch, U.: Turbulence: the Legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge (1995)
- 6. Huang, G., Kuksin, S.: On the energy transfer to high frequencies in damped/driven nonlinear Schrödinger equation (extended version). [arXiv:2006.11518,](http://arxiv.org/abs/2006.11518) (2020)
- 7. Krylov, N.V.: Controlled Diffusion Processes. Springer, Berlin (1980)
- 8. Kuksin, S.: A stochastic nonlinear Schrödinger equation I. A priori estimates. Tr. Mat. Inst. Stekl. **225**, 232–256 (1999)
- 9. Kuksin, S.: Spectral properties of solutions for nonlinear PDEs in the turbulent regime. GAFA **9**, 141–184 (1999)
- 10. Kuksin, S., Nersesyan, V.: Stochastic CGL equations without linear dispersion in any space dimension. Stoch PDE Anal. Comp. **1**(3), 389–423 (2013)
- 11. Kuksin, S., Shirikyan, A.: Mathematics of Two-Dimensional Turbulence. Cambridge University Press, Cambridge (2012)
- 12. Kuksin, S.B., Shirikyan, A.: Randomly forced CGL equation: stationary measures and the inviscid limit. J. Phys. A Math. Gen. **37**, 1–18 (2004)
- 13. Levermore, C.D., Oliver, M.: The complex Ginzburg–Landau equation as a model problem. Lect. Appl. Math. **31**, 141–189 (1996)
- 14. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin (2005)
- 15. Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. Walter de Gruyter, New York (2011)
- 16. Shirikyan, A.: Local times for solutions of the complex Ginzburg-Landau equation and the inviscid limit. J. Math. Anal. Appl. **384**, 130–137 (2011)
- 17. Taylor, M.E.: Partial Differential Equations III. Applied Mathematical Sciences, Springer (2011)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.