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Abstract
We consider linear elliptic equations in divergence form with stationary random coef-
ficients of integrable correlations. We characterize the fluctuations of a macroscopic
observable of a solution to relative order d

2 , where d is the spatial dimension; the
fluctuations turn out to be Gaussian. As for previous work on the leading order, this
higher-order characterization relies on a pathwise proximity of themacroscopic fluctu-
ations of a general solution to those of the (higher-order) correctors, via a (higher-order)
two-scale expansion injected into the “homogenization commutator”, thus confirm-
ing the scope of this notion. This higher-order generalization sheds a clearer light
on the algebraic structure of the higher-order versions of correctors, flux correctors,
two-scale expansions, and homogenization commutators. It reveals that in the same
way as this algebra provides a higher-order theory for microscopic spatial oscilla-
tions, it also provides a higher-order theory for macroscopic random fluctuations,
although both phenomena are not directly related. We focus on the model framework
of an underlying Gaussian ensemble, which allows for an efficient use of (second-
order) Malliavin calculus for stochastic estimates. On the technical side, we introduce
annealed Calderón–Zygmund estimates for the elliptic operator with random coeffi-
cients, which conveniently upgrade the known quenched large-scale estimates.
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1 Introduction

1.1 General overview

Let a be a random coefficient field on R
d that is stationary and ergodic and satisfies

the boundedness and ellipticity properties

|a(x)ξ | ≤ |ξ |, ξ · a(x)ξ ≥ λ|ξ |2, for all x, ξ ∈ R
d , (1.1)

for some λ > 0, and denote by (�,F,P) the underlying probability space. Given a
deterministic vector field f ∈ C∞c (Rd)d , we consider the random family (∇uε)ε>0
of unique Lax–Milgram solutions to the rescaled problems

−∇ · a( ·
ε
)∇uε = ∇ · f in R

d , (1.2)

where the rescaled coefficients a( ·
ε
) vary on the “microscopic” scale ε, and we study

“macroscopic” observables of the form
´
Rd g · ∇uε with g ∈ C∞c (Rd)d deterministic.

Qualitative homogenization theory [34,45] states that almost surely
´
Rd g · ∇uε →´

Rd g · ∇ū as ε ↓ 0, where ∇ū solves the (deterministic) homogenized equation

−∇ · ā∇ū = ∇ · f in Rd ,

and the homogenized coefficients ā ∈ R
d×d are given by āei = E [a(∇ϕi + ei )] for

1 ≤ i ≤ d, in terms of the corrector ϕi , that is, the unique (up to a random additive
constant) almost sure solution of the corrector equation,

−∇ · a(∇ϕi + ei ) = 0 in Rd , (1.3)

in the class of functions the gradient of which is stationary, centered (that is,E [∇ϕi ] =
0), and has finite second moment. In other words, the field-flux constitutive relation
∇wε 	→ a( ·

ε
)∇wε is replaced on the macroscopic scale by the effective relation

∇w̄ 	→ ā∇w̄.
A well-travelled question in homogenization is to further characterize the oscilla-

tions of the solution uε. As expected from formal asymptotics, the so-called two-scale
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expansion1 (1 + εϕi (
·
ε
)∇i )ū precisely captures the oscillations of uε to order O(ε)

(in dimension d > 2), in the sense of

∥
∥∇(

uε − (1+ εϕi (
·
ε
)∇i )ū

)∥
∥
L2(Rd×�)

= O(ε).

This expansion has a natural geometric interpretation: by definition (1.3), the corrector
ϕi defines the correction ofEuclidean coordinates x 	→ xi into a-harmonic coordinates
x 	→ xi + ϕi (x),

−∇ · a∇(xi + ϕi ) = 0,

so that the expansion (1 + εϕi (
·
ε
)∇i )ū amounts to locally correcting the homoge-

nized solution ū in terms of oscillating a-harmonic coordinates. Such expansions are
naturally pursued to higher order: while the (centered) first-order corrector ϕ = ϕ1

is characterized by the property that (1 + ϕi∇i )�̄ is a-harmonic for all affine func-
tions �̄, the (centered) second-order corrector ϕ2 is characterized by the property that
for all quadratic polynomials q̄ the expansion (1+ϕi∇i +ϕ2

i j∇2
i j )q̄ fully captures the

oscillations imposed by the heterogeneous elliptic operator −∇ · a∇ in the sense of
−∇ ·a∇(1+ϕi∇i +ϕ2

i j∇2
i j )q̄ being deterministic (see Sect. 2 for a precise statement).

The second-order two-scale expansion (1+εϕi (
·
ε
)∇i +ε2ϕ2

i j (
·
ε
)∇2

i j )ū
2
ε then captures

the oscillations of uε to order O(ε2) (in dimension d > 4), where ū2ε is a proxy for a
solution to the generically ill-posed higher-order homogenized equation

−∇ · (ā + εā2i ∇i )∇Ū 2
ε = ∇ · f in Rd ,

in terms of the second-order homogenized coefficients ā2i e j := E
[

a(∇ϕ2
i j + ϕi e j )

]

.
In other words, the effective field-flux constitutive relation ∇w̄ 	→ ā∇w̄ is refined to
its second-order version ∇w̄ 	→ (ā + εā2i ∇i )∇w̄. The proxy ū2ε for a second-order
homogenized solution can e.g. be chosen in form of ū2ε := ū + εũ2 with ũ2 solving

−∇ · (ā∇ũ2 + ā2i ∇∇i ū) = 0 in Rd .

Such a description of oscillations of uε via higher-order two-scale expansions is clas-
sical in the periodic setting [11]. It also holds in the random setting for large enough
dimension and for decaying enough correlations [9,24] (cf. [3,20,22] for the first-
order level): under appropriate mixing conditions, higher-order expansions allow to
capture oscillations up to the critical order O(εd/2) (with a logarithmic correction in
even dimensions). The limitation is due to the fact that, in the random setting, not
all higher-order correctors are well-behaved: ϕn can be chosen stationary with finite
moments only for n < d

2 . Precise statements and short proofs are included in Sect. 2
below in the Gaussian setting.

While periodic homogenization boils down to the description of oscillations of uε,
stochastic homogenization in addition means studying the random fluctuations of the
macroscopic observables

´
Rd g · ∇uε. It was recently shown [25] that the centered

1 We systematically use Einstein’s summation rule on repeated indices.
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rescaled observables ε−d/2
´
Rd g · (∇uε − E [∇uε]) converge in law to a Gaussian.

Note that this does not enter the above theory of oscillations since accuracy there is
precisely limited to order O(εd/2). We may naturally look for a finer description of
this convergence by means of a two-scale expansion. As observed in [25], however,
the limiting variance of ε−d/2

´
Rd g ·∇uε generically differs from that of ε−d/2

´
Rd g ·

∇(1+ εϕi (
·
ε
)∇i )ū, which shows that two-scale expansion cannot be applied naïvely

when it comes to fluctuations. In [19], we unravelled the full mechanism behind this
observation by means of the so-called homogenization commutator, which led to a
new pathwise theory of fluctuations in stochastic homogenization (in agreement with
the pathwise heuristics in [25]). More precisely, fluctuations of ∇uε were shown to
coincide with fluctuations of a suitable deterministic (Helmholtz) projection of the
corresponding homogenization commutator, which behaves like a Gaussian white
noise on large scales and for which the two-scale expansion is accurate at leading
order. In the present article we explain how this result naturally extends to higher
order in parallel to the known theory of oscillations: we obtain a full characterization of
fluctuations of ε−d/2

´
Rd g ·∇uε to order O(εd/2) (with again a logarithmic correction

in even dimensions). The main emphasis is on unravelling the suitable higher-order
commutator structure.

The homogenization commutator can be viewed as a commutator between large-
scale averaging and the field-flux relation; on first-order level it takes the form

�1
ε[∇wε] := (a( ·

ε
)− ā)∇wε.

This expression first appeared in [5] (see also [7]) and is particularly natural since H -
convergence for (1.2) (cf. [39]) is precisely equivalent toweak convergence of�ε[∇uε]
to 0 (cf. [19]), thus summarizing the whole qualitative homogenization theory. This
convergence property is the mathematical formulation of the Hill–Mandel relation in
mechanics [27,28] and can further bemade quantitative [19]. For a higher-order theory,
we need a higher-order extension of the commutator. In view of the second-order
effective field-flux relation ∇w̄ 	→ (ā + εā2i ∇i )∇w̄, the second-order commutator is
naturally defined as

�2
ε[∇wε] :=

(

a( ·
ε
)− ā − εā2i ∇i

)∇wε,

and a higher-order Hill–Mandel relation can indeed be formulated in these terms (cf.
Lemma 3.3 below). Note that wε 	→ �1

ε[∇wε] and �2
ε[∇wε] are viewed as first- and

second-order differential operators, respectively. Next, we define suitable two-scale
expansions of these homogenization commutators. For the first order, we inject the
first-order two-scale expansion ofwε into�1

ε[∇·] and truncate the obtained differential
operator at first order, thus defining the following first-order standard commutator,

�◦,1
ε [∇w̄] := ∇i w̄ (a( ·

ε
)− ā)(∇ϕi (

·
ε
)+ ei ).

Similarly, injecting the second-order two-scale expansion of wε into �2
ε[∇·] and trun-

cating the obtained differential operator at second order, we define the following
second-order standard commutator,
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�◦,2
ε [∇w̄] := ∇i w̄

(

a( ·
ε
)− ā − εā2j∇ j

)

(∇ϕi (
·
ε
)+ ei )

+ ε∇2
i j w̄

((

a( ·
ε
)− ā − εā2l ∇l

)(∇ϕ2
i j (

·
ε
)+ ϕi (

·
ε
)e j

)− ā2j
(∇ϕi (

·
ε
)+ ei

))

.

The standard commutators w̄ 	→ �◦,1
ε [∇w̄] and �◦,2

ε [∇w̄] are first- and second-order
differential operators, respectively, with ε-rescaled (distributional) stationary random
coefficients. These stationary differential operators are viewed as intrinsic quantities,
with coefficients given by suitable combinations of correctors and of their gradients.
The above definitions are efficiently summarized in the form

�◦,1
ε [∇w̄](x) = �1

ε

[∇(1+ εϕi (
·
ε
)∇i )T

1
x w̄

]

(x),

�◦,2
ε [∇w̄](x) = �2

ε

[∇(

1+ εϕi (
·
ε
)∇i + ε2ϕ2

i j (
·
ε
)∇2

i j

)

T 2
x w̄

]

(x),

where T 1
x w̄ and T 2

x w̄ denote the first- and second-order Taylor polynomials of w̄ at the
basepoint x , respectively. Note that these quantities are centered: E

[

�◦,n
ε [∇w̄]] = 0

for n = 1, 2 and any smooth deterministic field w̄.
Pursuing these constructions to higher order, our main result is threefold and is

summarized as follows, under appropriate mixing conditions:

(i) Up to order O(εd/2) in the fluctuation scaling, the fluctuations of ∇uε are deter-
mined by those of the corresponding higher-order commutators; cf. Theorem 1(i)
below.

(ii) Up to order O(εd/2) in the fluctuation scaling (with a logarithmic correction in
even dimensions), the two-scale expansions of the commutators are accurate:
the fluctuations of the commutators are equivalent to those of the corresponding
standard commutators; cf. Theorem 1(ii). This fully extends the pathwise theory
of [19] to higher order.

(iii) The standard commutators are approximately local functions of the coefficients a.
This allows to infer a quantitative characterization of their limiting covariance
structure, aswell as a quantitative central limit theorem (CLT); cf. Theorem1(iii)–
(iv). Similarly as for the coefficient field a itself, while at first order the scaling
limit is given by a Gaussian white noise, corrections converge to derivatives of
white noise.

1.2 Main results

For simplicity, we focus on the model setting of a Gaussian coefficient field, in which
case a powerful Malliavin calculus is available on the probability space, substantially
simplifying the analysis. More precisely, we set

a(x) := a0(G(x)), (1.4)

where G is some R
κ -valued centered stationary Gaussian random field on R

d con-
structed on a probability space (�,F,P) and where a0 ∈ C2

b (R
κ)d×d is such that

the ellipticity and boundedness assumptions (1.1) are satisfied. We use scalar notation
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a′0, a′′0 for derivatives of a0. In addition, we assume that the Gaussian field G has
integrable correlations: more precisely, it has the form G = c0 ∗ ξ , where ξ denotes
κ-dimensional white noise on R

d and where the kernel c0:Rd → R
κ×κ is chosen

even (that is, c0(x) = c0(−x) for all x) and satisfies the integrability condition

ˆ

Rd

(

sup
B(x)

|c0|
)

dx ≤ 1, (1.5)

where B(x) is the unit ball centered at x . The covariance function of G is then given
by c := c0 ∗ c0 and satisfies

´
Rd (supB(x) |c|) dx ≤ 1. The case of non-integrable

correlations could be treated similarly, but it would lead to different scalings, cf. [16].
Our main result is as follows.

Theorem 1 Consider the above Gaussian setting with integrable correlations (1.5)
and set � :=  d2 �, that is, the smallest integer≥ d

2 . For all 1 ≤ n ≤ �, let ūnε and v̄nε be
the nth-order homogenized solutions of the primal and dual equations, respectively,
as in Definition 2.7 below, and let the nth-order homogenization commutator �n

ε and
its standard version �◦,n

ε be as in Definitions 3.1 and 3.4. Then the following hold for
all 0 < ε ≤ 1

2 .

(i) Reduction to commutators: For all f , g ∈ C∞c (Rd)d , 1 ≤ n ≤ �, and p < ∞,

Np

(

ε−
d
2

ˆ

Rd
g · ∇uε − ε−

d
2

ˆ

Rd
∇v̄nε ·�n

ε [∇uε]
)

�p, f ,g εn,

where Np(X) := E
[|X − E [X ]|p] 1

p .
(ii) Two-scale expansion of commutators: For all f , g ∈ C∞c (Rd)d , 1 ≤ n ≤ �, and

p < ∞,

Np

(

ε−
d
2

ˆ

Rd
g · (

�n
ε [∇uε] −�◦,n

ε [∇ūnε ]
)
)

�p, f ,g εnμd,n(
1
ε
),

where

εnμd,n(
1
ε
) :=

⎧

⎪⎨

⎪⎩

εn : n < �,

ε
d
2 |log ε| 12 : n = � and d even,

ε
d
2 : n = � and d odd.

(1.6)

(iii) Local covariance structure: Further assume that
´
Rd |y|�|c(y)|dy ≤ 1. There

exists an (m+4)th-order tensorQm
l ′k′lk for all l

′, k′, l, k ≥ 0with l ′ +k′ +l+k =
m ≤ �− 1, such that for all g,∇w̄ ∈ C∞c (Rd)d and 1 ≤ n ≤ �, setting

Qn
ε [g,∇w̄] :=

n−1
∑

m=0
εm

∑

l ′,k′,l,k≥0
l ′+k′+l+k=m

Qm
l ′k′lk �

ˆ

Rd
∇l ′g ⊗∇k′∇w̄ ⊗∇l g ⊗∇k∇w̄,
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where � denotes the complete contraction of tensors of the same order, there
holds

∣
∣
∣
∣
Var

[

ε−
d
2

ˆ

Rd
g ·�◦,n

ε [∇w̄]
]

−Qn
ε [g,∇w̄]

∣
∣
∣
∣
�g,w̄ εnμd,n(

1
ε
).

(iv) Normal approximation: For all g,∇w̄ ∈ C∞c (Rd)d and 1 ≤ n ≤ �,

dN
(

ε−
d
2

ˆ

Rd
g ·�◦,n

ε [∇w̄]
)

�g,w̄
ε

d
2 |log ε|(|log ε| log2|log ε|) 1

2d n(n−1)

Var
[

ε− d
2
´
Rd g ·�◦,n

ε [∇w̄]]
,

where we have set

dN(X) := W2

(

X − E [X ]

Var [X ]
1
2

;N
)

+ dTV

(

X − E [X ]

Var [X ]
1
2

;N
)

,

whereW2 (·;N) and dTV (·;N) denote the 2-Wasserstein and the total variation
distances to a standard Gaussian law, respectively.

In the estimates above, the notation �γ (with parameters γ ) stands for ≤ up to a
multiplicative constant Cγ ≥ 1 that only depends on d, λ, ‖a0‖W 2,∞ , and on the
parameters γ , through an upper bound on suitable (weighted) Sobolev norms of γ if
γ is a function. ♦

Choosing n = �, we are thus led to an intrinsic description of the fluctuations
of macroscopic observables

´
Rd g · (∇uε − E [∇uε]) with accuracy O(εd) (with a

logarithmic correction in even dimensions), that is, up to the square of the CLT order.
In particular, non-Gaussian corrections are only expected beyond that order.

Corollary 1 With the assumptions and notation of Theorem 1, for all f , g ∈ C∞c (Rd)d ,
in terms of the intrinsic quantity

X◦ε (g, f ) := ε−
d
2

ˆ

Rd
∇v̄�

ε ·
(

�◦,�
ε [∇ū�

ε] − E
[

�◦,�
ε [∇ū�

ε]
])

,

there holds for all p < ∞,

E

[(

ε−
d
2

ˆ

Rd
g · (∇uε − E [∇uε])− X◦ε (g, f )

)p
] 1

p

�p, f ,g ε
d
2 ×

{ |log ε| 12 : d even,
1 : d odd,

and, under the non-degeneracy condition Q0000 �
´
Rd (∇v̄ ⊗∇ū)⊗2 �= 0,

d
(

X◦ε (g, f ) ; Q�
ε[∇v̄�

ε ,∇ū�
ε]

1
2 N

)

� f ,g ε
d
2 |log ε|1+ρ(log |log ε|)2ρ, (1.7)
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where d (·; ·) stands for the sum of the 2-Wasserstein and the total variation distances,
where N denotes a standard Gaussian random variable, and where

ρ := 1

8d
×

{

d(d − 2) : d even,
(d + 1)(d − 1) : d odd.

♦

Another question that one may formulate concerns the description of fluctuations
of higher-order correctors—although this is somewhat artificial since only combina-
tions of correctors in form of two-scale expansions are intrinsically relevant. As briefly
described inRemark 3.6, the proof of the abovemain result can be adapted in a straight-

forward way to also describe the fluctuations of εn− d
2 ϕn( ·

ε
) and εn− d

2∇ϕn+1( ·
ε
) with

accuracy O(ε
d
2 ) for all n ≤ �− 1 (with a logarithmic correction in even dimensions).

Outline of the article

In Sect. 2, we start by recalling the theory of oscillations in stochastic homogenization
in terms of higher-order correctors and two-scale expansions. Section 3 is devoted to
the definition and elementary properties of higher-order homogenization commuta-
tors, including the (easy) proof of item (i) of Theorem 1 as well as the statement of
quantitative higher-order Hill–Mandel relations. Next, we turn to the rest of the proof
of Theorem 1, which is based on the following three main ingredients.

• Malliavin calculus: In the present Gaussian setting, given a random variable X ,
a Poincaré inequality holds in the form Var [X ] ≤ C E

[‖DX‖2H
]

(cf. [15,29]),
where the Malliavin derivative DX encodes the infinitesimal variation of X with
respect to changes in the underlyingGaussian fieldG andwhere ‖·‖H is theHilbert
norm associated with the covariance structure of G. Similarly, the approximate
normality of X can be estimated by the size of D2X with help of a so-called
second-order Poincaré inequality [14,43]. With these functional analytic tools at
hand, we are thus reduced to estimating infinitesimal variations of the quantities of
interest with respect to G, thus somehow linearizing the dependence on G, which
is then particularly amenable to PDE methods. On a more technical level, rather
than using ad hoc derivatives with respect to the coefficient field as in previous
works in stochastic homogenization, we use here the full power of the Gaussian
Malliavin calculus. Relevant definitions and results are recalled in Sect. 4.

• Representation formulas: In view of applying the above tools from Malliavin cal-
culus, we consider the infinitesimal variations of the quantities of interest, for
which we establish suitable representation formulas. This requires a good under-
standing of the algebra behind higher-order correctors and commutators, and is
performed in Sect. 5.

• PDE ingredients: It remains to estimate the infinitesimal variations of interest from
their representation formulas. Based on the large-scale Lipschitz regularity theory
for a-harmonic functions as developed in [5–7,21], we introduce in Sect. 6 a new
annealed Calderón–Zygmund theory for linear elliptic equations in divergence
form with random coefficients. This constitutes an upgrade of the quenched large-
scale Calderón–Zygmund theory of [3,4,21] (see also [31] for a direct approach);
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it happens to be particularly well suited for our purposes in this article and is of
independent interest.

Finally, with these three ingredients at hand, we turn to the proof of items (ii), (iii),
and (iv) of Theorem 1 in Sects. 7–9, respectively.

Notation

• We denote by C ≥ 1 any constant that only depends on d, λ, and ‖a0‖W 2,∞ . We
use the notation � (resp. �) for ≤ C× (resp. ≥ 1

C×) up to such a multiplicative
constantC . We write�when both� and� hold. We add subscripts toC ,�,�,�
in order to indicate dependence on other parameters. If the subscript is a function,
then it is understood as dependence on an upper bound on suitable (weighted)
Sobolev norms of the function.

• The ball centered at x of radius r in Rd is denoted by Br (x), and we simply write
B(x) if r = 1.

• For a function f and 1 ≤ p < ∞, we write [ f ]p(x) := (
ffl
B(x) | f |p)1/p for the

local moving Lp average, and similarly [ f ]∞(x) := supB(x) | f |.
• For a kth-order tensor T we define for any fixed indices i1, . . . , ik ,

Symi1...ik Ti1...ik :=
1

k!
∑

σ∈Sk
Tiσ(1)...iσ(k) ,

with Sk denoting the set of permutations of the set {1, . . . , k}. Although this nota-
tion may seem redundant at this point, it will prove very useful in the sequel.

• For r ∈ R we denote by r� the smallest integer ≥ r and by �r� the largest
integer ≤ r . For r , s ∈ R we write r ∨ s := max{r , s} and r ∧ s := min{r , s}.
We set 〈x〉 := (1 + |x |2)1/2 for x ∈ R

d , and 〈∇〉 denotes the corresponding
pseudo-differential operator.

2 Higher-order theory of oscillations

In this section, as a prelude to the study of higher-order fluctuations, we describe the
classical higher-order theory of oscillations in stochastic homogenization in terms of
two-scale expansions, including some new results and shorter arguments. We start by
recalling the definition of higher-order correctors, homogenized coefficients, fluxes,
and flux correctors as motivated by formal two-scale expansions (e.g. [11,30]). A sim-
ple iterative way to view this definition is as follows: for n ≥ 1, assuming that the
previous correctors ϕ1, . . . , ϕn−1 are well-defined as centered stationary objects, the
next corrector gradient ∇ϕn is the unique centered stationary object that is charac-
terized by the property that for all nth-order polynomials q̄ the corrected polynomial
Fn[q̄] := q̄+∑n

k=1 ϕk
i1...ik

∇k
i1...ik

q̄ captures oscillations of the heterogeneous operator
in the sense that ∇ · a∇Fn[q̄] is deterministic. In that case, there must hold [cf. (2.9)]

∇ · a∇Fn[q̄] = ∇ ·
(
n−1
∑

k=1
āki1...ik−1∇k−1

i1...ik−1

)

∇q̄,
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which in addition characterizes the higher-order homogenized coefficients ā2, . . . ,
ān−1 next to the first-order one ā1 := ā. In other words, the higher-order correc-
tor expansion Fn[·] precisely intertwines the heterogeneous elliptic operator with its
higher-order homogenized version. Note that the above only characterizes the sym-
metric part Symi1...in ϕi1...in of correctors, which is indeed the only relevant quantity
in view of two-scale expansions. It is however convenient to define correctors with a
suitable non-symmetric part in such a way that the corresponding fluxes can be written
in terms of skew-symmetric flux correctors, which is a well-known crucial tool in view
of error estimates (e.g. [30, p. 27]). As stated below, in contrast with the periodic case,
only � :=  d2 � correctors can be defined, with the �− 1 first of them being stationary;
this number would be further reduced in the case of coefficient fields with stronger
correlations (e.g. [9,20]).

Definition 2.1 (Higher-order correctors) Given � :=  d2 �, we inductively define the
correctors (ϕn)0≤n≤�, the homogenized coefficients (ān)1≤n≤�, the fluxes (qn)1≤n≤�,
and the flux correctors (σ n)0≤n≤� as follows:

• ϕ0 := 1 and for all 1 ≤ n ≤ � we define ϕn := (ϕn
i1...in

)1≤i1,...,in≤d with ϕn
i1...in

a
scalar field that satisfies

−∇ · a∇ϕn
i1...in = ∇ · (

(aϕn−1
i1...in−1 − σ n−1

i1...in−1) ein
)

,

∇ϕn
i1...in stationary, E

[

|∇ϕn
i1...in |2

]

< ∞, E
[∇ϕn

i1...in

] = 0.

For n < � we can choose ϕn itself stationary with E
[

ϕn
] = 0, while for n = �

we choose the anchoring ϕ�(0) = 0.
• For all 1 ≤ n ≤ �we define ān := (āni1...in−1)1≤i1,...,in−1≤d with ā

n
i1...in−1 the matrix

given by

āni1...in−1ein := E
[

a
(∇ϕn

i1...in + ϕn−1
i1...in−1ein

)]

. (2.1)

• For all 1 ≤ n ≤ � we define qn := (qni1...in )1≤i1,...,in≤d with qni1...in the vector field
given by

qni1...in := a∇ϕn
i1...in + (aϕn−1

i1...in−1 − σ n−1
i1...in−1) ein − āni1...in−1ein ,

where the definition of ān and the normalization of σ n−1 below ensureE
[

qn
] = 0.

• σ 0 := 0 and for all 1 ≤ n ≤ � we define σ n := (σ n
i1...in

)1≤i1,...,in≤d with σ n
i1...in

a
skew-symmetric matrix field that satisfies

−�σ n
i1...in = ∇ × qni1...in , ∇ · σ n

i1...in = qni1...in ,

∇σ n
i1...in stationary, E

[

|∇σ n
i1...in |2

]

< ∞, E
[∇σ n

i1...in

] = 0,

with the notation (∇ × X)i j := ∇i X j − ∇ j Xi for a vector field X and with the
notation (∇ ·Y )i := ∇ j Yi j for a matrix field Y . For n < � we can choose σ n itself
stationary with E

[

σ n
] = 0, while for n = � we choose the anchoring σ�(0) = 0.

♦

123



Stoch PDE: Anal Comp (2020) 8:625–692 635

We first state that the above definition of higher-order correctors indeed makes
sense. This easily follows from [9, proof of Proposition 9 and Lemma 12] together
with Lemma 7.1 below in the considered Gaussian setting (see also [3,20,21]), and
the proof is omitted. Note that the optimal stochastic integrability (that is, the optimal
constants cn’s below) is not required in our analysis, hence is not addressed here.

Proposition 2.2 (Higher-order correctors [3,9,20,21]) All the quantities in Defini-
tion 2.1 exist and are uniquely defined. In addition, there exists a sequence (cn)0≤n≤�

of positive numbers with c0 = 1
2 such that for all 0 ≤ n ≤ � and 1 ≤ p < ∞,

|ān| � 1, E
[[∇ϕn]p2

] 1
p � pcn−1 , E

[[ϕn]p2 (x)
] 1
p + E

[[σ n]p2 (x)
] 1
p � pcnμd,n(x),

where in line with (1.6) we have set

μd,n(x) :=

⎧

⎪⎨

⎪⎩

1 : n < �,

log
1
2 (2+ |x |) : n = � and d even,

1+ |x | 12 : n = � and d odd.

♦

For later reference we also state the following result on the fluctuation scaling
of correctors, showing that higher-order correctors have stronger correlations hence
worse fluctuation scalings, as first emphasized in [24].

Lemma 2.3 (Fluctuation scaling of higher-order correctors) For all g ∈ C∞c (Rd),
0 ≤ n ≤ �− 1, and 1 ≤ p < ∞,

E

[∣
∣
∣

ˆ

Rd
g(x)

(∇ϕn+1, ϕn, σ n)

( x
ε
) dx

∣
∣
∣

p
] 1

p

�p ε
d
2−n‖[g]2‖

L
2d

d+2n (Rd )
. ♦

If a is replaced by the pointwise transpose field a∗, we write (ϕ∗,n)0≤n≤�,
(ā∗,n)1≤n≤�, (q∗,n)1≤n≤�, and (σ ∗,n)0≤n≤� for the corresponding objects. While it
is well-known that ā∗,1 = (ā1)∗, the following lemma extends this relation to higher
order.

Lemma 2.4 (Symmetries of homogenized coefficients) For all 1 ≤ n ≤ �,2

Symi1...in

(

e j · āni1...in−1ein
) = (−1)n+1 Symi1...in

(

ein · ā∗,nji1...in−2ein−1
)

. (2.2)

In particular, if a is symmetric and if n is even, there holds

Symi1...in+1
(

ein+1 · āni1...in−1ein
) = 0. ♦

Remark 2.5 The proof of Lemma 2.4 proceeds by letting the successive inverse oper-
ators (∇ · a∇)−1∇· defining (∇ϕn, ϕn−1) “migrate” to the test function a in the

2 For n = 1 the notation ā∗,nji1...in−2ein−1 stands for ā
∗,1e j , and we use a similar unifying notation through-

out in the sequel.
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definition (2.1) of ān . Using the algebra of correctors, a full migration precisely leads
to the dual expression ā∗,n and proves the relation (2.2). Rather stopping thismigration
argument at an intermediate step, we obtain for all 1 ≤ m < n ≤ �,

Symi1...in

(

e j · āni1...in−1ein
) = (−1)m+1 Symi1...in E

[

∇ϕ
∗,m+1
j in ...in−m+1 · a∇ϕn−m

i1...in−m

−ϕ
∗,m
jin ...in−m+2ein−m+1 · aϕn−m−1

i1...in−m−1ein−m
]

.

Note that this turns into (2.2) for m = n − 1. We deduce for n = 2m + 1 odd,

Symi1...in

(

e j · āni1...in−1ein
) = (−1)m+1 Symi1...in E

[

∇ϕ
∗,m+1
j in ...im+2 · a∇ϕm+1

i1...im+1

−ϕ
∗,m
jin ...im+3eim+2 · aϕm

i1...im eim+1
]

,

and for n = 2m even, further using the algebra of correctors to symmetrize the
expression,

Symi1...in

(

e j · āni1...in−1ein
)

= (−1)m+1 Symi1...in E

[(∇ϕ
∗,m
jin ...im+2 + ϕ

∗,m−1
j in ...im+3eim+2

) · aϕm
i1...im eim+1

−ϕ
∗,m
jin ...im+2eim+1 · a

(∇ϕm
i1...im + ϕm−1

i1...im−1eim
)]

.

This shows that ān can be defined in terms of correctors (∇ϕs+1, ϕs) with s ≤ � n2 �
only. This simple observation was independently made in [1, Theorem 3.5] (see also
[47, Lemma 5.2.6]) and has the following striking consequence: Choosing a peri-
odization in law aL of the coefficient field a and recalling that the periodic Poincaré
inequality ensures that all the correctors ϕn

L are defined as stationary objects so that
all the corresponding homogenized coefficients ānL are well-defined, the above com-
putation entails that Symi1...in

(

ānL;i1...in−1ein
)

has a limit as L ↑ ∞ for all n ≤ d if
d is odd and for all n < d if d is even. This partially solves a weak version of the
Bourgain–Spencer conjecture [12,33] as stated in [17, Section 4.2]. Refinements in
this direction are postponed to a future work. ♦

We turn to the accuracy of two-scale expansions in the homogenization regime.
Given f ∈ L2(Rd)d , we consider the unique Lax–Milgram solution ∇uε of the
rescaled elliptic PDE (1.2),

−∇ · a( ·
ε
)∇uε = ∇ · f inRd .

Standard two-scale expansion techniques [11] formally suggest

uε =
n

∑

k=0
εkϕk

i1...ik (
·
ε
)∇k

i1...ik Ū
n
ε + O(εn+1),
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where Ū n
ε satisfies the nth-order homogenized equation

−∇ ·
(

n
∑

k=1
εk−1 āki1...ik−1∇k−1

i1...ik−1

)

∇Ū n
ε = ∇ · f in Rd . (2.3)

The effective field-flux constitutive relation ∇w̄ 	→ ā∇w̄ is thus refined into the
higher-order relation

∇w̄ 	→
n

∑

k=1
εk−1 āki1...ik−1∇∇k−1

i1...ik−1w̄, (2.4)

which includes dispersive corrections. However, Eq. (2.3) is ill-posed in general for n
even and a suitable proxy needs to be devised (cf. also [32]). We start by introducing
a notation for two-scale expansions.

Definition 2.6 (Higher-order two-scale expansions) For 0 ≤ n ≤ �, given a determin-
istic smooth function w̄, its nth-order two-scale expansion Fn

ε [w̄] is defined as

Fn
ε [w̄] :=

n
∑

k=0
εkϕk

i1...ik (
·
ε
)∇k

i1...ik w̄.

At the level of gradients, we similarly define for 0 ≤ n ≤ �,

En
ε [∇w̄] :=

n−1
∑

k=0
εk

(∇ϕk+1
i1...ik+1 + ϕk

i1...ik eik+1
)

( ·
ε
)∇k+1

i1...ik+1w̄. ♦

In particular, note that the quantities ∇Fn
ε [w̄] and En

ε [∇w̄] are related as follows:
for all 0 ≤ n ≤ �,

∇Fn
ε [w̄] = En

ε [∇w̄] + εnϕn
i1...in∇∇n

i1...in w̄, (2.5)

where all coefficients of En
ε [∇w̄] are stationary. We turn to the definition of a suitable

proxy for the ill-posed higher-order homogenized equation (2.3). For later reference
we simultaneously consider the dual equations.

Definition 2.7 (Higher-order homogenized equations) Given f , g ∈ C∞c (Rd)d , let
∇uε and ∇vε be the unique Lax–Milgram solutions of the rescaled elliptic PDEs

−∇ · a( ·
ε
)∇uε = ∇ · f , −∇ · a∗( ·

ε
)∇vε = ∇ · g in Rd . (2.6)

For 1 ≤ n ≤ �, we define the corresponding nth-order homogenized solutions

ūnε :=
n

∑

k=1
εk−1ũk, v̄nε :=

n
∑

k=1
εk−1ṽk,
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where ∇ũ1 = ∇ū and ∇ṽ1 = ∇v̄ are the unique Lax–Milgram solutions in Rd of the
first-order homogenized equations,

−∇ · ā∇ū = ∇ · f , −∇ · ā∗∇v̄ = ∇ · g,

and where for 2 ≤ n ≤ � we inductively define the nth-order corrections ∇ũn and
∇ṽn as the unique Lax–Milgram solutions in R

d of

−∇ · ā∇ũn = ∇ ·
n

∑

k=2
āki1...ik−1∇∇k−1

i1...ik−1 ũ
n+1−k,

−∇ · ā∗∇ṽn = ∇ ·
n

∑

k=2
ā∗,ki1...ik−1∇∇k−1

i1...ik−1 ṽ
n+1−k . ♦

With the above notation, the main result from the higher-order corrector theory in
stochastic homogenization takes the following guise. For q = 2, it is a straightforward
consequence of the definition of higher-order correctors and of the corrector estimates
of Proposition 2.2. It extends [3,9,20,22] to higher order and completes [24, Theo-
rem 1.6] up to the optimal order with finer norms. For n = �, the obtained maximal
accuracy is O(εd/2) (with a logarithmic correction in even dimensions), indicating
that the study of fluctuations goes beyond the theory of oscillations.

Proposition 2.8 (Accuracy of higher-order two-scale expansions) For all f ∈
C∞c (Rd)d , 1 ≤ n ≤ �, and 1 < q ≤ p < ∞,

E

[∥
∥

[∇(uε − Fn
ε [ūnε ])

]

2

∥
∥p
Lq (Rd )

] 1
p �q,p εnμd,n(

1
ε
)

∥
∥μd,n[〈∇〉2n−1 f ]∞

∥
∥
Lq (Rd )

.

(2.7)

♦

2.1 Proof of Lemma 2.3

The result is easily obtainedbasedonMalliavin calculus andon the annealedCalderón–
Zygmund theory of Sect. 6. More precisely, for 0 ≤ n ≤ � − 1, we start from
Proposition 4.1(iii) together with (4.2) in the form

E

[∣
∣
∣

ˆ

Rd
g (∇ϕn+1, ϕn, σ n)

∣
∣
∣

p
] 1

p

�p E

[( ˆ

Rd

[ˆ

Rd
g (∇Dϕn+1, Dϕn, Dσ n)

]2

1

) p
2
] 1

p

,

and the conclusion follows after ε-rescaling from the estimates of Lemma 7.1 on the
Malliavin derivatives of higher-order correctors. ��
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2.2 Proof of Lemma 2.4

As explained in Remark 2.5, the argument consists in letting the successive inverse
operators (−∇ · a∇)−1∇· defining the correctors (∇ϕn, ϕn−1) migrate to the test
function a in the definition of the homogenized coefficient

āni1...in−1ein = E

[

a
(∇ϕn

i1...in + ϕn−1
i1...in−1ein

)]

.

Taking into account the particular algebraic structure of the correctors, a full migration
precisely leads to the dual expression ā∗,n up to additional terms involving higher-
order flux correctors, which disappear when taking the symmetric part. We split the
proof into two steps.

Step 1. Migration process: proof that for all 1 ≤ m < n ≤ �,

E

[

∇ϕ
∗,m
j1... jm

· a∇ϕn
i1...in − ϕ

∗,m−1
j1... jm−1e jm · aϕn−1

i1...in−1ein
]

= −E
[

∇ϕ
∗,m+1
j1... jmin

· a∇ϕn−1
i1...in−1 − ϕ

∗,m
j1... jm

ein · aϕn−2
i1...in−2ein−1

]

−E

[

ein · σ ∗,m−1j1... jm−1e jmϕn−1
i1...in−1 + ϕ

∗,m
j1... jm

ein · σ n−2
i1...in−2ein−1

]

. (2.8)

We abundantly use the properties of higher-order correctors (cf. Definition 2.1). The
equation for ϕn , in conjunction with the stationarity of all involved objects, and the
skew-symmetry of σ n−1

i1...in−1 yield

E

[

∇ϕ
∗,m
j1... jm

· a∇ϕn
i1...in

]

= E

[

−∇ϕ
∗,m
j1... jm

· (

aϕn−1
i1...in−1 − σ n−1

i1...in−1
)

ein
]

= E

[

−∇ϕ
∗,m
j1... jm

· aϕn−1
i1...in−1ein+ϕ

∗,m
j1... jm

(∇ · σ n−1
i1...in−1) · ein

]

,

hence, using the equation ∇ · σ n−1 = qn−1 and the choice E
[

ϕ∗,m
] = 0,

E

[

∇ϕ
∗,m
j1... jm

· a∇ϕn
i1...in

]

= E

[

− ∇ϕ
∗,m
j1... jm

· aϕn−1
i1...in−1ein + ϕ

∗,m
j1... jm

ein · a∇ϕn−1
i1...in−1

+ϕ
∗,m
j1... jm

ein · aϕn−2
i1...in−2ein−1 − ϕ

∗,m
j1... jm

ein · σ n−2
i1...in−2ein−1

]

.

We focus on rewriting the second right-hand side term. Using the equation for ϕ∗,m+1
and the skew-symmetry of σ

∗,m
j1... jm

, we find

E

[

ϕ
∗,m
j1... jm

ein · a∇ϕn−1
i1...in−1

]

= E

[

−∇ϕ
∗,m+1
j1... jmin

· a∇ϕn−1
i1...in−1 − ein · σ ∗,mj1... jm

∇ϕn−1
i1...in−1

]

= E

[

−∇ϕ
∗,m+1
j1... jmin

· a∇ϕn−1
i1...in−1 + (∇ · σ ∗,mj1... jm

) · ϕn−1
i1...in−1ein

]

,
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hence, using the equation for ∇ · σ ∗,m and the choice E
[

ϕn−1] = 0,

E

[

ϕ
∗,m
j1... jm

ein · a∇ϕn−1
i1...in−1

]

= E

[

−∇ϕ
∗,m+1
j1... jmin

· a∇ϕn−1
i1...in−1 +∇ϕ

∗,m
j1... jm

· aϕn−1
i1...in−1ein

+ϕ
∗,m−1
j1... jm−1e jm · aϕn−1

i1...in−1ein − σ
∗,m−1
j1... jm−1e jm · ϕn−1

i1...in−1ein
]

,

and the claim (2.8) follows.

Step 2. Conclusion.
For 1 ≤ n ≤ �, the definition of ān and the equation for ϕ∗,1 yield

e j · āni1...in−1ein = −E
[

∇ϕ
∗,1
j · a∇ϕn

i1...in − e j · aϕn−1
i1...in−1ein

]

.

Iterating identity (2.8) then leads to

e j · āni1...in−1ein = (−1)n E
[

∇ϕ
∗,n
jin ...i2

· a∇ϕ1
i1 − ϕ

∗,n−1
j in ...i3

ei2 · aei1
]

+
n−2
∑

l=0
(−1)l E

[

ein−l · σ ∗,lj in ...in−l+2ein−l+1ϕ
n−l−1
i1...in−l−1 + ϕ

∗,l+1
j in ...in−l+1ein−l · σ n−l−2

i1...in−l−2ein−l−1
]

.

By skew-symmetry of σ
∗,l
j in ...in−l+2 and σ n−l−2

i1...in−l−2 for all l, we deduce

Symi1...in e j · āni1...in−1ein = (−1)n Symi1...in E

[

∇ϕ
∗,n
jin ...i2

· a∇ϕ1
i1 − ϕ

∗,n−1
j in ...i3

ei2 · aei1
]

,

hence, using the equation for ϕ1 and the definition of ā∗,n ,

Symi1...in e j · āni1...in−1ein = (−1)n+1 Symi1...in E

[

ei1 · a∗
(∇ϕ

∗,n
jin ...i2

+ ϕ
∗,n−1
j in ...i3

ei2
)]

= (−1)n+1 Symi1...in ei1 · ā∗,njin ...i3ei2 ,

and the conclusion follows. ��

2.3 Proof of Proposition 2.8

We focus on the case ε = 1 and drop it from all subscripts in the notation, while the
final result is obtained after ε-rescaling. We split the proof into two steps.

Step 1. Equation for Fn[w̄]: proof that for all w̄ ∈ C∞c (Rd) and n ≥ 0,

∇ · a∇Fn[w̄] = ∇ ·
( n

∑

k=1
āki1...ik−1∇∇k−1

i1...ik−1w̄

)

+∇ · (

(aϕn
i1...in − σ n

i1...in )∇∇n
i1...in w̄

)

. (2.9)

123



Stoch PDE: Anal Comp (2020) 8:625–692 641

Weargue by induction. The claim is obvious for n = 0.Now, if it holds for some n ≥ 0,
we deduce

∇ · a∇Fn+1[w̄] = ∇ ·
( n

∑

k=1
āki1...ik−1∇∇k−1

i1...ik−1w̄

)

+∇ · (

(aϕn
i1...in − σ n

i1...in )∇∇n
i1...in w̄

)+ ∇ · a∇(

ϕn+1
i1...in+1∇n+1

i1...in+1w̄
)

. (2.10)

The definition of σ n+1
i1...in+1 (cf. Definition 2.1) yields

∇ · (

(aϕn
i1...in − σ n

i1...in )∇∇n
i1...in w̄

) = ∇ · (

(∇ · σ n+1
i1...in+1)∇n+1

i1...in+1w̄
)

−∇ · (

a∇ϕn+1
i1...in+1∇n+1

i1...in+1w̄
)+∇ · (

ān+1i1...in
∇∇n

i1...in w̄
)

.

Hence, using the skew-symmetry of σ n+1
i1...in+1 and decomposing

∇ϕn+1
i1...in+1∇n+1

i1...in+1w̄ = ∇(ϕn+1
i1...in+1∇n+1

i1...in+1w̄)− ϕn+1
i1...in+1∇∇n+1

i1...in+1w̄,

we obtain

∇ · (

(aϕn
i1...in − σ n

i1...in )∇∇n
i1...in w̄

) = ∇ · (

(aϕn+1
i1...in+1 − σ n+1

i1...in+1)∇∇n+1
i1...in+1w̄

)

−∇ · a∇(

ϕn+1
i1...in+1∇n+1

i1...in+1w̄
)+ ∇ · (

ān+1i1...in
∇∇n

i1...in w̄
)

.

Injecting this into (2.10) leads to the claim (2.9) at level n + 1.

Step 2. Conclusion.
Let n ≥ 1 be fixed. Applying (2.9) with w̄ := ūn and subtracting the Eq. (2.6) for u,
we obtain

−∇ · a∇(

u − Fn[ūn])

= ∇ ·
(

f +
n

∑

k=1
āki1...ik−1∇∇k−1

i1...ik−1 ū
n
)

+ ∇ · (

(aϕn
i1...in − σ n

i1...in )∇∇n
i1...in ū

n)

.

(2.11)

We now examine the equation satisfied by ūn = ∑n
k=1 ũk : summing the defining

equations for (ũk)1≤k≤n (cf. Definition 2.7), we find

−∇ · ā1∇ūn = ∇ · f + ∇ ·
(

n
∑

k=2
āki1...ik−1∇∇k−1

i1...ik−1

n
∑

l=k
ũl+1−k

)

,

or equivalently,

−∇ ·
(

n
∑

k=1
āki1...ik−1∇k−1

i1...ik−1

)

∇ūn = ∇ · f −∇ ·
(

n
∑

k=2
āki1...ik−1∇∇k−1

i1...ik−1

n
∑

l=n+2−k
ũl

)

.
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(This is to be compared with the formal ill-posed Eq. (2.3).) Inserting this into (2.11)
yields

− ∇ · a∇(

u − Fn[ūn]) = ∇ ·
(

n
∑

k=2
āki1...ik−1∇∇k−1

i1...ik−1

n
∑

l=n+2−k
ũl

)

+∇ · (

(aϕn
i1...in − σ n

i1...in )∇∇n
i1...in ū

n)

. (2.12)

An energy estimate and the corrector estimates of Proposition 2.2 then imply for all
p < ∞,

E

[∥
∥∇(

u − Fn[ūn])∥
∥
p
L2(Rd )

] 1
p �p ‖μd,n∇n+1ūn‖L2(Rd )

+
n

∑

k=2

n
∑

l=n+2−k
‖∇k ũl‖L2(Rd )

�p

2n−1
∑

k=n
‖μd,n∇k f ‖L2(Rd ),

where the last estimate follows from the weighted Calderón–Zygmund theory for the
constant-coefficient equations defining (ũk)1≤k≤n . The conclusion (2.7) in L2(Rd)

follows after ε-rescaling. (Note that for the sake of shortness in the statement the
norms of ∇k f for n ≤ k ≤ 2n−1 are replaced by the norm of 〈∇〉2n−1 f , which is no
longer scale invariant.) The corresponding result in Lq(Rd) for general 1 < q < ∞
requires to replace the energy estimate for (2.12) by some Lq theory, as provided e.g.
by Theorem 6.1 below; details are omitted. ��

3 Higher-order homogenization commutators

As discovered in [5,19], the homogenization commutator �1
ε[∇uε] := (a( ·

ε
) −

ā1)∇uε, which takes the form of a commutator between large-scale averaging and the
field-flux constitutive relation, plays a key role in the study of fluctuations in stochas-
tic homogenization. Indeed, while the two-scale expansion of the solution ∇uε is not
accurate in the fluctuation scaling [25], the expansion of its commutator �1

ε[∇uε] is
accurate [19]. The leading-order fluctuations are then governed by the standard homog-
enization commutator, that is, the commutator of the corrector field, �◦,1

ε [∇ū1] :=
(a( ·

ε
)− ā1)(∇ϕ1

i (
·
ε
)+ ei )∇i ū1. For higher-order fluctuations, a suitable higher-order

correction of the homogenization commutator �1
ε[∇uε] is defined as follows.

Definition 3.1 (Higher-order homogenization commutators) For 0 ≤ n ≤ �, given a
random function w, its nth-order homogenization commutator �n

ε [∇w] is the (distri-
butional) random vector field

�n
ε [∇w] :=

(

a( ·
ε
)−

n
∑

k=1
εk−1 āki1...ik−1∇k−1

i1...ik−1

)

∇w. ♦
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This definition is natural in view of the higher-order effective field-flux con-
stitutive relation (2.4). Note that the symmetries of the homogenized coefficients
(cf. Lemma 2.4) and an integration by parts lead to the following duality relation
for all smooth and compactly supported random functions w,w′,

ˆ

Rd
∇w′ ·�n

ε [∇w] =
ˆ

Rd
�∗,n

ε [∇w′] · ∇w. (3.1)

Similarly as for the first-order commutator [19, (1.8)], we state that the higher-order
fluctuations of the field∇uε are determined by those of the higher-order commutators.
While at first order we have the exact relation

´
Rd g ·(∇uε−∇ū) = ´

Rd ∇v̄ ·�1
ε[∇uε],

this does no longer hold at higher orders due to the choice of a proxy for solutions of
the generically ill-posed higher-order homogenized equations (2.3) (cf. (3.4) below).
A corresponding formula can be deduced for the flux a( ·

ε
)∇uε. This key principle

corresponds to item (i) in Theorem 1.

Proposition 3.2 (Reduction to commutators) For all 1 ≤ n ≤ � and p < ∞,

Np

(

ε−
d
2

ˆ

Rd
g · ∇uε − ε−

d
2

ˆ

Rd
∇v̄nε ·�n

ε [∇uε]
)

�p εn‖〈∇〉2(n−1)g‖L4(Rd )‖ f ‖L4(Rd ).

where we recall the notation Np(X) = E
[|X − E [X ] |p] 1

p . ♦

Next, we wish to emphasize that the above definition of the higher-order com-
mutator �n

ε leads to a higher-order Hill–Mandel relation (e.g. [51] in the mechanics
literature). First recall that the first-order commutator �1

ε[∇uε] := (a − ā)( ·
ε
)∇uε

was a natural quantity to consider in [5,19] since the very definition of H -convergence
[39] is equivalent to the weak convergence of �1

ε[∇uε] to 0, which is the mathemat-
ical formulation of the classical Hill–Mandel relation [27,28]. Interestingly, this can
be made quantitative: a direct computation for the solution of (2.6) yields

e j ·�1
ε[∇uε] = − ε∇k

((

a∗ϕ∗,1j − σ
∗,1
j

)

( ·
ε
) ek · ∇uε + ϕ

∗,1
j ( ·

ε
) fk

)

+ ∇ϕ
∗,1
j ( ·

ε
) · f ,

where the right-hand side is checked to be of order O(ε) in a weak norm if d > 2.
This property extends to higher order as follows.

Lemma 3.3 (Higher-order Hill–Mandel relation) For all f ∈C∞c (Rd)d and 1≤ n≤ �,

e j ·�n
ε [∇uε] = (−ε)n∇n

i1...in

((

a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1

)

( ·
ε
)ein · ∇uε + ϕ

∗,n
ji1...in−1(

·
ε
) fin

)

+
n−1
∑

k=0
(−ε)k∇k

i1...ik

((∇ϕ
∗,k+1
j i1...ik

+ 1k>0ϕ
∗,k
ji1...ik−1eik

)

( ·
ε
) · f

)

, (3.2)
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hence, for all g ∈ C∞c (Rd)d and p < ∞,

Np

(ˆ

Rd
g ·�n

ε [∇uε]
)

�p εnμd,n(
1
ε
)
(

‖μd,n∇ng‖L2(Rd ) + ‖g‖
H

d
2 ∩L∞(Rd )

)

‖[ f ]2d‖L2(Rd ).

♦
Finally, the relevant higher-order two-scale expansion of the higher-order commu-

tator �n
ε [∇uε] takes the form �◦,n

ε [∇ūnε ], where the so-called standard commutator
�◦,n

ε [∇·] is the nth-order differential operator with ε-rescaled (distributional) station-
ary random coefficients that is obtained by inserting the nth-order two-scale expansion
Fn

ε [·] into the commutator�n
ε [∇·] and by truncating the obtained differential operator

at order n. In other words, the standard commutator �◦,n
ε [∇·] is the nth-order lin-

ear differential operator characterized by �◦,n
ε [∇q̄] = �n

ε [∇Fn
ε [q̄]] for all nth-order

polynomials q̄ . This is efficiently expressed as follows.

Definition 3.4 (Standard higher-order homogenization commutators) For 0 ≤ n ≤ �,
given a smooth deterministic function w̄, we consider its nth-order Taylor polynomial
with basepoint x ,

T n
x w̄(y) := w̄(x)+

∑

1≤|α|≤n

(y − x)α

α! ∇αw̄(x),

where we use standard multi-index notation, and the nth-order standard homogeniza-
tion commutator �◦,n

ε [∇w̄] is then defined as the (distributional) random vector field

�◦,n
ε [∇w̄](x) := �n

ε

[∇Fn
ε [T n

x w̄]](x) (2.5)= �n
ε

[

En
ε [∇T n

x w̄]](x).

(Henceforth by a slight abuse of notationwe similarly define�n[H ] as inDefinition 3.1
even when H is not a gradient field.) ♦

This definition ensures E
[

�◦,n
ε [∇w̄]] = 0 for all 0 ≤ n ≤ � and w̄ ∈ C∞c (Rd).

Note that�◦,n
ε [∇w̄] in general differs from�n

ε [En
ε [∇w̄]]whenever n > 1, even though

En
ε [∇T n

x w̄](x) = En
ε [∇w̄](x). An explicit formula is as follows.

Lemma 3.5 (Explicit formula for �◦,n
ε ) For all w̄ ∈ C∞c (Rd) and 1 ≤ n ≤ �,

�◦,n
ε [∇w̄] = �n

ε [En
ε [∇w̄]]

+
n−1
∑

k=1
εk

(

Symi1...ik ā
k+1
i1...ik

)
n−1
∑

s=0
εs

k+s−n
∑

l=0

(
k

l

)

∇k−l
il+1...ik∇s+1

j1... js+1w̄

× ∇l
i1...il

((∇ϕs+1
j1... js+1 + ϕs

j1... js e js+1
)

( ·
ε
)
)

. ♦

Remark 3.6 While Proposition 3.2 reduces higher-order fluctuations of the field ∇uε

to corresponding fluctuations of its higher-order homogenization commutator, we
briefly argue that fluctuations of higher-order correctors can similarly be reduced to
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fluctuations of higher-order standard commutators. A simple adaptation of the proof
of Proposition 3.2 yields for 0 ≤ n ≤ �− 1,

Np

(

ε−
d
2

ˆ

Rd
g · En

ε [∇w̄] − ε−
d
2

ˆ

Rd
∇v̄nε ·�n

ε [En
ε [∇w̄]]

)

�p, f ,g εn .

Inserting the formula of Lemma 3.5 and the definition of En
ε (cf. Definition 2.6), the

expression on the left-hand side can, after straightforward computations, be rewritten
as follows,

ε−
d
2

ˆ

Rd
g · En

ε [∇w̄] − ε−
d
2

ˆ

Rd
∇v̄nε ·�n

ε [En
ε [∇w̄]]

=
n−1
∑

s=0
εs−

d
2

ˆ

Rd
T n,s

ε; j1... js+1( f , g) ·
(∇ϕs+1

j1... js+1 + ϕs
j1... js e js+1

)

( ·
ε
)

− ε−
d
2

ˆ

Rd
∇v̄nε ·�◦,n

ε [∇w̄], (3.3)

in terms of

T n,s
ε; j1... js+1( f , g) := g∇s+1

j1... js+1w̄ +
n−1
∑

k=1
εk(−1)k+s−n

k+s−n
∑

r=0

(
k

r

)(
k − 1− r

k + s − n − r

)

× (

Symi1...ik ā
k+1
i1...ik

)∗(∇∇r
i1...ir v̄

n
ε

)(∇k−r
ir+1...ik∇s+1

j1... js+1w̄
)

.

If we wish to describe only first-order fluctuations, we may replace T n,s
ε ( f , g) by

g∇s+1w̄ and ∇v̄nε by ∇v̄, and use Lemma 2.3 to estimate the remainder, to the effect
of

Np

(

ε−
d
2

ˆ

Rd
g · En

ε [∇w̄] − ε−
d
2

ˆ

Rd
∇v̄ ·�◦,n

ε [∇w̄]
)

�p,g,w̄ ε,

hence, recalling Definition 2.6 and taking differences, for all 0 ≤ n ≤ �− 1,

Np

(

εn−1−
d
2

ˆ

Rd
g∇n

j1... jn w̄ · (∇ϕn
j1... jn + ϕn−1

j1... jn−1e jn
)

( ·
ε
)

− ε−
d
2

ˆ

Rd
∇v̄ · (

�◦,n
ε [∇w̄] −�◦,n−1

ε [∇w̄])
)

�p,g,w̄ ε.

This characterizes the first-order fluctuations of Sym j1... jn (∇ϕn
j1... jn

+ ϕn−1
j1... jn−1e jn ) in

terms of (differences of) standard commutators. Note that fluctuations of the latter are
easily jointly characterized by repeating the analysis of Sects. 8 and 9, and are seen
to converge to suitable linear combinations of derivatives of Gaussian white noise.
From here we may inductively infer first-order fluctuations of Sym j1... jn ϕn

j1... jn
for

all n ≤ � − 1, while corresponding higher-order fluctuations are similarly extracted
from (3.3). ♦
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3.1 Proof of Proposition 3.2

We focus on the case ε = 1 and drop it from all subscripts in the notation, while the
final result is obtained after ε-rescaling. We split the proof into three steps.

Step 1. Proof of
ˆ

Rd
g · ∇u −

ˆ

Rd
∇v̄n · f =

ˆ

Rd
∇v̄n ·�n[∇u]

+
ˆ

Rd

( n
∑

k=2

n
∑

j=n+2−k
ā∗,ki1...ik−1∇∇k−1

i1...ik−1 ṽ
j
)

· ∇u. (3.4)

Testing equation−∇ · ā∗,1∇v̄1 = ∇ ·g with u and testing equation−∇ ·a∇u = ∇ · f
with v̄n , we find

ˆ

Rd
g · ∇u −

ˆ

Rd
∇v̄n · f =

ˆ

Rd

(

a∗∇v̄n − ā∗,1∇v̄1
) · ∇u.

Noting that the definition of �n[∇u] (cf. Definition 3.1) together with (3.1) yields
after integration by parts

ˆ

Rd
∇v̄n ·�n[∇u] =

ˆ

Rd

(

a∗∇v̄n −
n

∑

k=1
ā∗,ki1...ik−1∇∇k−1

i1...ik−1 v̄
n
)

· ∇u,

we deduce
ˆ

Rd
g · ∇u −

ˆ

Rd
∇v̄n · f =

ˆ

Rd
∇v̄n ·�n[∇u]

+
ˆ

Rd

( n
∑

k=1
ā∗,ki1...ik−1∇∇k−1

i1...ik−1 v̄
n − ā∗,1∇v̄1

)

· ∇u.

Decomposing v̄n := ∑n
j=1 ṽ j and using the defining equations for (ṽ j )2≤ j≤n (cf. Def-

inition 2.7) in the resumed form

∇ ·
n

∑

k=1

n+1−k
∑

j=1
ā∗,ki1...ik−1∇∇k−1

i1...ik−1 ṽ
j = ∇ · ā∗,1∇v̄1,

the claim follows.

Step 2. CLT scaling: for all g ∈ C∞c (Rd)d ,

E

[(ˆ

Rd
g · (∇u − E [∇u])

)p
] 1

p

�p ‖[g]2‖L4(Rd )‖[ f ]2‖L4(Rd ) ≤ ‖g‖L4(Rd )‖ f ‖L4(Rd ).

This result is classical [18,20,37]. A short proof based on Malliavin calculus and on
the annealed Calderón–Zygmund theory of Sect. 6 is easily obtained as in (7.9); details
are omitted.
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Step 3. Conclusion.
Since

´
Rd ∇v̄n · f is deterministic, the identity of Step 1 yields

E

[(ˆ

Rd
g · (∇u − E [∇u] )−

ˆ

Rd
∇v̄n · (

�n[∇u] − E
[

�n[∇u]] ))p
] 1

p

�
n

∑

k=2

n
∑

j=n+2−k
E

[( ˆ

Rd
ā∗,ki1...ik−1∇∇k−1

i1...ik−1 ṽ
j · (∇u − E [∇u])

)p
] 1

p

.

Applying the CLT scaling result of Step 2 and the Calderón–Zygmund theory for the
constant-coefficient equations defining (ṽk)1≤k≤n , this expression is estimated by

�p

2(n−1)
∑

k=n
‖∇kg‖L4(Rd )‖ f ‖L4(Rd ),

and the conclusion follows after ε-rescaling. ��

3.2 Proof of Lemma 3.3

We focus on the case ε = 1 and drop it from all subscripts in the notation, while the
final result is obtained after ε-rescaling. We split the proof into two steps.

Step 1. Proof that for all 1 ≤ n ≤ �,

e j ·�n[∇u] = (−1)n∇n
i1...in

((

a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1

)

ein · ∇u + ϕ
∗,n
ji1...in−1 fin

)

+
n−1
∑

k=0
(−1)k∇k

i1...ik

((∇ϕ
∗,k+1
j i1...ik

+ 1k>0ϕ
∗,k
ji1...ik−1eik

) · f
)

, (3.5)

which coincides with (3.2) after ε-rescaling.
First, by Lemma 2.4, the nth-order commutator can alternatively be written as

e j ·�n[∇u] = a∗e j · ∇u −
n

∑

k=1
(−1)k−1∇k−1

i1...ik−1
(

ā∗,kji1...ik−2eik−1 · ∇u
)

. (3.6)

It remains to show that for all 0 ≤ n ≤ �,

a∗e j · ∇u = (−1)n∇n
i1...in

((

a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1

)

ein · ∇u
)

+
n

∑

k=1
(−1)k−1∇k−1

i1...ik−1
(

ϕ
∗,k
ji1...ik−1∇ · a∇u

)

+
n

∑

k=1
(−1)k−1∇k−1

i1...ik−1
(

ā∗,kji1...ik−2eik−1 · ∇u
)

, (3.7)
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while the result (3.5) indeed follows after injecting the equation −∇ · a∇u = ∇ · f
and writing ϕ

∗,k
ji1...ik−1∇ · f = ∇ · (ϕ∗,kji1...ik−1 f ) − ∇ϕ

∗,k
ji1...ik−1 · f . We prove (3.7) by

induction. It is obvious for n = 0 (recall that for n = 0 the notation a∗ϕ∗,nji1...in−1ein
stands for a∗e j ). Assume that it holds for some n ≥ 0. In order to deduce it at level
n + 1, it suffices to prove that

∇n
i1...in

((

a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1

)

ein · ∇u
)

= −∇n+1
i1...inl

((

a∗ϕ∗,n+1j i1...in
− σ

∗,n+1
j i1...in

)

el · ∇u
)

+∇n
i1...in

(

ϕ
∗,n+1
j i1...in

∇ · a∇u)+∇n
i1...in

(

ā∗,n+1j i1...in−1ein · ∇u
)

. (3.8)

The equation for ∇ · σ ∗,n+1 (cf. Definition 2.1) yields

∇n
i1...in

((

a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1

)

ein · ∇w
)

= ∇n
i1...in

((∇ · σ ∗,n+1j i1...in

) · ∇w
)

−∇n
i1...in

(∇ϕ
∗,n+1
j i1...in

· a∇w
)+ ∇n

i1...in

(

ā∗,n+1j i1...in−1ein · ∇w
)

,

and the claim (3.8) follows from the skew-symmetry of σ
∗,n+1
j i1...in

.

Step 2. Conclusion.
For g ∈ C∞c (Rd)d , combining (3.5) with the energy estimate ‖∇u‖L2(Rd ) �
‖ f ‖L2(Rd ) and with the corrector estimates of Proposition 2.2, we find for all p < ∞,

E

[∣
∣
∣

ˆ

Rd
g ·�n[∇u]

∣
∣
∣

p
] 1

p

�p ‖μd,n∇ng‖L2(Rd )‖ f ‖L2(Rd )

+
n−1
∑

k=0
E

[∣
∣
∣

ˆ

Rd

(∇ϕ
∗,k+1
j i1...ik

+ 1k>0ϕ
∗,k
ji1...ik−1eik

) · f∇k
i1...ik g j

∣
∣
∣

p
] 1

p

.

In order to optimally estimate the last contribution, we must exploit stochastic can-
cellations in form of Lemma 2.3, which yields after ε-rescaling, for all 1 ≤ n ≤ �,

E

[∣
∣
∣

ˆ

Rd
g ·�n

ε [∇uε]
∣
∣
∣

p
] 1

p

�p εnμd,n(
1
ε
)

×
(

‖μd,n∇ng‖L2(Rd )‖ f ‖L2(Rd ) +
n−1
∑

k=0
‖[ f∇kg]2‖

L
2d

d+2k (Rd )

)

.

Since �− 1 ≤ 1
2 (d − 1), using Hölder’s and Sobolev’s inequalities in the form

max
0≤k≤�−1

∥
∥[ f∇kg]2

∥
∥

L
2d

d+2k (Rd )
≤ max

0≤k≤�−1
∥
∥[ f ] 2d

d−2k

∥
∥
L2(Rd )

‖∇kg‖
L
d
k (Rd )

� ‖[ f ]2d‖L2(Rd )‖g‖H d
2 ∩L∞(Rd )

,

the conclusion follows. ��
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3.3 Proof of Lemma 3.5

First note that, given a linear differential operator O of order m, say O[w̄] =
∑m

k=0 Pk
j1... jk

(x)∇k
j1... jk

w̄, the characterizing property of the Taylor polynomial yields

O[T n
x w̄](x) =

m∧n
∑

k=0
Pk
j1... jk (x)∇k

j1... jk w̄(x), (3.9)

which amounts to truncating the differential operator O at order n. Now observe
that �n

ε [En
ε [∇·]] is a linear differential operator of order 2n − 1 with (distributional)

stationary random coefficients. Composing the explicit definitions of En
ε and �n

ε

(cf. Definitions 2.6 and 3.1), we obtain

�n
ε [En

ε [∇w̄]] = (a( ·
ε
)− ā1)En

ε [∇w̄]

−
n

∑

k=2
εk−1 āki1...ik−1∇k−1

i1...ik−1

n−1
∑

s=0
εs

(∇ϕs+1
j1... js+1 + ϕs

j1... js e js+1
)

( ·
ε
)∇s+1

j1... js+1w̄.

Hence, relabelling k − 1 as k in the second right-hand side contribution, using the
symmetry in i1, . . . , ik , and expanding the multiple derivative ∇k

i1...ik
by using the

general Leibniz rule,

�n
ε [En

ε [∇w̄]] = (a( ·
ε
)− ā1)En

ε [∇w̄]

−
n−1
∑

k=1
εk

(

Symi1...ik ā
k+1
i1...ik

)
n

∑

s=0
εs

k
∑

l=0

(
k

l

)

∇k−l
il+1...ik∇s+1

j1... js+1w̄

×∇l
i1...il

((

1s �=n∇ϕs+1
j1... js+1 + ϕs

j1... js e js+1
)

( ·
ε
)
)

. (3.10)

Now applying (3.9) to the definition of �◦,n
ε [∇w̄] (cf. Definition 3.4) together with

the above formula for �n
ε [En

ε [∇w̄]], we are led to

�◦,n
ε [∇w̄] = (a( ·

ε
)− ā1)En

ε [∇w̄]

−
n−1
∑

k=1
εk

(

Symi1...ik ā
k+1
i1...ik

)
n

∑

s=0
εs

k
∑

l=k+s+1−n

(
k

l

)

∇k−l
il+1...ik∇s+1

j1... js+1w̄

×∇l
i1...il

((

1s �=n∇ϕs+1
j1... js+1 + ϕs

j1... js e js+1
)

( ·
ε
)
)

.

Comparing this with (3.10) yields the conclusion. ��

4 Reminder onMalliavin calculus

In this section,we recall somebasic definitions of theMalliavin calculuswith respect to
theGaussianfieldG (e.g. [36,42,44] for details). For simplicity,we focus on the explicit
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description of theMalliavin derivative on a simple dense subspace of random variables
(cf.R hereafter), where it is seen to coincide with the formal L2-gradient with respect
to G. Next, we give a precise statement of the different tools from Malliavin calculus
that will be used in the sequel. We emphasize that the reader should not be intimidated
by the somehow abstract appearance of the theory: for our application to stochastic
homogenization all (averaged) quantities of interest happen to be Malliavin smooth,
and their Malliavin derivatives are systematically computed by duality arguments so
that in the end everything is expressed in terms of the (explicit) Malliavin derivative
of the coefficient field a itself.

The Gaussian random field G can be seen as a random Schwartz distribution, that
is, as a random element in S′(Rd)κ . Indeed, for all ζ1, ζ2 ∈ C∞c (Rd)κ , we define
G(ζ1), G(ζ2) (or formally

´
Rd Gζ1,

´
Rd Gζ2) as centered Gaussian random variables

with covariance

Cov [G(ζ1);G(ζ2)] :=
¨

Rd×Rd
ζ1(x) · c(x − y) ζ2(y) dxdy.

We define H as the closure of C∞c (Rd)κ for the (semi)norm

‖ζ1‖2H := 〈ζ1, ζ1〉H, 〈ζ1, ζ2〉H :=
¨

Rd×Rd
ζ1(x) · c(x − y) ζ2(y) dxdy. (4.1)

The spaceH (up to taking the quotient with respect to the kernel of ‖·‖H) is a separable
Hilbert space. Under the integrability condition (1.5), it obviously contains L2(Rd)κ

and there holds

‖ζ‖2H �
ˆ

Rd
[ζ ]21. (4.2)

In view of the isometry relation Cov [G(ζ1);G(ζ2)] = 〈ζ1, ζ2〉H, the random field G
is said to be an isonormal Gaussian process over H.

Without loss of generality, we work under the minimality assumption F = σ(G),
which implies that the linear subspace

R :=
{

g
(

G(ζ1), . . . ,G(ζn)
): n ∈ N, g ∈ C∞c (Rn), ζ1, . . . , ζn ∈ C∞c (Rd)κ

}

⊂ L2(�)

is dense in L2(�). This allows to define operators and prove properties on the simpler
subspaceR before extending them to L2(�) by density. For r ≥ 1 we similarly define

R(H⊗r ) :=
{

n
∑

i=1
ψi Xi : n ∈ N, X1, . . . , Xn ∈ R, ψ1, . . . , ψn ∈ H⊗r

}

⊂ L2(�;H⊗r ),
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which is dense in L2(�;H⊗r ). For a random variable X ∈ R, say X =
g(G(ζ1), . . . ,G(ζn)), we define its Malliavin derivative DX ∈ L2(�;H) as

DX =
n

∑

i=1
ζi ∂i g(G(ζ1), . . . ,G(ζn)), (4.3)

which coincides with the formal L2 gradient of X with respect to G. For an element
X ∈ R(H⊗r ) with r ≥ 1, say X = ∑n

i=1 ψi Xi , the Malliavin derivative DX ∈
L2(�;H⊗(r+1)) is defined as DX = ∑n

i=1 ψi⊗DXi . For j ≥ 1, we iteratively define
the j th-order Malliavin derivative D j :R(H⊗r ) → L2(�;H⊗(r+ j)) for all r ≥ 0. For
all r ,m ≥ 0, we then set

‖X‖2
Dm,2(H⊗r ) := 〈X , X〉Dm,2(H⊗r ),

〈X ,Y 〉Dm,2(H⊗r ) := E
[〈X ,Y 〉H⊗r

]+
m

∑

j=1
E

[

〈D j X , D jY 〉H⊗(r+ j)

]

,

we define the Malliavin–Sobolev space Dm,2(H⊗r ) as the closure ofR(H⊗r ) for this
norm, and we extend the Malliavin derivatives D j by density to these spaces.

Next, we define a divergence operator D∗ as the adjoint of the Malliavin derivative
D and we start with its domain: for r ≥ 1, we set

dom (D∗|L2(�,H⊗r )) :=
{

X ∈ L2(�,H⊗r ): ∃C < ∞ such that

E
[〈DY , X〉H⊗r

]2 ≤ C E
[‖Y‖2

H⊗(r−1)
]

for all Y ∈ D
1,2(�;H⊗(r−1))

}

,

and for all X ∈ dom (D∗|L2(�;H⊗r ))we define the divergence D
∗X ∈ L2(�;H⊗(r−1))

by duality via the relation

E
[〈Y , D∗X〉H⊗(r−1)

] = E
[〈DY , X〉H⊗r

]

for all Y ∈ D
1,2(H⊗(r−1)). (4.4)

One can show that dom (D∗|L2(�;H⊗r )) ⊃ D
1,2(H⊗r ) (e.g. [44, Proposition 1.3.1]).

Combining the Malliavin derivative and the associated divergence, we construct the
so-called Ornstein–Uhlenbeck operator (or infinite-dimensional Laplacian)

L := D∗D,

which is an essentially self-adjoint positive operator. The explicit actions of D∗ and L
on R are easily computed (e.g. [42, p. 34]): for X ∈ R(H⊗r ), say X = ∑n

i=1 ψi Xi ,
we have LX = ∑n

i=1 ψi LXi , while for Xi = g(G(ζ1), . . . ,G(ζn)),

LXi =
n

∑

j=1
G(ζ j ) ∂ j g(G(ζ1), . . . ,G(ζn))−

n
∑

j,k=1
〈ζ j , ζk〉H ∂2jk g(G(ζ1), . . . ,G(ζn)).
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In particular, a direct computation (e.g. [42, p. 35]) leads to the crucial commutator
relation

DL = (1+ L)D. (4.5)

In addition, one checks that L is shift-invariant. While the positivity of L ensures that
the inverse operator (1+L)−1 is contractive on L2(�), it is easily checked to be also
contractive on Lp(�) for all p > 1 (cf. e.g. [38, Proposition 3.2]). Although we focus
here on the explicit description of operators on their core R, the action of D, D∗,L
on general L2 random variables are naturally described in terms of their Wiener chaos
expansion (e.g. [42,44]).

Based on the above definitions,we state the following proposition collecting various
useful results for the fine analysis of functionals of the Gaussian field G. Item (i) is
classical [15,29,40], as well as item (iii) (e.g. [8] and references therein). Item (ii) is
well-known in the discrete Gaussian setting [26] (cf. also [38,50]). Item (iv) in total
variation distance (and similarly in 1-Wasserstein distance) is a consequence of Stein’s
method: it was first obtained in the discrete setting byChatterjee [14], while the present
Malliavin analogue is due to [41,43] (of which we give a slightly different formulation
here). The corresponding result in 2-Wasserstein distance is different and is due to [35].
Note the particular role of the so-called Stein kernel 〈DX , (1+L)−1DX〉H in items (ii)
and (iv). A short proof is included in “Appendix A” for the reader’s convenience.

Proposition 4.1 [14,26,29,35,41,43]

(i) First-order Poincaré inequality For all X ∈ L2(�),

Var [X ] ≤ E

[

‖DX‖2H
]

.

(ii) Helffer–Sjöstrand identity For all X ,Y ∈ D
1,2(�),

Cov [X; Y ] = E

[

〈DX , (1+ L)−1DY 〉H
]

. (4.6)

(iii) Logarithmic Sobolev inequality For all X ∈ L2(�),

Ent
[

X2
]

:= E

[

X2 log
X2

E
[

X2
]

]

≤ 2E
[

‖DX‖2H
]

,

hence in particular, for all p ≥ 1,

E

[

|X − E [X ] |2p
]

≤ (2p + 1)p E
[‖DX‖2pH

]

.

(iv) Second-order Poincaré inequality For all X ∈ L2(�) with E [X ] = 0 and
Var [X ] = 1,

W2 (X;N) ∨ dTV (X;N) ≤ 2Var
[

〈DX , (1+ L)−1DX〉H
] 1
2

≤ 3E
[

‖D2X‖4op
] 1
4
E

[

‖DX‖4H
] 1
4
,
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whereW2 (·;N) and dTV (·;N) denote the 2-Wasserstein and the total variation
distance to a standard Gaussian law, respectively, and where the operator norm
of D2X is defined by

‖D2X‖op := sup
ζ,ζ ′∈H

‖ζ‖H=‖ζ ′‖H=1

〈D2X , ζ ⊗ ζ ′〉H⊗2 . (4.7)

♦
Remark 4.2 Malliavin-type calculus has also been successfully developed in some
non-Gaussian settings, to which most of our conclusions could thus be extended. For
instance, in the case of an i.i.d. discrete random field G := (Gx )x∈Zd , a correspond-
ing calculus is based on the so-called Glauber derivative Dx X = E [ X | Gx ] − X
(e.g. [19]). Another important example is that of a Poisson point process ξ on
R
d , in which case the Malliavin derivative is chosen as the difference operator

Dx X(ξ) = X(ξ ∪ {x})− X(ξ\{x}) (e.g. [46]). ♦

5 Representation formulas

As recalled in Proposition 4.1 above, tools from Malliavin calculus allow to linearize
the dependence on the underlyingGaussian fieldG and reduce various subtle questions
about quantities of interest to the estimation of their Malliavin derivative, that is, of
their local dependence with respect to G. In this spirit, the key ingredient for items (ii)
and (iii) of Theorem 1 consists in suitable representation formulas for the Malliavin
derivative of higher-order commutators.

• Locality of higher-order commutators
The key property of homogenization commutators for fluctuations is their
improved locality with respect to the coefficient field. While this was first dis-
covered at first order in [19] (see also [5,23,25]), formula (5.1) below indicates
that the higher-order commutator �n

ε [∇uε] behaves like a local quantity at the
level of its Malliavin derivative up to a higher-order error O(εn). More precisely,
the formula takes the form

e j · D�n
ε [∇uε] =

n−1
∑

k=0
(−1)kεk∇k

i1...ik

((∇ϕ
∗,k+1
j i1...ik

+ϕ
∗,k
ji1...ik−1eik

)

( ·
ε
) · Da( ·

ε
)∇uε

)

+ O(εn),

where the main right-hand side terms are indeed local in view of Dza =
a′0(G(z)) δ(· − z), and where the error can be checked to be of order O(εn) in
L2(�;H)when integratedwith a smooth test function.While the full formula (5.1)
below is given for simplicity for ε = 1, the ε-scaling is transparent by counting
the number of derivatives that fall on test functions. The proof consists in exploit-
ing the algebraic structure of higher-order correctors and commutators in order to
make this clean local structure appear.
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Since the standard commutator �◦,n
ε [∇w̄] is obtained by applying �n

ε [∇·] to the
two-scale expansion Fn

ε [∇w̄] whenever w̄ is an nth-order polynomial, we may
deduce a corresponding formula (5.2) for its Malliavin derivative,

e j · D�◦,n
ε [∇w̄]

=
n−1
∑

k=0
(−1)kεk∇k

i1...ik

((∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

)

( ·
ε
) · Da( ·

ε
)En

ε [∇w̄]
)

+ O(εn).

In view of Proposition 4.1(ii), this improved locality property provides a simple
access to the higher-order characterization of the asymptotic covariance structure
of large-scale averages of commutators, cf. Sect. 8.

• Accuracy of the two-scale expansion of higher-order commutators:
Comparing the formulas for Malliavin derivatives of the commutator �n

ε [∇uε]
and of its standard version �◦,n

ε [∇w̄], and choosing w̄ = ūnε the homogenized
solution, we find for the difference,

e j · D
(

�n
ε [∇uε] −�◦,n

ε [∇ūnε ]
) = O(εn)

+
n−1
∑

k=0
(−1)kεk∇k

i1...ik

((∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

)

( ·
ε
) · Da( ·

ε
)
(∇uε − En

ε [∇ūnε ]
))

,

where we exactly recognize the higher-order two-scale expansion error ∇uε −
En

ε [∇ūnε ], which is known to be of small order O(εn) in view of Proposition 2.8.
This constitutes the core of the proof of the higher-order pathwise result, cf. Sect. 7.

We turn to the precise statement of the representation formulas. These are understood
in a weak sense: when integrated in space with a smooth test function, the quanti-
ties in consideration are indeed Malliavin smooth and the formulas make sense after
integrations by parts (see also Lemmas 7.1 and 9.1).

Proposition 5.1 (Formulas for first Malliavin derivatives) Let ε = 1 and drop it from
all subscripts in the notation. For all 1 ≤ n ≤ � there holds for any random function
w with ∇ · a∇w deterministic,

e j · D�n[∇w] =
n

∑

k=0
(−1)k∇k

i1...ik

((

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

) · Da∇w
)

+ (−1)n∇n
i1...in

((

a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1

)

ein · ∇Dw
)

, (5.1)

and also, for any smooth deterministic function w̄,

e j · D�◦,n[∇w̄] =
n

∑

k=0
(−1)k∇k

i1...ik

((

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

) · Da En[∇w̄]
)

−
n

∑

k=0
(−1)k

n−1
∑

s=n−k

k+s−n
∑

l=0

(
k

l

)
(∇k−l

il+1...ik∇s+1
j1... js+1w̄

) ∇l
i1...il
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×
(

Symi1...ik

(

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

) · Da
(∇ϕs+1

j1... js+1 + ϕs
j1... js e js+1

))

+ (−1)n
n−1
∑

s=0

n
∑

l=s+1

(
n

l

)
(∇n−l

il+1...in∇s+1
j1... js+1w̄

) ∇l
i1...il

×
(

Symi1...in

(

(a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1)ein

) · D(∇ϕs+1
j1... js+1 + ϕs

j1... js e js+1
))

. (5.2)

In particular,

e j · D
(

�n[∇u] −�◦,n[∇ūn])

=
n

∑

k=0
(−1)k∇k

i1...ik

((

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

) · Da
(∇u − En[∇ūn])

)

+
n

∑

k=0
(−1)k

n−1
∑

s=n−k

k+s−n
∑

l=0

(
k

l

)
(∇k−l

il+1...ik∇s+1
j1... js+1 ū

n) ∇l
i1...il

×
(

Symi1...ik

(

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

) · Da
(∇ϕs+1

j1... js+1 + ϕs
j1... js e js+1

))

+ (−1)n∇n
i1...in

((

a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1

)

ein · D
(∇u − En[∇ūn])

)

+ (−1)n
n−1
∑

s=0

s
∑

l=0

(
n

l

)
(∇n−l

il+1...in∇s+1
j1... js+1 ū

n) ∇l
i1...il

×
(

Symi1...in

(

(a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1)ein

) · D(∇ϕs+1
j1... js+1 + ϕs

j1... js e js+1
))

.

(5.3)

♦

In view of the approximate normality result of Theorem 1(iv), the second-order
Poincaré inequality of Proposition 4.1(iv) requires to further estimate the secondMalli-
avin derivative of higher-order standard commutators, and we establish the following
formula. Although some of the terms are proportional to D2a, hence display an exact
locality, some others unavoidably take the form DaD∇ϕ1, hence are only approxi-
mately local. This is due to the nonlinear dependence of the solution operator on the
coefficient field, and is the reason why some logarithms are lost in the convergence
rate to normality in Theorem 1(iv), cf. Sect. 9.

Proposition 5.2 (Formulas for second Malliavin derivatives) Let ε = 1 and drop it
from all subscripts in the notation. For all 1 ≤ n ≤ �, there holds for any smooth
deterministic function w̄,

e j · D2�◦,n[∇w̄]

=
n

∑

k=0
(−1)k∇k

i1...ik

((

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

) · D2a En[∇w̄]
)

123



656 Stoch PDE: Anal Comp (2020) 8:625–692

−
n

∑

k=0
(−1)k

n−1
∑

s=n−k

k+s−n
∑

l=0

(
k

l

)
(∇k−l

il+1...ik∇s+1
j1... js+1w̄

) ∇l
i1...il

×
(

Symi1...ik

(

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

) · D2a
(∇ϕs+1

j1... js+1 + ϕs
j1... js e js+1

))

+ 2
n

∑

k=0
(−1)k∇k

i1...ik

((

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

) · Da DEn[∇w̄]
)

− 2
n

∑

k=0
(−1)k

n−1
∑

s=n−k

k+s−n
∑

l=0

(
k

l

)
(∇k−l

il+1...ik∇s+1
j1... js+1w̄

) ∇l
i1...il

×
(

Symi1...ik

(

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

) · Da D
(∇ϕs+1

j1... js+1 + ϕs
j1... js e js+1

))

+ (−1)n
n−1
∑

s=0

n
∑

l=s+1

(
n

l

)
(∇n−l

il+1...in∇s+1
j1... js+1w̄

) ∇l
i1...il

×
(

Symi1...in

(

(a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1)ein

) · D2(∇ϕs+1
j1... js+1 + ϕs

j1... js e js+1
))

.

5.1 Proof of Proposition 5.1

We split the proof into three steps.

Step 1. Proof that for any random function w with ∇ · a∇w deterministic there holds
for all 0 ≤ n ≤ �,

e j · D�n[∇w] =
n

∑

k=0
(−1)k∇k

i1...ik

((

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

) · Da∇w
)

+ (−1)n∇n
i1...in

((

a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1

)

ein · ∇Dw
)

. (5.4)

We argue by induction. The result is obvious for n = 0 (recall �0[∇w] = a∇w,
cf. Definition 3.1). Assume that it holds for some n ≥ 0. In order to deduce it at level
n+1, we appeal to the alternative definition (3.6) of the commutator, so that it suffices
to prove

∇n
i1...in

(

(a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1)ein · ∇Dw

)

= −∇n+1
i1...inl

(

(a∗ϕ∗,n+1j i1...in
− σ

∗,n+1
j i1...in

)el · ∇Dw
)−∇n+1

i1...inl

(

ϕ
∗,n+1
j i1...in

el · Da∇w
)

+∇n
i1...in

(∇ϕ
∗,n+1
j i1...in

· Da∇w
)+ ∇n

i1...in

(

ā∗,n+1j i1...in−1ein · ∇Dw
)

. (5.5)

The definition of σ ∗,n+1 (cf. Definition 2.1) yields

∇n
i1...in

(

(a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1)ein · ∇Dw

) = ∇n
i1...in

(

(∇ · σ ∗,n+1j i1...in
) · ∇Dw

)

−∇n
i1...in

(∇ϕ
∗,n+1
j i1...in

· a∇Dw
)+∇n

i1...in

(

ā∗,n+1j i1...in−1ein · ∇Dw
)

.
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Then using the skew-symmetry of σ
∗,n+1
j i1...in

and the equation D(∇ · a∇w) = 0 in the
form

∇ϕ
∗,n+1
j i1...in

· a∇Dw = ∇ · (

ϕ
∗,n+1
j i1...in

a∇Dw
)+ ϕ

∗,n+1
j i1...in

∇ · Da∇w

= ∇ · (

ϕ
∗,n+1
j i1...in

a∇Dw
)

+∇ · (

ϕ
∗,n+1
j i1...in

Da∇w
)−∇ϕ

∗,n+1
j i1...in

· Da∇w,

the claim (5.5) follows.

Step 2. Proof that for any random function w with ∇ · a∇w deterministic and for any
smooth deterministic function w̄ there holds for all 0 ≤ n,m ≤ �,

e j · D�n[∇w − Em[∇w̄]]

=
n

∑

k=0
(−1)k∇k

i1...ik

((

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

) · Da
(∇w − Em[∇w̄])

)

+
n

∑

k=0
(−1)k

m
∑

s=1

k+s−m−1
∑

l=0

(
k

l

)
(∇k−l

il+1...ik∇s
j1... js w̄

) ∇l
i1...il

×
(

Symi1...ik

(

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

) · Da
(∇ϕs

j1... js + ϕs−1
j1... js−1e js

))

+ (−1)n∇n
i1...in

((

a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1

)

ein · D
(∇w − Em[∇w̄])

)

+ (−1)n
m

∑

s=1

n+s−m−1
∑

l=0

(
n

l

)
(∇n−l

il+1...in∇s
j1... js w̄

) ∇l
i1...il

×
(

Symi1...in

(

(a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1)ein

) · D(∇ϕs
j1... js + ϕs−1

j1... js−1e js
))

+
n−1
∑

k=1
(−1)k

m
∑

s=1

k+s−m−1
∑

l=0

(
k

l

)
(∇k−l

il+1...ik∇s
j1... js w̄

) ∇l
i1...il

×
(

Symi1...ik

(

ā∗,k+1j i1...ik−1eik
) · D(∇ϕs

j1... js + ϕs−1
j1... js−1e js

))

, (5.6)

where we recall that by a slight abuse of notation we similarly define �n[H ] as in
Definition 3.1 even if H is not a gradient field.

Let n ≥ 0 be fixed. We argue by induction on m. For m = 0, the result (5.6) coincides
with (5.4) (recall E0[∇w̄] = 0, cf. Definition 2.6). Now assume that (5.6) holds for
some m ≥ 0 and let us deduce it at the level m + 1. Given a polynomial q̄ of order
m + 1, noting that ∇m+2q̄ vanishes, identity (2.9) ensures that ∇ · a∇Fm+1[q̄] is
deterministic. We then apply (5.6) with w = Fm+1[q̄] and w̄ = q̄ . Abundantly using
that ∇m+1q̄ is constant and noting that identity (2.5) together with the definition of
Em yields

∇Fm+1[q̄] − Em[∇q̄] = Em+1[∇q̄] − Em[∇q̄]
= (∇ϕm+1

j1... jm+1 + ϕm
j1... jm e jm+1

)∇m+1
j1... jm+1 q̄,
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this leads to

e j · D�n[∇ϕm+1
j1... jm+1 + ϕm

j1... jm e jm+1
]∇m+1

j1... jm+1 q̄

=
n

∑

k=0
(−1)k(∇m+1

j1... jm+1 q̄
) ∇k

i1...ik

×
((

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

) · Da
(∇ϕm+1

j1... jm+1 + ϕm
j1... jm e jm+1

))

+
n

∑

k=0
(−1)k

m
∑

s=1

(
k

k + s − m − 1

)
(∇m+1−s

ik+s−m ...ik
∇s

j1... js q̄
) ∇k+s−m−1

i1...ik+s−m−1

×
(

Symi1...ik

(

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

) · Da
(∇ϕs

j1... js + ϕs−1
j1... js−1e js

))

+ (−1)n(∇m+1
j1... jm+1 q̄

) ∇n
i1...in

×
((

a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1

)

ein · D
(∇ϕm+1

j1... jm+1 + ϕm
j1... jm e jm+1

))

+ (−1)n
m

∑

s=1

(
n

n + s − m − 1

)
(∇m+1−s

in+s−m ...in
∇s

j1... js q̄
) ∇n+s−m−1

i1...in+s−m−1

×
(

Symi1...in

(

a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1

)

ein · D
(∇ϕs

j1... js + ϕs−1
j1... js−1e js

))

+
n−1
∑

k=1
(−1)k

m
∑

s=1

(
k

k + s − m − 1

)
(∇m+1−s

ik+s−m ...ik
∇s

j1... js q̄
) ∇k+s−m−1

i1...ik+s−m−1

×
(

Symi1...ik

(

ā∗,k+1j i1...ik−1eik
) · D(∇ϕs

j1... js + ϕs−1
j1... js−1e js

))

.

Note that both sides of this identity depend linearly on the (constant and deterministic)
symmetric tensor ∇m+1q̄ . Hence, we may replace it by the (deterministic) symmetric
tensor ∇m+1w̄, to the effect of

e j · D�n[∇ϕm+1
j1... jm+1 + ϕm

j1... jm e jm+1
]∇m+1

j1... jm+1w̄

=
n

∑

k=0
(−1)k(∇m+1

j1... jm+1w̄
) ∇k

i1...ik

×
((

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

) · Da
(∇ϕm+1

j1... jm+1 + ϕm
j1... jm e jm+1

))

+
n

∑

k=0
(−1)k

m
∑

s=1

(
k

k + s − m − 1

)
(∇m+1−s

ik+s−m ...ik
∇s

j1... js w̄
) ∇k+s−m−1

i1...ik+s−m−1

×
(

Symi1...ik

(

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

) · Da
(∇ϕs

j1... js + ϕs−1
j1... js−1e js

))

+ (−1)n(∇m+1
j1... jm+1w̄

) ∇n
i1...in

×
((

a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1

)

ein · D
(∇ϕm+1

j1... jm+1 + ϕm
j1... jm e jm+1

))
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+ (−1)n
m

∑

s=1

(
n

n + s − m − 1

)
(∇m+1−s

in+s−m ...in
∇s

j1... js w̄
) ∇n+s−m−1

i1...in+s−m−1

×
(

Symi1...in

(

(a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1)ein

) · D(∇ϕs
j1... js + ϕs−1

j1... js−1e js
))

+
n−1
∑

k=1
(−1)k

m
∑

s=1

(
k

k + s − m − 1

)
(∇m+1−s

ik+s−m ...ik
∇s

j1... js w̄
) ∇k+s−m−1

i1...ik+s−m−1

×
(

Symi1...ik

(

ā∗,k+1j i1...ik−1eik
) · D(∇ϕs

j1... js + ϕs−1
j1... js−1e js

))

. (5.7)

By definition of Em and �n (cf. Definitions 2.6 and 3.1) together with Lemma 2.4,
using the general Leibniz rule, we find

e j · D�n[∇w − Em+1[∇w̄]]

= e j · D�n[∇w − Em[∇w̄]]− e j · D�n
[(∇ϕm+1

j1... jm+1 + ϕm
j1... jm e jm+1

)∇m+1
j1... jm+1w̄

]

= e j · D�n[∇w − Em[∇w̄]]− e j · D�n[∇ϕm+1
j1... jm+1 + ϕm

j1... jm e jm+1
]∇m+1

j1... jm+1w̄

+
n−1
∑

k=1
(−1)k

k−1
∑

l=0

(
k

l

)
(∇k−l

il+1...ik∇m+1
j1... jm+1w̄

) ∇l
i1...il

×
(

Symi1...ik

(

ā∗,k+1j i1...ik−1eik
) · D(∇ϕm+1

j1... jm+1 + ϕm
j1... jm e jm+1

))

.

Injecting identities (5.6) and (5.7) into this equality, using again the definition of Em

(cf. Definition 2.6) and the general Leibniz rule in the forms

n
∑

k=0
(−1)k∇k

i1...ik

((

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

) · Da
(∇w − Em[∇w̄])

)

=
n

∑

k=0
(−1)k∇k

i1...ik

((

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

) · Da
(∇w − Em+1[∇w̄])

)

+
n

∑

k=0
(−1)k

k
∑

l=0

(
k

l

)
(∇k−l

il+1...ik∇m+1
j1... jm+1w̄

) ∇l
i1...il

×
(

Symi1...ik

(

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

) · Da
(∇ϕm+1

j1... jm+1 + ϕm
j1... jm e jm+1

))

,

and

(−1)n∇n
i1...in

((

a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1

)

ein · D
(∇w − Em[∇w̄])

)

= (−1)n∇n
i1...in

((

a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1

)

ein · D
(∇w − Em+1[∇w̄])

)

123



660 Stoch PDE: Anal Comp (2020) 8:625–692

+ (−1)n
n

∑

l=0

(
n

l

)
(∇n−l

il+1...ik∇m+1
j1... jm+1w̄

) ∇l
i1...il

×
(

Symi1...in

(

(a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1)ein

) · D(∇ϕm+1
j1... jm+1 + ϕm

j1... jm e jm+1
))

,

(5.8)

and recombining the terms, the result (5.6) follows at level m + 1. For instance, the
increment of the first triple sum over (k, s, l) splits into three contributions,

n
∑

k=0

m+1
∑

s=1

k+s−(m+1)−1
∑

l=0
−

n
∑

k=0

m
∑

s=1

k+s−m−1
∑

l=0

=
n

∑

k=0

k
∑

l=0
1s=m+1 −

n
∑

k=0
1s=m+1

l=k
−

n
∑

k=0

m
∑

s=1
1l=k+s−m−1.

Step 3. Conclusion.
Applying (5.4) yields (5.1). We now turn to (5.3) and first note that by definition of
�◦,n (cf. Definition 3.4) and by (2.5) we have

(

�n[

En[∇ūn]]−�◦,n[∇ūn])(x) = �n[

En[∇(ūn − T n
x ū

n)]](x),

so that by definition of En (cf. Definition 2.6) and by (3.6) we obtain

e j ·
(

�n[

En[∇ūn]]−�◦,n[∇ūn])

= −
n−1
∑

k=1
(−1)k

n−1
∑

s=0

k+s−n
∑

l=0

(
k

l

)
(∇k−l

il+1...ik∇s+1
j1... js+1 ū

n) ∇l
i1...il

×
(

Symi1...ik

(

ā∗,k+1j i1...ik−1eik
) · (∇ϕs+1

j1... js+1 + ϕs
j1... js e js+1

))

.

We now apply D to this identity, add (5.6) with m = n, with (w, w̄) replaced by
(u, ūn), and with s replaced by s + 1, and so obtain (5.3). Finally, (5.2) follows by
subtracting (5.3) (with (u, ūn) = (w, w̄)) from (5.1) and inserting the formula for
DEn[∇ūn] already used in (5.8) for m = n. ��

5.2 Proof of Proposition 5.2

The conclusion follows by repeating the proof of Proposition 5.1, taking advantage
of the same algebraic identities, but now further keeping track of the mixed term in
D2(a∇w) = a∇D2w + 2Da∇Dw + D2a∇w. ��
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6 Annealed Calderón–Zygmund theory

In this section, we establish the following new annealed Calderón–Zygmund estimate
for linear elliptic equations in divergence form with random coefficients. This con-
stitutes a useful upgrade of the quenched large-scale Calderón–Zygmund estimates
of [3,4,21]. The merit of (6.2)–(6.4) below is that the stochastic Lq norm is inside
the spatial Lp norm; while there is a tiny loss in stochastic integrability, the spatial
integrability is as in the constant-coefficient case.

Theorem 6.1 Consider the Helmholtz projection T := ∇(∇ · a∇)−1∇ · a. There exists
a 1

8 -Lipschitz stationary field r∗ ≥ 1 on R
d such that for all h ∈ C∞c (Rd;L∞(�))d

and 1 < q ≤ p < ∞ there holds

(ˆ

Rd
E

[(  

B∗(x)
|Th|2

) q
2
] p

q

dx

) 1
p

�p,q

(ˆ

Rd
E

[(  

B∗(x)
|h|2

) q
2
] p

q

dx

) 1
p

,

(6.1)

where B∗(x) := Br∗(x)(x). In addition, in the Gaussian setting with integrable cor-
relations (1.5), the stationary random field r∗ satisfies E

[

exp( 1
C r

d∗ )
] ≤ 2 for some

C � 1. In particular, for all 1 < p, q < ∞ and 0 < δ ≤ 1
2 ,

‖[Th]2‖Lp(Rd ;Lq (�)) �p,q δ
−( 1

p∧q∧2− 1
p∨q∨2 ) |log δ|2| 1q− 1

p | ‖[h]2‖Lp(Rd ;Lq+δ(�)).

(6.2)

♦

We shall also make use of the following consequence of this annealed estimate for
the corresponding Riesz potentials. As opposed to the above, this can alternatively be
deduced from the annealed Green’s function estimates in [37].

Corollary 6.2 Consider the Riesz potentials Ue,◦ := ∇�−1e· and Ue := ∇(∇ ·
a∇)−1e · a with |e| = 1. For all h ∈ C∞c (Rd ;L∞(�))d and 1 < p, q < ∞ with
dp
d+p > 1,

‖[Ue,◦h]2‖Lp(Rd ;Lq (�)) �p ‖[h]2‖
L

dp
d+p (Rd ;Lq (�))

, (6.3)

and for all 0 < δ ≤ 1
2 ,

‖[Ueh]2‖Lp(Rd ;Lq (�)) �p,q δ
−( 1

p∧q∧2− 1
p∨q∨2 ) |log δ|2| 1q− 1

p | ‖[h]2‖
L

dp
d+p (Rd ;Lq+δ(�))

.(6.4)

♦
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6.1 Proof of Theorem 6.1

Our argument is based on a multiple use of the following version of the Calderón–
Zygmund lemma due to Shen [48, Theorem 2.1] (cf. also [49, Theorem 2.4]), based on
ideas by Caffarelli and Peral [13]. For a ball B, we set B = B(xB, rB) and abusively
write αB := B(xB, αrB) for α > 0.

Lemma 6.3 [13,48] Let 1 ≤ p0 < p1 ≤ ∞, C0 > 0, and f , g ∈ Lp0 ∩Lp1(Rd).
Assume that for all balls B ⊂ R

d there exist measurable functions fB,0 and fB,1 such
that there hold f = fB,0 + fB,1 on B and

(  

B
| fB,0|p0

) 1
p0 ≤ C0

(  

C0B
|g|p0

) 1
p0 ,

(  

1
C0

B
| fB,1|p1

) 1
p1 ≤ C0

(  

B
| fB,1|p0

) 1
p0 .

Then, for all p0 < q < p1,

( ˆ

Rd
| f |q

) 1
q �C0,p0,q,p1

( ˆ

Rd
|g|q

) 1
q
. ♦

Combining this lemma with the quenched large-scale Lipschitz regularity the-
ory due to [6,7,21] leads to the following quenched large-scale Calderón–Zygmund
estimate. This slightly shortens the proof of [4] and [21, Corollary 4] (cf. also [3,
Section 7]).

Proposition 6.4 (Quenched large-scale Calderón–Zygmund estimate) There exists a
stationary random field r∗ as in the statement of Theorem 6.1 such that for all h ∈
C∞c (Rd ;L∞(�))d and 1 < p < ∞,

(ˆ

Rd

(  

B∗(x)
|Th|2

) p
2
dx

) 1
p

�p

(ˆ

Rd

(  

B∗(x)
|h|2

) p
2
dx

) 1
p

,

where we recall the notation B∗(x) := Br∗(x)(x). ♦
Before proceeding to the proof, we state the following useful properties of averages

on the family of balls {B∗(x)}x∈Rd . The point is that these balls have a radius that varies
with their center x .

Lemma 6.5 For any measurable function f on R
d , the following estimates hold.

(i) For all balls B ⊂ R
d with rB ≥ 1

4r∗(xB), we have

 

B
| f | �

 

2B

(  

B∗(x)
| f |

)

dx, (6.5)
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hence, in particular,

ˆ

Rd
| f | �

ˆ

Rd

(  

B∗(x)
| f |

)

dx . (6.6)

(ii) For all balls B ⊂ R
d and x0 ∈ B with rB ≤ 1

4r∗(x0), we have

(  

B∗(x0)
| f |

) 1
2 �

 

5B

( 

B∗(x)
| f |

) 1
2
dx, (6.7)

hence, in particular,

 

B∗(x0)
| f | �

 

5B

(  

B∗(x)
| f |

)

dx . (6.8)

♦
We may now proceed to the proof of Proposition 6.4, which amounts to com-

bining the quenched large-scale Lipschitz regularity theory of [6,7,21] together with
Lemma 6.3.

Proof of Proposition 6.4 As in [21, Step 1 of the proof of Corollary 4], the random
field r∗ is chosen as the largest 1

8 -Lipschitz lower bound on the so-called minimal
radius defined in [21] (what is denoted here by r∗ thus corresponds to the notation r∗
in [21]). We split the proof into two steps.

Step 1. For all balls B ⊂ R
d , decomposing Th = ∇wB,0 + ∇wB,1 with

− ∇ · a∇wB,0 = ∇ · (ah1B), −∇ · a∇wB,1 = ∇ · (ah1Rd\B), (6.9)

we prove for all 2 ≤ p ≤ ∞,

(  

B

(  

B∗(x)
|∇wB,0|2

)

dx

) 1
2

�
( 

2B

(  

B∗(x)
|h|2

)

dx

) 1
2

,

(6.10)
(  

1
12 B

( 

B∗(x)
|∇wB,1|2

) p
2
dx

) 1
p

�
( 

B

(  

B∗(x)
|∇wB,1|2

)

dx

) 1
2

,

(6.11)

We start with the proof of (6.10), and we first consider the case rB ≥ 1
4r∗(xB). An

energy estimate on the equation for wB,0 yields

ˆ

Rd
|∇wB,0|2 �

ˆ

B
|h|2, (6.12)

123



664 Stoch PDE: Anal Comp (2020) 8:625–692

hence, combined with (6.5) and (6.6),

 

B

(  

B∗(x)
|∇wB,0|2

)

dx ≤ |B|−1
ˆ

Rd

(  

B∗(x)
|∇wB,0|2

)

dx

�
 

B
|h|2 �

 

2B

(  

B∗(x)
|h|2

)

dx,

which proves (6.10). Next, we consider the case rB ≤ 1
4r∗(xB). For x0 ∈ B, using

the 1
8 -Lipschitz property of r∗ in form of |B∗(x0)| � |B∗(xB)|, using the energy

estimate (6.12), and applying (6.8) (with x0 and B replaced by xB and 1
10 B), we find

 

B∗(x0)
|∇wB,0|2 � |B∗(xB)|−1

ˆ

B
|h|2 �

 

B∗(xB )

|h|2 �
 

1
2 B

( 

B∗(x)
|h|2

)

dx .

(6.13)

(The choice of 1
2 B in the right-hand side does not matter here and is only made for

later reference.) Integrating this estimate over x0 ∈ B, the conclusion (6.10) follows.
We turn to the proof of (6.11), which is a consequence of quenched large-scale Lip-
schitz regularity theory, noting that wB,1 is indeed a-harmonic in B. It is obviously
sufficient to prove for all x0 ∈ 1

12 B,

 

B∗(x0)
|∇wB,1|2 �

 

B

(  

B∗(x)
|∇wB,1|2

)

dx . (6.14)

If r∗(x0) ≥ 1
3rB , this follows from (6.8) (with B replaced by 1

12 B). Let now x0 ∈ 1
12 B

be fixed with r∗(x0) ≤ 1
3rB . Since the ball B(x0, r∗(x0) + 1

12rB) is contained in
1
2 B, where wB,1 is a-harmonic, the quenched large-scale Lipschitz regularity theory
(e.g. [21, Theorem 1]) implies

 

B∗(x0)
|∇wB,1|2 �

 

B(x0,r∗(x0)+ 1
12 rB )

|∇wB,1|2 �
 

1
2 B
|∇wB,1|2.

Since for r∗(x0) ≤ 1
3rB the

1
8 -Lipschitz property of r∗ yields r∗(xB) ≤ r∗(x0)+ 1

96rB ≤
2rB , the conclusion (6.14) follows from (6.5) (with B replaced by 1

2 B).
Step 2. Conclusion.
Combining (6.10) and (6.11), and applying Lemma 6.3 with

p0 = 2 ≤ p1 ≤ ∞, f (x) =
(  

B∗(x)
|Th|2

) 1
2
, g(x) =

(  

B∗(x)
|h|2

) 1
2
,

fB,0(x) =
(  

B∗(x)
|∇wB,0|2

) 1
2
, fB,1(x) =

( 

B∗(x)
|∇wB,1|2

) 1
2
,
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we conclude for all 2 ≤ p < ∞,

(ˆ

Rd

(  

B∗(x)
|Th|2

) p
2
dx

) 1
p

�p

(ˆ

Rd

(  

B∗(x)
|h|2

) p
2
dx

) 1
p

.

A standard duality argument allows to deduce the corresponding result for 1 < p ≤ 2
(e.g. [21, Step 7 of the proof of Corollary 4]). ��

We need two additional ingredients for the proof of Theorem 6.1. The first is a
deterministic regularity result for a-harmonic functions. It follows e.g. from [10, proof
of Lemma 4], but a short proof is included below for the reader’s convenience.

Lemma 6.6 If w is a-harmonic on a ball B, there holds

(  

1
2 B
|∇w|2

) 1
2 �

 

B
|∇w|. ♦

The second ingredient is needed to pass from statements on averages at the scale r∗
to corresponding statements on unit scale. This can be done at no loss in the spatial,
but a small controlled loss in the stochastic integrability.

Lemma 6.7 Let the stationary random field r∗ satisfy E
[

exp( 1
C r

d∗ )
] ≤ 2 for some

C � 1. For all f ∈ C∞c (Rd ;L∞(�)) and 1 ≤ q ≤ p < ∞, there hold

(i) for all r > q,

( ˆ

Rd
E

[(  

B∗(x)
| f |2

) q
2
] p

q

dx

) 1
p

�p,q

( 1

q
− 1

r

)−( 1q− 1
2 )+

L
( 1

q
− 1

r

) 1
q− 1

p
( ˆ

Rd
E

[[ f ]r2
] p
r

) 1
p ;

(ii) for all r < q,

( ˆ

Rd
E

[( 

B∗(x)
| f |2

) q
2
] p

q

dx

) 1
p

�p,q

(1

r
− 1

q

)( 12− 1
p )+

L
(1

r
− 1

q

)−( 1q− 1
p )(

ˆ

Rd
E

[[ f ]r2
] p
r

) 1
p ;

where we have set L(t) := log(2+ 1
t ). ♦

With these ingredients at hand, we turn the proof of Theorem 6.1. The argument
is based on a second application of Lemma 6.3 starting with the quenched large-scale
Calderón–Zygmund estimate of Proposition 6.4.
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Proof of Theorem 6.1 Let r∗ be chosen as in the proof of Proposition 6.4 above. We
split the proof into two steps.

Step 1. For all balls B ⊂ R
d , decomposing Th = ∇wB,0 + ∇wB,1 as in (6.9), we

prove for all 1 < q < ∞ and 1 ≤ p1 ≤ ∞,

(  

B
E

[( 

B∗(x)
|∇wB,0|2

) q
2
]

dx

) 1
q

�q

(  

6B
E

[(  

B∗(x)
|h|2

) q
2
]

dx

) 1
q

,

(6.15)
( 

1
24 B

E

[( 

B∗(x)
|∇wB,1|2

) q
2
] p1

q

dx

) 1
p1

�q

( 

B
E

[(  

B∗(x)
|∇wB,1|2

) q
2
]

dx

) 1
q

.

(6.16)

We start with the proof of (6.15). It suffices to show

 

B

(  

B∗(x)
|∇wB,0|2

) q
2
dx �q

 

6B

(  

B∗(x)
|h|2

) q
2
dx, (6.17)

since the conclusion (6.15) then follows by taking the expectation. First consider the
case rB ≤ 1

4r∗(xB). Integrating (6.13) over x0 ∈ B yields

 

B

(  

B∗(x)
|∇wB,0|2

) q
2
dx �q

(  

1
2 B

( 

B∗(x)
|h|2

)

dx

) q
2

. (6.18)

The claim (6.17) follows from this estimate together with Jensen’s inequality if q ≥ 2,
but a different argument is needed if q < 2. For x0 ∈ 1

2 B, since the condition
rB ≤ 1

4r∗(xB) and the 1
8 -Lipschitz property of r∗ imply rB ≤ 1

4r∗(x0)+ 1
64rB , hence

rB ≤ 1
2r∗(x0), it follows from (6.7) (with B replaced by 1

2 B) that

(  

B∗(x0)
|h|2

) 1
2 �

 

5
2 B

(  

B∗(x)
|h|2

) 1
2
dx .

Combinedwith (6.18), this leads to (6.17) by Jensen’s inequality. It remains to consider
the case rB ≥ 1

4r∗(xB). Applying Proposition 6.4 (with q playing the role of p) to the
equation for wB,0 yields

ˆ

Rd

(  

B∗(x)
|∇wB,0|2

) q
2
dx �q

ˆ

Rd

(  

B∗(x)
1B |h|2

) q
2
dx . (6.19)

For x ∈ B, the balls B∗(x) and B are disjoint whenever |x − xB | ≥ r∗(x)+ rB . Since
the condition rB ≥ 1

4r∗(xB) and the 1
8 -Lipschitz property of r∗ imply

r∗(x)+ rB ≤ r∗(xB)+ rB + 1
8 |x − xB | ≤ 5rB + 1

8 |x − xB |,
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we deduce that B∗(x) and B are disjoint whenever |x − xB | ≥ 5rB + 1
8 |x − xB |, that

is, whenever |x − xB | ≥ 6rB . This implies

ˆ

Rd

( 

B∗(x)
1B |h|2

) q
2
dx ≤

ˆ

6B

(  

B∗(x)
|h|2

) q
2
dx,

so that the claim (6.17) follows from (6.19).
We turn to the proof of (6.16). For 2 ≤ q ≤ ∞, taking the q

2 th power of (6.14), using
Jensen’s inequality, and taking the expectation, we easily obtain (6.16). In order to
conclude for all values 1 ≤ q ≤ ∞, it suffices to establish the following improved
version of (6.14): for all x0 ∈ 1

24 B,

(  

B∗(x0)
|∇wB,1|2

) 1
2 �

 

B

(  

B∗(x)
|∇wB,1|2

) 1
2
dx . (6.20)

If r∗(x0) ≥ 1
6rB , this already follows from (6.7) (with B replaced by 1

24 B). Let now
x0 ∈ 1

24 B be fixed with r∗(x0) ≤ 1
6rB . Since wB,1 is a-harmonic on B and since

the ball B(x0, r∗(x0)+ 1
24rB) is contained in 1

4 B, the quenched large-scale Lipschitz
regularity theory (e.g. [21, Theorem 1]) implies

(  

B∗(x0)
|∇wB,1|2

) 1
2 �

(  

B(x0,r∗(x0)+ 1
24 rB )

|∇wB,1|2
) 1

2 �
(  

1
4 B
|∇wB,1|2

) 1
2
,

and Lemma 6.6 (with B replaced by 1
2 B) then leads to

(  

B∗(x0)
|∇wB,1|2

) 1
2 �

 

1
2 B
|∇wB,1|.

Since for r∗(x0) ≤ 1
6rB the 1

8 -Lipschitz property of r∗ yields r∗(xB) ≤ r∗(x0) +
1

192rB ≤ 2rB , the conclusion (6.20) follows from (6.5) (with B replaced by 1
2 B) and

from Jensen’s inequality.

Step 2. Conclusion.
Combining (6.15) and (6.16), and applying Lemma 6.3 with

1 < p0 = q ≤ p1 < ∞, f (x) = E

[( 

B∗(x)
|∇w|2

) q
2

] 1
q

, g(x) = E

[( 

B∗(x)
|h|2

) q
2

] 1
q

,

fB,0(x) = E

[( 

B∗(x)
|∇wB,0|2

) q
2

] 1
q

, fB,1(x) = E

[( 

B∗(x)
|∇wB,1|2

) q
2

] 1
q

,

we deduce for all 1 < q ≤ p < ∞,

(ˆ

Rd
E

[(  

B∗(x)
|∇w|2

) q
2
] p

q

dx

) 1
p

�p,q

( ˆ

Rd
E

[(  

B∗(x)
|h|2

) q
2
] p

q

dx

) 1
p

,
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which is the main stated result (6.1). It remains to post-process this result by rewrit-
ing both sides of the inequality: combining (6.1) with the different bounds stated in
Lemma 6.7, and noting that for q ≤ p there holds ( 1q − 1

2 )++( 12− 1
p )+ = 1

q∧2− 1
p∨2 ,

the conclusion (6.2) follows for q ≤ p, while the corresponding result for p ≤ q is
deduced by duality. ��

6.2 Proof of Corollary 6.2

For d > 1, appealing to the integral representation

Ue,◦g(x) = C
ˆ

Rd

y

|y|d e · g(x − y) dy,

the triangle inequality yields

‖[Ue,◦g]2‖Lp(Rd ;Lq (�)) �
( ˆ

Rd

( ˆ

Rd

E
[[g]q2(x − y)

] 1
q

|y|d−1 dy
)p

dx

) 1
p

,

and the result (6.3) follows from the Hardy–Littlewood–Sobolev inequality. Next,
writing Ue = T a−1Ue,◦a, the estimate (6.4) follows from the combination of (6.2)
and (6.3). ��
6.3 Proof of Lemma 6.5

We start with the proof of (i), and thus let rB ≥ 1
4r∗(xB). For |x − z| ≤ 1

2r∗(z), the
1
8 -Lipschitz property of r∗ implies |x−z| ≤ 1

2r∗(x)+ 1
16 |x−z|, hence |x−z| ≤ r∗(x),

and similarly |B∗(x)| � |B∗(z)|. These observations lead to the lower bound
ˆ

2B

( 

B∗(x)
| f |

)

dx =
ˆ

Rd
| f (z)|

( ˆ

2B

1|x−z|≤r∗(x)
|B∗(x)| dx

)

dz

≥
ˆ

Rd
| f (z)|

( ˆ

2B

1|x−z|≤ 1
2 r∗(z)

|B∗(x)| dx

)

dz �
ˆ

Rd
| f (z)| |2B ∩

1
2 B∗(z)|

|B∗(z)| dz.

(6.21)

Since r∗(xB) ≤ 4rB , we note that for all z ∈ B the ball 1
5 B∗(z) is included in

B
(

xB, rB + 1
5r∗(z)

) ⊂ B
(

xB, rB + 1
5r∗(xB)+ 1

40rB
) ⊂ 2B,

and (6.5) follows. The upper bound in (6.6) is a consequence (6.5) with rB ↑ ∞, so
that it remains to establish the lower bound. For that purpose, we write again

ˆ

Rd

(  

B∗(x)
| f |

)

dx =
ˆ

Rd
| f (z)|

(ˆ

Rd

1|x−z|≤r∗(x)
|B∗(x)| dx

)

dz.

Since for |x − z| ≤ r∗(x) the 1
8 -Lipschitz property of r∗ implies r∗(x) � r∗(z), the

last integral in bracket is � 1, and the desired lower bound follows.
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We turn to the proof of (ii). By Jensen’s inequality, it suffices to establish (6.7). Let
x0 ∈ B with rB ≤ 1

4r∗(x0). Noting that for all x ∈ B the ball B∗(x0) is contained in
B(x, r∗(x0)+ 2rB), we find

(  

B∗(x0)
| f |

) 1
2 �

 

B

(  

B(x,r∗(x0)+2rB )

| f |
) 1

2
dx .

The ball B4rB at the origin can be covered by N � 1 balls of radius rB . Denote
by (zi )Ni=1 ⊂ B4rB their centers. The collection (B(zi , r∗(x0) − rB))Ni=1 then covers
Br∗(x0)+2rB . By subadditivity of the square root, we may decompose

(  

B∗(x0)
| f |

) 1
2 �

 

B

( N
∑

i=1

 

B(x+zi ,r∗(x0)−rB )

| f |
) 1

2
dx

�
N

∑

i=1

 

B

(  

B(x+zi ,r∗(x0)−rB )

| f |
) 1

2
dx,

hence, noting that zi + B ⊂ 5B for all i ,

(  

B∗(x0)
| f |

) 1
2 �

 

5B

(  

B(x,r∗(x0)−rB )

| f |
) 1

2
dx .

For x ∈ 5B, the 1
8 -Lipschitz property of r∗ yields

r∗(x0)− rB ≤ r∗(x)+ 1
8 |x − x0| − rB ≤ r∗(x)+ 3

4rB − rB ≤ r∗(x),

and (iii) follows. ��

6.4 Proof of Lemma 6.6

By scaling and translation invariance, we may assume that B is the unit ball at the
origin and that

ffl
B w = 0. Choose a smooth cut-off function χ with χ = 1 in 1

2 B and
χ = 0 outside B. Caccioppoli’s inequality yields

( ˆ

Rd
|∇(χw)|2

) 1
2 ≤

(ˆ

Rd
χ2|∇w|2

) 1
2

+
( ˆ

Rd
|∇χ |2|w|2

) 1
2 �

( ˆ

Rd
|∇χ |2|w|2

) 1
2
. (6.22)

Sobolev’s inequality combined with Poincaré’s inequality (with vanishing boundary
condition) then implies for some suitable p = p(d) > 2,
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( ˆ

Rd
|χw|p

) 1
p �

( ˆ

Rd
|∇(χw)|2 + |χw|2

) 1
2 �

( ˆ

Rd
|∇(χw)|2

) 1
2

(6.22)
�

(ˆ

Rd
|∇χ |2|w|2

) 1
2
. (6.23)

Choosing q := 2 p−1
p−2 and writing χ = ξq , we deduce by Hölder’s inequality,

( ˆ

Rd
|∇χ |2|w|2

) 1
2 �

( ˆ

Rd
|ξq−1w|2

) 1
2 =

(ˆ

Rd
|ξqw| p

p−1 |w| p−2p−1
) 1

2

≤
( ˆ

Rd
|χw|p

) 1
2(p−1) ( ˆ

B
|w|

) 1
q

(6.23)
�

( ˆ

Rd
|∇χ |2|w|2

) q−1
2q

( ˆ

B
|w|

) 1
q
,

hence, by Young’s inequality,

( ˆ

Rd
|∇χ |2|w|2

) 1
2 �

ˆ

B
|w|.

Injecting this into (6.22) and using Poincaré’s inequality (with vanishing mean-value),
we conclude

( ˆ

1
2 B
|∇w|2

) 1
2 ≤

( ˆ

Rd
|∇(χw)|2

) 1
2 �

ˆ

B
|w| �

ˆ

B
|∇w|,

as desired. ��

6.5 Proof of Lemma 6.7

Step 1. Proof of the upper bound (i).
Let 1 ≤ q ≤ p < ∞. We start with the following deterministic version of the claimed
upper bound: for all R ≥ 1 we have

( ˆ

Rd
E

[( 

BR(x)
| f |2

) q
2
] p

q
dx

) 1
p

� Rd( 1q− 1
2 )+

( ˆ

Rd
E

[[ f ]q2
] p
q

) 1
p

. (6.24)

If q ≥ 2, Jensen’s inequality on t 	→ t
q
2 yields

(  

BR(x)
| f |2

) q
2 �

(  

BR(x)
[ f ]22

) q
2 �

 

BR(x)
[ f ]q2 . (6.25)

If q ≤ 2, covering the ball BR by N � Rd balls of radius 1
2 with centers (zi )Ni=1 ⊂

BR− 1
4
such that mini �= j |zi − z j | ≥ 1

2 , it follows from the discrete �2–�q inequality
that

123



Stoch PDE: Anal Comp (2020) 8:625–692 671

( ˆ

BR(x)
| f |2

) q
2 ≤

( N
∑

i=1

ˆ

B 1
2
(x+zi )

| f |2
) q

2 ≤
N

∑

i=1

( ˆ

B 1
2
(x+zi )

| f |2
) q

2

≤
N

∑

i=1

 

B 1
4
(x+zi )

(ˆ

B(y)
| f |2

) q
2
dy �

N
∑

i=1

ˆ

B 1
4
(x+zi )

[ f ]q2 ,

and hence, since the balls (B 1
4
(x + zi ))Ni=1 are disjoint and included in BR(x),

( ˆ

BR(x)
| f |2

) q
2 �

ˆ

BR(x)
[ f ]q2 . (6.26)

These two estimates (6.25) and (6.26) lead to

( ˆ

Rd
E

[( 

BR(x)
| f |2

) q
2
] p

q
dx

) 1
p

� Rd( 1q− 1
2 )+

( ˆ

Rd
E

[  

BR(x)
[ f ]q2

] p
q
dx

) 1
p

,

and the claim (6.24) follows from Jensen’s inequality on t 	→ t
p
q .

We turn to the proof of (i). Conditioning with respect to the value of r∗(x) on dyadic

scale and using Jensen’s inequality on t 	→ t
p
q with

∑∞
n=0 2−ndδ � δ−1, we find for

0 < δ ≤ 1,

ˆ

Rd
E

[( 

B∗(x)
| f |2

) q
2
] p

q

dx

�
ˆ

Rd
E

[ ∞
∑

n=0
12n−1<r∗(x)≤2n+1−1

( 

B2n+1 (x)
| f |2

) q
2
] p

q

dx

�
ˆ

Rd
E

[ ∞
∑

n=0
2−ndδr∗(x)dδ12n−1<r∗(x)≤2n+1−1

(  

B2n+1 (x)
| f |2

) q
2
] p

q

dx

� δ
1− p

q

∞
∑

n=0
2ndδ(

p
q −1)

ˆ

Rd
E

[

12n−1<r∗(x)≤2n+1−1
(  

B2n+1 (x)
| f |2

) q
2
] p

q

dx .

Taking advantage of the 1
8 -Lipschitz property of r∗, we can rewrite

ˆ

Rd
E

[(  

B∗(x)
| f |2

) q
2
] p

q

dx

� δ
1− p

q

∞
∑

n=0
2ndδ(

p
q −1)

ˆ

Rd
E

[(  

B2n+1 (x)
12n−1−1<r∗≤2n+2−1| f |2

) q
2
] p

q

dx,
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and applying (6.24) with R = 2n+1 then leads to

ˆ

Rd
E

[( 

B∗(x)
| f |2

) q
2
] p

q

dx � δ
1− p

q

∞
∑

n=0
(2ndp)

(

1
q− 1

2

)

+
+δ

(

1
q− 1

p

)
ˆ

Rd

E
[

12n−1−2≤r∗≤2n+2 [ f ]q2
] p
q .

Hence, for r > q, using Hölder’s inequality and the moment bounds on the stationary
r∗,

ˆ

Rd
E

[(  

B∗(x)
| f |2

) q
2
] p

q

dx

� δ
1− p

q

∞
∑

n=0
(2ndp)(

1
q− 1

2 )++δ( 1q− 1
p )
P

[

r∗ ≥ 2n−1 − 2
]p r−q

rq
ˆ

Rd
E

[[ f ]r2
] p
r

�q,p δ
1− p

q

( rq

r − q

)p
(

( 1q− 1
2 )++δ( 1q− 1

p )
) ˆ

Rd
E

[[ f ]r2
] p
r ,

where in the last estimate we used
∑

n(2
nd)αe−2ndθ �α,d θ−α . Optimizing 1

δ
θ−δ in

0 < δ ≤ 1 through δ = (log 1
θ
)−1 yielding ∼ log 1

θ
, the desired upper bound follows.

Step 2. Proof of the lower bound (ii).
Let 1 ≤ r ≤ p ≤ ∞. We start with the following deterministic version of the claimed
lower bound: for all R ≥ 1 we have

( ˆ

Rd
E

[( 

BR(x)
| f |2

) r
2
] p

r
dx

) 1
p

� R−d( 12− 1
p )+

( ˆ

Rd
E

[[ f ]r2
] p
r

) 1
p
. (6.27)

If 2 ≤ r ≤ p, using the discrete �r–�2 inequality and the discrete �p–�r inequality,
we indeed find

ˆ

Rd
E

[( 

BR(x)
| f |2

) r
2
] p

r
dx � R−dp(

1
2− 1

r )

ˆ

Rd
E

[  

BR(x)
[ f ]r2

] p
r
dx

� R−dp(
1
2− 1

p )

ˆ

Rd
E

[[ f ]r2
] p
r .

If r ≤ 2 ≤ p, the triangle inequality in L
2
r (BR(x)) and the discrete �p–�2 inequality

lead to

ˆ

Rd
E

[( 

BR(x)
| f |2

) r
2
] p

r
dx �

ˆ

Rd

(  

BR(x)
E

[[ f ]r2
] 2
r

) p
2
dx

� R−dp(
1
2− 1

p )

ˆ

Rd
E

[[ f ]r2
] p
r .
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Finally, if r ≤ p ≤ 2, using again the triangle inequality in L
2
r (BR(x)) and Jensen’s

inequality on t 	→ t
2
p , we obtain

ˆ

Rd
E

[( 

BR(x)
| f |2

) r
2
] p

r
dx �

ˆ

Rd

(  

BR(x)
E

[[ f ]r2
] 2
r

) p
2
dx �

ˆ

Rd
E

[[ f ]r2
] p
r .

This proves the claim (6.27) in all cases.
We turn to the proof of (ii). Conditioning with respect to the value of r∗(x) on dyadic
scale and using Jensen’s inequality on t 	→ t

p
r with

∑∞
n=0 2−ndδ � δ−1, we find for

0 < δ ≤ 1,

ˆ

Rd
E

[[ f ]r2
] p
r �

ˆ

Rd
E

[ ∞
∑

n=0
2−ndδr∗(x)dδ12n−1<r∗(x)≤2n+1−1[ f ]r2(x)

] p
r

dx

� δ1−
p
r

∞
∑

n=0
2ndδ(

p
r −1)

ˆ

Rd
E

[

12n−1<r∗(x)≤2n+1−1[ f ]r2(x)
] p
r dx .

Applying (6.27) with R = (2n − 2) ∨ 1 and taking advantage of the 1
8 -Lipschitz

property of r∗, we deduce
ˆ

Rd
E

[[ f ]r2
] p
r

� δ1−
p
r

∞
∑

n=0
(2ndp)(

1
2− 1

p )++δ( 1r − 1
p )

ˆ

Rd
E

[

12n−1−2≤r∗(x)≤2n+2
(  

B∗(x)
| f |2

) r
2
] p

r
dx .

Hence, for q > r , using Hölder’s inequality and the moment bounds on r∗, and
proceeding as for (i),
ˆ

Rd
E

[[ f ]r2
] p
r

� δ1−
p
r

∞
∑

n=0
(2ndp)(

1
2− 1

p )++δ( 1r − 1
p )
P

[

r∗ ≥ 2n−1 − 2
]p q−r

qr

ˆ

Rd
E

[( 

B∗(x)
| f |2

) q
2
] p

q
dx

�q,p δ1−
p
r

( qr

q − r

)p
(

( 12− 1
p )++δ( 1r − 1

p )
) ˆ

Rd
E

[( 

B∗(x)
| f |2

) q
2
] p

q
dx .

Optimizing in 0 < δ ≤ 1 yields the desired lower bound. ��

7 Proof of the higher-order pathwise result

In order to establish the accuracy of the two-scale expansion of higher-order com-
mutators (hence, the higher-order pathwise structure), we appeal to the representation
formula (5.3) established in Proposition 5.1 and the conclusion easily follows from
the following estimates on the Malliavin derivative of higher-order correctors.
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Lemma 7.1 Let T , Ue, and Ue,◦ denote the operators defined in Theorem 6.1 and
Corollary 6.2 with a replaced by its adjoint a∗. For all g ∈ C∞c (Rd;L∞(�))d and
0 ≤ s ≤ �− 1,

Js(g)
2 :=

ˆ

Rd

[ˆ

Rd
g · a∇Dϕs+1]2

1
+
ˆ

Rd

[ ˆ

Rd
g · aDϕs

]2

1
+
ˆ

Rd

[ˆ

Rd
g · Dσ s

]2

1

�
s

∑

k=0

∑

β∈{0,1}

∥
∥[Uk· T βg]2

([∇ϕs+1−k]2 + [ϕs−k]2
)∥
∥2
L2(Rd )

, (7.1)

where Uk· denotes any product of the form U1 . . .Uk with U j ∈ {Uei ,Uei ,◦}1≤i≤d for
all j , and where we implicitly sum over all possible such products. Furthermore, for
all δ > 0 and 2 ≤ p < ∞,

E
[

Js(g)
p] 1

p �p,δ ‖[g]2‖
L

2d
d+2s (Rd ;Lp+δ(�))

. ♦(7.2)

Proof Denote by Js,1(g)2, Js,2(g)2, and Js,3(g)2 the three left-hand side terms in (7.1),
hence Js(g)2 = Js,1(g)2 + Js,2(g)2 + Js,3(g)2. We split the proof into two steps.

Step 1. Proof that for all g ∈ C∞c (Rd ;L∞(�))d and 0 ≤ s ≤ �− 1,

Js,1(g) � Js,2(Tg)+ Js,3(Tg)+
∥
∥[Tg]2

([∇ϕs+1]2 + [ϕs]2
)∥
∥
L2(Rd )

, (7.3)

Js,2(g) = Js−1,1(Ug), (7.4)

Js,3(g) � Js−1(U◦g)+
∥
∥[U◦g]2

([∇ϕs]2 + [ϕs−1]2
)∥
∥
L2(Rd )

. (7.5)

We start with (7.3). Taking the Malliavin derivative of the equation for ϕs+1 (cf. Def-
inition 2.1) and testing it with (∇ · a∗∇)−1∇ · (a∗g), we obtain by definition of
Tg = ∇(∇ · a∗∇)−1∇ · (a∗g),
∣
∣
∣

ˆ

Rd
g · a∇Dzϕ

s+1
i1...is+1

∣
∣
∣ =

∣
∣
∣

ˆ

Rd
T g · a∇Dzϕ

s+1
i1...is+1

∣
∣
∣

� |Tg(z)|(|∇ϕs+1
i1...is+1(z)| + |ϕs

i1...is (z)|
)

+
∣
∣
∣

ˆ

Rd
T g · a Dzϕ

s
i1...is eis+1

∣
∣
∣+

∣
∣
∣

ˆ

Rd
T g · Dzσ

s
i1...is eis+1

∣
∣
∣,

where for the first right-hand side term we used that by definition (1.4) the Malliavin
derivative of a takes the form

Dza = a′0(G(z)) δ(· − z). (7.6)

The claim (7.3) follows by applying (
´
Rd (

´
B(x) · dz)2dx)

1
2 to both sides of the esti-

mate. Next, by definition of Ueis+1 g = ∇(∇ · a∗∇)−1(eis+1 · a∗g), we find
∣
∣
∣

ˆ

Rd
g · aDzϕ

s
i1...is eis+1

∣
∣
∣ =

∣
∣
∣

ˆ

Rd
Ueis+1 g · a∇Dzϕ

s
i1...is

∣
∣
∣,

123



Stoch PDE: Anal Comp (2020) 8:625–692 675

so that (7.4) follows directly. We turn to (7.5). Writing g = ��−1g, integrating by
parts, and using the Malliavin derivative of the equation for �σ s (cf. Definition 2.1),
we find

∣
∣
∣

ˆ

Rd
g · Dzσ

s
i1...is eis+1

∣
∣
∣ ≤

∣
∣
∣

ˆ

Rd
(∇i�−1gi ) eis+1 · Dzq

s
i1...is

∣
∣
∣

+
∣
∣
∣

ˆ

Rd
(∇is+1�−1gi ) ei · Dzq

s
i1...is

∣
∣
∣,

and the claim (7.5) follows from taking the Malliavin derivative of the definition of
qs and writing ∇�−1gi = Uei ,◦g.

Step 2. Conclusion.
Using the notation introduced in the statement, Step 1 yields for all g ∈
C∞c (Rd ;L∞(�))d ,

Js(g) �p Js−1(U·g)+ Js−1(U·Tg)+
∥
∥[Tg]2

([∇ϕs+1]2 + [ϕs]2
)∥
∥
L2(Rd )

+ ∥
∥

([U◦g]2 + [U◦Tg]2
)([∇ϕs]2 + [ϕs−1]2

)∥
∥
L2(Rd )

.

Since by definition TU = U and TU◦ = U◦, the decomposition (7.1) follows by
induction. Next, combining (7.1) with the corrector estimates of Proposition 2.2, we
find for all g ∈ C∞c (Rd;L∞(�))d , 0 ≤ s ≤ �− 1, 2 ≤ p < ∞, and δ > 0,

E
[

Js(g)
p] 1

p �p,δ

s
∑

k=0

∑

β∈{0,1}

∥
∥[Uk· T βg]2

∥
∥
L2(Rd ;Lp+δ(�))

,

where the anchoring in s = 0 follows from (7.3) because of J0,2 = J0,3 = 0 in view
of ϕ0 = 1 and σ 0 = 0. Here we have used that for a stationary ψ we have by the
triangle inequality in L

p
2 (�) and Hölder’s inequality,

E

[

‖ψg‖p
L2(Rd )

] 1
p ≤ ‖ψg‖L2(Rd ;Lp(�)) ≤ E

[

|ψ | p(p+δ)
δ

] δ
p(p+δ) ‖g‖L2(Rd ;Lp+δ(�)).

Now, for 0 ≤ s ≤ �− 1, 2 ≤ p < ∞, 0 ≤ k ≤ s, β ∈ {0, 1}, and δ > 0, we apply the
bound of Corollary 6.2 k times and the one of Theorem 6.1 once, increasing at every
application the stochastic integrability by δ

k+1 , to the effect of

∥
∥[Uk· T βg]2

∥
∥
L2(Rd ;Lp+δ(�))

�p,δ ‖[g]2‖
L

2d
d+2k (Rd ;Lp+2δ(�))

,

given that the restriction k ≤ s ≤ �− 1 indeed ensures 2d
d+2k > 1, and the conclusion

follows. ��
With these estimates at hand, we may now turn to the proof of Theorem 1(ii), that

is, of the higher-order pathwise result.
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Proof of Theorem 1(ii) Let 1 ≤ p < ∞. The starting point is the Lp inequality of
Proposition 4.1(iii) together with (4.2), in the form

Q := E

[( ˆ

Rd
g · (

�n[∇u] −�◦,n[∇ūn])−
ˆ

Rd
g · E [

�n[∇u] −�◦,n[∇ūn]]
)2p

] 1
2p

�p E

[( ˆ

Rd

[ˆ

Rd
g · D(

�n[∇u] −�◦,n[∇ūn])
]2

1

)p] 1
2p

.

Inserting identity (5.3) of Proposition 5.1, integrating by parts in the z-integral to put
derivatives on g and ūn , using (7.6), and using the corrector estimates of Proposi-
tion 2.2, we deduce for all 1 ≤ n ≤ �,

Q �p

n
∑

k=0

∥
∥μd,k[∇kg]∞

∥
∥
L4(Rd )

∥
∥

[∇u − En[∇ūn]]2
∥
∥
L4(Rd ;L4p(�))

+
n

∑

k=0

n−1
∑

s=n−k

k+s−n
∑

l=0

∥
∥μd,k

[∇l(g∇k+s+1−l ūn
)]

∞
∥
∥
L2(Rd )

+E

[(ˆ

Rd

[ ˆ

Rd
S1 · ∇Du

]2

1

)p] 1
2p

+ E

[( ˆ

Rd

[ˆ

Rd
S1 · DEn[∇ūn]

]2

1

)p] 1
2p

+
n−1
∑

s=0

s
∑

l=0
E

[(ˆ

Rd

[ ˆ

Rd
S2;l,sj1... js+1 · D

(∇ϕs+1
j1... js+1 + ϕs

j1... js e js+1
)]2

1

)p] 1
2p

, (7.7)

where we have set

S1 := ∇n
i1...in g j

(

a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1

)

ein ,

S2;l,sj1... js+1 := ∇l
i1...il

(

g j∇n−l
il+1...in∇s+1

j1... js+1 ū
n)

Symi1...in

(

(a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1)ein

)

.

We separately treat the different right-hand side terms in (7.7). First, from equa-
tion (2.12), formula (2.5), the annealed Calderón–Zygmund estimate of Theorem 6.1,
and the corrector estimates in Proposition 2.2, we obtain

∥
∥

[∇u − En[∇ūn]]2
∥
∥
L4(Rd ;L4p(�))

�p ‖μd,n[∇n+1ūn]∞‖L4(Rd ) +
n

∑

k=2

n
∑

l=n+2−k
‖∇k ũl‖L4(Rd ). (7.8)

Second, recalling the notation T = ∇(∇ · a∗∇)−1∇ · a∗ from Theorem 6.1 and using
the equation for u in the form −∇ · a∇Dzu = ∇ · Dza∇u, we find
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E

[(ˆ

Rd

[ˆ

Rd
S1 · ∇Du

]2

1

)p] 1
2p

= E

[( ˆ

Rd

[ ˆ

Rd
T ((a∗)−1S1) · a∇Du

]2

1

)p] 1
2p

� E

[( ˆ

Rd
[T ((a∗)−1S1)]22 [∇u]22

)p] 1
2p

≤ ∥
∥[T ((a∗)−1S1)]2

∥
∥
L4(Rd ;L4p(�))

∥
∥[∇u]2

∥
∥
L4(Rd ;L4p(�))

,

hence, using Theorem 6.1 to bound the operator T and to estimate ∇u, and applying
the corrector estimates of Proposition 2.2, we deduce

E

[( ˆ

Rd

[ ˆ

Rd
S1 · ∇Du

]2

1

)p] 1
2p

�p,δ ‖[S1]2‖L4(Rd ;L4p+δ(�))‖[ f ]2‖L4(Rd )

� ‖μd,n[∇ng]∞‖L4(Rd )‖[ f ]2‖L4(Rd ).

(7.9)

Third, decomposing

DzE
n[∇ūn] =

n−1
∑

k=0

(

Dz∇ϕk+1
i1...ik+1 + Dzϕ

k
i1...ik eik+1

)∇k+1
i1...ik+1 ū

n,

applying (7.2), and using the corrector estimates of Proposition 2.2,

E

[(ˆ

Rd

[ ˆ

Rd
S1 · DEn[∇ūn]

]2

1

)p] 1
2p

�p,δ

n−1
∑

k=0

∥
∥[S1∇k+1ūn]2

∥
∥

L
2d

d+2k (Rd ;L2p+δ(�))

�p,δ

n−1
∑

k=0

∥
∥μd,n[∇ng∇k+1ūn]∞

∥
∥

L
2d

d+2k (Rd )
.

Fourth, applying (7.2) and using the corrector estimates of Proposition 2.2,

n−1
∑

s=0

s
∑

l=0
E

[( ˆ

Rd

[ ˆ

Rd
S2;l,sj1... js+1 · D

(∇ϕs+1
j1... js+1 + ϕs

j1... js e js+1
)]2

1

)p] 1
2p

�p,δ

n−1
∑

s=0

s
∑

l=0

∥
∥[S2;l,s]2

∥
∥

L
2d

d+2s (Rd ;L2p+δ(�))

�p,δ

n−1
∑

s=0

s
∑

l=0

∥
∥μd,n

[∇l(g∇n+s+1−l ūn)
]

∞
∥
∥

L
2d

d+2s (Rd )
.

Collecting the above estimates on the right-hand side terms of (7.7), we see that
all of them are bilinear in g and f . Crucial for us is their scaling in the underlying
lengthscale, which has three origins: the (total) number of derivatives (to be counted
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negatively), the spatial integrability exponent p (to be counted in form of d
p ), and the

weights μd,n (cf. Proposition 2.2). For instance, in view of (7.8), the first right-hand

side term in (7.7) has scaling≤ L−n+ d
4+ d

4 μd,n(L) = L−n+ d
2 μd,n(L), where L stands

for the lengthscale, because ∇ũl has the same scaling as ∇l−1 f (cf. Definition 2.7).
Let us take the last term as a second example: the scaling of its (s, l)-contribution

is L−(n+s)+ d+2s
2 μd,n(L) = L−n+ d

2 μd,n(L). In fact, all terms have a scaling at most

L−n+ d
2 μd,n(L), which after ε-rescaling (L = ε−1) turns into the desired estimate. ��

8 Proof of the convergence of the covariance structure

Combining the representation formula (5.2) of Proposition 5.1 with the Helffer–
Sjöstrand identity of Proposition 4.1(ii), we establish Theorem 1(iii), that is, the
convergence of the covariance structure of the higher-order standard homogenization
commutator.

Proof of Theorem 1(iii) Combining theHelffer–Sjöstrand identity of Proposition 4.1(ii)
with the representation formula (5.2) tested with g ∈ C∞c (Rd)d , we obtain, using (7.6)
and recalling that (1+ L)−1 has operator norm ≤ 1,

∣
∣
∣
∣
Var

[ˆ

Rd
g ·�◦,n[∇w̄]

]

− E

[

〈S, (1+ L)−1S〉H
]

∣
∣
∣
∣

≤ 2E
[

‖S‖2H
] 1
2
E

[

‖R‖2H
] 1
2 + E

[

‖R‖2H
]

, (8.1)

where we have set

S(z) :=
n

∑

k=0
∇k
i1...ik g j (z)

(

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

)

(z) · a′0(G(z)) En[∇w̄](z),

and

R(z) := −
n

∑

k=0
(−1)k

n−1
∑

s=n−k

k+s−n
∑

l=0
(−1)l

(
k

l

)

∇l
i1...il

(

g j∇k−l
il+1...ik∇s+1

j1... js+1w̄
)

(z)

× Symi1...ik

(

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

)

(z) · a′0(G(z))
(∇ϕs+1

j1... js+1 + ϕs
j1... js e js+1

)

(z)

+ (−1)n
n−1
∑

s=0

n
∑

l=s+1
(−1)l

(
n

l

)ˆ

Rd
∇l
i1...il

(

g j∇n−l
il+1...in∇s+1

j1... js+1w̄
)

× Symi1...in

(

(a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1)ein

) · Dz
(∇ϕs+1

j1... js+1 + ϕs
j1... js e js+1

)

.

Appealing to the definition of En[∇w̄] (cf. Definition 2.6), to (4.2), and to the corrector
estimates of Proposition 2.2, we find
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E

[

‖S‖2H
] 1
2 �

n
∑

k=0

n−1
∑

l=0

∥
∥μd,n[∇kg]∞[∇l+1w̄]∞

∥
∥
L2(Rd )

,

and similarly,

E

[

‖R‖2H
] 1
2 �

n
∑

k=0

n−1
∑

s=n−k

k+s−n
∑

l=0

∥
∥μd,k[∇l(g∇k+s+1−lw̄)]∞

∥
∥
L2(Rd )

+
n−1
∑

s=0

n
∑

l=s+1
E

[ˆ

Rd

[ˆ

Rd
S2;l,sj1... js+1 · Dz

(∇ϕs+1
j1... js+1 + ϕs

j1... js e js+1
)]2

1

] 1
2

,

in terms of

S2;l,sj1... js+1 := ∇l
i1...il

(

g j∇n−l
il+1...in∇s+1

j1... js+1w̄
)

Symi1...in

(

(a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1)ein

)

.

Then applying (7.2) and again using the corrector estimates of Proposition 2.2, we
deduce for all δ > 0,

E

[

‖R‖2H
] 1
2 �δ

n
∑

k=0

n−1
∑

s=n−k

k+s−n
∑

l=0

∥
∥μd,k[∇l(g∇k+s+1−lw̄)]∞

∥
∥
L2(Rd )

+
n−1
∑

s=0

n
∑

l=s+1
‖[S2;l,s]2‖

L
2d

d+2s (Rd ;L2+δ(�))

�δ

n
∑

k=0

n−1
∑

s=n−k

k+s−n
∑

l=0

∥
∥μd,k[∇l(g∇k+s+1−lw̄)]∞

∥
∥
L2(Rd )

+
n−1
∑

s=0

n
∑

l=s+1

∥
∥μd,n

[∇l(g∇n+s+1−lw̄)
]

∞
∥
∥

L
2d

d+2s (Rd )
.

As in the proof of Theorem 1(ii) (cf. Sect. 7), it is easily checked that these expressions
in (g,∇w̄) have the desired length scaling, hence lead to the claimed error estimate
after ε-rescaling.
Now that the right-hand side of (8.1) is properly estimated, we turn to a suitable
decomposition of E

[〈S, (1+ L)−1S〉H
]

. Inserting the definition of En[∇w̄] (cf. Def-
inition 2.6) into S, using the definition (4.1) of the scalar product in H, expanding the
product, and focusing on terms of order εk with k ≤ n − 1, we write

∣
∣
∣
∣
E

[〈S, (1+ L)−1S〉H
]−

n−1
∑

l,l ′,k,k′=0
1l+l ′+k+k′≤n−1

×
¨

Rd×Rd
c(z′ − z)∇l ′

i ′1...i ′l′
g j ′ (z

′)∇k′+1
j ′1... j ′k′+1

w̄(z′)∇l
i1...il g j (z)∇k+1

j1... jk+1 w̄(z)
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×E

[

T l ′,k′
j ′i ′1...i ′l′ j

′
1... j

′
k′+1

(z′) (1+ L)−1T l,k
ji1...il j1... jk+1 (z)

]

dzdz′
∣
∣
∣
∣

�
n

∑

l,l ′=0

n−1
∑

k,k′=0
1l+l ′+k+k′≥n

∥
∥μd,l ′ [∇l ′g]∞[∇k′+1w̄]∞

∥
∥
L2(Rd )

∥
∥μd,l [∇l g]∞[∇k+1w̄]∞

∥
∥
L2(Rd )

,

where we have set

T l,k
ji1...il j1... jk+1 :=

(

1l �=n∇ϕ
∗,l+1
j i1...il

+ ϕ
∗,l
j i1...il−1eil

) · a′0(G)
(∇ϕk+1

j1... jk+1 + ϕk
j1... jk e jk+1

)

.

Combining this with (8.1) andwith the above estimates onE
[‖S‖2H

] 1
2 andE

[‖R‖2H
] 1
2

and appealing to the stationarity of T l,k
ji1...il j1... jk+1 (recalling that L commutes with

shifts), we deduce after ε-rescaling,

∣
∣
∣
∣
Var

[

ε−
d
2

ˆ

Rd
g ·�◦,n

ε [∇w̄]
]

−
n−1
∑

m=0
εm

∑

l,l ′,k,k′≥0
l+l ′+k+k′=m

×
¨

Rd×Rd
c(y)∇l ′

i ′1...i ′l′
g j ′(z + εy)∇k′+1

j ′1... j ′k′+1
w̄(z + εy)∇l

i1...il g j (z)∇k+1
j1... jk+1w̄(z)

×E

[

T l ′,k′
j ′i ′1...i ′l′ j

′
1... j

′
k′+1

(y) (1+ L)−1T l,k
ji1...il j1... jk+1(0)

]

dydz

∣
∣
∣
∣

�n, f ,g εnμd,n(
1
ε
).

Appealing to the boundedness of (1+ L)−1 and to the corrector estimates of Propo-
sition 2.2 in the form

∣
∣E

[

T l ′,k′
j ′i ′1...i ′l′ j

′
1... j

′
k′+1

(y) (1+ L)−1T l,k
ji1...il j1... jk+1(0)

]∣
∣ � 1,

the conclusion follows after Taylor-expanding∇l ′g j ′(z+εy)∇k′+1w̄(z+εy) to order
εn−m with the integrability assumption

´
Rd |y|n|c(y)|dy ≤ 1. ��

9 Proof of the normal approximation result

In order to establish the asymptotic normality of the higher-order standard homog-
enization commutators, we combine the representation formula of Proposition 5.2
with the second-order Poincaré inequality of Proposition 4.1(iv). We then need the
following version of Lemma 7.1 for the estimation of second Malliavin derivatives of
higher-order correctors.

Lemma 9.1 For all ζ ∈ C∞c (Rd), g ∈ C∞c (Rd)d , 0 ≤ s ≤ �− 1, and p ≥ 1,

Ks(g, ζ ) :=
∣
∣
∣
∣

ˆ

Rd×Rd
ζ(x)ζ(y)

( ˆ

Rd
g · a∇D2

xyϕ
s+1)

dxdy

∣
∣
∣
∣

+
∣
∣
∣
∣

ˆ

Rd×Rd
ζ(x)ζ(y)

( ˆ

Rd
g · aD2

xyϕ
s
)

dxdy

∣
∣
∣
∣
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+
∣
∣
∣
∣

ˆ

Rd×Rd
ζ(x)ζ(y)

( ˆ

Rd
g · D2

xyσ
s
)

dxdy

∣
∣
∣
∣

� ‖[ζ ]∞‖2
L

2p
p−1 (Rd )

s
∑

k=0

∑

β∈{0,1}

∥
∥[Uk· T βg]2

([∇ϕs+1−k]2 + [ϕs−k]2
)∥
∥
Lp(Rd )

+‖[ζ ]∞‖L2(Rd )

s
∑

k=0

∑

β∈{0,1}
Js−k

(

ζ(a∗)−1a′0(G)∗Uk· T βg
)

,

where the notation is taken from Lemma 7.1. ♦

Proof Denote by Ks,1(g, ζ ), Ks,2(g, ζ ), and Ks,3(g, ζ ) the three left-hand side terms
in the claimed estimate, hence Ks(g, ζ ) = Ks,1(g, ζ )+ Ks,2(g, ζ )+ Ks,3(g, ζ ). We
prove that for all g ∈ C∞c (Rd;L∞(Rd))d , ζ ∈ C∞c (Rd), 0 ≤ s ≤ �− 1, and p ≥ 1,

Ks,1(g, ζ ) � Ks,2(Tg, ζ )+ Ks,3(Tg, ζ )+ ‖[ζ ]∞‖L2(Rd ) Js
(

ζ(a∗)−1a′0(G)∗Tg
)

+‖[ζ ]∞‖2
L

2p
p−1 (Rd )

∥
∥

([∇ϕs+1]2 + [ϕs]2
)[Tg]2

∥
∥
Lp(Rd )

, (9.1)

Ks,2(g, ζ ) = Ks−1,1(Ug, ζ ), (9.2)

Ks,3(g, ζ ) � Ks−1(U◦g, ζ )+ ‖[ζ ]∞‖L2(Rd ) Js−1
(

ζ(a∗)−1a′0(G)∗U◦g
)

+‖[ζ ]∞‖2
L

2p
p−1 (Rd )

∥
∥

([∇ϕs]2 + [ϕs−1]2
)[U◦g]2

∥
∥
Lp(Rd )

. (9.3)

These estimates combine to

Ks(g, ζ ) �
∑

β∈{0,1}

(

Ks−1
(

U·T βg, ζ
)

+‖[ζ ]∞‖
L

2p
p−1 (Rd )

∥
∥
∥

([∇ϕs+1]2 + [ϕs]2
)[Tg]2 +

([∇ϕs]2 + [ϕs−1]2
)[U◦T βg]2

∥
∥
∥
Lp(Rd )

+‖[ζ ]∞‖L2(Rd )

(

Js
(

ζ(a∗)−1a′0(G)∗Tg
)+ Js−1

(

ζ(a∗)−1a′0(G)∗U◦T βg
)))

.

Noting as in the proof of Lemma 7.1 that TU = U and TU◦ = U◦, the conclusion
follows by induction.
Let 0 ≤ s ≤ � − 1. We start with the proof of (9.1). Taking the second Malliavin
derivative of the equation for ϕs+1 (cf. Definition 2.1), we find

−∇ · a∇D2
xyϕ

s+1
i1...is+1 = ∇ · (

(aD2
xyϕ

s
i1...is − D2

xyσ
s
i1...is ) eis+1

)

+∇ · (

Dx a(∇Dyϕ
s+1
i1...is+1 + Dyϕ

s
i1...is eis+1 )

)+∇ · (

Dya(∇Dxϕ
s+1
i1...is+1 + Dxϕ

s
i1...is eis+1 )

)

+∇ · (

D2
xya(∇ϕs+1

i1...is+1 + ϕs
i1...is eis+1 )

)

.

Testing with (∇ · a∗∇)−1∇ · (a∗g), recalling the definition of T , and using (7.6) and

D2
xya = a′′0 (G(x)) δ(· − x) δ(x − y), (9.4)
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we find after integration against ζ ⊗ ζ ,

∣
∣
∣
∣

ˆ

Rd×Rd
ζ(x)ζ(y)

( ˆ

Rd
g · a∇D2

xyϕ
s+1
i1...is+1

)

dxdy

∣
∣
∣
∣

�
∣
∣
∣
∣

ˆ

Rd×Rd
ζ(x)ζ(y)

( ˆ

Rd
T g · (

aD2
xyϕ

s
i1...is − D2

xyσ
s
i1...is

)

eis+1
)

dxdy

∣
∣
∣
∣

+
ˆ

Rd
|ζ(y)|

∣
∣
∣
∣

ˆ

Rd
ζ Tg · a′0(G)

(∇Dyϕ
s+1
i1...is+1 + Dyϕ

s
i1...is eis+1

)
∣
∣
∣
∣
dy

+
ˆ

Rd
[ζ ]2∞[Tg]2

([∇ϕs+1]2 + [ϕs]2
)

, (9.5)

and the claim (9.1) follows from Hölder’s inequality. Next, (9.2) follows from the
definition ofU . We turn to (9.3). Writing g = ��−1g, integrating by parts, and using
the equation for �σ s (cf. Definition 2.1), we find

∣
∣
∣
∣

ˆ

Rd×Rd
ζ(x)ζ(y)

( ˆ

Rd
g · D2

xyσ
s
i1...is eis+1

)

dxdy

∣
∣
∣
∣

≤
∣
∣
∣
∣

ˆ

Rd×Rd
ζ(x)ζ(y)

( ˆ

Rd
(∇i�−1gi ) eis+1 · D2

xyq
s
i1...is

)

dxdy

∣
∣
∣
∣

+
∣
∣
∣
∣

ˆ

Rd×Rd
ζ(x)ζ(y)

( ˆ

Rd
(∇is+1�−1gi ) ei · D2

xyq
s
i1...is

)

dxdy

∣
∣
∣
∣
.

Hence, by the definition of qs to whichwe apply D2
xy , we obtain an analogous structure

as in (9.5), and the claim (9.3) follows. ��

With these estimates at hand, we now turn to the proof of Theorem 1(iv), that
is, of the normal approximation result for the higher-order standard homogenization
commutators.

Proof of Theorem 1(iv) We split the proof into two steps.
Step 1. Proof that for all 8 ≤ p, q < ∞ and 1 ≤ n ≤ �,

E

[∥
∥
∥D2

ˆ

Rd
g ·�◦,n[∇w̄]

∥
∥
∥

4

op

] 1
4

�
n

∑

k=0

n−1
∑

s=0
pck+cs

(∥
∥μd,k[∇kg∇s+1w̄]∞

∥
∥
Lp(Rd )

+
k+s−n
∑

l=0

∥
∥μd,k[∇l(g∇k−l+s+1w̄)]∞

∥
∥
Lp(Rd )

)

+
n

∑

k=0

n−1
∑

s=0

s
∑

m=0
pck+cs−m

(

p log2 p
)m(m+1)

2d

(
∥
∥μd,k[∇kg∇s+1w̄]∞

∥
∥

L
dp

2d+mp (Rd )
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+
k+s−n
∑

l=0

∥
∥μd,k[∇l(g∇k−l+s+1w̄)]∞

∥
∥

L
dp

2d+mp (Rd )

)

+Cq

n−1
∑

s=0

n
∑

l=s+1

∥
∥μd,n

[∇l(g∇n−l+s+1w̄
)]

∞
∥
∥

L
dq

2d+sq (Rd )

.

In order to not overestimate the logarithmic correction in the final result, we have to
be specific here on the p-dependence; however, this is only necessary in the leading-
order terms (that is, in the first two terms). Let 1 ≤ n ≤ �. Applying the representation
formula of Proposition 5.2, using (7.6) and (9.4), inserting the definition of En

ε [∇w̄]
(cf. Definition 2.6), and ordering terms by the number of Malliavin derivatives on a,
we find

D2
ˆ

Rd
g ·�◦,n[∇w̄] = U1 +U2 +U3, (9.6)

in terms of

U1(x, y) := δ(x − y) S1(x),

U2(x, y) := Ũ2(x, y)+ Ũ2(y, x),

Ũ2(x, y) :=
n−1
∑

s=0
S2;sj1... js+1(x) · Dy

(∇ϕs+1
j1... js+1 + ϕs

j1... js e js+1
)

(x),

U3(x, y) :=
n−1
∑

s=0

ˆ

Rd
S3;sj1... js+1 · D2

xy

(∇ϕs+1
j1... js+1 + ϕs

j1... js e js+1
)

,

where we identify the operators Ui with their kernels and we have set

S1 :=
n

∑

k=0

n−1
∑

s=0

(
(∇k

i1...ik g j∇s+1
j1... js+1 w̄

)

−
k+s−n
∑

l=0

(
k

l

)

(−1)k−l ∇l
i1...il

(

g j∇k−l
il+1...ik∇s+1

j1... js+1 w̄
)
)

× Symi1...ik

(

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

) · a′′0 (G)
(∇ϕs+1

j1... js+1 + ϕs
j1... js e js+1

)

,

S2;sj1... js+1 :=
n

∑

k=0

(
(∇k

i1...ik g j∇s+1
j1... js+1 w̄

)

−
k+s−n
∑

l=0

(
k

l

)

(−1)k+l∇l
i1...il

(

g j∇k−l
il+1...ik∇s+1

j1... js+1 w̄
)
)

× Symi1...ik

(

1k �=n∇ϕ
∗,k+1
j i1...ik

+ ϕ
∗,k
ji1...ik−1eik

)

a′0(G),

S3;sj1... js+1 :=
n

∑

l=s+1

(
n

l

)

(−1)n+l∇l
i1...il

(

g j∇n−l
il+1...in∇s+1

j1... js+1 w̄
)

× Symi1...in

(

(a∗ϕ∗,nji1...in−1 − σ
∗,n
ji1...in−1 )ein

)

,
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with the implicit understanding that the contribution of
∑k+s−n

l=0 vanishes if k < n−s.
We analyze the three right-hand side terms in (9.6) separately and we start with U1.
Decomposing the covariance function as c = c0 ∗ c0 so that ‖ζ‖H = ‖c0 ∗ ζ‖L2(Rd ),
the definition (4.7) of the norm ‖ · ‖op is equivalent to

‖U1‖op = sup
‖ζ‖L2(Rd )

=‖ζ ′‖L2(Rd )
=1

∣
∣
∣

ˆ

Rd×Rd
(c0 ∗ ζ )(x)U1(x, y) (c0 ∗ ζ ′)(y) dxdy

∣
∣
∣.

(9.7)

For p ≥ 4, inserting the special form of U1(x, y) = δ(x − y) S1(x) and noting that

the discrete �
2p
p−2 –�2 inequality and the assumption (1.5) imply

‖[c0 ∗ ζ ]∞‖
L

2p
p−2 (Rd )

� ‖[c0 ∗ ζ ]∞‖L2(Rd ) ≤ ‖ζ‖L2(Rd ), (9.8)

we get

‖U1‖op � ‖[S1]1‖Lp(Rd ),

hence,

E

[

‖U1‖4op
] 1
4 ≤ E

[

‖U1‖pop
] 1

p � ‖[S1]1‖Lp(Rd ;Lp(�)).

By definition of S1, appealing to the corrector estimates of Proposition 2.2, we deduce

E

[

‖U1‖4op
] 1
4 �

n
∑

k=0

n−1
∑

s=0
pck+cs

(∥
∥μd,k[∇kg∇s+1w̄]∞

∥
∥
Lp(Rd )

+
k+s−n
∑

l=0

∥
∥μd,k[∇l(g∇k−l+s+1w̄)]∞

∥
∥
Lp(Rd )

)

.

We turn to U2. By symmetry, it suffices to estimate the norm of Ũ 2. From (9.7) and
‖[c0 ∗ ζ ]∞‖L2(Rd ) ≤ ‖ζ‖L2(Rd ), we see

‖Ũ2‖2op � sup
‖[ζ ]∞‖L2(Rd )

=1

ˆ

Rd

[ˆ

Rd
Ũ2(x, ·)ζ(x) dx

]2

1
.

Taking the expectation and arguing by duality, we find

E

[

‖Ũ2‖4op
] 1
4 � sup

‖[ζ ]∞‖L4(�;L2(Rd ))
=1

M(ζ ), (9.9)
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where

M(ζ ) := E

[ˆ

Rd

[ ˆ

Rd
Ũ2(x, ·)ζ(x)dx

]2

1

] 1
2

.

Let ζ ∈ C∞c (Rd;L∞(�)) be fixed with ‖[ζ ]∞‖L4(�;L2(Rd )) = 1. Noting that Jensen’s
inequality yields

‖[ζ ]∞‖L2(Rd ;L2(�)) = ‖[ζ ]∞‖L2(�;L2(Rd )) ≤ ‖[ζ ]∞‖L4(�;L2(Rd )),

and that the discrete �4–�2 inequality gives

‖[ζ ]∞‖L4(Rd ;L4(�)) � ‖[ζ ]∞‖L4(�;L2(Rd )),

we deduce by interpolation, for all 2 ≤ r ≤ 4,

‖[ζ ]∞‖Lr (Rd ;Lr (�)) � ‖[ζ ]∞‖L4(�;L2(Rd )) = 1. (9.10)

By definition of Ũ2 and by Lemma 7.1 in the form (7.1), we get

M(ζ ) �
n−1
∑

s=0

s
∑

m=0

∑

β∈{0,1}

∥
∥

[

Um· T β
(

(a∗)−1ζ S2;s
)]

2

([∇ϕs+1−m ]2 + [ϕs−m ]2
)∥
∥
L2(Rd ;L2(�))

,

and the corrector estimates of Proposition 2.2 yield for all p ≥ 1,

M(ζ ) �
n−1
∑

s=0

s
∑

m=0
pcs−m

∑

β∈{0,1}

∥
∥

[

Um· T β
(

(a∗)−1ζ S2;s
)]

2

∥
∥

L2(Rd ;L
2p
p−1 (�))

. (9.11)

For p ≥ 2, applying m times the bound of Corollary 6.2 and once the one of Theo-
rem 6.1with δ = 1

m+1
2p

(p−1)(p−2) ∼ 1
p in order to pass from the stochastic integrability

2p
p−1 to 2p

p−2 , we obtain the following,

M(ζ ) �
n−1
∑

s=0

s
∑

m=0
pcs−m

(

p log2 p
)m(m+1)

2d ‖[ζ S2;s]2‖
L

2d
d+2m (Rd ;L

2p
p−2 (�))

,

where the exponent m(m+1)
d of p log2 p comes from the large prefactors inCorollary 6.2

and Theorem 6.1 and is due to the successive deviations of spatial integrability from 2.
Hölder’s inequality together with (9.10) yields for p ≥ 8,

‖[ζ S2;s]2‖
L

2d
d+2m (Rd ;L

2p
p−2 (�))

≤ ‖[ζ ]∞‖
L

2p
p−4 (Rd ;L

2p
p−4 (�))

‖[S2;s]2‖
L

dp
2d+mp (Rd ;Lp(�))

� ‖[S2;s]2‖
L

dp
2d+mp (Rd ;Lp(�))

.
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By definition of S2;s , using the corrector estimates of Proposition 2.2, we conclude

E

[

‖Ũ2‖4op
] 1
4 �

n−1
∑

s=0

s
∑

m=0
pcs−m

(

p log2 p
)m(m+1)

2d

n
∑

k=0
pck

(

‖μd,k[∇kg∇s+1w̄]∞‖
L

dp
2d+mp (Rd )

+
k+s−n
∑

l=0
‖μd,k[∇l(g∇k−l+s+1w̄)]∞‖

L
dp

2d+mp (Rd )

)

. (9.12)

It remains to analyze U3. For p ≥ 2, we first appeal to the definition of U3 and to
Lemma 9.1 (with p replaced by p

2 ) in the form

∣
∣
∣

ˆ

Rd×Rd
ζ(x)U3(x, y) ζ(y) dxdy

∣
∣
∣

� ‖[ζ ]∞‖2
L

2p
p−2 (Rd )

n−1
∑

s=0

s
∑

k=0

∑

β∈{0,1}
∥
∥

[

Uk· T β
(

(a∗)−1S3;s
)]

2

([∇ϕs+1−k]2 + [ϕs−k]2
)∥
∥

L
p
2 (Rd )

+‖[ζ ]∞‖L2(Rd )

n−1
∑

s=0

s
∑

k=0

∑

β∈{0,1}
Js−k

(

ζ(a∗)−1a′0(G)∗Uk· T β
(

(a∗)−1S3;s
))

.

From (9.7) and (9.8), we deduce

‖U3‖op �
n−1
∑

s=0

s
∑

k=0

∑

β∈{0,1}

∥
∥

[

Uk· T β
(

(a∗)−1S3;s
)]

2

([∇ϕs+1−k]2 + [ϕs−k]2
)∥
∥

L
p
2 (Rd )

+
n−1
∑

s=0

s
∑

k=0

∑

β∈{0,1}
sup

‖[ζ ]∞‖L2(Rd )
=1

Js−k
(

ζ(a∗)−1a′0(G)∗Uk· T β
(

(a∗)−1S3;s
))

.

Taking the L4(�) norm and using the corrector estimates of Proposition 2.2 in the
first right-hand side term, and arguing by duality as in (9.9) and repeating the proof
of (9.12) for the second right-hand side term, we obtain for all 8 ≤ p < ∞,

E

[

‖U3‖4op
] 1
4 �p

n−1
∑

s=0

s
∑

k=0

∑

β∈{0,1}

∥
∥

[

Uk· T β
(

(a∗)−1S3;s
)]

2

∥
∥

L
p
2 (Rd ;Lp(�))

+
n−1
∑

s=0

s
∑

k=0

∑

β∈{0,1}

s−k
∑

m=0

∥
∥

[

Uk· T β
(

(a∗)−1S3;s
)]

2

∥
∥

L
dp

2d+mp (Rd ;Lp(�))

.
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A multiple use of the annealed bounds of Theorem 6.1 and Corollary 6.2 then leads
to

E

[

‖U3‖4op
] 1
4 �p

n−1
∑

s=0

s
∑

k=0

s−k
∑

m=0
‖[S3;s]2‖

L
dp

2d+(k+m)p (Rd ;L2p(�))

�p

n−1
∑

s=0
‖[S3;s]2‖

L
dp

2d+sp (Rd ;L2p(�))

.

By definition of S3;s , using the corrector estimates of Proposition 2.2, we conclude

E

[

‖U3‖4op
] 1
4 �p

n−1
∑

s=0

n
∑

l=s+1

∥
∥μd,n

[∇l(g∇n−l+s+1w̄
)]

∞
∥
∥

L
dp

2d+sp (Rd )
.

Gathering the above estimates and replacing p by q in the estimate for U 3, the claim
follows.

Step 2. Conclusion.
By scaling, the conclusion of Step 1 yields for all 8 ≤ p, q < ∞ and 1 ≤ n ≤ �,

ε−
d
2 E

[∥
∥
∥D2

ˆ

Rd
g ·�◦,n

ε [∇w̄]
∥
∥
∥

4

op

] 1
4

�g,w̄ ε
d
2− d

p

n
∑

k=0

n−1
∑

s=0
μd,k(

1
ε
)εk+s pck+cs

+ ε
d
2− 2d

p

n
∑

k=0

n−1
∑

s=0

s
∑

m=0
μd,k(

1
ε
)εk+s−m pck+cs−m

(

p log2 p
) m(m+1)

2d + Cqε
d
2− 2d

q μd,n(
1
ε
)εn,

hence, choosing p = |log ε| and q = 8 ∨ 4d, and recalling that c0 = 1
2 ,

ε−
d
2 E

[∥
∥
∥D2

ˆ

Rd
g ·�◦,n

ε [∇w̄]
∥
∥
∥

4

op

] 1
4

� f ,g ε
d
2 |log ε|(|log ε| log2 |log ε|) 1

2d n(n−1)
.

In terms of Xn
ε := ε− d

2
´
Rd g · �◦,n

ε [∇w̄], we now apply Proposition 4.1(iv) in the
form

dN(Xn
ε ) �

E

[

‖D2Xn
ε ‖4op

] 1
4
E

[‖DXn
ε ‖4H

] 1
4

Var
[

Xn
ε

]

Inserting the above estimate on ‖D2Xn
ε ‖op and noting that the proof of Theorem 1(iii)

yields E
[‖DXn

ε ‖4H
]

� f ,g 1, the conclusion follows. ��
Acknowledgements The work of MD was supported by F.R.S.-FNRS and by the CNRS-Momentum pro-
gram.
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Appendix A. MoreMalliavin calculus

In this appendix, we include for completeness a short, essentially self-contained proof
of Proposition 4.1.

Proof of Proposition 4.1 We split the proof into four steps.
Step 1. Proof of (i).
In terms of the Ornstein–Uhlenbeck semigroup e−tL (e.g. [44, Section 1.4]), we may
write

Var [X ] = −
ˆ ∞

0
∂tE

[

(e−tLX)2
]

dt

where Mehler’s formula (e.g. [44, (1.67)]) indeed ensures that E
[

(e−tLX)2
] →

E [X ]2 as t ↑ ∞. Computing the derivative in t yields

Var [X ] = 2
ˆ ∞

0
E

[

(e−tLX)L(e−tLX)
]

dt = 2
ˆ ∞

0
E

[

‖De−tLX‖2H
]

dt,

hence, appealing to the commutation relation (4.5) in the form De−tL = e−t e−tLD,

Var [X ] = 2
ˆ ∞

0
e−2t E

[

‖e−tLDX‖2H
]

dt,

and the positivity of L leads to the conclusion,

Var [X ] ≤ 2
ˆ ∞

0
e−2t E

[

‖DX‖2H
]

dt = E

[

‖DX‖2H
]

.

Step 2. Proof of (ii).
Let X ,Y ∈ D

1,2 with E [X ] = E [Y ] = 0. First note that the Poincaré inequality (i)
implies that the restriction ofL to L2(�)/C := {U ∈ L2(�) : E [U ] = 0} is invertible.
In particular, there exists Z ∈ L2(�) such that Y = LZ . By definition of the adjoint
D∗ (cf. (4.4)), we then find

E [XY ] = E [XLZ ] = E
[

XD∗DZ
] = E

[〈DX , DZ〉H
]

. (A.1)

Appealing to the commutator relation (4.5) in the form DY = DLZ = (1+ L)DZ ,
we conclude

E [XY ] = E

[

〈DX , (1+ L)−1DY 〉H
]

.

Step 3. Proof of (iii).
Similarly as in Step 1, in terms of the Ornstein–Uhlenbeck semigroup e−tL, we may
write

123



Stoch PDE: Anal Comp (2020) 8:625–692 689

Ent
[

X2
]

= −
ˆ ∞

0
∂t E

[

(e−tLX2) log(e−tLX2)
]

dt

=
ˆ ∞

0
E

[

(Le−tLX2) log(e−tLX2)
]

dt =
ˆ ∞

0
E

[‖De−tLX2‖2H
e−tLX2

]

dt,

hence, by the commutation relation (4.5) in the form De−tL = e−t e−tLD,

Ent
[

X2
]

=
ˆ ∞

0
e−2t E

[‖e−tLDX2‖2H
e−tLX2

]

dt .

Appealing to Mehler’s formula for the Ornstein–Uhlenbeck semigroup e−tL (e.g. [44,
(1.67)]), the Cauchy–Schwarz inequality leads to

‖e−tLDX2‖2H = 4 ‖e−tL(XDX)‖2H ≤ 4
(

e−tLX2)(

e−tL‖DX‖2H
)

,

so that the above becomes

Ent
[

X2
]

≤ 4
ˆ ∞

0
e−2t E

[

e−tL‖DX‖2H
]

dt ≤ 2E
[

‖DX‖2H
]

,

which proves the logarithmic Sobolev inequality. Next, higher integrability is deduced
by integration as e.g. in [2, Theorem 3.4]: we write

E

[

|X |2p
] 1

p − E

[

X2
]

=
ˆ p

1

1

q2
E

[

|X |2q
] 1
q−1

Ent
[

|X |2q
]

dq,

so that the logarithmic Sobolev inequality implies

E

[

|X |2p
] 1

p − E

[

X2
]

≤ 2
ˆ p

1

1

q2
E

[

|X |2q
] 1
q−1

E

[

‖D|X |q‖2H
]

dq

= 2
ˆ p

1
E

[

|X |2q
] 1
q−1

E

[

|X |2(q−1)‖DX‖2H
]

dq

≤ 2
ˆ p

1
E

[

‖DX‖2qH
] 1
q
dq ≤ 2pE

[

‖DX‖2pH
] 1

p
,

and the conclusion follows from the Poincaré inequality (i).

Step 4. Proof of (iv).
Let X ∈ L2(�) with E [X ] = 0 and Var [X ] = 1. For h ∈ L∞(R), we define its Stein
transform Sh as the solution of Stein’s equation

S′h(x)− xSh(x) = h(x)− E [h(N)] .
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As in Step 2, there exists Z ∈ L2(�) such that Y = LZ . We then compute

E [h(X)]− E [h(N)] = E
[

S′h(X)− XSh(X)
] = E

[

S′h(X)− (D∗DZ)Sh(X)
]

,

and hence, integrating by parts and using (A.1) in the form E
[〈DZ , DX〉H

] =
Var [X ] = 1,

∣
∣E [h(X)]− E [h(N)]

∣
∣ = ∣

∣E
[

S′h(X)
(

1− 〈DZ , DX〉H
)]∣

∣

≤ ‖S′h‖L∞Var
[〈DZ , DX〉H

] 1
2 . (A.2)

Noting that ‖S′h‖L∞ ≤ 2‖h‖L∞ (e.g. [42, Theorem 3.3.1]) and taking the supremum
over all h ∈ L∞(R), we deduce

dTV (X;N) ≤ 2Var
[〈DZ , DX〉H

] 1
2 .

Noting that for h Lipschitz-continuous there holds ‖S′h‖L∞ ≤
√

2
π
‖h′‖L∞ (e.g. [42,

Proposition 3.5.1]), we can deduce a similar bound on the 1-Wasserstein distance. The
corresponding bound on the 2-Wasserstein distance takes the form

W2(X;N) ≤ E

[

|〈DZ , DX〉H − 1|2
] 1
2 = Var

[〈DZ , DX〉H
] 1
2 ;

its proof is of a different nature and is based on an optimal transport argument in
density space (cf. [35, Proposition 3.1]).
It remains to estimate the variance Var

[〈DZ , DX〉H
]

. For that purpose, we apply the
first-order Poincaré inequality (i) in the form

Var
[〈DZ , DX〉H

] ≤ E

[

‖〈D2Z , DX〉H + 〈DZ , D2X〉H‖2H
]

.

Noting that the commutation relation (4.5) leads to DX = (1 + L)DZ and D2X =
(2+ L)D2Z , we deduce

Var
[〈DZ , DX〉H

] ≤ E

[∥
∥

〈

D2X ,
(

(1+ L)−1 + (2+ L)−1
)

DX
〉

H

∥
∥2
H

]

≤ E

[

‖D2X‖4op
] 1
4
E

[∥
∥

(

(1+ L)−1 + (2+ L)−1
)

DX
∥
∥4
H

] 1
4
,

Noting as in [38, Proposition 3.2] that (1+L)−1 and (2+L)−1 have operator norms
on L4(�) bounded by 1 and 1

2 , respectively, the conclusion follows. ��
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