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Abstract
We show that for a family of randomly kickedHamilton–Jacobi equations on the torus,
almost surely, the solution of an initial value problem converges exponentially fast to
the unique stationary solution. Combined with the earlier results of the authors, this
completes the program in the multi-dimensional setting started by E, Khanin, Mazel
and Sinai in the one-dimensional case.
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1 Introduction

We consider the randomly forced Hamilton–Jacobi equation on the d dimensional
torus

∂tψ(x, t) + 1

2
(∇ψ(x, t) + b)2 + Fω(x, t) = 0, x ∈ T

d = (R/Z)d , (1.1)

where b ∈ R
d , ∇ stands for gradient in x , and Fω is a random potential. By writing

u(x, t) = ∇ψ(x, t), we obtain the stochastic inviscid Burgers equation

∂t u + (u · ∇)u = f ω(y, t), y ∈ R
d , t ∈ R, (1.2)
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f ω(y, t) = −∇Fω(y, t) with the condition
∫
u(x, t)dx = b. Although everywhere

below we deal only with the Burgers case, many of our results can be generalized to
a much more general case of the Hamilton–Jacobi equation

∂tψ + H(∇ψ) + Fω(x, t) = 0, (1.3)

where H(p) is a strictly convexHamiltonianwhich is also assumed to grow sublinearly
in p.

We are interested in two types of random potentials. In [11], the authors consider
the dimension d = 1, with the “white noise potential”

Fω(y, t) =
M∑

i=1

Fi (y, t) =
M∑

i=1

Fi (y)Ẇi (t), (1.4)

where Fi : Td → R are smooth functions, and Ẇi are independent white noises. It
is shown that finite time solutions of (1.1) converge exponentially fast to a unique
stationary solution. In this paper, we generalize this result to arbitrary dimensions, for
a related “kicked” model.

The “kicked force” model was introduced in [5], with

Fω(y, t) =
∑

j∈Z
Fω
j (y)δ(t − j), (1.5)

where Fω
j is an i.i.d. sequence of potentials, and δ(·) is the delta function. In other

words, the system evolves without an external force apart from instant kicks in integer
moments of time. The kicks are reflected in adding a random potential which is chosen
independently for every integer time. We focus on the “kicked” potential (1.5) as it is
simpler, but retains most of the features of the system.

The system (1.3) does not admit classical solutions in general, and the solution is
interpreted using the Lax-Oleinik variational principle. There is a semi-group family
of operators [see (2.2)]

Kω,b
s,t : C(Td) → C(Td),

such that the function ψ(x, τ ) = Kω,b
s,τ ϕ(x), s ≤ τ ≤ t is the solution to (1.1) on the

interval [s, t] with the initial condition ψ(x, s) = ϕ(x).
It is shown in [5] that under suitable conditions on the kicked force, almost surely,

the system (1.1) admits a unique solution ψ−
ω (x, t) (up to an additive constant) on the

interval (−∞,∞). Let us denote

‖ψ‖∗ = min
C∈R sup

x∈Td
‖ψ(x) − C‖,

which is the suitable semi-norm for measuring convergence up to an additive constant.
Then any solution on [s, t] converges to ψ−

ω as s → −∞, uniformly over all initial
conditions in the semi-norm ‖ · ‖∗:
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lim
s→−∞ sup

ϕ∈C(Td )

‖Kω,b
s,t ϕ(x) − ψ−

ω (x, t)‖∗ = 0.

Our main result is that, under certain mild conditions on the kicks, the above con-
vergence is exponentially fast.

Main result Suppose certain conditions are satisfied for the random kicked force (see
Theorem 1 for details), there exists a (non-random) λ > 0 such that, almost surely,

lim sup
s→−∞

1

|s| log
(

sup
ϕ∈C(Td )

‖Kω,b
s,t ϕ(x) − ψ−

ω (x, t)‖∗

)

< −λ.

Remark Exponential convergence is also known to hold in the viscous equation

∂tψ + 1

2
(∇ψ)2 + Fω = ν
ψ

(see [10]). However, in this case the a priori convergence rate λ(ν) may vanish in the
inviscid limit ν → 0. Since our result provides a non-zero lower bound on convergence
rate when ν = 0, it is an interesting question whether there exists a uniform lower
bound on λ(ν).

The a priori convergence rate of the Lax-Oleinik semi-group is only polynomial in
time, as evidenced in the case when there is no force, i.e. Fω = 0. In the case when
the force is non-random, exponential convergence is true when the Aubry set (see for
example [4]) consists of finitely many hyperbolic periodic orbits or fixed points ( [6]).
According to a famous conjecture of Mañe, this condition holds for a generic force
([8]), however this conjecture is only proven when d = 2 for C2 forces ([2,3]).

In some sense, [7] proves a random version of Mañe’s conjecture. In the random
case, the role of the Aubry set is taken by the the globally minimizing orbit, and it is
shown that this orbit is non-uniformly hyperbolic under the random Euler-Lagrange
flow. Conceptually, this hyperbolicity is responsible for the exponential convergence
of the solutions to (1.1). However, this connection is quite delicate. To illustrate, let
us outline the proof in the uniform hyperbolic case:

• (Step 1) Consider a solution Kω,b
−T ,0ϕ that is sufficiently close to the stationary

solutionψ−(·, 0), this is the case sincewe know the solution Kω,b
−T ,0ϕ → ψ−(·, 0),

albeit without any rate estimates.
• (Step 2) Show that the associated finite time minimizers is close to the Aubry
set when t ∈ [−2T /3,−T /3]. By hyperbolic theory, any orbit that stays in a
neighborhood of an hyperbolic orbit for time T /3 must be exponentially close to
it at some point.

• (Step 3) Finite time minimizer being exponentially close to the Aubry set implies
the solution is in fact exponentially close to ψ−.
In the non-uniform hyperbolic case, Step 2 fails, because a non-uniform hyperbolic

orbit only influence nearby orbits in a random neighborhood whose size changes from
iterate to iterate. We are forced to devise a much more involved procedure:
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(1) (Step A) Reduce the problem to a local one, where we only study the solution in
a small (random) neighborhood of the global minimizer.

(2) (Step B)Consider a solution Kω,b
−T ,0ϕ is δ-close to the stationary solutionψ−(·, 0)

locally. Use a combination of variational and non-uniform hyperbolic theory to
show that the finite time minimizer is δq -close to the global minimizer at some
time, where q > 1. This step can only be done up to an exponentially small error.

(3) (Step C) Use step B to show the solution Kω,b
−T ,0ϕ is δq -close to the stationary

solution. Feed the new estimates into Step B, and repeatedly upgrade until δ is
exponentially small.

In this paper, we carry out the above program. One can say that the main theme
here is an interplay between dynamics and PDE. On a conceptual level, there are
two Lyapunov exponents. One is purely dynamical, it characterizes the hyperbolic
properties of the intrinsic dynamical system (the random Lagrangian flow). Another
Lyapunov exponent is related to the rate of convergence of the solutions to the PDE
(1.1). The positivity of the dynamical exponent is proved in [7]. The main result of the
present paper is the positivity of the PDE exponent. Although we don’t prove it here,
it should be expected that the two exponents have the same (non-random) value. We
plan to address this in the future.

The paper have the following structure. We formulate our assumptions and main
result in Sect. 2. Basic properties of the viscosity solutions and stationary solutions are
introduced in Sects. 3 and 4. In Sect. 5, we reduce the main result to its local version,
as outlined in Step A. This is Proposition 5.1.

In Sect. 6, we describe the upgrade procedure outlined in Step C. Step B is formu-
lated in Proposition 6.1, and the proof is postponed to Sects. 7 and 8.

2 Statement of themain result

Consider the kicked potentials (1.5), where the random potentials Fω
j are chosen

independently from a distribution P ∈ P(C2+α(Td)), with 0 < α ≤ 1.
Given an absolutely continuous curve ζ : [s, t] → T

d , we define the action of ζ to
be

A
ω,b(ζ ) =

∫ t

s

1

2

(
ζ̇ 2(τ ) − b · ζ̇

)
dτ −

∑

s≤ j<t

Fω
j (ζ( j)).

In other words, when s, t are integers, we include the kick at time s, but not at time t .
For 0 < s < t ∈ R, and x, x ′ ∈ T

d , the action function is

Aω,b
s,t (x, x ′) = inf

ζ(s)=x, ζ(t)=x ′ A
ω,b(ζ ), (2.1)

where ζ is absolutely continuous. The action function is Lipshitz in both variables.
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The backward Lax-Oleinik operator Kω,b
s,t : C(Td) → C(Td) is defined as

Kω,b
s,t ϕ(x) = min

y∈Td

{
ϕ(y) + Aω,b

s,t (y, x)
}

. (2.2)

We take (2.2) as the definition of our solution on [s, t] with initial conditon ϕ(x). Due
to the fact that Fω(x, t) vanishes at non-integer times, Kω,b

s,t is completely determined
by its value at integer times. In the sequel we consider only s = m, t = n ∈ Z. The
operators satisfies a semi-group property: for s < t < u,

Kω,b
t,u Kω,b

s,t ϕ(x) = Kω,b
s,u ϕ(x)

We now state the conditions on the random potentials. The following assumptions
are introduced in [5], which guarantees the uniqueness of the stationary solution.

Assumption 1. For any y ∈ T
d , there exists Gy ∈ supp P s.t. Gy has a maximum

at y and that there exists δ > 0 such that

Gy(y) − G(x) ≥ δ|y − x |2.

Assumption 2. 0 ∈ supp P .
Assumption 3. There exists G ∈ supp P such that G has a unique maximum.

The following is proved in [5] under the weaker assumption that Fω
j ∈ C1(Td):

Proposition 2.1 [5]

(1) Assume that assumption 1 or 2 holds. For a.e. ω ∈ , we have the following
statements.

(a) There exists a Lipshitz function ψ−(x, n), n ∈ Z, such that for any m < n,

Kω,b
m,nψ

−(x,m) = ψ−(x, n).

(b) For any n ∈ Z, we have

lim
m→−∞ sup

ϕ∈C(T)

‖Kω,b
m,nϕ(x) − ψ−(x, n)‖∗ = 0.

(2) Assume that assumption 3 holds. Then the conclusions for the first case hold for
b = 0.

It follows from Proposition 2.1 that ψ− is defined uniquely up to an additive con-
stant. For definiteness, we assume ψ−(0, 0) = 0. We now restrict to a specific family
of kicked potentials. The following assumption is introduced in [5].

Assumption 4. Assume that

Fω
j (x) =

M∑

i=1

ξ ij (ω)Fi (x), (2.3)
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where Fi : Td → R are smooth non-random functions, and the vectors ξ j (ω) =
(ξ ij (ω))Mi=1 is an i.i.d sequence of vectors in R

M with an absolutely continuous
distribution.

In [7], a stronger assumption is used to obtain information on the stationary solutions
and the global minimizer. These additional structures provides the mechanism for
exponential convergence. Let ρ : Rm → R be the density of ξ j .

Assumption 5. Suppose assumption 4 holds, and in addition:

–

E(|ξ j |) =
∫

RM
|c|ρ(c)dc < ∞.

– For every 1 ≤ i ≤ M , there exists non-negative functions ρi ∈ L∞(R) and
ρ̂i ∈ L1(RM−1) such that

ρ(c) ≤ ρi (ci )ρ̂i (ĉ),

where c = (c1, . . . , cM ), ĉi = (c1, . . . , ci−1, ci+1, . . . , cM ).

Assumption 5 is rather mild. We only need to avoid the case that ρ is degenerate in
some directions. In particular, it is satisfied if ξ1j , . . . , ξ

M
j are i.i.d. random variables

with bounded densities and finite mean.
We now state the main theorem of this paper.

Theorem 1 (1) Assume that assumption 5 and one of assumption 1 or 2 hold. Assume
in addition that the mapping

(F1, . . . , FM ) : Td → R
M (2.4)

is an embedding. For b ∈ R
d , let ψ−

ω be the unique stationary solution in Propo-
sition 2.1. Then there exists a (non-random) λ > 0 and a random variables
N (ω) > 0 such that almost surely, for all N > N (ω),

sup
ϕ∈C(Td )

‖Kω,b
m,nϕ − ψ−

ω (·, n)‖∗ ≤ e−λN .

(2) Assume that assumption 3 and 5 hold. Then the same conclusions hold for b = 0.

3 Viscosity solutions and the global minimizer

Let I ⊂ R be an interval. An absolutely continuous curve γ : I → T
d is called a

minimizer if for each interval [s, t] ⊂ I , we have Aω,b
s,t (γ (s), γ (t)) = A

ω,b(γ |[s,t]).
In particular, γ is called a forward minimizer if I = (−∞, t0], a backward minimizer
if I = [s0,∞) and a global minimizer if I = (−∞,∞).
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Due to the kicked nature of the potential, a minimizer is always linear between
integer times. Then any minimizer γ : [m, n] → ∞ is completely determined by the
sequence

x j = γ ( j), v j = γ̇ ( j−), m + 1 ≤ j ≤ n. (3.1)

The underlying dynamics for the minimizers is given by family of maps �ω
j : Td ×

R
d → T

d × R
d

�ω
j :

[
x
v

]

�→
[
x + v − ∇Fω

j (x)modZd .

v − ∇Fω
j (x)

]

, (3.2)

The maps belong to the so-called standard family, and are examples of symplectic,
exact and monotonically twist diffeomorphisms. For m, n ∈ Z, m < n, denote

�ω
m,n(x, v) = �ω

n−1 ◦ · · · ◦ �ω
m(x, v).

The (full) orbit of a vector (xn, vn) is given by the sequence

(x j , v j ) = �ω
n, j (xn, vn), j > n, (x j , v j ) = (�ω

j,n)
−1(xn, vn), j < n.

If γ : [m, n] → T
d is a minimizer, then (x j , v j ) defined in (3.1) is an orbit, namely

�ω
j,k(x j , v j ) = (xk, vk), m + 1 ≤ j < k ≤ n.

In this case, we extend the sequence to (xm, vm) = (�m)−1(xm+1, vm+1) and call
(x j , v j )

n
j=m a minimizer.

The viscosity solution and the minimizers are linked by the following lemma:

Lemma 3.1 [7, Lemma 3.2]

(1) For ϕ ∈ C(Td) and m < n ∈ Z, for each x ∈ T
d there exists a minimizer

(x j , v j )
n
j=m such that xn = x, and

Kω,b
m,nϕ(xn) = ϕ(xm) + Aω,b

m,n(xm, xn). (3.3)

Moreover, the minimizer is unique if ψ(x) = Kω,b
m,nϕ(·) is differentiable at x, and

in this case vn = ∇ψ(x) + b.
(2) Suppose ψ−

ω (x, n) is the stationary solution. Then at every x ∈ T
d and n ∈ Z,

there exists a backward minimizer (x j , v j )
n
j=−∞ such that xn = x

Kω,b
m,nψ

−
ω (xn, n) = ψ−

ω (xm,m) + Aω,b
m,n(xm, xn), m < n.

Moreover, the minimizer is unique if ψ−
ω (·, n) is differentiable at x, and in this

case vn = ∇ψ−
ω (x, n) + b.

In case (1) we call (x j , v j )
n
j=m a minimizer for Kω,b

m,nϕ(x0), and in case (2) the orbit
(x j , v j ) j=−∞n is called a minimizer for ψ−(xn, n).
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The forward minimizer is linked to the forward operator

̂

Kω,b
s,t , defined as

̂

Kω,b
s,t ϕ(x) = sup

y∈Td

{
ϕ(y) − Aω,b

s,t (x, y)
}

.

Analog of Proposition 2.1 and Lemma 3.1 hold, which we summarize below.

• For every b ∈ R
d , almost surely, there exists a Lipshitz functionψ+

ω (x,m),m ∈ Z,
unique up to an additive constant, such that

̂

Kω,b
m,nψ

+(x, n) = ψ+(x,m), m < n.

We will assume ψ+(0, 0) = 0 to fix the additive constant.

• For each

̂

Kω,b
m,nϕ(x) there exists a minimizer (x j , v j )

n
j=m such that xm = x and

̂

Kω,b
m,nϕ(xm) = ϕ(xn) − Aω,b

m,n(xm, xx ).

When ψ =

̂

Kω,b
m,nϕ is differentiable at x we have vm = ∇ψ(x) + b.

• For each x ∈ T
d , and m ∈ Z, there exists a forward minimizer (x j , v j )

∞
j=m such

that xm = x ,
̂

Kω,b
m,nψ

+
ω (xm,m) = ψ+

ω (xn, n) − Aω,b
m,n(xm, xn), m < n,

and vm = ∇ψ+
ω (x,m) if ψ+(·,m) is differentiable at x .

The global minimizer is characterized by both ψ−
ω and ψ+

ω .

Proposition 3.2 Assume that Assumption 4 holds, and one of Assumptions 1 and 2
holds. Assume in addition, the map (2.4) is an embedding. Then for b ∈ R

d , almost
every ω, there exists a unique global minimizer (xω

j , v
ω
j ) j∈Z. For each j ∈ Z, xω

j is

the unique x ∈ T
d reaching the minimum in

min
x

{ψ−
ω (x, j) − ψ+

ω (x, j)}. (3.4)

Moreover, ψ±
ω (·, j) are both differentiable at x j , and v j = ∇ψ−

ω (x, j) + b =
∇ψ+

ω (x, j) + b.

Throughout the paper, the notation (xω
j , v

ω
j ) j∈Z will be reserved for the global mini-

mizer.
The function

Q∞
ω (x, j) := ψ−

ω (x, j) − ψ+
ω (x, j) (3.5)

will serve an important purpose for the discussions below.
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The random potentials Fω
j are generated by a stationary random process, so there

exists a measure preserving transformation θ on the probability space  satisfying

Fω
n+m(x) = Fθmω

n (x). (3.6)

The family of maps �ω
j then defines a non-random transformation

�̂(x, v, ω) = (�0(x, v), θω)

on the space Td × R
d × . Then from Proposition 3.2,

(xθω
0 , vθω

0 ) = �ω
0 (xω

0 , vω
0 )

and the probability measure

ν(d(x, v), dω) = δ(xω
0 ,vω

0 )P(dω)

is invariant and ergodic under �̂. The map D�ω
0 : Td × R

d ×  → Sp(d), where
Sp(d) is the group of all 2d×2d symplectic matrices, defines a cocycle over �̂. Under
Assumption 5, its Lyapunov exponents λ1(ν), . . . , λ2d(ν) are well defined, and due
to symplecticity, we have

λ1(ν) ≤ · · · λd(ν) ≤ 0 ≤ λd+1(ν) ≤ · · · ≤ λ2d(ν),

and λi = −λ2d−i+1.
There is a close relation between the non-degeneracy of the variational problem

(3.4), and non-vanishing of the Lyapunov exponents for the associated cocycle.

Proposition 3.3 [7, Proposition 3.10] Assume that assumption 5 and one of assump-
tions 1 or 2 holds. Assume in addition that the map (2.4) is an embedding. Then for
all b ∈ R

d , for a.e. ω, the following hold.

(1) There exist C(F, ρ), R(F, ρ) > 0 depending only on F1, . . . FM in (2.4) and the
density ρ of ξ j , and a positive random variable a(ω) > 0, such that for all x
satisfying ‖x − xω

0 ‖ < R(F, ρ), we have

Q∞
ω (x, 0) − Q∞

ω (xω
0 , 0) ≥ a(ω)‖x − xω

0 ‖2, (3.7)

and a(ω) satisfies

E(a(ω)−
1
2 ) < C(F, ρ). (3.8)

(2) The Lyapunov exponents of ν satisfy

λd(ν) < 0 < λd+1(ν).
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The second conclusion of Proposition 3.3 implies the orbit (xω
j , v

ω
j ) for the sequence

of maps�ω
j is non-uniformly hyperbolic. In particular, it follows that there exists local

unstable and stable manifolds. It is shown in [7] that the graph of the gradient of the
viscosity solutions locally coincide with the unstable and stable manifolds.

Proposition 3.4 [7, Theorem 6.1]Under the same assumptions as Proposition 3.3, for
each ε > 0, there exists positive random variables r(ω) > 0, C(ω) > 1, such that the
following hold almost surely.

(1) There exists C1 embedded submanifolds Wu(xω
0 , vω

0 ) and Ws(xω
0 , vω

0 ), such that

(x,∇ψ−
ω (x, 0) + b) ∈ Wu(xω

0 , vω
0 ), (x,∇ψ+

ω (x, 0) + b) ∈ Ws(xω
0 , vω

0 )

for all ‖x − xω
0 ‖ < r(ω).

(2) For every ‖x − xω
0 ‖ < r(ω), let (x−

j , v−
j ) j≤0 and (x+

j , v+
j ) j≥0 be the backward

and forward minimizers satisfying x±
0 = x. Then

‖(xω
j , v

ω
j ) − (x−

j , v−
j )‖ ≤ C(ω)e−λ′| j |, j ≤ 0,

‖(xω
j , v

ω
j ) − (x+

j , v+
j )‖ ≤ C(ω)e−λ′| j |, j ≥ 0,

where λ′ = λd+1(ν) − ε.

4 Properties of the viscosity solutions

4.1 Semi-concavity

Given C > 0, we say that a function f : R
d → R is C semi-concave if for any

x ∈ R
d , there exists a linear form lx : Rd → R such that

f (y) − f (x) ≤ lx (y − x) + C‖y − x‖2, y ∈ R
d .

A function ϕ : Td → R is called C semi-concave if it is C semi-concave as a function
lifted to Rd . The linear form lx is called a subdifferential at x . If ϕ is differentiable at
x ∈ T

d , then the subdifferential lx is unique and is equal to dϕ(x). A semi-concave
function is Lipshitz.

Lemma 4.1 [4, Proposition 4.7.3]) If ϕ is continuous and C semi-concave on Td , then
ϕ is 2C

√
d-Lipshitz.

Lemma 4.2 [4] Suppose both ϕ1 and −

̂

ϕ2 is C semi-concave, then over the set

argminx {ϕ1(x) −

̂

ϕ2(x)}, ϕ1,

̂

ϕ2 are differentiable, ∇ψ1(x) = ∇ψ2(x), and ∇ϕ1(x) is

6C-Lipshitz over the set argminx {ϕ1(x) −

̂

ϕ2(x)}.
Let K0(ω) = ‖Fω

0 ‖C2+α + 1 and K (ω) = 2
√
d(K0(ω) + 1). The action function

Aω,b
m,n has the following properties.
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Lemma 4.3 [7, Lemma 3.2]

(1) The function Aω,b
m,n(x, x ′) is 1−semi-concave in the second component, and is

K (θmω)−semi-concave in the first component. Here θ :  →  is the time-shift,
see (3.6).

(2) For any ϕ ∈ C(Td), and m < n ∈ Z, the function Kω,b
m,nϕ(x) is 1 semi-concave,

and −

̂

Kω,b
m,nϕ(x) is K0(θ

mω) semi-concave. Either function, as well as the sum of
the two functions, are K (θmω) Lipshitz.

(3) For n ∈ Z, the functions ψ−
ω (·, n) is 1 semi-concave, and −ψ+

ω (·, n) is K0(θ
nω)

semi-concave, Either function, as well as the sum of the two functions, are K (θmω)

Lipshitz.

We first state two lemmas concerning the properties of the Lax-Oleinik semigroup,
the goal is to obtain Lemma 4.7, which is a version of Mather’s graph theorem ( [9]).

Lemma 4.4 For any x ∈ T
d , m < n, ϕ ∈ C(Td), we have

̂

Kω,b
m,n

(
Kω,b
m,nϕ

)
(x) ≤ ϕ(x)

Proof For any x, y ∈ T
d ,

Kω,b
m,nϕ(y) ≤ ϕ(x) + Aω,b

m,n(x, y),

then

̂

Kω,b
m,n

(
Kω,b
m,nϕ

)
(x) = max

y∈Td

{
Kω,b
m,n(y) − Aω,b

m,n(x, y)
}

≤ ϕ(x).

��
Lemma 4.5 Suppose m < n. Let (x j , v j )

n
j=m be a minimizer for Kω,b

m,nϕ in the sense
of (3.3). Then for each m ≤ j ≤ n, we have

Kω, j
m, jϕ(x) ≥

̂

Kω,b
j,n

(
Kω,b
m,nϕ

)
(x), ∀x ∈ T

d ,

and

Kω, j
m, jϕ(x j ) =

̂

Kω,b
j,n

(
Kω,b
m,nϕ

)
(x j ).

Proof By definition Kω,b
nn ϕ = ϕ, so the case j = n is trivial. Form ≤ j < n, we have

Kω,b
m,nϕ(xn) = Kω,b

m, jϕ(x j ) + Aω,b
j,n (x j , xn).
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Then

Kω,b
m, jϕ(x j ) = Kω,b

m,nϕ(xn) − Aω,b
m,n(x j , xn) ≤

̂

Kω,b
j,n

(
Kω,b
m,nϕ

)
(x j ).

On the other hand, apply Lemma 4.4 to Kω,b
m, jϕ and j < n yields

̂

Kω,b
j,n

(
Kω,b
m,nϕ

)
(x) =

̂

Kω,b
j,n

(
Kω,b

j,n K
ω,b
m, jϕ

)
(x) ≤ Kω,b

m, jϕ(x).

The lemma follows. ��

Corollary 4.6 Let (x j , v j )
n
j=m be a minimizer for Kω,b

m,nϕ, then it is also a minimizer

for

̂

Kω,b
m,n

(
Kω,b
m,nϕ

)
.

Proof Using the calculations in the proof of Lemma 4.5, we get

̂

Kω,b
j,n

(
Kω,b
m,nϕ

)
(x j ) = Kω,b

m, jϕ(x j ) = Kω,b
m,nϕ(xn) − Aω,b

j,n (x j , xn)

for all m ≤ j ≤ n. The corollary follows. ��

The following lemma provides a Lipshitz estimate for the velocity of the minimizer
in the interior of the time interval.

Lemma 4.7 Suppose m < n with n−m ≥ 2. Let (x j , v j )
n
j=m and (y j , η j )

n
j=m be two

minimizers for Kω,b
m,nϕ in the sense of (3.3). Then for all m < j < n, we have

‖v j − η j‖ ≤ K (θ jω)‖x j − y j‖.

The same conclusion hold, if (x j , v j ) and (y j , η j ) are minimizers for

̂

Kω,b
m,nϕ(x).

Proof We apply Lemma 4.5 to (x j , v j ) and (y j , η j ). Denote ψ1 = Kω, j
m, jϕ and ψ2 =

̂

Kω,b
j,n

(
Kω,b
m,nϕ

)
, since j − m, n − j ≥ 1, ψ1 is 1 semi-concave, −ψ2 is K (θ jω)

semi-concave. Since x j , y j ∈ argminx {ψ1(x) − ψ2(x)}, Lemma 4.2 and Lemma 3.1
implies

‖v j − η j‖ = ‖∇ψ1(x j ) − ∇ψ1(y j )‖ ≤ K (θ jω)‖x j − y j‖.

��
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4.2 Properties of the stationary solutions

Recall that

Q∞
ω (x, n) = ψ−

ω (x, n) − ψ+
ω (x, n),

which takes its minimum at the global minimizer xω
n . To simplify notations, we will

drop the subscript ω from these functions when there is no confusion.
This function Q∞ is very useful, as it can be used to measure the distance to the

global minimizer. For all ‖y − xω
0 ‖ < r(F), we have

a(ω)‖y − xω
0 ‖2 ≤ Q∞(x, 0) − Q∞(xω

0 , 0) ≤ K (ω)‖y − xω
0 ‖2. (4.1)

Moreover, Qω is a Lyapunov function for infinite backward minimizers. Namely, if
(y0, η0) = (y0,∇ψ−

ω (y0, 0)) is a backward minimizer, then for any j < k ≤ 0, we
have

Q∞(y j , j) − Q∞(xω
j , j) ≤ Q∞(yk, k) − Q∞(xω

k , k). (4.2)

(See [7], Lemma 7.2)
Let us also recall, for any λ′ < λ, there exists functions r(ω) > 0, C(ω) > 1 such

that for all backward minimizers (yn, ηn)n≤0 such that

‖yn − xω
n ‖ ≤ C(ω) exp(−λ′|n|), for ‖y0 − xω

0 ‖ < r(ω) and n ≤ 0. (4.3)

We will also use a process in non-uniform hyperbolicity known as tempering.

Lemma 4.8 ([1], Lemma 3.5.7) Let g(ω) > 1 be a random variable satisfying
E(log g(ω)) < ∞, then for any ε > 0, there exists gε(ω) > g(ω) such that

e−ε ≤ gε(ω)

gε(θω)
≤ eε . (4.4)

Let’s call a random variable g(ω) > 0 tempered if for any ε > 0, both g, g−1

admits an upper bound satisfying (4.4). Products and inverses of tempered random
variables are still tempered.

The random variables a, K in (4.1) and r ,C in (4.3) are tempered.

Lemma 4.9 For any ε > 0, there exists random variables

aε(ω) < a(ω), r ε(ω) < r(ω), K ε(ω) > K (ω), Cε(ω) > C(ω)

such that

e−ε ≤ aε(ω)

aε(θω)
,
r ε(ω)

r ε(θω)
,
K ε(ω)

K ε(θω)
,
Cε(ω)

Cω(θω)
≤ eε .
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Proof Lemma 4.8 applies to a(ω) and K (ω) since E(log a−1),E(log K ) < ∞. The
fact that C(ω) and r(ω) are tempered can be proven by adapting the proof Theorem
6.1 in [7]. We now explain the adaptations required.

In [7], there exists local linear coordinates (s, u)with the formula (y, η) = Pj (s, u)

centered at the global minimizer (xω
j , v

ω
j ), with the estimates ‖DPj‖, ‖DP−1

j ‖ ≤
K (θ jω)a− 1

2 (θ jω) (section 6 of [7]). Then it is shown that there exists a random
variable r0(ω) (called r in that paper) such that any orbit (y, η) ∈ {(y,∇ψ−

ω (y, 0))}∩
{‖s‖, ‖u‖ < r0} must be contained in the stable manifold. r is tempered because it is
the product of tempered random variables. Indeed, the following explicit formula was
given in the Proof of Theorem 6.1, section 7 of [7]:

r̄ = C̃−3K−9a6κ2ρ2, r0 = r̄(θ−1ω)K 3(θ−1ω)a(θ−1ω)κ
1
2 (θ−1ω),

where K , a are the same as in this paper, and the fact that ρ, C̃ are tempered is
explained in Lemma 6.5 and Proposition 7.1 of [7]. We now convert to the variable
(y, η). Since the norm of the coordinate changes are tempered, there exists a tempered
random variable r1(ω) such that any orbit contained in

{(y,∇ψ−
ω (y, 0))} ∩ {‖(y, η) − (xω

0 , vω
0 )‖ < r1(ω)}

must be contained in the unstable manifold of (xω
0 , vω

0 ).
We now show the same conclusion holds on a neighborhood of the configuration

space ‖y − xω
0 ‖ < r(ω), with r(ω) tempered. Let (y0, η0) = (y0,∇ψ−(y0, 0)) and

let (y−1, η−1) be its backward image. According to Lemma 4.2, ‖η−1 − vω−1‖ ≤
K (θ−1ω)‖y−1 − xω−1‖, as a result

‖y−1 − xω−1‖ <
r1

1 + K
((θ−1ω)) implies ‖(y−1, η−1) − (xω−1, v

ω−1)‖ < r1(θ
−1ω).

Finally, using (4.1) and (4.2), we have

‖y−1 − x−1‖ ≤ a
1
2 (θ−1ω)

(
Q∞(y−1,−1) − Q∞(x−1,−1)

)

≤ a
1
2 (θ−1ω)

(
Q∞(y0, 0) − Q∞(x0, 0)

) ≤ a
1
2 (θ−1ω)K

1
2 (ω)‖y0 − x0‖,

We obtain that

‖y0 − xω
0 ‖ <

r1

(1 + K )(a− 1
2 ◦ θ−1)K

1
2

=: r

implies (y1, η1) is contained in the unstable manifold of (xω−1, v
ω−1). r is tempered as

it is products of tempered random variables.
The fact that an orbit on the stable manifold of a non-uniformly hyperbolic orbit

converge at the rate C(ω)e−λn , and that the coefficient C(ω) is tempered is a standard
result in non-uniform hyperbolicity, see for example [1]. ��

We now use what we obtained to get an approximation for the stationary solutions.
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Lemma 4.10 There exists Cε
1(ω) > 0, e−ε ≤ Cε

1(ω)/Cε
1(θω) ≤ eε , such that for all

‖y − xω
0 ‖ < r(ω), and n < 0, we have

∥
∥
∥ψ−(y, 0) − ψ−(xn, n) − Aω,b

n,0 (xn, y)
∥
∥
∥ ≤ C1(ω)e−(λ′−ε)|n|.

We also have the forward version: for n > 0,

∥
∥
∥ψ+(y, 0) − ψ+(xn, n) + Aω,b

0,n (y, xn)
∥
∥
∥ ≤ C1(ω)e−(λ′−ε)|n|.

Proof We only prove the backward version. By definition,

ψ−(y, 0) ≤ ψ−(xn, n) + Aω,b
n,0 (xn, y).

On the other hand, let (yn, ηn)n≤0 be the minimizer for ψ−
ω (ψ, 0), then

ψ−(y, 0) = ψ−(yn, n) + Aω,b
n,0 (yn, y)

≥ ψ−(xn, n) + Aω,b
n,0 (xn, y) − K ε(θnω)‖xn − yn‖

≥ ψ−(xn, n) + Aω,b
n,0 (xn, y) − K ε(ω)Cε(ω)e−(λ′−ε)|n|,

where K ε,Cε are from Lemma 4.9.
We now choose new random variables denoted Cε/2 and K ε/2 by applying

Lemma 4.9 again with the new parameter ε/2. Note that

e−ε/2 ≤ Cε/2(ω)/Cε/2(θω), K ε/2(ω)/K ε/2(θω) ≤ eε/2.

We repeat the proof with the new random variable as upper bounds. The constant in
our estimate is replaced with K ε/2(ω)Cε/2(ω), which we then denote Cε

1(ω). The
proof is now complete since Cε

1(ω) satisfies e−ε ≤ Cε
1(ω)/Cε

1(θω) ≤ eε . ��
Remark In the last step of the proof, we performed the procedure of “re-choosing”
our tempering random variables with a smaller parameter, indicated by the notation
Cε/2(ω), K ε/2(ω) etc. In the future, we will sometimes perform this procedure implic-
itly by simply changing the superscript ε into ε/2 in the random variables such as
Cε(ω). When the superscript ε is used in random variables, it always refer to this
parameter and not as a power.

5 Reducing to local convergence

In this section we reduce the main theorem to its local version.

Proposition 5.1 Under the same assumptions as Proposition 3.3, there exists 0 < λ <

λd+1(ν), positive random variables 0 < τ(ω) < r(ω), D0(ω) > 0, and N0(ω) > 0
such that for all N > N0(ω) and ϕ ∈ C(T),
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sup
ϕ∈C(T)

min
C∈R max

‖y−xω
0 ‖≤τ(ω)

∣
∣
∣Kω,b

−N ,0ϕ(y) − ψ−
ω (y, 0) − C

∣
∣
∣ ≤ D0(ω)e−λN .

The proof of Proposition 5.1 is given in the next section. Next, we have a local-
ization result, which says any minimizer for Kω,b

−N ,Mϕ or ψ−(·, M) go through the
neighborhood {‖x − xω

0 ‖ < τ(ω)} at time t = 0, when N , M are large enough.

Proposition 5.2 Under the same assumptions as Proposition 3.3, let τ̃ (ω) > 0 be a
positive random variable. Then there exists M0 = M0(ω) ∈ N depending on τ̃ (ω), ω

such that the following hold.

(1) For any N , M ≥ M0(ω), let (yn, ηn), −N ≤ n ≤ M be a (backward) minimizer
for Kω,b

−N ,Mϕ(yM ). Then ‖y0 − xω
0 ‖ < τ̃(ω).

(2) (The forward version) For any N , M ≥ M0(ω), let (yn, ηn), −N ≤ n ≤ M be a

(forward) minimizer for

̂

Kω,b
−N ,Mϕ(y−N ). Then ‖y0 − xω

0 ‖ < τ̃(ω).

We prove Proposition 5.2 using the following lemma, stating that the Lax-Oleinik
operators are weak contractions.

Lemma 5.3 [5, Lemma 3] For any ϕ1, ϕ2 ∈ C(Td), we have

‖Kω,b
m,nϕ1 − Kω,b

m,nϕ2‖∗ ≤ ‖ϕ1 − ϕ2‖∗.

Proof of Proposition 5.2 We only prove item (1), as the (2) can be proven in the same
way. We denote, for −N ≤ m ≤ M ,

ψ−N ,m(x) = Kω,b
−N ,mϕ(x),

and let (yn, ηn), −N ≤ n ≤ M be a minimizer for Kω,b
−N ,Mϕ. For each −N < n < M ,

Lemma 4.4 and 4.5 implies

ψ−N ,n(x) −

̂

Kω,b
n,M

(
ψ−N ,M

)
(x) ≥ 0, x ∈ T

d ,

ψ−N ,n(yn) −

̂

Kω,b
n,M

(
ψ−N ,M

)
(yn) = 0,

hence

yn ∈ argmin
x

{

ψ−N ,n(x) −

̂

Kω,b
n,M

(
ψ−N ,M

)
(x)

}

. (5.1)

Recall that for Q∞(x, 0) = ψ−(x, 0) − ψ+(x, 0), we have xω
0 is the unique

minimum for Q∞(·, 0). Define

δ(ω) = min
‖x−xω

0 ‖≥τ̃ (ω)
Q∞(x) − Q∞(xω

0 ).

By Proposition 2.1, we can choose M0(ω) large enough such that for N , M ≥ M0(ω),

‖ψ−N ,0 − ψ−(·, 0)‖∗, ‖

̂

Kω,b
0,M

(
ψ−N ,M

)
− ψ+(·, 0)‖∗ < δ(ω)/4.
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As a result, there exists a constant C ∈ R such that

∥
∥
∥
∥

(

ψ−N ,0 −

̂

Kω,b
0,M

(
ψ−N ,M

))

− Q∞(x, 0) − C

∥
∥
∥
∥ < δ(ω)/2.

It follows that the minimum in (5.1) is never reached outside of {‖x − xω
0 ‖ < τ̃(ω)}.

We obtain ‖y0 − xω
0 ‖ < τ̃(ω). ��

We now prove our main theorem assuming Proposition 5.1.

Proof of Theorem 1 It suffices to prove the theorem for n = 0.
Let us apply Proposition 5.2 with τ̃ (ω) = τ(ω) from Proposition 5.1. Let (yn, ηn)

be a minimzier of Kω,b
−N ,Mϕ(yM ), and (ỹn, η̃n) a minimizer for

ψ−(yN , N ) =
(
Kω,b

−M,Nψ−(·,−M)
)

(yN )

such that yM = ỹM and M = M0(ω). According to Proposition 5.1, there exists
C(N , ω) ∈ R such that for all ‖y − xω

0 ‖ < τ(ω),

∣
∣
∣Kω,b

−N ,0ϕ(y) − ψ−
ω (y, 0) − C(N , ω)

∣
∣
∣ ≤ D0(ω)e−λN . (5.2)

Then

Kω,b
−N ,Mϕ(yM ) = Kω,b

−N ,0ϕ(y0) + Aω,b
0,M (y0, yM )

= (Kω,b
−N ,0ϕ(y0) − ψ−

ω (y0, 0)) + ψ−
ω (y0, 0) + Aω,b

0,M (y0, yM )

≥ C(N , ω) + ψ−(yM , M) − D0(ω)e−λN .

On the other hand,

ψ−(ỹM , M) = ψ−(ỹ0, 0) + Aω,b
0,M (ỹ0, ỹM )

= (ψ−(ỹ0, 0) − Kω,b
−N ,0ϕ(ỹ0)) + Kω,b

−N ,0ϕ(ỹ0) + Aω,b
0,M (ỹ0, ỹM )

≤ −C(N , ω) + Kω,b
−N ,Mϕ(ỹM ) + D0(ω)e−λN .

Using yM = ỹM , combine both estimates, and take supremum over all yM , we get

sup
y∈Td

∣
∣
∣Kω,b

−N ,Mϕ(y) − ψ−(y, M) − C(N , ω)

∣
∣
∣ ≤ D0(ω)e−λN .

To conclude the proof, we need to prove the same estimate on the time interval
[−N , 0]. Denote EQ = {ω ∈  : M0(ω) ≤ Q} for Q ∈ N. Fix some Q such that
P(EQ) > 0, then by ergodicity, almost surely, M(θkω) ≤ Q for infinitely many k.
Let us define k(ω) as the largest k < −Q such that M0(θ

kω) = Q, then

123



Stoch PDE: Anal Comp (2020) 8:544–579 561

∥
∥
∥Kω,b

−N ,0ϕ − ψ−
ω (·, 0)

∥
∥
∥ =

∥
∥
∥K θkω,b

−N−k,kϕ − ψ−
θkω

(·,−k)
∥
∥
∥

≤ D0(θ
kω)e−λ(N−k) = D0(θ

kω)eλk(ω)e−λN

provided N ≥ max{Q, N0(θ
kω)} − k. By reducing λ and taking N larger we can

absorb the constant D0(θ
kω)eλk(ω). ��

6 Local convergence: localization and upgrade

In this section we prove Proposition 5.1 (local convergence) using Proposition 6.1 and
a consecutive upgrade scheme. It is useful to have the following definition for book
keeping.

Recall that the notation {(xω
n , vω

n )}n∈Z is reserved for the orbit of the global mini-
mizer.

Definition Given δ > 0, N ∈ N, let (yn, ηn)0n=−N be a minimizer for ψN
ω (·, 0) =

Kω,b
−N ,0ϕ(·), we say the orbit satisfies the (backward) (ϕ, δ, N ) approximation property

if for every −N/3 ≤ n ≤ 0 such that ‖yn − xω
n ‖ < r(θnω), we have

∣
∣
∣
(
ψN

ω (yn, n) − ψN
ω (xω

n , n)
)

− (
ψ−

ω (yn, n) − ψ−
ω (xω

n , n)
)∣∣
∣ < δ.

We denote this condition AP−(ω, ϕ, δ, N ).

The following proposition is our main technical result, which says the approxima-
tion property allows us to estimate how close a backward minimizer is to the global
minimizer:

Proposition 6.1 Let 0 < ε < λ′/6, there exists random variables ρ(ω) ∈ (0, r(ω))

and N1(ω) > 0 depending on ε, such that if a ψN
ω backward minimizer (yn, ηn)0n=−N

satisfies the AP−(ω, ϕ, δ, N ) condition, with 1

‖y0 − xω
0 ‖ < ρ(ω), N > N1(ω), δ

1
8 < ρ(ω), δ ≥ e−(λ′−3ε)N/3, (6.1)

then there exists an integer k such that max
{ 1
8ε log δ,− N

6

} ≤ k < 0, and

‖yk − xω
k ‖ < max

{
δq , e−(λ′−3ε)N/6

}
, (6.2)

where q = (λ′ − 3ε)/(8ε).

The proof require a detailed analysis using hyperbolic theory, and is deferred to the
next few sections. In this section we prove Proposition 5.1 assuming Proposition 6.1.

We need to use both the forward and backward dynamics.

1 The lower bound assumption of δ in (6.1) is for simpler calculation and comes with no loss of generality.
Indeed, if δ is exponentially small we already have the conclusion of Proposition 5.1.
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Definition Given δ > 0, N ∈ N, let (yn, ηn)Nn=0 be a minimizer for

̂

ψN
ω (·, 0) =̂

Kω,b
0,Nϕ(·), we say the orbit satisfies the (forward) (ϕ, δ, N ) approximation property, if

for every 0 ≤ k ≤ N/3 such that ‖yk − xω
k ‖ < r(θkω), we have

∣
∣
∣
∣

( ̂

ψN
ω (yk, k) −

̂

ψN
ω (xω

k , k)

)

− (
ψ+

ω (yk, k) − ψ+
ω (xk, k)

)
∣
∣
∣
∣ < δ.

We denote this condition AP+(ω, ϕ, δ, N ).

We state a forward version of Proposition 6.1. The proof is the same.

Proposition 6.2 There exists randomvariables 0 < ρ̌(ω) < r(ω) and Ň1(ω) > 0 such
that if a ψ̌N

ω backward minimizer (yn, ηn)Nn=0 satisfies theAP
+(ω, ϕ, δ, N ) condition,

and in addition,

‖y0 − xω
0 ‖ < ρ̌(ω), N > Ň1(ω), δ

1
8 < ρ̌(ω), δ ≥ Č2(ω)e−(λ′−2ε)N/3, (6.3)

then there exists 0 < k ≤ max
{− 1

8ε log δ, N
6

}
such that

‖yk − xω
k ‖ < max

{
δq , e−(λ′−3ε)N/6

}
, (6.4)

where q = (λ′ − 3ε)/(8ε).

The main idea for the proof of Proposition 5.1 is to use both the forward and
backward dynamics to repeatedly upgrade the estimates. If we have a AP− condition,
Proposition 6.1 implies upgraded localization of backward minimizers at a earlier
time. This can be applied to get a better approximation of the forward solution for the
later time, obtaining an improved AP+ condition. We then reverse time and repeat.
However, due to technical reasons, we can only apply this process on a sub-interval
called a good interval.

Recall that K ε(ω) is the tempered upper bound for the randomvariable K (ε), which
is an upper bound for the norm of the potential.

Definition For β > 0, we say j ∈ [−N , 0] is a backward β-good time if for every
ϕ ∈ C(Td) and every Kω,b

−N ,0ϕ minimizer (yn, ηn)0n=−N , we have

‖y j − xω
j ‖ < β < ρ(θ jω), K ε(θ jω) < β−1, N1(θ

jω) < β−1

where ρ(ω) is in Proposition 6.1. Define forward β-good time similarly, by using
forward minimizers and ρ̌ from Proposition 6.2. An interval [n1, n2] is good if n2 is
backward good and n1 is forward good.

Write ϕN
ω = Kω,b

−N ,0ϕ, note that by Corollary 4.6, if (yn, ηn) is a minimizer for

Kω,b
−N ,0ϕ, then it is also a minimizer for

̂

Kω,b
−N ,0ϕ

N
ω =

̂

Kω,b
−N ,0K

ω,b
−N ,0ϕ. Suppose [n1, n2]

is a β-good interval in [−N , 0], denote
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Fig. 1 Notations for
forward-backward iteration

ω1 = θn1ω, ϕ1 = Kω,b
−N ,n1

ϕ,

ω2 = θn2ω,

̂

ϕ2 =

̂

Kn2,0ϕ
N
ω =

̂

Kn2,0K−N ,0ϕ.

(6.5)

See Fig. 1 for a visualization of the notations.
We now describe the upgrade lemma:

Lemma 6.3 For 0 < ε < λ′/12 and β > 0, there exists N2(ω) > 0 such that if

N > N2(ω), δ
1
8 < β/2, δ ≥ e−(λ′−3ε)N/3,

and if [−5N/9,−4N/9] ⊂ [n1, n2] ⊂ [−2N/3,−N/3] is a β-good time interval
with regards to [−N , 0], we have:
(1) For ω1, ω2, ϕ1,

̂

ϕ2 defined in (6.5) and N̄ = n2 − n1, if

(y j+n2 , η j+n2)
0
j=−N̄

satisfies AP−(ω2, ϕ1, δ, N̄ ) condition,

then the orbit

(y j+n1 , η j+n1)
N̄
j=0 satisfies AP

+(ω1,

̂

ϕ2, δ1, N̄ ) condition,

where
δ1 = max

{
δq− 1

4 , e−(λ′−6ε)N/54
}

. (6.6)

(2) If

(y j+n1, η j+n1)
N̄
j=0 satisfies AP

+(ω1,

̂

ϕ2, δ, N̄ ) condition,

then

(y j+n2 , η j+n2)
0
j=−N̄

satisfies AP−(ω2, ϕ1, δ1, N̄ ) condition,
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with δ1 given by (6.6).

The reason to require the good time interval to lie in [−2N/3,−N/3] is to apply
the following lemma, which says the global minimizer xω

n is almost a minimizer for
finite time solution in the middle of the time interval, for every initial condition ϕ.

Lemma 6.4 There exists N3(ω) > 0 such that if N > N3(ω), the following holds
almost surely, for arbitrary ϕ ∈ C(Td) and −2N/3 ≤ j < k ≤ −N/3:

∣
∣
∣Kω,b

−N , jϕ(xω
j ) − Kω,b

−N ,kϕ(xω
k ) + Aω,b

j,k (xω
j , x

ω
k )

∣
∣
∣ < e−(λ′−3ε)N/6,

∣
∣
∣
∣

̂

Kω,b
j,0 ϕ(xω

j ) −

̂

Kω,b
k,0 ϕ(xω

k ) + Aω,b
j,k (xω

j , x
ω
k )

∣
∣
∣
∣ < e−(λ′−3ε)N/6.

The proof of the lemma is deferred to Sect. 7.1.

Proof of Lemma 6.3 Since n2 is a backward good time and δ
1
8 < β < ρ(θn2ω) =

ρ(ω2), condition (6.1) holds for the orbit (y j+n2 , η j+n2)
0
j=−N̄

at the shifted time ω2,

the initial condition ϕ1, and interval size N̄ .
Therefore by Proposition 6.1, there exists an integer k satisfying 0 < k − n2 ≤

max{− N̄
6 , 1

8ε log δ}, such that

‖yk − xω
k ‖ < max{δq , e−(λ′−3ε)N̄/6}.

Also, N̄ ≥ N/9 ≥ β−1 ≥ N1(ω2) provided N ≥ 9β−1. Suppose j is an integer
satisfying n1 ≤ n1 + N̄/3 and that ‖y j − xω

j ‖ < r(θ jω). See Fig. 2 for a relation of
different integer times.

By Corollary 4.6,

̂

K j,0ϕ
N
ω (y j ) =

̂

Kk,0ϕ
N
ω (yk) − Ak, j (yk, y j ),

Fig. 2 Proof of Lemma 6.3, part
(1): Use early localization to
estimate forward solutions on
the gray interval
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then

∣
∣
∣
∣

̂

K j,0ϕ
N
ω (y j ) −

̂

Kk,0ϕ
N
ω (xω

k ) + Ak, j (x
ω
k , y j )

∣
∣
∣
∣

≤
∣
∣
∣
∣

̂

Kk,0ϕ
N
ω (yk) −

̂

Kk,0ϕ
N
ω (xω

k )

∣
∣
∣
∣ + ∣

∣Ak, j (yk, y j ) − Ak, j (x
ω
k , y j )

∣
∣

≤ K ε(θkω)‖xω
k − yk‖ ≤ K ε(θn2ω)eε|k−n2| max

{
δq , e−(λ′−3ε)N̄/6

}

≤ β−1 max
{
δq− 1

8 , e−(λ′−4ε)N̄/6
}

≤ β−1 max{δq− 1
8 , e−(λ′−4ε)N/54}.

(6.7)

using Lemma 4.7, and the estimates eε|k−n2| ≤ δ− 1
8 , eε|k−n2| ≤ eε N̄/6 and N̄ ≥ N/9.

On the other hand, the dual version of Lemma 4.10 implies

∣
∣
∣ψ+

ω (y j , j) − ψ+
ω (xω

k , k) + Ak, j (x
ω
k , xω

j )

∣
∣
∣ < Cε

1(θ
jω)e−(λ′−ε)(k− j)

≤ Cε
1(ω)eε| j |e−(λ′−ε)N̄/2 ≤ Cε

1(ω)e2εN/3e−(λ′−ε)N/18 = Cε
1(ω)e−(λ′−13ε)N/18.

Combine the estimates, we get

∣
∣
∣
∣

( ̂

Kω,b
j,0 ϕN

ω (y j ) −
̂

Kω,b
k,0 ϕN

ω (xω
k )

)

− (
ψ+

ω (y j , j) − ψ+
ω (xω

k , k)
)
∣
∣
∣
∣

≤ β−1 max
{
δq− 1

8 , e−(λ′−4ε)N/54
}

+ Cε
1(ω)e−(λ′−13ε)N/18.

We now apply Lemma 6.4 to ϕ = ϕN
ω , to replace the index k with j :

∣
∣
∣
∣

( ̂

Kω,b
j,0 ϕN

ω (y j ) −

̂

Kω,b
j,0 ϕN

ω (xω
j )

)

−
(
ψ+

ω (y j , j) − ψ+
ω (xω

j , j)
)∣
∣
∣
∣

≤ β−1 max
{
δq− 1

8 , e−(λ′−4ε)N/54
}

+ C1(ω)e−(λ′−ε)N/3 + e−(λ′−3ε)N/6

≤ 2β−1 max
{
δq− 1

8 , e−(λ′−4ε)N/54
}

< max{δq− 1
4 , e−(λ′−5ε)N/54} = δ1,

(6.8)

where in the last inequality, we take N2(ω) large enough so that C1(ω)e−(λ′−ε)N/3 +
e−(λ′−3ε)N/6 < e−(λ′−4ε)N/54 and 2β−1 < e−εN/54, then we use 2β−1 < δ− 1

8 .
Observe that by the standard semi-group property,

̂

Kω1,b
j−n1,N̄

̂

ϕ2 =

̂

K θn1ω,b
j−n1,N̄

̂

Kω,b
n2,0

ϕN
ω =

̂

Kω,b
j,n2

̂

Kω,b
n2,0

ϕN
ω =

̂

Kω,b
j,0 ϕN

ω ,

substitute into (6.8) we obtain AP+(ω1,

̂

ϕ2, δ1, N̄ ).
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We now discuss case 2. Starting with the condition AP+(ω1,

̂

ϕ2, δ, N̄ ), we obtain
0 ≤ k∗ − n1 ≤ max

{− 1
8ε log δ, N

6

}
such that

‖yk∗ − xk∗‖ ≤ max
{
δq , e−(λ′−3ε)N/6

}
.

Then for all k∗ < n2 − N̄/3 ≤ j ≤ n2, if ‖y j − xω
j ‖ < r(θ jω), using the fact that

(yn, ηn) is a minimizer for K−N ,0ϕ, similar to (6.7) we have

∣
∣
∣Kω,b

−N , jϕ(y j ) − Kω,b
−N ,kϕ(xω

k ) + Aω,b
j,k (xω

k , y j )
∣
∣
∣ ≤ β−1 max

{
δq− 1

8 , e−(λ′−4ε)N/54
}

,

and following the same strategy as before, we get

∣
∣
∣
(
Kω,b

−N , jϕ(y j ) − Kω,b
−N , jϕ(xω

j )
)

− (ψ−(y j , j) − ψ−(xω
j , j))

∣
∣
∣ < δ1.

Since

Kω2,b
−N̄ , j−n2

ϕ1 = Kω,b
n1, j

K−N ,n1ϕ = Kω,b
−N , jϕ,

we obtain AP−(ω2, ϕ1, δ1, N̄ ). ��
To carry out the upgrading procedure, we need to show that β−good time intervals

exist.

Lemma 6.5 There existsβ0 > 0 such that, for any0 < β ≤ β0, there exists N3(ω) > 0,
and for all N > N3(ω) there exists a β−good time interval [−5N/9,−4N/9] ⊂
[n1, n2] ⊂ [−2N/3,−N/3].
Proof Let β0 > 0 be small enough that

P(ρ(ω) > β0, K ε(ω) < β−1
0 , N1(ω) < β−1

0 ) >
17

18
.

By Proposition 5.2, for any 0 < β ≤ β0, there exists M0(ω) > 0 such that any
minimizer (yn, ηn)Nn=−M with M, N > M0(ω) satisfies ‖y0 − xω

0 ‖ < β. We now
choose β1 > 0 small enough such that

P(ρ(ω) > β0, K ε(ω) < β−1
0 , N1(ω) < β−1

0 , M0(ω) < β−1
1 ) >

8

9
.

Then, there exists N3(ω) > 0 such that for all N > N3(ω) the density of β−regular n
in [−N , 0] is larger than 8

9 . In particular, the interval [−4N/9,−N/3] must contain
a regular time n2. We impose N3(ω) > 3β−1

1 , then Proposition 5.2 implies for any
N > N3(ω), ‖yn2 − xω

n2‖ < β ≤ ρ(ω), therefore n2 is a good time.
Apply the same argument, by possibly choosing a different N3(ω), we can find a

forward good time n1 in [−2N/3,−5N/9]. ��
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Proof of Proposition 5.1 By Lemma 6.5 there exists a β−good interval. We first show
that if for any Kω,b

−N ,0ϕ backward minimizer (yn, ηn)0n=−N , the condition

AP−(ω2, ϕ1, e
−λ1N , N̄ ) (6.9)

holds for an explicitly defined λ1, then Proposition 5.1 follows. Indeed, we only need
the estimate

∣
∣
∣ψN

ω (yn2 , n2) − ψ−
ω (yn2 , n2) − C(n2, ω, ϕ)

∣
∣
∣ ≤ e−λ1N ,

where C(n2, ω, ϕ) = ψN
ω (xω

n2 , n2) − ψ−
ω (xω

n2 , n2).
On one hand,

ψN
ω (y0, 0) − ψ−(y0, 0) ≥ ψN (yn2 , n2) − ψ−(yn2 , n2) ≥ C(n2, ω, ϕ) − e−λ1N ,

on the other hand, by Lemma 4.10,

ψN
ω (y0, 0) − ψ−(y0, 0) ≤ ψN (xω

n2 , n2) − ψ−(xω
n2 , n2) + C1(ω)e−(λ′−ε)|n2|

= C(n2, ω, ϕ) + C1(ω)e−(λ′−ε)N/3 ≤ C(n2, ω, ϕ) + e−(λ′−2ε)N/3

if N is large enough. Proposition 5.1 follows by taking λ = min{λ1, (λ′ − 2ε)/3}.
We now prove (6.9). Choose β = β0 as in Lemma 6.5, and δ such that

δ
1
8 < min {ρ(ω), β0/2} . (6.10)

Using Proposition 2.1, there is N0(ω) large enough such that for all N0 > N (ω), all
ϕ ∈ C(Td), we have

‖Kω,b
−N ,nϕ − ψ−

ω (·, n)‖∗ < δ, −2N/3 ≤ n ≤ 0.

In particular, for any minimizer (yn, ηn), we have

(y j+n2 , η j+n2)
0
j=−N̄

satisfies AP−(ω2, ϕ1, δ, N̄ ) condition.

Apply Lemma 6.3, obtain

(y j+n1, η j+n1)
N̄
j=0 satisfies AP

+(ω1,

̂

ϕ2, δ1, N̄ ) condition,

with δ1 = max{δq− 1
4 , e−(λ′−5ε)N/54}.

Now we are going to apply Lemma 6.3 repeatedly, from AP− to AP+ and back
until a desired estimate for δ is achieved. We shall assume that N > N2(ω). On
the first step we get an estimate AP+(ω1, ϕ2, δ1, N̄ ) for (y j+n2 , η j+n2)

0
j=−N̄

where

δ1 = max{δq− 1
4 , e−(λ′−5ε)N/54}. Since q − 1

4 > 1 this estimate is an improvement of
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δ unless δ < e−(λ′−5ε)N/54. Notice that if this happens we have already proven our
statement with λ1 = (λ′ − 5ε)/54. It is easy to see that the level δ < e−(λ′−5ε)N/54

will be reached in a finite number of steps depending on N . Notice N is large enough
but fixed, this finishes the proof. ��

7 Properties of the finite time solutions

We have proven all our statements except Proposition 6.1, which we prove in the next
two sections.

7.1 The guiding orbit

For N ∈ N, denote

ψN
ω (x, n) = Kω,b

−N ,nϕ(x), −N ≤ n ≤ 0.

We define
QN

ω (x, n) = ψN
ω (x, n) − ψ+

ω (x, n), −N ≤ n ≤ 0, (7.1)

which is an analog of Q∞
ω for finite-time solutions. (Again, the subscript ω may be

dropped).
The function QN is a Lyapunov function for minimizers, in the following sense:

Lemma 7.1 Let (yn, ηn)0n=−N be a minimizer for Kω,b
−N ,0ϕ(y0) (will use the notation

ψN (x, 0) from now on). Then for all −N ≤ j < k ≤ 0,

QN (y j , j) ≤ QN (yk, k).

Proof By definition,

QN (yk, k) = ψN (yk, k) − ψ+(yk, k) = ψN (y j , j) + Aω,b
j,k (y j , yk) − ψ+(yk, k)

≥ ψN (y j , j) −
( ̂

Kω,b
j,k ψ+(·, k)

)

(y j ) = ψN (y j , j) − ψ+(y j , j) = QN (y j , j).

��
Let

zω−N ∈ argmin
z

QN (z,−N ),

and define (zωn , ζω
n )∞n=−N to be a forward minimizer for ψ+(·, N ) starting from zω−N .

The orbit (zωn , ζω
n ) plays the role of the global minimizer (xω

n , vω
n ) in the finite time

set up, and is called the guiding orbit. The choice of zωN may not be unique, but our
analysis will not depend on the choice of zωN . The orbit (z

ω
n , ζω

n ) depends on N but we
will not keep N in the notation.
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Lemma 7.2 The guiding orbit has the following properties.

(1)

zωn ∈ argmin
z

QN (z, n), −N ≤ n ≤ 0.

(2)

ζω
n = ∇ψN (zωn , n) + b = ∇ψ+(zωn , n) + b, −N ≤ n ≤ 0.

where both gradients exists.
(3)

QN (zωj , j) = QN (zωk , k), −N ≤ j < k ≤ 0.

(4) zωk , −N ≤ k ≤ 0 is a backward minimizer for Kω,b
−N ,0ϕ.

Proof We prove (3) first. Since (zωj ) j≥−N is a forward minimizer for ψ+(·, j), we
have

QN (zωj , j) = ψN (zωj , j) − ψ+(zωj , j) = ψN (zωj , j) − ψ+(zωk , k) + Aω,b
j,k (zωj , z

ω
k )

≥ ψN (zk, k) − ψ+(zωk , k) = QN (zωk , k).
(7.2)

On other other hand, let yk ∈ argmin QN (·, k), and let (yn)kn=−N be a minimizer for
ϕ ending at yk . Then by an argument similar to Lemma 7.1, for any y ∈ T

d ,

QN (y, k) ≥ QN (yk, k) ≥ QN (y−N ,−N ) ≥ QN (zω−N ,−N ). (7.3)

In particular, taking y = zωk , we have QN (zωk , k) ≥ QN (zω−N ,−N ). Using (7.2) for
j = −N , we get QN (zω−N ,−N ) = QN (zωk , k) which implies (3).
This also implies that (7.2) is in fact an equality, thereforeψN (zωj , j) = ψN (zωk )−

Aω,b
j,k (zωj , z

ω
k ) and (4) follows.

Using again (7.3), we have

min
y

QN (y, k) ≥ QN (zω−N ,−N ) = QN (zωk , k)

which implies (1). Finally, sinceψN (·, n) is a semi-concave function for n ≥ −N and
ψ+ is semi-convex, (2) follows from Lemma 4.2. ��

Combine (3) of Lemma 7.2 with Lemma 7.1, we get for all −N ≤ j < k ≤ 0,

QN (y j , j) − QN (zωj , j) ≤ QN (yk, k) − QN (zωk , k). (7.4)
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7.2 Regular time and localization of the guiding orbit

We use a similar concept as the good time, but for a different set of random variables.
Let 0 < β < 1 be such that

P(C(ω) < β−1, r(ω) > β) >
23

24
,

with C(ω), r(ω) from Proposition 3.4. Let M0(ω) be the random variable given by
Proposition 5.2 with ρ̃ = β. Let β1 > 0 be such that P(M0(ω) > β−1

1 ) < 1/24. n is
called regular if

C(θnω) < β−1, r(θnω) > β, M0(θ
nω) < β−1

1 ,

using same proof as Lemma 6.5, we get

Lemma 7.3 There exists N1(ω) > 0 such that for all N > N1(ω), there exists a
regular time in each time interval of size at least N/12 contained in [−N , 0].
Lemma 7.4 There exists N4(ω) > 0 depending on β, ε such that for all N > N4(ω),
and −5N/6 ≤ k ≤ 0, we have

‖zωk − xω
k ‖ ≤ β−1e−λ′(k+5N/6).

By possibly enlarging N4(ω), we have

0 ≤ ψN (xω
j ) + Aω,b

j,k (xω
j , x

ω
k ) − ψN (xω

k ) ≤ e−(λ′−3ε)N/6, −2N/3 ≤ j < k ≤ 0.

Proof The proof is again very similar to that of Lemma 6.5. Let n∗ be a regular time
in [−5N/6,−11N/12]. Then

‖zωn∗ − xω
n∗‖ < β < r(θn∗ω).

Apply Proposition 3.3, we get

‖zωk − xω
k ‖ ≤ C(θn∗ω)e−λ′|k−n∗| ≤ β−1e−λ′|k−n∗|.

Since n∗ ≥ −5N/6, the first estimate follows. For the second estimate, since zωk is a
minimizer for K−N ,0ϕ, we have

0 = ψN (zωj ) + Aω,b
j,k (zωj , z

ω
k ) − ψN (zωk ), −2N/3 ≤ j < k ≤ 0.

To avoid magnifying the coefficient of ε, let K ε/2 > K (ω) be the result of applying
Lemma 4.9 with parameter ε/2, then
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ψN (xω
j ) + Aω,b

j,k (xω
j , x

ω
k ) − ψN (xω

k ) ≤ 2K ε/2(θ jω)‖zωj − xω
j ‖

+ 2K ε/2(θkω)‖zωk − xω
j ‖

≤ 4K ε/2(ω)e
ε
2 · 2N3 e−λ′N/6 ≤ 4K ε/2(ω)e−(λ′−2ε)N/6 ≤ e−(λ′−3ε)N/6,

where the last step is achieved by taking N4(ω) large enough. ��
We are now ready to prove Lemma 6.4.

Proof of Lemma 6.4 Wenote thatLemma7.4 proves half of the estimates inLemma6.4.
The other half is proven using the same argument and reversing time. ��

For the rest of the paper, we will only deal with time n ≥ −N/3. We get a larger
exponents in our estimates over the smaller time interval [−N/3, 0]. The estimates
are summarized in the following statement.

Lemma 7.5 There N4(ω) > 0 such that for N > N4(ω), the following holds for
−N/3 ≤ k ≤ 0: let f be any of the following functions:ψN (·, k),ψ±(·, k), Am,k(y, ·)
or Ak,n(·, y). Then

| f (xω
k ) − f (zωk )| ≤ e−(λ−2ε)N/3.

Proof We note that all choices of f are K (θkω) Lipshitz functions. Then

| f (xω
k ) − f (zωk )| ≤ K (θkω)‖xω

k − zωk ‖ ≤ K ε(θkω)β−1e−λ′N/3

≤ K ε(ω)eε|k|β−1e−λ′N/3 ≤ β−1K ε(ω)e−(λ′−ε)N/3 ≤ e−(λ′−2ε)N/3

for N large enough. ��

7.3 Stability of the finite timeminimizers

We show that if an orbit (yn, ηn)0n=−N satisfies AP−(ω, ϕ, δ, N ) condition, then it is
stable in the backward time. First, we obtain an analog of (4.1).

Lemma 7.6 Assume the orbit (yn, ηn) satisfies AP−(ω, ϕ, δ, N ), Then for each
−N/3 ≤ k ≤ 0 such that ‖yk − xω

k ‖ < r(θkω), we have

QN (yk, k) − QN (xω
k , k) ≥ a(θkω)‖yk − xω

k ‖2 − δ,

QN (yk, k) − QN (xω
k , k) ≤ K (θkω)‖yk − xω

k ‖2 + δ.

Proof The definition of AP− implies that for all ‖yk − xω
k ‖ < r(θkω),

∥
∥
∥
(
QN (yk, k) − QN (xω

k , k)
)

− (
Q∞(yk, k) − Q∞(xω

k , k)
)∥∥
∥ < δ

the lemma follows directly from (4.1). ��
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We combine this with (7.4) to obtain a backward stability for (yn, ηn).

Lemma 7.7 Assume that (yn, ηn)0n=−N is aminimizer that satisfies theAP−(ω, ϕ, δ, N )

condition, and such that

δ ≥ e−(λ′−3ε)N/3.

There exists Cε
1(ω) > 1 with e−ε ≤ Cε

1(ω)/Cε
1(θω) ≤ eε such that if N > N4(ω),

−N/3 ≤ j < k ≤ 0, and ‖y j − xω
j ‖ < r ε(θ jω), ‖yk − xω

k ‖ < r ε(θkω), then

‖y j − xω
j ‖ ≤ Cε

1(θ
kω)eε| j−k| (‖yk − xω

k ‖ + 3
√

δ
)

.

Proof Apply Lemma 7.5, we have

QN (y j , j) − QN (xω
j , j) ≤ QN (y j , j) − QN (zωj , j) + 2e−(λ′−3ε)N/3

≤ QN (yk, k) − QN (zωk , k) + 2e−(λ′−3ε)N/3

≤ QN (yk, k) − QN (xω
k , k) + 4e−(λ′−3ε)N/3

≤ QN (yk, k) − QN (xω
k , k) + 4δ.

Combine with Lemma 7.6, we get

aε(θ jω)‖y j − xω
j ‖2 ≤ K ε(θkω)‖yk − xω

k ‖2 + 6δ.

Using aε(θ jω) ≥ e−ε| j−k|aε(θkω), we obtain

‖y j − xω
j ‖2 ≤ K ε/aε(θkω)eε| j−k| (‖yk − xω

k ‖2 + 6δ
)

,

therefore

‖y j − xω
j ‖ ≤ eε| j−k|√K ε/aε(θkω)

(
‖yk − xω

k ‖ + 3
√

δ
)

.

The lemma follows by taking Cε
1 = √

K ε/aε . ��

8 Estimates from non-uniform hyperbolicity

8.1 Hyperbolic properties of the global minimizer

Denote by

Xω
n = (xω

n , vω
n ) ∈ T

d × R
d ,

the orbit of the global minimizer under the random dynamical system �ω
n (see (3.2)).

According to Proposition 3.3, the Lyapunov exponents of the derivative cocycle over
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this orbit are non-vanishing, which implies this orbit is non-uniformly hyperbolic.
It turns out such orbits enjoys much of the same properties as uniformly hyperbolic
orbits, using a special Lyapunov norm. The conclusions of Proposition 8.1 below
follows from standard theories in smooth dynamics, see for example [1, section 5.1
and 7.2, 7.3].

Proposition 8.1 For any ε > 0, the following hold.

(1) (Stable and unstable bundles) For each n ∈ Z, there exists the splitting

R
2d = Es

n(X
ω
n ) ⊕ Eu

n (Xω
n ),

where dim Es
n = dim Eu

n = d. The splitting is invariant under the random dynam-
ics, i.e.

D�ω
n

(
Es
n(X

ω
n )

) = Es
n(X

ω
n+1), D�ω

n

(
Eu
n (Xω

n )
) = Eu

n (Xω
n+1).

We denote by �s
n,�

u
n the projection onto Es

n, E
u
n under this splitting.

(2) (Lyapunov norm) There exist norms ‖·‖sn, ‖·‖un on Es
n, E

u
n , such that the Lyapunov

norm on R
2d defined by

(‖V ‖′
n)

2 = (‖�s
nV ‖sn)2 + (‖�u

nV ‖un)2

satisfies the conditions listed below.
(3) (Comparison to Euclidean norm) There exists a function Mε(ω) > 0 satisfying

e−ε ≤ Mε(ω)/Mε(θω) ≤ eε such that

‖V ‖ ≤ ‖V ‖′
n ≤ Mε(θnω)‖V ‖,

where ‖ · ‖ is the Euclidean norm. We will omit the subscript n from the ‖ · ‖′
n and

�
s/u
n when the index is clear from context. s

(4) (Cones)

Cun = {V ∈ R
2d : ‖�u

nV ‖un ≤ ‖�s
nV ‖sn},

Csn = {V ∈ R
2d : ‖�s

nV ‖sn ≤ ‖�u
nV ‖un}.

The cones Cun are forward invariant and forward expanding under �ω
n , and Csn

are backward invariant and backward expanding. More precisely the following
statements hold.

(5) (Hyperbolicity) There exists σε(ω) > 0 with e−ε ≤ σ ε(ω)/σ ε(θω) ≤ eε , such
that the following hold. Let Yn be an orbit of �ω

n .

(a) If

‖Yn − Xn‖′ < σε(θnω), ‖Yn−1 − Xn−1‖′ < σε(θn−1ω),
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then

‖�sYn−1 − �s Xn−1‖′ ≥ eλ′ ‖�sYn − �s Xn‖′,

where λ′ = λ − ε. Moreover, if Yn − Xn ∈ Csn, then Yn−1 − Xn−1 ∈ Cs
n−1.

(b) If

‖Yn − Xn‖′ < σε(θnω), ‖Yn−1 − Xn−1‖′ < σε(θn−1ω),

then

‖�uYn−1 − �u Xn−1‖′ ≤ e−λ′ ‖�uYn − �u Xn‖′.

Moreover, if Yn − Xn ∈ Cun , then Yn−1 − Xn−1 ∈ Cun−1.

8.2 Stability of minimizer in the phase space

We improve Lemma 7.7 to its counter part in the phase space, using the Lyapunov
norm.

Lemma 8.2 Assume that (yn, ηn)0n=−N is aminimizer that satisfies theAP−(ω, ϕ, δ, N )

condition, and such that

δ ≥ e−(λ′−3ε)N/3.

There exists Cε
2(ω) > 1 and eε ≤ Cε

2(ω)/Cε
2(θω) ≤ e−ε such that, if −N/3 < j <

k ≤ 0 satisfies

‖y j − xω
j ‖ < r(θ jω), ‖yk − xω

k ‖ < r(θkω),

then

‖Y j − Xω
j ‖′ ≤ Cε

2(θ
kω)eε| j−k| (‖yk − xω

k ‖ + √
δ
)

.

Proof Apply Lemma 7.7, we have

‖y j − xω
j ‖ ≤ Cε

1(θ
kω)eε| j−k| (‖yk − zωk ‖ + 3

√
δ
)

.

Since j < −1, we use Lemma 4.2 to get

‖η j − vω
j ‖ ≤ K ε(θ jω)‖y j − xω

j ‖,

and hence

‖Y j − Xω
j ‖ ≤ 2K ε(θ jω)‖y j − xω

j ‖.
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We have

‖Y j − Xω
j ‖′ ≤ Mε(θ jω)‖Y j − X j‖ ≤ 2(MεK ε)(θ jω)‖y j − xω

j ‖
≤ 2Cε

1(θ
kω)(MεK ε)(θkω)e3ε| j−k| (‖yk − xω

k ‖ + 3
√

δ
)

≤ 6(Cε
1M

εK ε)(θkω)e3ε| j−k| (‖yk − xω
k ‖ + √

δ
)

.

We then replace ε with ε/3 in the above estimate, and define Cε
2 = 6Cε/3

1 Mε/3K ε/3,
which satisfies eε ≤ Cε

2(ω)/Cε
2(θω) ≤ e−ε . The lemma follows. ��

8.3 Exponential localization using hyperbolicity

We show that hyperbolicity, together with Lemma 8.2 lead to a stronger localization.
In Lemma 8.3 we show a dichotomy: either yn−xω

n contracts for one backward iterate,
or yn is δq close to xn to begin with.

Let r ε(ω) and K ε(ω) be the random variable from Lemma 4.9, and note we can
always choose r ε(ω) < 1 and K ε(ω) > 1. Define

r1(ω) = min{r ε/8(ω)/(2K ε/8(ω)), σ ε/4(ω)},
Cε
3(ω) = Cε/4

2 (ω), ρ0(ω) =
(

r1(ω)

3Cε
3(ω)

)2

, (8.1)

where σε is defined in property (5) of Proposition 8.1. We have Cε
3(ω) > 1, ρ0(ω) <

r1(ω) < 1, and eε ≤ ρ0(ω)/ρ0(θω), r1(ω)/r1(θω) ≤ eε .

Lemma 8.3 Under the sameassumption as inLemma8.2, suppose for a given−N/6 ≤
k ≤ −1, we have

‖Yk − Xk‖′ < ρ0(θ
kω), δ

1
4 < ρ0(θ

kω), 2δ
1
2 < e−λ′

. (8.2)

Then one of the following alternatives hold for Yk:

(1)
‖Yk − Xω

k ‖′ ≤ max{δq , e−(λ′−2δ)N/6}, q = (λ′ − 3ε)/(8ε), (8.3)

in the case Yk − Xω
k ∈ Csk .

(2)
‖�uYk−1 − �u Xk−1‖′ ≤ e−λ′ ‖�uYk − �u Xk‖′, (8.4)

in the case Yk − Xω
k ∈ Cuk .

Proof Wefirst describe the idea behind the proof. If Yk−Xω
k ∈ Cuk , and Proposition 8.1

(5)(b) applies, then (8.4) follows directly. Suppose now Yk −Xω
k ∈ Csk . Since the stable

cones are backward invariant, Y j − Xω
j ∈ Cs

j for every j < k, then Proposition 8.1
(5)(a) implies that ‖Y j − Xω

j ‖′ should grow exponentially with rate λ′. Suppose for
a moment that Lemma 8.2 holds with δ = 0, which implies ‖Y j − Xω

j ‖′ grows with
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at most rate ε, this would have been a contradiction. When δ > 0, the only way for
Yk − Xω

k ∈ Csk to not contradict Lemma 8.2 is for ‖Yk − Xω
k ‖′ to be much smaller than

δ to begin with.
We now make this argument rigorous. Some of the estimates below are needed to

make sure that the conditions of Lemma 8.2 and Proposition 8.1 are met.
Let us denote dk = ‖Yk − Xω

k ‖′. Let i0 be the unique negative integer that satisfies
the condition

e2ε(|i0|−1) < min

{
r1(θkω)

3dkCε
3(θ

kω)
,

r1(θkω)

3
√

δCε
3(θ

kω)
, eε(N/3−2)

}

= min

{√
ρ0(θ

kω)

dk
,

√
ρ0(θ

kω)√
δ

, eε(N/3−2)

}

≤ e2ε|i0|.
(8.5)

Note that −N/6 ≤ i0 < 0. Since

Cε
3(θ

kω)e2ε|i0| ≤ min

{
r1(θkω)

3dk
,
r1(θkω)

3
√

δ

}

e2ε (8.6)

and (using Cε
3 = r1

3
√

ρ0
and (8.2))

Cε
3(θ

kω)e−2ε|i0| ≤ max

{
dkr1(θkω)

3ρ0(θkω)
,

√
δ r1(θkω)

3ρ0(θkω)

}

< 1. (8.7)

We next show that Lemm 8.2 can be applied inductively to the indices j, k for
j = k − 1, . . . , k + i0. Recall that for every ε > 0, the random variable K ε is chosen
to be an upper bound for ‖�ω

n ‖C2 , the norm of the random mapping. By (8.1) and
(8.2), if dk < r1(θkω), then dk−1 ≤ K ε/8(ω)dk < r ε/8(θkω)/2 < r ε/8(θk−1ω), if ε

is small enough. Therefore Lemma 8.2 can be applied to the indices k − 1, k if (8.2)
holds.

Suppose that for some j ∈ [i0+k, k), d j+1 ≤ r1(θ jω). Then by the same argument
as above, d j ≤ r ε/8(θ jω) < r(θ jω), Lemma 8.2 applies to j, k. We get

d j ≤ Cε
3(θ

kω)eε|i0|(dk + √
δ) = e−ε|i0|Cε

3(θ
kω)e2ε|i0|(dk + √

δ)

≤ e−ε|i0|(dk + √
δ)min

{
r1(θkω)

3dk
,
r1(θkω)

3
√

δ

}

e2ε ≤ e−ε|i0|r1(θkω) · 2
3
e2ε

≤ r1(θ
jω) · 2

3
e2ε < r1(θ

jω),

(8.8)

where we applied (8.6) in the second line, and assumed ε is small enough. (8.8)
implies that the inductive procedure can be continued one step further, and we can
follow this procedure all the way until j = i0 + k. For all j ∈ [i0 + k, k), since
d j < r1(θ jω) < σε/4(θ jω), Proposition 8.1 (5) applies .
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If Yk − Xω
k ∈ Cuk (second alternative), (8.4) holds by Proposition 8.1 (5)(b). If

Yk − Xω
k ∈ Csk (first alternative), then Y j − Xω

j ∈ Csj for all i0 + k < j < k, due to
backward invariance of stable cones. As a result, we get from Proposition 8.1 (5)(a)
that

d j ≥ eλ′| j−k|dk .

Pick j = i0 + k, and apply Lemma 8.2 again. Then using (8.7), we get

dk ≤ e−λ′|i0|d j ≤ Cε
3(θ

kω)e−(λ′−ε)|i0|(dk + √
δ)

= Cε
3(θ

kω)e−2ε|i0|e−(λ′−3ε)|i0|(dk + √
δ) ≤ e−(λ′−3ε)|i0|(dk + √

δ).

We can choose ε small enough (and as a result |i0| large enough) such that
e−(λ′−3ε)|i0| < 1

2 , then

√
δ e−(λ′−3ε)|i0| ≥ dk(1 − e−(λ′−3ε)|i0|) ≥ 1

2
dk,

or
dk ≤ 2

√
δ e−(λ′−3ε)|i0|. (8.9)

Note that in this case, dk ≤ √
δ. Using (8.5) and δ

1
4 < ρ0(θ

kω) from (8.2), we get

e−2ε|i0| ≤ max

{ √
δ

√
ρ0(θkω)

, e−ε(N/3−2)

}

< max{δ 1
4 , e−εN/3 · e2ε}

≤ e2ε max{δ 1
4 , e−εN/3}.

We combine with (8.9) to get

dk ≤ 2
√

δ
(
e−2ε|i0|

)(λ′−3ε)/(2ε) ≤ 2
√

δ
(
e−2ε|i0|

)(λ′−3ε)/(2ε)

≤ 2
√

δe(λ′−3ε) max
{
δq , e−(λ′−3ε)N/6

}
≤ max

{
δq , e−(λ′−3ε)N/6

}
,

where q = (λ′ − 3ε)/(8ε). ��
We are now ready to prove Proposition 6.1.

Proof of Proposition 6.1 Define

ρ(ω) = min{ρ0(ω)/(4Cε
3(ω)), e−λ′

/2} < ρ0(ω),

then e−2ε ≤ ρ(θω)/ρ(ω) ≤ e2ε . Recall the assumption

δ
1
8 < ρ(ω),

123



578 Stoch PDE: Anal Comp (2020) 8:544–579

and note in particular 2δ
1
2 < e−λ′

which is needed for Lemma 8.3. We suppose
N > N4(ω), so that Lemma 7.7 applies. Let j0 be the unique integer such that

j0 − 1 < max

{
log δ

8ε
,−N

6

}

≤ j0.

Then

e−ε| j0| = eε j0 ≥ e
1
8 log δ = δ

1
8

and

ρ0(θ
jω) ≥ e−ε| j0|ρ0(ω) ≥ δ

1
4 , j0 ≤ j ≤ −1.

If ‖y0 − xω
0 ‖ < ρ(ω), by Lemma 8.2, we have

‖Y−1 − Xω−1‖′ ≤ Cε
3(ω)eε

(
‖y0 − xω

0 ‖ + √
δ
)

≤ Cε
3(ω)eε2ρ(ω) = eερ0(ω)/2.

Assume eε < 2, then Lemma 8.3 applies for j = −1. If Y−1 − Xω−1 ∈ Cs , then (8.3)

hold, we obtain ‖Y−1 − Xω−1‖′ ≤ max{δq , e−(λ′−3ε)N/6}. We choose k = −1 and the
proposition follows. Otherwise, Y−1 − Xω−1 ∈ Cu , and (8.4) applies. We have

‖Y−2 − Xω−2‖′ ≤ √
2‖�s(Y−2 − Xω−2)‖s ≤ √

2e−λ′ ‖Y−1 − X−1‖′

< e−λ′
eε/

√
2ρ0(ε) < e−λ′

ρ0(ω) ≤ ρ0(θ
−1ω),

if eε <
√
2. We can apply Lemma 8.3 again.

Let j ∈ [ j0 + 1,−1]. If Ym − Xω
m ∈ Cs for any of m ∈ [ j + 1,−1], we have

‖Y−m −Xω−m‖′ ≤ max{δq , e−(λ′−3ε)N/6}. Choose k = m and we are done. Otherwise,
we have

‖Yk − Xω
k ‖′ ≤ √

2e−|k+1|λ′ ‖Y−1 − X−1‖′ < e−|k+1|λ′
ρ0(ω) ≤ ρ0(θ

kω).

Therefore this argument can be applied inductively until we reach j = j0, in which
case

‖y j0 − xω
j0‖ ≤ ‖Y j0 − Xω

j0‖′ ≤ √
2e−λ′| j0| ≤ √

2ρ0(ω)max

{

δ
λ′
8ε , e−λ′N/6

}

< max{δq , e−(λ′−3ε)N/6}.
We choose k = j0 and conclude the proof. ��
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