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Abstract

We show that for a family of randomly kicked Hamilton—Jacobi equations on the torus,
almost surely, the solution of an initial value problem converges exponentially fast to
the unique stationary solution. Combined with the earlier results of the authors, this
completes the program in the multi-dimensional setting started by E, Khanin, Mazel
and Sinai in the one-dimensional case.
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1 Introduction

We consider the randomly forced Hamilton—Jacobi equation on the d dimensional
torus

OV (x, 1)+ % (VY (x,t) +b)>+ F°(x,1) =0, xeT!=®R/Zz)?, (.1)

where b € R?, V stands for gradient in x, and F® is a random potential. By writing
u(x,t) = Vi (x, t), we obtain the stochastic inviscid Burgers equation

du+ w-Vu= f°y, 1), yeRireR, (1.2)
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f®(y,t) = =VF®(y, t) with the condition fu(x, t)dx = b. Although everywhere
below we deal only with the Burgers case, many of our results can be generalized to
a much more general case of the Hamilton—Jacobi equation

dy + H(VY) + F(x,1) =0, (1.3)

where H (p) is astrictly convex Hamiltonian which is also assumed to grow sublinearly
in p.

We are interested in two types of random potentials. In [11], the authors consider
the dimension d = 1, with the “white noise potential”

M M
Fo(y,0 =) Fy,n=) F@W, (1.4)

i=1 i=1

where F; : T4 — R are smooth functions, and W,- are independent white noises. It
is shown that finite time solutions of (1.1) converge exponentially fast to a unique
stationary solution. In this paper, we generalize this result to arbitrary dimensions, for
arelated “kicked” model.

The “kicked force” model was introduced in [5], with

Fo(y, 1) =Y FP (8@t — j), (1.5)

JEZ

where Fj‘.” is an i.i.d. sequence of potentials, and 4(-) is the delta function. In other
words, the system evolves without an external force apart from instant kicks in integer
moments of time. The kicks are reflected in adding a random potential which is chosen
independently for every integer time. We focus on the “kicked” potential (1.5) as it is
simpler, but retains most of the features of the system.

The system (1.3) does not admit classical solutions in general, and the solution is
interpreted using the Lax-Oleinik variational principle. There is a semi-group family
of operators [see (2.2)]

K& oMy — (T,

such that the function ¥ (x, t) = K?f’,bgo(x), s < T < tis the solution to (1.1) on the
interval [s, ¢] with the initial condition ¥ (x, s) = ¢(x).

It is shown in [5] that under suitable conditions on the kicked force, almost surely,
the system (1.1) admits a unique solution v (x, t) (up to an additive constant) on the
interval (—oo, 00). Let us denote

= mi -,
1ll = min sup [l4(x) — C]|

xeTd

which is the suitable semi-norm for measuring convergence up to an additive constant.
Then any solution on [s, #] converges to ¥, as s — —oo, uniformly over all initial
conditions in the semi-norm || - ||4:
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. b _
lim  sup [K{ @(x) — ¥, (x, )]« =0.
ST pec(T9)

Our main result is that, under certain mild conditions on the kicks, the above con-
vergence is exponentially fast.

Main result Suppose certain conditions are satisfied for the random kicked force (see
Theorem 1 for details), there exists a (non-random) A > 0 such that, almost surely,

. 1 _
limsup —log | sup K 0(x) — ¥ (. Olls | < =2
§—>—00 |S| (/JEC(Td)

Remark Exponential convergence is also known to hold in the viscous equation
1 2 ®
Wy + 5 (V)" + F¥ =vAy

(see [10]). However, in this case the a priori convergence rate A(v) may vanish in the
inviscid limit v — 0. Since our result provides a non-zero lower bound on convergence
rate when v = 0, it is an interesting question whether there exists a uniform lower
bound on A(v).

The a priori convergence rate of the Lax-Oleinik semi-group is only polynomial in
time, as evidenced in the case when there is no force, i.e. F“ = 0. In the case when
the force is non-random, exponential convergence is true when the Aubry set (see for
example [4]) consists of finitely many hyperbolic periodic orbits or fixed points ( [6]).
According to a famous conjecture of Mafie, this condition holds for a generic force
([8]), however this conjecture is only proven when d = 2 for C? forces ([2,3]).

In some sense, [7] proves a random version of Mafie’s conjecture. In the random
case, the role of the Aubry set is taken by the the globally minimizing orbit, and it is
shown that this orbit is non-uniformly hyperbolic under the random Euler-Lagrange
flow. Conceptually, this hyperbolicity is responsible for the exponential convergence
of the solutions to (1.1). However, this connection is quite delicate. To illustrate, let
us outline the proof in the uniform hyperbolic case:

e (Step 1) Consider a solution K ‘_”f’ogo that is sufficiently close to the stationary

solution ¥~ (-, 0), this is the case since we know the solution K f']?()‘ﬁ — ¥ (-,0),
albeit without any rate estimates.

e (Step 2) Show that the associated finite time minimizers is close to the Aubry
set when ¢+ € [-2T /3, —T /3]. By hyperbolic theory, any orbit that stays in a
neighborhood of an hyperbolic orbit for time 7' /3 must be exponentially close to
it at some point.

e (Step 3) Finite time minimizer being exponentially close to the Aubry set implies
the solution is in fact exponentially close to ¥ .

In the non-uniform hyperbolic case, Step 2 fails, because a non-uniform hyperbolic
orbit only influence nearby orbits in a random neighborhood whose size changes from
iterate to iterate. We are forced to devise a much more involved procedure:

@ Springer



Stoch PDE: Anal Comp (2020) 8:544-579 547

(1) (Step A) Reduce the problem to a local one, where we only study the solution in
a small (random) neighborhood of the global minimizer.

(2) (Step B) Consider a solution Kfﬁogo is §-close to the stationary solution ¥~ (-, 0)
locally. Use a combination of variational and non-uniform hyperbolic theory to
show that the finite time minimizer is 67-close to the global minimizer at some
time, where g > 1. This step can only be done up to an exponentially small error.

(3) (Step C) Use step B to show the solution K _r o‘p is 87-close to the stationary
solution. Feed the new estimates into Step B, and repeatedly upgrade until § is
exponentially small.

In this paper, we carry out the above program. One can say that the main theme
here is an interplay between dynamics and PDE. On a conceptual level, there are
two Lyapunov exponents. One is purely dynamical, it characterizes the hyperbolic
properties of the intrinsic dynamical system (the random Lagrangian flow). Another
Lyapunov exponent is related to the rate of convergence of the solutions to the PDE
(1.1). The positivity of the dynamical exponent is proved in [7]. The main result of the
present paper is the positivity of the PDE exponent. Although we don’t prove it here,
it should be expected that the two exponents have the same (non-random) value. We
plan to address this in the future.

The paper have the following structure. We formulate our assumptions and main
result in Sect. 2. Basic properties of the viscosity solutions and stationary solutions are
introduced in Sects. 3 and 4. In Sect. 5, we reduce the main result to its local version,
as outlined in Step A. This is Proposition 5.1.

In Sect. 6, we describe the upgrade procedure outlined in Step C. Step B is formu-
lated in Proposition 6.1, and the proof is postponed to Sects. 7 and 8.

2 Statement of the main result

Consider the kicked potentials (1.5), where the random potentials FJ“) are chosen

independently from a distribution P € P(C*+*(T¢)), with0 < o < 1.
Given an absolutely continuous curve ¢ : [s, t] — T, we define the action of ¢ to
be

r1 . .
wet) = [ (@ =b-E)ar— 3 FreO),
s<j<t

In other words, when s, ¢ are integers, we include the kick at time s, but not at time ¢.
For0 <s <t € R, and x, x’ € T, the action function is

AP (x, x) = inf  A2l(), 2.1
’ £($)=x, C(=x'

where ¢ is absolutely continuous. The action function is Lipshitz in both variables.
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The backward Lax-Oleinik operator K f” ;b : C(T?) — C(T?) is defined as
K;‘f;b(p(x) = min {@(y) + A?)’}b(y, x)} . (2.2)
yeTd

We take (2.2) as the definition of our solution on [s, ¢] with initial conditon ¢ (x). Due
to the fact that F(x, t) vanishes at non-integer times, Kf) t‘b is completely determined
by its value at integer times. In the sequel we consider only s = m,t = n € Z. The
operators satisfies a semi-group property: fors < r < u,

b b
K2 KRS o) = K2Po(x)

\u

We now state the conditions on the random potentials. The following assumptions
are introduced in [5], which guarantees the uniqueness of the stationary solution.

Assumption 1. For any y € T¢, there exists Gy € supp P s.t. Gy has a maximum

at y and that there exists § > 0 such that

Gy(y) = G() = 8ly —xf*.

Assumption 2. 0 € supp P.

Assumption 3. There exists G € supp P such that G has a unique maximum.
The following is proved in [5] under the weaker assumption that FJ‘-” e CH(T9):
Proposition 2.1 [5]

(1) Assume that assumption I or 2 holds. For a.e. w € 2, we have the following
statements.

(a) There exists a Lipshitz function ¥~ (x, n), n € Z, such that for any m < n,
Kby~ (x,m) =y~ (x.n).
(b) For anyn € Z, we have

lim  sup [|K2Pp(x) =y~ (x,n)|x = 0.
Mm—=>=00 ,eC(T)

(2) Assume that assumption 3 holds. Then the conclusions for the first case hold for
b=0.

It follows from Proposition 2.1 that ¥y~ is defined uniquely up to an additive con-
stant. For definiteness, we assume ¥~ (0, 0) = 0. We now restrict to a specific family
of kicked potentials. The following assumption is introduced in [5].

Assumption 4. Assume that

M
FO(x) =) &) Fx), (2.3)

i=1
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where F; : T¢ — R are smooth non-random functions, and the vectors & j(w) =
(SI’. (a)))f‘i | 1s an i.i.d sequence of vectors in RM with an absolutely continuous
distribution.

In [7], a stronger assumption is used to obtain information on the stationary solutions
and the global minimizer. These additional structures provides the mechanism for
exponential convergence. Let p : R” — R be the density of &;.

Assumption 5. Suppose assumption 4 holds, and in addition:

E(1;]) =/ elp(e)de < oo.
RM

— Forevery 1 < i < M, there exists non-negative functions p; € L*°(RR) and
pi € L'(RM~1) such that

p(c) < pici)pi(6),

where ¢ = (C],...,CM),é,‘ = (C1,...,Ci_l,CH_l,...,CM).

Assumption 5 is rather mild. We only need to avoid the case that p is degenerate in
some directions. In particular, it is satisfied if 51, o E /M are i.i.d. random variables
with bounded densities and finite mean. ‘ '

We now state the main theorem of this paper.

Theorem 1 (1) Assume that assumption 5 and one of assumption 1 or 2 hold. Assume
in addition that the mapping

(Fi,...,Fy):T¢ > RM (2.4)
is an embedding. For b € R4, let Y, be the unique stationary solution in Propo-

sition 2.1. Then there exists a (non-random) A > 0 and a random variables
N (w) > 0 such that almost surely, for all N > N (w),

sup |K22g — g (on)ll < e .
eC(T)

(2) Assume that assumption 3 and 5 hold. Then the same conclusions hold for b = 0.

3 Viscosity solutions and the global minimizer

Let I C R be an interval. An absolutely continuous curve y : I — T is called a
minimizer if for each interval [s, ] C I, we have A;",’,b(y(s), y(t)) = A‘“’b(yhs,,]).
In particular, y is called a forward minimizer if I = (—o0, 9], a backward minimizer
if I = [sg, 00) and a global minimizer if / = (—o00, 00).
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Due to the kicked nature of the potential, a minimizer is always linear between
integer times. Then any minimizer y : [m, n] — oo is completely determined by the
sequence

xi=y(), vi=y(-), m+1=<j=<n. 3.1
The underlying dynamics for the minimizers is given by family of maps CI>;‘.) T x
R? — T4 x R4
d
o | X x—i—v—VF]‘.”(x)modZ .
7 - [v:| — |: Y VF]‘."(x) , (3.2)

The maps belong to the so-called standard family, and are examples of symplectic,
exact and monotonically twist diffeomorphisms. For m, n € Z, m < n, denote

CD;;’n(x, v) = @Y ;0.0 PL(x, V).
The (full) orbit of a vector (x,, v,) is given by the sequence
(), v) = B (o va), J > (), 0) = (DF,) 7 (W va), <
Ify :[m,n] — T9 is a minimizer, then (x j» vj) defined in (3.1) is an orbit, namely
<I>‘j‘?’k(xj, vj) = (g, v), m+1=<j<k=<n.
In this case, we extend the sequence to (x;;, v;y) = (@m)_l(me, Um+1) and call

(xj, v;)_,, a minimizer.
The viscosity solution and the minimizers are linked by the following lemma:

Lemma 3.1 [7, Lemma 3.2]

(1) For ¢ € C(T% and m < n € 7, for each x € T there exists a minimizer
(x5, vj);?zm such that x, = x, and

K2bp(xn) = p(tm) + ALD (v, x0). (3.3)

Moreover, the minimizer is unique if V¥ (x) = K,‘,‘fjﬁ(p() is differentiable at x, and
in this case v, = Vir(x) + b.

(2) Suppose y (x, n) is the stationary solution. Then at every x € T and n € 7,
there exists a backward minimizer (x;, vj);"zioo such that x, = x

K&ty (xn,n) = Yy (my m) + ALD (X, x,), m < n.

Moreover; the minimizer is unique if ¥, (-, n) is differentiable at x, and in this
case v, = Vi (x,n) +b.

In case (1) we call (x, v./);'.:m a minimizer for K,’:,)j,l;go(xo), and in case (2) the orbit
(Xj,V)) j=—oon is called a minimizer for ¥~ (x,, n).

@ Springer



Stoch PDE: Anal Comp (2020) 8:544-579 551

~

The forward minimizer is linked to the forward operator K ;” ;b, defined as

RePow = sup fon — A0l w).
yeTd

Analog of Proposition 2.1 and Lemma 3.1 hold, which we summarize below.

e Foreveryb € Rd, almost surely, there exists a Lipshitz function 1//:)‘ (x,m),m € Z,
unique up to an additive constant, such that

K&by T (e n) =yt (x,m), m<n.

We will assume ¥+ (0, 0) = 0 to fix the additive constant.

e For each K ,‘;,):f;go(x) there exists a minimizer (x;, v j);f:m such that x,, = x and

K2l o(im) = o) — A% (x, x0).

When ¢ = I\(/,,“f:ﬁgo is differentiable at x we have v,, = Vyr(x) + b.
e Foreach x € T, and m € 7Z, there exists a forward minimizer (xj,v j)‘]?o: ., such
that x,, = x,

- B
Kooyt (o, m) = Wk (xn, n) — A9b (X, xp), m <,

and v, = VY. (x, m) if ¥ (-, m) is differentiable at x.

The global minimizer is characterized by both ¥, and ¥

Proposition 3.2 Assume that Assumption 4 holds, and one of Assumptions 1 and 2
holds. Assume in addition, the map (2.4) is an embedding. Then for b € R¢, almost
every w, there exists a unique global minimizer (xj-‘), v;f’)jez. For each j € Z, x;f’ is

the unique x € T reaching the minimum in

min{y,, (x, j) — Yo (x, P (3.4)
Moreover, 1/fj(~, J) are both differentiable at xj, and v; = Vi (x,j) +b =
VY, j) +b.

Throughout the paper, the notation (x;.“, v;f)) jez will be reserved for the global mini-
mizer.
The function

O (x, j) =1, (x, j) — ¥ (x. j) (3.5)

will serve an important purpose for the discussions below.
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The random potentials F J“’ are generated by a stationary random process, so there
exists a measure preserving transformation 6 on the probability space 2 satisfying

F2 L, (x) = F/"°(x). (3.6)

The family of maps @;? then defines a non-random transformation

d(x, v, ©) = (Po(x, v), o)
on the space T x R¢ x €. Then from Proposition 3.2,
(G, v0?) = DY )
and the probability measure

v(d(x,v),dw) = 3(x3’,u3’)P(d60)

is invariant and ergodic under ®. The map Dy : T x R? x Q@ — Sp(d), where

Sp(d) is the group of all 2d x 2d symplectic matrices, defines a cocycle over ®. Under
Assumption 5, its Lyapunov exponents A1 (v), ..., Aoz (v) are well defined, and due
to symplecticity, we have

A) < hg() 20 < Ag1 (V) <200 < A (),

and A; = —A2g—i41.
There is a close relation between the non-degeneracy of the variational problem
(3.4), and non-vanishing of the Lyapunov exponents for the associated cocycle.

Proposition 3.3 [7, Proposition 3.10] Assume that assumption 5 and one of assump-
tions 1 or 2 holds. Assume in addition that the map (2.4) is an embedding. Then for
all b € R4, for a.e. w, the following hold.

(1) There exist C(F, p), R(F, p) > 0 depending only on Fi, ... Fy in (2.4) and the
density p of &, and a positive random variable a(w) > 0, such that for all x
satisfying ||x — xg'Il < R(F, p), we have

0% (x,0) — Q2 (xy, 0) > a(w)|lx — x¢1I°, (3.7)

and a(w) satisfies
E(a(w)"?) < C(F, p). (3.8)

(2) The Lyapunov exponents of v satisfy

Ad(W) <0 < Agy1(v).
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The second conclusion of Proposition 3.3 implies the orbit (x¢, v9) for the sequence
of maps d>;‘.’ is non-uniformly hyperbolic. In particular, it follows that there exists local
unstable and stable manifolds. It is shown in [7] that the graph of the gradient of the
viscosity solutions locally coincide with the unstable and stable manifolds.

Proposition 3.4 [7, Theorem 6.1] Under the same assumptions as Proposition 3.3, for
each € > 0, there exists positive random variables r (w) > 0, C(w) > 1, such that the
following hold almost surely.

(1) There exists C' embedded submanifolds W* (x§, vy) and W2 (xg, vg), such that
(x, Vi, (x,0) +b) € W' (x5, v5), (x, Vy(x,0)+b) € W (xg', vg)

forall |x — xg|l < r(w).
(2) Forevery |lx — xg |l < r(w), let (xj_, Uj_)jSO and (xf, U;_)jzo be the backward
and forward minimizers satisfying xgt = x. Then
16, v9) = (5, o)l < Cl@ye ™V j <o,

1§ ) = @ vl < Clye ™V j =0,

where ) = Ag11(v) — €.

4 Properties of the viscosity solutions
4.1 Semi-concavity

Given C > 0, we say that a function f : R? — R is C semi-concave if for any
x € RY, there exists a linear form /, : R — R such that

FO) = f) <Ly —x)+Cly—x|*>, yeR

A function ¢ : T¢ — Ris called C semi-concave if it is C semi-concave as a function
lifted to R¥. The linear form I, is called a subdifferential at x. If ¢ is differentiable at
x € T, then the subdifferential Iy is unique and is equal to dg(x). A semi-concave
function is Lipshitz.

Lemma 4.1 [4, Proposition 4.7.3]) If ¢ is continuous and C semi-concave on T4, then
@ is 2C~/d-Lipshitz.

Lemma4.2 [4] Suppose both ¢ and —52 is C semi-concave, then over the set
arg min {¢g (x) —(;z(x)}, 1 ,(/\)E are differentiable, Vyr1 (x) = Vi (x), and V1 (x) is
6C-Lipshitz over the set arg min, {¢ (x) —(Z)E x)}.

Let Ko(w) = || F§' | c2+e + 1 and K (w) = 2/d(Ko(w) + 1). The action function
A%il,’, has the following properties.
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Lemma4.3 [7, Lemma 3.2]

(1) The function A%:Z (x,x") is 1—semi-concave in the second component, and is
K (60" w)—semi-concave in the first component. Here 0 : Q — 2 is the time-shift,
see (3.6).

(2) Forany ¢ € C(T%), and m < n € 7, the function K,ﬁ’ijﬁ(p(x) is 1 semi-concave,

and —I\(/,‘,‘{j&p(x) is Ko(0™ w) semi-concave. Either function, as well as the sum of
the two functions, are K (0™ w) Lipshitz.

(3) Forn € Z, the functions yr,, (-, n) is 1 semi-concave, and —y,} (-, n) is Ko(0"w)
semi-concave, Either function, as well as the sum of the two functions, are K (6™ w)
Lipshitz.

We first state two lemmas concerning the properties of the Lax-Oleinik semigroup,
the goal is to obtain Lemma 4.7, which is a version of Mather’s graph theorem ( [9]).

Lemma4.4 Forany x € T m <n, (NS C(’]I‘d), we have

Rob (Kalte) ) < o)
Proof For any x,y € T,
K2to(y) < o) + AL (x, ),
then
it (Kiime) 0 = max [K2 ) — 455 0] = 000

O

Lemma 4.5 Suppose m < n. Let (x;, vj)?:m be a minimizer for K,‘,,”jz(p in the sense
of (3.3). Then for eachm < j < n, we have

Ky lp(x) =Ko, (K;,fgggo) (x), VxeT9
and
wio(x)) =K (Kn“i:i’w) (x)).
Proof By definition K,’f,{bgo = ¢, sothe case j = nistrivial. Form < j < n, we have
Kobo(a) = Klo(x)) + A%0 (xj, x0).
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Then
Ko ho(p) = Kb (o) — A ey < K90 (Ko ) .

On the other hand, apply Lemma 4.4 to K fr‘l’fw and j < n yields

Tw.b Tw.b b b b

Ry (Kibo) (0 = B3P (KOPK ) (60 < Ko,
The lemma follows. O
Corollary 4.6 Let (x;, v./)’}:,n be a minimizer for K,ﬁfj,?(p, then it is also a minimizer
for K (Kr‘ii:ﬁw).

Proof Using the calculations in the proof of Lemma 4.5, we get

T w,b b b
Ry (Kiho) () = Ko (x) = Kirbo(e) — A7 (3, 50)
for all m < j < n. The corollary follows. O

The following lemma provides a Lipshitz estimate for the velocity of the minimizer
in the interior of the time interval.

Lemma4.7 Supposem < nwithn —m > 2. Let (x;, vj)f}:m and (y;, nj);f:m be two

minimizers for K,,“{jﬁ(p in the sense of (3.3). Then for allm < j < n, we have

lv; —njll < K(Qja))HXj = yill-

The same conclusion hold, if (xj, v;) and (y;, n;j) are minimizers for I\(/,,“{ﬁ(p(x).

Proof We apply Lemma 4.5 to (x;, v;) and (y;, n;). Denote /| = K;‘;J’go and Y, =
=w,b
K7,
semi-concave. Since x;, y; € argmin, {y1(x) — ¥2(x)}, Lemma 4.2 and Lemma 3.1
implies

(K%Zgo) since j —m,n — j > 1, Y is 1 semi-concave, —r is K(é‘ja))

lv; —njll = IV¥1(x;) — VoIl < K@ o)llx; — yjll.
O
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4.2 Properties of the stationary solutions

Recall that

Q5 (x,n) = Y (x,n) — Yif (x, n),

which takes its minimum at the global minimizer x,;. To simplify notations, we will
drop the subscript @ from these functions when there is no confusion.

This function Q° is very useful, as it can be used to measure the distance to the
global minimizer. For all ||y — x|l < r(F), we have

a@)ly —x¢1I> < 0®(x,0) — 0®° (¢, 0) < K@)y — xZ1>. (4.1

Moreover, Q% is a Lyapunov function for infinite backward minimizers. Namely, if
(yo, n0) = (yo, V¥, (o, 0)) is a backward minimizer, then for any j < k < 0, we
have

0% (yj, J) — Q7. j) = Q%O k) — O™ (x, k). (4.2)

(See [7], Lemma 7.2)
Let us also recall, for any A’ < A, there exists functions r(w) > 0, C(w) > 1 such
that for all backward minimizers (y,, 7,)n<0 such that

lyn =23l < C(@)exp(=2In]),  for [lyo — x§'ll <r(®)andn <0.  (4.3)

We will also use a process in non-uniform hyperbolicity known as tempering.

Lemma4.8 ([1], Lemma 3.5.7) Let g(w) > 1 be a random variable satisfying
E(og g(w)) < oo, then for any € > 0, there exists g€ (w) > g(w) such that

(4.4)

Let’s call a random variable g(w) > 0 tempered if for any € > 0, both g, g~!

admits an upper bound satisfying (4.4). Products and inverses of tempered random
variables are still tempered.
The random variables a, K in (4.1) and r, C in (4.3) are tempered.

Lemma 4.9 For any € > 0, there exists random variables
af(w) < a(w), r(w) <r(w), K () > Kw), C(w)>C(w)

such that

— - a(w) rf(w) K(w) C(w)
~ af(fw)’ re(w)’ K€(Bw) C@Ow) ~

€
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Proof Lemma 4.8 applies to a(w) and K (w) since E(log a™ b, E(log K) < oco. The
fact that C(w) and r(w) are tempered can be proven by adapting the proof Theorem
6.1 in [7]. We now explain the adaptations required.

In [7], there exists local linear coordinates (s, «) with the formula (y, n) = P;(s, u)
centered at the global minimizer (x;f’, vjf’), with the estimates || D P;||, ||D Pj_l I <

K (67 a))a_%(ej ) (section 6 of [7]). Then it is shown that there exists a random
variable ro(w) (called r in that paper) such that any orbit (y, n) € {(y, V¢, (¥, 0)}N
{llsll, lull < ro} must be contained in the stable manifold. r is tempered because it is
the product of tempered random variables. Indeed, the following explicit formula was
given in the Proof of Theorem 6.1, section 7 of [7]:

F=C3K%%22, ro=F0 ' @)K3 (0 ' w)a@ o)z (0 w),

where K, a are the same as in this paper, and the fact that p, C are tempered is
explained in Lemma 6.5 and Proposition 7.1 of [7]. We now convert to the variable
(v, n). Since the norm of the coordinate changes are tempered, there exists a tempered
random variable 7| (w) such that any orbit contained in

{0 Vb, 0. O N {ll s m) = G v Il < ri(@)}

must be contained in the unstable manifold of (x§’, vy).

We now show the same conclusion holds on a neighborhood of the configuration
space ||y — x§'ll < r(w), with r(w) tempered. Let (yo, no) = (Yo, V¥~ (3o, 0)) and
let (y_1,n—1) be its backward image. According to Lemma 4.2, |[n_; — v®,[| <

KO 'w)|ly_1 — x?,|l, as a result

r] _ . . _
Iy—1 =24l < 75 (@ Lw)) implies [|(y_1, n-1) — %}, v DIl < 10~ ).

Finally, using (4.1) and (4.2), we have

Iy —x 1l <a?® o) (0% (-1, —1) — 0®(x_1, —1))
<az (0™ w) (0% (0, 0) — 0™ (x0,0)) < a2 (@' w)K 2 (@)]ly0 — ol
We obtain that
r1

A+ K)a 2 ooHK7

Iyo —xg'll < r

implies (y1, 1) is contained in the unstable manifold of (x,, v®,). r is tempered as
it is products of tempered random variables.

The fact that an orbit on the stable manifold of a non-uniformly hyperbolic orbit
converge at the rate C(w)e ", and that the coefficient C () is tempered is a standard
result in non-uniform hyperbolicity, see for example [1]. O

We now use what we obtained to get an approximation for the stationary solutions.
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Lemma4.10 There exists C{(w) > 0, e=¢ < C{(w)/C{(Ow) < e, such that for all
ly —xgll <r(w), andn < 0, we have

wa, 0) — ¥~ Cny 1) — AVg (. ¥) H < Cy(w)e=* Ol
We also have the forward version: for n > 0,

[ 0) = 0 )+ 452330 | < Crt@pe =0

Proof We only prove the backward version. By definition,
YT (3.0) < Y () + ALY (. ).

On the other hand, let (y,, 7,)n<0 be the minimizer for ¥ (¥, 0), then

YT (.0) =Y () + AL e )
> Y () + ALY (. y) — KEO"0) X0 — vl
> Y (e 1) + ALY (. ¥) — K€ (@)CF (@)™ * M,

where K€, C€ are from Lemma 4.9.
We now choose new random variables denoted C¢/?> and K¢/? by applying
Lemma 4.9 again with the new parameter € /2. Note that

e ? < CP(w)/C/*Bw), K/ () /K (Ow) < e /2.

We repeat the proof with the new random variable as upper bounds. The constant in
our estimate is replaced with K€/%(w)C¢/?(w), which we then denote C i (w). The
proof is now complete since C§ (w) satisfies e™¢ < C{(w)/C{(Ow) < e. O

Remark In the last step of the proof, we performed the procedure of “re-choosing”
our tempering random variables with a smaller parameter, indicated by the notation
C/*(w), K/*(w) etc. In the future, we will sometimes perform this procedure implic-
itly by simply changing the superscript € into €/2 in the random variables such as
C¢(w). When the superscript € is used in random variables, it always refer to this
parameter and not as a power.

5 Reducing to local convergence

In this section we reduce the main theorem to its local version.

Proposition 5.1 Under the same assumptions as Proposition 3.3, there exists 0 < A <
Ad+1(V), positive random variables 0 < t(w) < r(w), Do(w) > 0, and No(w) > 0
such that for all N > No(w) and ¢ € C(T),
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. b _ _
coim) CER ly—xg |<7(@) K209 ) = ¥, 0,0 = €| = Do(@ye ™.
% oll=

The proof of Proposition 5.1 is given in the next section. Next, we have a local-
ization result, which says any minimizer for K i)/\}/? y® or ¥y~ (-, M) go through the
neighborhood {||x — x§'|| < T(w)} at time t = 0, when N, M are large enough.

Proposition 5.2 Under the same assumptions as Proposition 3.3, let T(w) > 0 be a
positive random variable. Then there exists My = My(w) € N depending on T(w), ®
such that the following hold.

(1) Forany N, M > My(w), let (y,, nn), —N < n < M be a (backward) minimizer

for K% i@ an). Then [|yo — x§|| < #(w).
(2) (The forward version) For any N, M > My(w), let (Yyn, 1), —N <n < M be a

(forward) minimizerforl\(/‘_”}\l;’Mw(y,N). Then |lyo — x§ || < T(w).

We prove Proposition 5.2 using the following lemma, stating that the Lax-Oleinik
operators are weak contractions.

Lemma 5.3 [5, Lemma 3] For any ¢, ¢2 € C(Td), we have
w,b w,b
1Kpner — Kpnezlle < llor — @2lls

Proof of Proposition 5.2 We only prove item (1), as the (2) can be proven in the same
way. We denote, for —N <m < M,

YN @) = K2 e,

and let (y,, nn), —N < n < M be a minimizer for Ki"l\[; y®-Foreach—N <n < M,
Lemma 4.4 and 4.5 implies

N =Ry (v VM) ) 2 0, v e T,

v ) =Ky (37 o) =0,

hence

Ya € arg min {wN’"(x) -k (WN*M) (x)} . (5.1)

Recall that for Q®(x,0) = ¥ (x,0) — ¥ (x,0), we have x¢ is the unique
minimum for Q°°(-, 0). Define

$(wy= min_  Q%(x) - 0¥(x().

lx—xg 1>7 (@)

By Proposition 2.1, we can choose Mg (w) large enough such that for N, M > My(w),

10 =9 0 s 1 Ry (475) = 9 (L0 < (@) /4
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As a result, there exists a constant C € R such that

R R

It follows that the minimum in (5.1) is never reached outside of {|lx — x{|| < T(w)}.
We obtain [|yg — x{' || < T(w). O

We now prove our main theorem assuming Proposition 5.1.

Proof of Theorem 1 1t suffices to prove the theorem for n = 0.
Let us apply Proposition 5.2 with 7(w) = 7(w) from Proposition 5.1. Let (y,, n,)
be a minimzier of K ‘_”}3’ w®m), and (¥, 1],) a minimizer for

PO N) = (K25 306 =) )

such that yyy = yy and M = My(w). According to Proposition 5.1, there exists
C(N, w) € R such that for all [y — x5’|| < t(w),

K73 9 () = ¥y (0, 0) = C(N. )| = Do(@)e ™. (52)
Then
KON @) = K28 00(0) + Ay (o, yar)
= (K% 09(30) = ¥ (50, 0)) + Wy (0, 0) + A4 (yo. yar)
> C(N,w) + ¥~ (yu. M) — Do(w)e V.
On the other hand,

¥ Gu. M) =¥ (Go. 0) + Ay, Go. Fm)
(W~ Go. 0) — K% 00(G0)) + K o9 Go) + A (Go. )
—C(N.®) + Ky 1,0(Fum) + Do(@)e ™.

IA

Using yyr = yum, combine both estimates, and take supremum over all yys, we get

sup KOV @) — ¥~ (. M) — C(N, w)| < Do(w)e ™",
yeT!

To conclude the proof, we need to prove the same estimate on the time interval
[-N,0]. Denote Eg = {w € Q: Mo(w) < Q} for Q € N. Fix some Q such that
P(Ep) > 0, then by ergodicity, almost surely, M (0*w) < Q for infinitely many k.
Let us define k(w) as the largest k < —Q such that My O*w) = Q, then
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b — ek b _
|52 ge = w0 = [K%55 0~ v~
< Do(0* w)e V=0 = Dy (0% w)eM @ =N

provided N > max{Q, No(6*w)} — k. By reducing  and taking N larger we can
absorb the constant Do (0% w)e*k (@) O

6 Local convergence: localization and upgrade

In this section we prove Proposition 5.1 (local convergence) using Proposition 6.1 and
a consecutive upgrade scheme. It is useful to have the following definition for book
keeping.

Recall that the notation {(x;, vi)},ez is reserved for the orbit of the global mini-
mizer.

Definition Given § > 0, N € N, let (y,, ”n)2=71v be a minimizer for w(ﬁ’(~, 0) =

K i)}\l;,oﬂﬁ(‘)’ we say the orbit satisfies the (backward) (¢, §, N) approximation property
if for every —N /3 < n < O such that ||y, — x7|| < r(0"w), we have

(02 o = w2 2 )) = (i G m) = 5 et m)| < 0.

We denote this condition AP~ (w, ¢, §, N).

The following proposition is our main technical result, which says the approxima-
tion property allows us to estimate how close a backward minimizer is to the global
minimizer:

Proposition 6.1 Let 0 < € < )\'/6, there exists random variables p(w) € (0, r(w))
and N1(w) > 0 depending on €, such that if a tﬂa]}' backward minimizer (y, 77,,)2:71\,
satisfies the AP~ (w, ¢, 8, N) condition, with 1

o —x§ll < p(@), N> Ni(@), 8% <p). 8= #NP (1)
0
then there exists an integer k such that max {é log 4, —%} <k <0, and
e =3l < max {89, em®'=0N/0}, 6.2)

where g = (' — 3¢)/(8e).

The proof require a detailed analysis using hyperbolic theory, and is deferred to the
next few sections. In this section we prove Proposition 5.1 assuming Proposition 6.1.
We need to use both the forward and backward dynamics.

1 The lower bound assumption of § in (6.1) is for simpler calculation and comes with no loss of generality.
Indeed, if § is exponentially small we already have the conclusion of Proposition 5.1.
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Definition Given § > 0, N € N, let (yy, nn)flv:() be a minimizer forJfZ)V(~, 0) =

K, gj ’Iscp(-), we say the orbit satisfies the (forward) (¢, §, N) approximation property, if
for every 0 < k < N /3 such that ||y, — x,‘("|| < r(@ka)), we have

‘@ ks k) =N (x, k)) — (W s k) — ¥ e B))| < 8.

We denote this condition APT (w, ©,8,N).
We state a forward version of Proposition 6.1. The proof is the same.

Propositivon 6.2 There exists random variables 0 < p(w) < r(w) and N 1(w) > Osuch
thatifa 1//5 backward minimizer (yy,, nn)f,v:o satisfies the APY(w, ¢, 8, N) condition,
and in addition,

o — x¢]| < p@). N> Ni(@). 8% < p@). 8= Crwye #29N3  (63)

then there exists 0 < k < max {—é log 8, %} such that

vk — x21l < max {8", e*“/*)’v/é} , (6.4)

where g = (\' — 3¢)/(8¢).

The main idea for the proof of Proposition 5.1 is to use both the forward and
backward dynamics to repeatedly upgrade the estimates. If we have a AP~ condition,
Proposition 6.1 implies upgraded localization of backward minimizers at a earlier
time. This can be applied to get a better approximation of the forward solution for the
later time, obtaining an improved AP condition. We then reverse time and repeat.
However, due to technical reasons, we can only apply this process on a sub-interval
called a good interval.

Recall that K € (w) is the tempered upper bound for the random variable K (¢), which
is an upper bound for the norm of the potential.

Definition For 8 > 0, we say j € [—N, 0] is a backward -good time if for every
(NS C(’]I‘d) and every Kﬁ’,\]g o® minimizer (yy, 77")91=7N’ we have

lyj —=x¢Il < B < p@lw), K@ w)<p™, N@/w)<p™

where p(w) is in Proposition 6.1. Define forward B-good time similarly, by using
forward minimizers and  from Proposition 6.2. An interval [n1, ny] is good if nj is
backward good and n; is forward good.

Write (pg = Kf,{,’ o®, note that by Corollary 4.6, if (y,, 7,) is @ minimizer for

Ki)}\l;’ogo, then it is also a minimizer forl\(/f}g,()(pg =I\(/f}€,0Ki’}5’0(p. Suppose [n1, na]
is a B-good interval in [—N, 0], denote
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Fig. 1 Notations for n

forward-backward iteration (pi,v =K f’lz' 0¥

0 —+ P A

v _ pwb N

P2 = K’nQ,O(pUJ

ng —_—

K
w,b

Y1 = K—N’n]_(p

ny + _—
—N +

(72

w,b
w =0"w, ¢ = KN 1,

(6.5)
w = 0w, ¢ =Kn, 00) =Kn.0K-_N.0¢-

See Fig. 1 for a visualization of the notations.
We now describe the upgrade lemma:

Lemma 6.3 For0 <€ < A'/12 and B > 0, there exists No(w) > O such that if
N > Na(w), 5% < B2, 8> e W3NS,

and if [-5N /9, —4N /9] C [n1,n2] C [-2N /3, —N/3] is a B-good time interval
with regards to [—N, 0], we have:

(1) For w1, w2, ¢1 ,52 defined in (6.5) and N =ny —ny, if
(Vjtnas '71'+”2)(J)'=7N satisfies AP~ (w2, @1, 8, N) condition,

then the orbit

(Vjtny» 77j+n1)§':0 satisfies APT (a)l,q\é, 81, 1\_/) condition,

where .
81 = max {8’171, eiW*6€)N/54} . (6.6)
@ 1If
Vjny> Njan )f’zo satisfies AP+(a)1,(;2, 8, N) condition,
then

Vjtnas nf+”2)(j)‘=—1§l satisfies AP~ (w2, ¢1, 01, N) condition,
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with 81 given by (6.6).

The reason to require the good time interval to lie in [-2N /3, —N /3] is to apply
the following lemma, which says the global minimizer x;; is almost a minimizer for
finite time solution in the middle of the time interval, for every initial condition ¢.

Lemma 6.4 There exists N3(w) > 0 such that if N > N3(w), the following holds
almost surely, for arbitrary ¢ € C(T%) and —2N/3 < j <k < —N/3:

w,b b -\ =
K20 j000) = KO0 o) + ATy x| < e @30V,

~(/=3e)N/6

w,b b
/o§0(x ) — ko(p(x;{“)—i—Ajf)”k(x;f’,x,‘:) <e

The proof of the lemma is deferred to Sect. 7.1.

Proof of Lemma 6.3 Since n; is a backward good time and 5% < B < p(Ow) =
p(w2), condition (6.1) holds for the orbit (y;44,, j+n2)(/),:_ v at the shifted time w;,

the initial condition ¢, and interval size N.
Therefore by Proposition 6.1, there exists an integer k satisfying 0 < k — ny <

max{— % 3¢ log 8}, such that

e — x2|| < max{s?, e~ —3ON/6y,

Also, N > N/9 > B !> Nj(w,) provided N > 98~ !, Suppose j is an integer
satisfying n; < nj + N /3 and that ly; — x‘”ll < r(0/w). See Fig. 2 for a relation of
different integer times.

By Corollary 4.6,

Koo (i) =Kio0Y ) — Ak, j Ok, ¥)),

Fig.2 Proof of Lemma 6.3, part n ¥ Yn
(1): Use early localization to \
estimate forward solutions on
the gray interval

ng —+

|
| ]}[X/

/\w
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then

‘I?j,ofﬂg(y]') —KrooN (x) + A i (x2, )

< | Kiowl ) =Kol G|+ | Ak j Ok, v7) — Ak (62, v))|

6.7)

< K @ 0)lxf = il = K@ @)e V2 max f51, =308/}

< B~ max {6’17%, 67(1/746)1\7/6} <p! max{(S‘f*%, e~ (W AON /54y

using Lemma 4.7, and the estimates eflk—n2l < 8’%, eflk—n2l < eN/6 and N > N/9.
On the other hand, the dual version of Lemma 4.10 implies

Yk 0 ) = U G2 K) + A (e x9)| < CF (07 w)e* &I

S Cf(a))e€|j|e—()\,/—€)1\_//2 S Cf(a))ezeN/3e—()\./—€)N/18 — Cf(w)e—()u/—13€)N/18'

Combine the estimates, we get

‘( CTeN () =KL el (e )) — (Wi s i) - wcj(x,?,k))’

< ﬂ_lmax {Sq—é’ e—(k’—4e)N/54} _I_Cf(w)e—(;v—mew/ls_

We now apply Lemma 6.4 to ¢ = ¢, to replace the index k with j:

b . .
‘( PN () Kf0h¢$<x$>) — (v i) - wmx;m))'
< " max { 597% ef(x’f4e>1v/54} + C(w)e ¥ ~ON/ 4 o=0/=30N/6 (6.8)

< 218—1 max iaq—%’ e_(,v_4e)1v/54} - max{aq—i, e_(,v_se)N/54} =5,

where in the last inequality, we take N> (w) large enough so that Cy (w)e~ W =ON/3 4
e~ (W=BON/6 . o=(V—4N/54 334 281 < ¢=€N/54 then we use 28~ < §7F.
Observe that by the standard semi-group property,

wlb ~ (-)"lwb sw,bzwb N Tw,b N
] ni, 16’02_ j—n1, Nan()(pw ananzo¢w Kj()‘pw’

substitute into (6.8) we obtain APT (w192, 81, N).

@ Springer



566 Stoch PDE: Anal Comp (2020) 8:544-579

We now discuss case 2. Starting with the condition AP™ (wl,@, 8, N), we obtain
0 <k, —n; < max {—Sl—elogé, %} such that

vk, — x, | < max {3‘1, e*W%e)N/a}.

Then for all ky, < ny — N/3 < j < no, if ly; — xjf’|| < r(6/ ), using the fact that
(Yn» nn) 1s @ minimizer for K_y o¢, similar to (6.7) we have

b b b — L o=
K20 5000 = KO o @) + AT G, v = B max {9975, e mdon/ss]
and following the same strategy as before, we get

(K20 000 = K23 j0G) = (0™ (o ) = ¥~ 8 )| < 8.

Since
w2,b _ pwb _ pwb
K#V,jfnz(pl = K,,l,jK—N,n]QO = K_N,J'@»
we obtain AP~ (w, ¢1, 81, N). O

To carry out the upgrading procedure, we need to show that §—good time intervals
exist.

Lemma 6.5 There exists By > O suchthat, foranyQ < B < Py, there exists N3(w) > 0,
and for all N > N3(w) there exists a B—good time interval [-5N /9, —4N /9] C

Proof Let By > 0 be small enough that

17
P(p(w) > Bo, K@) < By", Ni() < By > —.

18
By Proposition 5.2, for any 0 < 8 < By, there exists My(w) > 0 such that any
minimizer (yy,, Un),l,V:_M with M, N > My(w) satisfies [|yo — x{| < B. We now
choose B1 > 0 small enough such that

8
P(p(w) > Bo, K(@) < By, Ni(w) < By, Mo(w) < B[ > 5

Then, there exists N3(w) > 0 such that for all N > N3(w) the density of f—regular n
in [—N, 0] is larger than g. In particular, the interval [-4N /9, —N /3] must contain
a regular time n,. We impose N3(w) > Sﬂl_l, then Proposition 5.2 implies for any
N > N3(w), lyn, — xp, | < B < p(w), therefore ny is a good time.

Apply the same argument, by possibly choosing a different N3(w), we can find a
forward good time n1 in [-2N /3, —5N/9]. O
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Proof of Proposition 5.1 By Lemma 6.5 there exists a §—good interval. We first show
that if for any K f}g’()(p backward minimizer (y,, 17”)2:_ - the condition

AP~ (w2, g1, ¢ MV N) (6.9)

holds for an explicitly defined A, then Proposition 5.1 follows. Indeed, we only need
the estimate

UN Vnys 12) = U5 Uny» 12) — C(n2, @, @)| < eV,

where C(n2, , @) = ¥ (x2 . n2) — ¥, (x), na).
On one hand,

YN (30,0) — ¥~ (30, 0) = YN Yy, 12) — ¥~ Ynys 12) = C(n2, w0, 9) — e M1V,
on the other hand, by Lemma 4.10,

Y (30.0) = ¥~ (30, 0) < YN (12 m2) — ¥ (62, n2) + Cp(w)e” F O
= Cn2, 0, 9) + Cr(@)e” "N < Clny w0, ) + ¢~ @ 2NS

if N is large enough. Proposition 5.1 follows by taking A = min{A;, (A" — 2¢)/3}.
We now prove (6.9). Choose 8 = Bp as in Lemma 6.5, and § such that

5% < min {p(w), fo/2} . (6.10)

Using Proposition 2.1, there is No(w) large enough such that for all No > N (w), all
NS C(T%), we have

b —
1Ky 0 = ¥y o)l <8, —2N/3 <n <0.
In particular, for any minimizer (yy, 17,,), we have
(Yjtnas ”an)?:_/\’/ satisfies AP~ (w2, ¢1, 8, N) condition.

Apply Lemma 6.3, obtain
(Vjtnrs Mjtny )§7=0 satisfies AP (w192, 81, N) condition,

with 8; = max {891, e~(*'—SN/54)

Now we are going to apply Lemma 6.3 repeatedly, from AP~ to AP and back
until a desired estimate for § is achieved. We shall assume that N > Nj(w). On
the first step we get an estimate APV (w1, ¢, 81, N) for Vjsnzs nj+n2)3_71\-/ where

1 / . . . i .
81 = max {8971, e~ IN/34) Since g — }‘ > 1 this estimate is an improvement of
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§ unless 8§ < ¢~ =39N/54 Notice that if this happens we have already proven our

statement with A} = (M — 5¢)/54. It is easy to see that the level § < ¢~ (*'—5)N/54
will be reached in a finite number of steps depending on N. Notice N is large enough
but fixed, this finishes the proof. O

7 Properties of the finite time solutions

We have proven all our statements except Proposition 6.1, which we prove in the next
two sections.

7.1 The guiding orbit
For N € N, denote
Yl @.n) =K% o(x). —N <n<0.

We define
OV, n)y =y, n) —ylx,n), —N<n<0o, (7.1)

which is an analog of QZ° for finite-time solutions. (Again, the subscript w may be
dropped).
The function Q is a Lyapunov function for minimizers, in the following sense:

Lemma 7.1 Let (yy, ’ln)S:—N be a minimizer for Kﬁ’}gﬁogp(yo) (will use the notation
wN(x, 0) from now on). Then forall —N < j <k <0,

0" (yj, /) = OV (k. k).
Proof By definition,
O ks k) =N ks ) = U ks ) = YN (g, ) + AL g ) — U s k)
>Ny, ) - (I?;-%fWo,k)) G =90 D= = 0V ).
O
Let

2%y € argmin OV (z, —N),
Zz

and define (z%, ¢ 3027  to be a forward minimizer for Yy, N) starting from z% N
The orbit (z7, £) plays the role of the global minimizer (x, vyy) in the finite time
set up, and is called the guiding orbit. The choice of z% may not be unique, but our
analysis will not depend on the choice of z. The orbit (z;;, ;") depends on N but we

will not keep N in the notation.
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Lemma 7.2 The guiding orbit has the following properties.
()

2y e argmin QV(z,n), —N <n <0.
z

2)
¢ =y @2 ) +b=VyT (2 n) +b, —N <n<0.

where both gradients exists.

3)
oM@ jy=0"GEP. b, —N<j<k<0.

4) z, =N <k < 0 is a backward minimizer for Kf’}f,”ogy_

Proof We prove (3) first. Since (z;’-’) j=—n is a forward minimizer for ¥ (-, j), we
have
OV @Y ) =YY ) =YY ) =N e ) — v e R+ AT )

Js
> YN @ k) =G k) = 0N b

(7.2)

On other other hand, let y; € arg min QN (-, k), and let (yn)ﬁz_  be a minimizer for

¢ ending at y;. Then by an argument similar to Lemma 7.1, for any y € T¢,

oY (v, k) = QN (i, k) = OV (y-n, =N) = 0N (22, —N). (7.3)
In particular, taking y = zy’, we have QN(Z;(”, k) > QN(sz, —N). Using (7.2) for
Jj = —N, we get QN(z‘ﬁN, —N) = QN(ZI‘(“, k) which implies (3).

This also implies that (7.2) is in fact an equality, therefore vV (zi‘?, D=y (zg) —
ADL (29, ) and (4) follows.

Using again (7.3), we have
min 0% (y, &) = 0V 2y, —=N) = OV . b)

which implies (1). Finally, since WN (-, n) is a semi-concave function forn > —N and
¥ is semi-convex, (2) follows from Lemma 4.2. O

Combine (3) of Lemma 7.2 with Lemma 7.1, we get forall -N < j <k <0,
oN(yj, ) = @V, ) < @V G k) — QN Y k). (74)
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7.2 Regular time and localization of the guiding orbit

We use a similar concept as the good time, but for a different set of random variables.
Let 0 < B < 1 be such that

P(C) < B~ r(w > B) 2
w) < ,r(w) > >24,

with C(w), r(w) from Proposition 3.4. Let My(w) be the random variable given by
Proposition 5.2 with p = §. Let 81 > 0 be such that P(My(w) > ,81_1) < 1/24.nis
called regular if

CO"w) < B, r@"w)>p, My o) < ",

using same proof as Lemma 6.5, we get

Lemma 7.3 There exists Ni(w) > O such that for all N > Ni(w), there exists a
regular time in each time interval of size at least N /12 contained in [—N, 0].

Lemma 7.4 There exists Na(w) > 0 depending on B, € such that for all N > Na(w),
and —5N /6 < k <0, we have

”Z](é) _ x]((()” < ﬂ—le—)»,(k-‘rSN/f))'
By possibly enlarging N4(w), we have

0 < YN+ AV Y x) — YN (xf) < WV _aN/3 < j <k <0,

Proof The proof is again very similar to that of Lemma 6.5. Let n, be a regular time
in[-5N/6, —11N/12]. Then

Iz, —xpll < B <r(@™ o).
Apply Proposition 3.3, we get
I = x|l < CO™ wpe Il < pleHlkoml,

Since ny > —5N /6, the first estimate follows. For the second estimate, since z;” is a
minimizer for K_y op, we have

0=yN G+ A ) — YN @), —2N/3<j <k =<0,

To avoid magnifying the coefficient of €, let K¢/> > K (w) be the result of applying
Lemma 4.9 with parameter € /2, then
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YN + AT ) — YN ) < 2K 07 )12 - x|

+ 2K (0" w)llzp — x9|
< 4Ke/2(w)€%-2TNe—A’N/6 < 4K /2 ()e~ ¥ T2ON/6 < = ('=3eN/6
where the last step is achieved by taking N4(w) large enough. O
We are now ready to prove Lemma 6.4.

Proof of Lemma 6.4 We note that Lemma 7.4 proves half of the estimates in Lemma 6.4.
The other half is proven using the same argument and reversing time. O

For the rest of the paper, we will only deal with time n > —N /3. We get a larger
exponents in our estimates over the smaller time interval [—N /3, 0]. The estimates
are summarized in the following statement.

Lemma 7.5 There Ni(w) > 0 such that for N > Nai(w), the following holds for
—N/3 <k <0:let f be any of the following functions: wN(~, k), 1//i(~, k), Amk(y, )
or Ag n (-, y). Then

|fO0) = f(@)] < e @T2OND,

Proof We note that all choices of f are K (0% w) Lipshitz functions. Then

1f(x2) = fE)] < K@ w)|x — 221l < K€ (@Fw)p e ™ N/3

S Kf(w)eé‘k‘ﬁflef)\.//\]/:; S ﬁ*lKé(a))ef()»/fé)N/S S e*()\’*ZS)N/:;
for N large enough. O

7.3 Stability of the finite time minimizers

We show that if an orbit (y,, n,,)g:_N satisfies AP~ (w, ¢, §, N) condition, then it is
stable in the backward time. First, we obtain an analog of (4.1).

Lemma 7.6 Assume the orbit (y,,n,) satisfies AP~ (w, ¢, 8, N), Then for each
—N/3 <k < 0such that || yx — x|l < r(0Fw), we have

O (yi, k) — QN (xP, k) = a@* )|y — x21* — 6,
O (yr, k) — QN (x, k) < K (0% w)llyx — x11> + 6.

Proof The definition of AP~ implies that for all ||yx — x|l < r(0*w),
[(0" ik = 0 b)) = (@G b — 0% ) | <8
the lemma follows directly from (4.1). O
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We combine this with (7.4) to obtain a backward stability for (y,, n,).

Lemma 7.7 Assume that (yy, nn)gz_N is aminimizer that satisfies the AP~ (w, ¢, 8, N)
condition, and such that
§ > e~ (W3ON/3,

There exists C{(w) > 1 withe™© < Cj (w)/Cf(@w) < € such that if N > N4(w),
—N/3<j<k<0andl|y; - x;-”|| <r¢@’w), lyr —x2l < r€(0*w), then

lyj = %71l = C{@ e (e = x¢ll +3V5).
Proof Apply Lemma 7.5, we have

0V (v ) = OV (%, ) = @V (v ) — QN (2, j) + 20 NP3
<0V k) — NP k) + 7o~ (X =36N/3
< OV, k) — QN (P, k) + eV T3NS
< 0"k k) — OV (' ) + 46

Combine with Lemma 7.6, we get
a0 w)lly; — x1* < K@ )|y — x> + 65.
Using a€ (07 w) > e~/ =% q€ (0% w), we obtain

lyj = ¥17 = K</a® @ w)e I (Il - x¢I? +66)

therefore
Iyj = 21 < e Kaf @) (I - 271l +36)
The lemma follows by taking C{ = /K€ /a¢. O

8 Estimates from non-uniform hyperbolicity
8.1 Hyperbolic properties of the global minimizer
Denote by

X2 = (x?,v?) e T¢ x R,

the orbit of the global minimizer under the random dynamical system ®¢’ (see (3.2)).
According to Proposition 3.3, the Lyapunov exponents of the derivative cocycle over
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this orbit are non-vanishing, which implies this orbit is non-uniformly hyperbolic.
It turns out such orbits enjoys much of the same properties as uniformly hyperbolic
orbits, using a special Lyapunov norm. The conclusions of Proposition 8.1 below
follows from standard theories in smooth dynamics, see for example [1, section 5.1
and 7.2, 7.3].

Proposition 8.1 For any € > 0, the following hold.

(1) (Stable and unstable bundles) For each n € Z, there exists the splitting
R* = Ey (X)) @ E (X)),

wheredim E; = dim EY = d. The splitting is invariant under the random dynam-
ics, i.e.

DOY (ES(X)) = Ey (X2, ), DOY(EX(XD)) = EX(XP, ).
We denote by IT;,, I1% the projection onto E, , E}! under this splitting.
(2) (Lyapunov norm) There existnorms ||- |13, ||- 11 on E, E}, such that the Lyapunov
norm on R* defined by

VI = (TS VI 4+ (T4 V]|14?

satisfies the conditions listed below.
(3) (Comparison to Euclidean norm) There exists a function M€ (w) > 0 satisfying
e ¢ < M (w)/M*(Ow) < e such that

VI <1V, < M@ ) IV,

where | - || is the Euclidean norm. We will omit the subscript n from the || - ||}, and

Hf,/ " when the index is clear from context. s
4) (Cones)

Cl={V eR™: MLV < TV,
Cs={VeR¥: |MSV|5 < ITIAV]Y).

n —

The cones C}} are forward invariant and forward expanding under ®%, and C,
are backward invariant and backward expanding. More precisely the following
statements hold.

(5) (Hyperbolicity) There exists 0€(w) > 0 with e” ¢ < 0¢(w)/0(Ow) < €€, such

that the following hold. Let Y, be an orbit of ®%.
(a) If

1Yy = Xull' < 00" @), Y1 = Xp1ll' < 00" ),
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then
I Y,y — T X, = & 1Y, — TI° X, |,

where \' = % — €. Moreover, if Y, — X, € C), then Y, 1 — X,_1 € C)_,.
() If

1Yy = Xul < 00" w), [Yuo1 — Xuill' < 050" '0),
then
IT“Y, g — X, | < e | T4Y, — TT“X,,||".

Moreover, if Y, — X, € C4, then Y,y — X,_1 € C)/_,.

8.2 Stability of minimizer in the phase space

We improve Lemma 7.7 to its counter part in the phase space, using the Lyapunov
norm.

Lemma 8.2 Assume that (yy, 77,,)2:71\, is aminimizer that satisfies the AP~ (w, ¢, 8, N)
condition, and such that

5> e~ 3ON/3

There exists C5(w) > 1 and e€ < C5(w)/C5(0w) < e™€ such that, if —N /3 < j <
k < 0 satisfies

lyj = x¢l < r@@w), |y — x| < r@ o).
then
1Y) = X91 = 5@ w)e ™M (1 = 5l + 5) .
Proof Apply Lemma 7.7, we have
lyj =271 = CE@ e ™ (Ilye = 21+ 375)
Since j < —1, we use Lemma 4.2 to get
lnj —v§l < K@ w)lly; — x5,
and hence
1Y; — X9l < 2K<07 w)lly; — x71.
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We have
1Y = X921 < M@/ w)Y; — X,]| < 2M K@ o)y — 22|
= 2C{O* )M KO @)™ (13 — 5+ 35)
< 6(CEMEK€) (@ w)e3li—] <||yk —xCl + JS) .
We then replace € with €/3 in the above estimate, and define C§ = 6C1€/ 3M €/3Kel3,
which satisfies e < C5(w)/C5 (fw) < e™¢. The lemma follows. O

8.3 Exponential localization using hyperbolicity

We show that hyperbolicity, together with Lemma 8.2 lead to a stronger localization.
In Lemma 8.3 we show a dichotomy: either y, —x;’ contracts for one backward iterate,
or y, is 87 close to x, to begin with.

Let r¢(w) and K€ (w) be the random variable from Lemma 4.9, and note we can
always choose r€(w) < 1 and K€(w) > 1. Define

ri(w) = min{r’¥()/ 2K/} (w)), 0¢/* ()},

€ _ ~€/4 _ ri(w) :
C(w) =G (@), po(w) = <3C§(a))) ) 8.1

where o€ is defined in property (5) of Proposition 8.1. We have C5(w) > 1, po(w) <
ri(w) < 1, and ¢ < po(w)/po(0w), ri(®)/ri(fw) < €.

Lemma 8.3 Under the same assumption as in Lemma 8.2, suppose for a given —N /6 <
k < —1, we have

1Y — Xill' < po(6*w), 8% < po(6Fw), 267 < e (8.2)

Then one of the following alternatives hold for Yy:

(1)
1YV — XPI' < max{s?, e *2IN/6) g = 3 —3e)/(8e),  (8.3)
in the case Yy — X}? € C}.
2) ,
ITT“ Vi1 — T“Xgog |I” < e 2 I TT“Yg — T X4, (8.4)
in the case Yy — X € Cy.

Proof We first describe the idea behind the proof. If Yy — X{ € C}, and Proposition 8.1
(5)(b) applies, then (8.4) follows directly. Suppose now Y — X3* € Cj. Since the stable
cones are backward invariant, Y; — X‘j‘) € ij for every j < k, then Proposition 8.1

(5)(a) implies that [|Y; — X ;f)||’ should grow exponentially with rate A’. Suppose for
a moment that Lemma 8.2 holds with § = 0, which implies [|Y; — X;f)||/ grows with

@ Springer



576 Stoch PDE: Anal Comp (2020) 8:544-579

at most rate €, this would have been a contradiction. When § > 0, the only way for
Yi — X{? € C} to not contradict Lemma 8.2 is for || Y; — X{’||” to be much smaller than
4 to begin with.

We now make this argument rigorous. Some of the estimates below are needed to
make sure that the conditions of Lemma 8.2 and Proposition 8.1 are met.

Let us denote dx = [|Yx — X||". Let ig be the unique negative integer that satisfies
the condition

k k
e2€Uiol=1 — min r1(0 a;{) , r1(0"w) , eN/32
3dC5(0%w)" 3805 (0% w) 85
k k ’
— min VPo (0" w) 7 VP (0" w) ’ oCN/3-2) < Q2eliol
d NG
Note that —N /6 < iy < 0. Since
CS (0% w)e*0l < min {—rl(ekw) r®‘w) } e (8.6)
3 - 3dy T 38 '
and (using C§ = ;ﬁ and (8.2))
: diry (0% sri(0F
C5(0*w)e 2] < max k10" w) Ven@o | (8.7)
3p0(6%w) 3p0(0*w)

We next show that Lemm 8.2 can be applied inductively to the indices j, k for
j=k—1,..., k+ip. Recall that for every € > 0, the random variable K€ is chosen
to be an upper bound for ||®#|-2, the norm of the random mapping. By (8.1) and
(8.2), if di < ri(0Fw), then dj_; < K/3(w)dy < re/3(0%w)/2 < re/30%w), if €
is small enough. Therefore Lemma 8.2 can be applied to the indices k — 1, k if (8.2)
holds.

Suppose that for some j € [io+k, k), djy1 <1 (67 w). Then by the same argument
as above, d; < re/g(ij) < r(@fw), Lemma 8.2 applies to j, k. We get

d; < C5(0%@)e™ (dy + v/5) = =105 (0% w) eIl () + /5)

r1 (0% w) rl(Okw)}
3dp T 348

. 2 .
<ri(0lw)- gezf <ri(0lw),

) . 2
< e~ 0l(d + V) min{ ¥ s e MinEto) e (33)

where we applied (8.6) in the second line, and assumed € is small enough. (8.8)
implies that the inductive procedure can be continued one step further, and we can
follow this procedure all the way until j = iy + k. For all j € [ig + k, k), since
dj < B/ w) < o4O w), Proposition 8.1 (5) applies .
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If Yy — X2 € C{ (second alternative), (8.4) holds by Proposition 8.1 (5)(b). If
Yy — X e C} (first alternative), then Y; — X‘/f’ € C; forall ip + k < j < k, due to
backward invariance of stable cones. As a result, we get from Proposition 8.1 (5)(a)
that

dj > 'V Hg,.
Pick j = ip + k, and apply Lemma 8.2 again. Then using (8.7), we get

dp < e Vld; < C5(6* wye* N0l (g + /5)
— C§ (ka)efkliole*()»’*3€)|i0\(dk + «/3) < e*(?»'*3€)\i0|(dk + \/g)

We can choose € small enough (and as a result |ig| large enough) such that
e~ —30liol < % then

’ . ’ . 1
x/ge_()‘ —3e)liol > di (1 — e —3€)|l0|) > Edk’

or
di < 24/8 e~ ¥ 3ol (8.9)

Note that in this case, d; < V3. Using (8.5) and 8% < ,oo(Hka)) from (8.2), we get
NG

Voo OFw)

1
< e* max{s7, e N3y

. 1
e 2¢liol < max { ee(N/32>} < max{8%, e N3 .e%)

We combine with (8.9) to get

(' =3€)/(2€)

dk S 2\/5 (e—26|i0‘)(l/73€)/(2€) 5 2\/3 (e—2€|i0|>

< 26?739 max {8‘1, e_()‘/_k)N/é} < max Iﬁq, e_()‘/_%)N/ﬁ} ,

where g = (A — 3¢)/(8¢). O
We are now ready to prove Proposition 6.1.

Proof of Proposition 6.1 Define

p(w) = min{po(w)/(4C5(@)), e+ /2} < po(w),

then e=%¢ < p(Bw)/p(w) < . Recall the assumption
5% < p(a).
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and note in particular 287 < e~* which is needed for Lemma 8.3. We suppose
N > N4(w), so that Lemma 7.7 applies. Let jj be the unique integer such that

. | < ma logd N .
— 1 < max ,—— ¢ < Jjo.
Jo Re 6 Jo

Then

. . 1 1
e_€|]0| = ¢€/0 > eglogé =53

and
P00 w) > el po(w) > 8%, jo < j < —I.

If |lyo — x|l < p(w), by Lemma 8.2, we have
1Y_1 = X |I" < C5(w)e" <||)’0 —xg Il + JS) < C5()e2p(w) = € po(w)/2.

Assume e¢ < 2, then Lemma 8.3 applies for j = —1.If Y_; — X®, € C°, then (8.3)
hold, we obtain | Y_j — X, ||' < max{89, e~*" 39N/} We choose k = —1 and the
proposition follows. Otherwise, Y_| — X®, € C*, and (8.4) applies. We have

1Yy — X2 < V2|1 (Y_g — XD < V2e |V — X4
< e e /N 2pp(e) < e po(w) < po(6 ),

if ¢¢ < +/2. We can apply Lemma 8.3 again.

Let j € [jo+1,—-1].IfY,, — X% € C°® for any of m € [j + 1, —1], we have
Y—m — X%, |II" < max{s§, e_(’v_3€)N/6}. Choose k = m and we are done. Otherwise,
we have

1Y — X2N' < V2e Ky — X)) < e * 1 po(w) < po(6*w).

Therefore this argument can be applied inductively until we reach j = jg, in which
case

yjo = X210 < 1Y)y — X2 < V2e 10! < V/2pg () max {38 e—“’/6}

< max{8?, e_(}‘/_3€)N/6}.

We choose k = jp and conclude the proof. O
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