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Abstract
Semilinear stochastic partial differential equations on bounded domains D are con-
sidered. The semilinear term may have arbitrary polynomial growth as long as it
is continuous and monotone except perhaps near the origin. Typical examples are
the stochastic Allen–Cahn and Ginzburg–Landau equations. The first main result of
this article are L p-estimates for such equations. The L p-estimates are subsequently
employed in obtaining higher regularity. This is motivated by ongoing work to obtain
rate of convergence estimates for numerical approximations to such equations. It is
shown, under appropriate assumptions, that the solution is continuous in time with
values in the Sobolev space H2(D ′) and �2-integrable with values in H3(D ′), for any
compact D ′ ⊂ D . Using results from L p-theory of SPDEs obtained by Kim (Stoch
Proc Appl 112:261–283, 2004) we get analogous results in weighted Sobolev spaces
on the whole D . Finally it is shown that the solution is Hölder continuous in time of
order 1

2 − 2
q as a process with values in a weighted Lq -space, where q arises from the

integrability assumptions imposed on the initial condition and forcing terms.
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1 Introduction

The aim of this article is to obtain L p-estimates and regularity of solutions to the
semilinear stochastic partial differential equation (SPDE)

dut = (Ltut + ft (ut ,∇ut ) + f 0t )dt +
∑

k∈N
(Mk

t ut + gkt )dW
k
t on [0, T ] × D

ut = 0 on ∂D, u0 = φ on D,

(1)

where

Ltu :=
d∑

j=1

∂ j

( d∑

i=1

ai jt ∂i u
)

+
d∑

i=1

bit ∂i u + ctu and Mk
t u :=

d∑

i=1

σ ik
t ∂i u + μk

t u.

(2)

Here D is a bounded domain in R
d and Wk are independent Wiener processes. The

coefficients a and σ are assumed to satisfy stochastic parabolicity condition (and thus
our equation is non-degenerate). Moreover all the coefficients a, b, c, σ and μ are
assumed to be measurable and bounded, f = ft (ω, x, r , z) is measurable, continuous
in (r , z), monotone in r except perhaps around the origin, Lipschitz continuous in z,
bounded in x and of polynomial growth in r (of arbitrary order). The forcing terms f 0

and g are assumed to satisfy appropriate integrability conditions. A typical example of
equation fitting this setting is the stochastic Ginzburg–Landau equation. In this case

f (r) = −|r |α−2r , α ≥ 2.

To obtain higher interior regularity we will have to impose further regularity assump-
tions on the coefficients. To obtain regularity up to the boundary (in weighted Sobolev
spaces)wewill also need to impose regularity assumptions on the domain.The assump-
tions will be formulated precisely in further sections.

The main aim of this article is to obtain regularity results for the solutions to the
SPDE (1). This is motivated by ongoing work to obtain rate of convergence estimates
for numerical approximations to such equations. For a semilinear equation it is natural
to consider the term f := f (u,∇u)+ f 0 as a free term in an appropriate linear SPDE
and to use established methods and theory to obtain regularity for this linear SPDE.
Due to uniqueness of solutions to (1), see Lemma 1, we then get the same regularity
for the semilinear equation (1). However, for the theory of regularity of linear SPDEs
to apply, we need to show that the new free term f satisfies appropriate integrability
conditions. This would typically mean at least L2-integrability. Since the semilinear
term in (1) is allowed to have arbitrary polynomial growth, it is clear that we need to
obtain L p-estimates for solution to (1) with p ≥ 2 sufficiently large. Note that if one
attempts to do this using Sobolev embedding theorem then one immediately runs into
restrictions on the combination of dimension of D and the growth of the semilinear
term.
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The main novelty of this article is in allowing arbitrary dimension ofD and growth
of the semilinear term, see Theorem 1. This is achieved by using the monotonicity
property of the semilinear term and a cutting argument to obtain the required L p-
estimate. Once these have been established we then obtain new spatial regularity
results for the SPDE (1), these are both interior regularity and up-to-the-boundary
regularity in weighed Sobolev spaces, see Theorems 2 and 5. Finally we have a new
time regularity result (in weighted space again), see Theorem 6. These effectively
say that under appropriate assumptions the SPDE (1) has two additional derivatives. It
seems however that our method does not allow one to obtain arbitrarily high regularity
(even for equation with smooth data and coefficients), see Remark 5 for explanation.
Nevertheless, raising the regularity twice is enough to find the rate of convergence of
various numerical approximations using the techniques from e.g. Gyöngy and Millet
[9].

Regularity of solutions to linear PDEs has been studied intensively, see e.g. Evans
[4], Gilbarg and Trudinger [8] for elliptic PDEs, Ladyženskaja et al. [20] for parabolic
PDEs and references therein. Regularity results for linear elliptic and parabolic PDEs
in Hölder spaces can be found in Krylov [16]. Regularity of solutions to SPDEs has
been an area of active interest for quite some time and here we point out some of the
main results. Regularity of solutions to linear SPDEs on the whole space has been
proved in Rozovskii [23]. On domains with a boundary the situation is much more
involved and one cannot expect the same regularity up to the boundary as in the interior
of the domain, see e.g. Examples 1.1 and 1.2 in Krylov [18]. After this observation
two approaches to dealing with boundaries emerge: one is to quantify the loss of
regularity near the boundary using weighted Sobolev spaces. These allow oscillations
and explosion of the spatial derivatives of the solution near the boundary. The other
approach is to side-step the problems created by the boundary by restricting the class
of equations under consideration by imposing additional restriction on the noise term
near the boundary (effectively disallowing stochastic forcing near the boundary), see
Flandoli [5]. Weighted Sobolev spaces have also been employed, in the context of
L p-theory for linear SPDEs, by Kim [14]. Unsurprisingly, there are fewer results for
nonlinear SPDEs. Kim and Kim use the L p-theory in [12] and [13] to obtain regularity
for quasilinear SPDEswhere the coefficients are uniformly bounded. Current results in
Gerencsér [7] show that for a class of SPDEs, including (1), there exists some Hölder
exponent such that the solution is Hölder continuous in space up to the boundary with
this exponent. For interior regularity of a class of quasilinear equations associated with
the “p-Laplace” operator see Breit [1]. For SPDEs with drift given by the subgradient
of a quasi-convex function and with sufficiently regular noise Gess [6] proves higher
regularity and existence of (analytically) strong solutions. All the aforementioned
work on regularity of nonlinear SPDEs has been done using the variational approach.
For results obtained in the semigroup framework we refer the reader to the work of
Jentzen and Röckner [11] and references therein. Regularity results for quasilinear
PDEs of parabolic type can be found in [20]. However, the results are obtained under
the restrictions on the combination of dimension ofD and the growth of the nonlinear
term. Thus, to the best of our knowledge, our results are new even for deterministic
semilinear PDEs with monotone semilinear term.
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The article is organised as follows: Sect. 2 is devoted to the proof of Theorem 1
which gives us the desired L p-estimates for the solution to semilinear SPDE (1). In
Sect. 3, we first prove interior regularity for the associated linear SPDE, see The-
orem 3. We then use the results on interior regularity of the linear SPDE to prove
Theorem 2. In Sect. 4, we prove regularity results up to the boundary and time regu-
larity in weighted Sobolev spaces using L p-theory from Kim [14]. The main results
and required assumptions are stated at the beginning of each section.

2 Lp-estimates for the semilinear equation

Let T > 0 be given, (�,F , (Ft )t∈[0,T ],P) be a stochastic basis,P be the predictable
σ -algebra and W := (Wt )t∈[0,T ] be an infinite dimensional Wiener martingale with
respect to (Ft )t∈[0,T ], i.e. the coordinate processes (Wk

t )t∈[0,T ], k ∈ N are indepen-
dentFt -adaptedWiener processes such thatWk

t −Wk
s is independent ofFs for s ≤ t .

Further, let D be a bounded domain in R
d with Lipschitz boundary. We use standard

notation for Lebesgue–Bochner and Sobolev spaces. In general, if X is a normed linear
space then we will use | · |X to denote the norm in this space. There are exceptions: if
x ∈ R

d then |x | denotes the Euclidean norm. For Lebesgue and Sobolev spaces over
the entire domainD we will omit the dependence onD . So e.g. if h ∈ L p(D) then we
will write |h|L p for |h|L p(D). If h ∈ L p((0, T ); L p(D)) then we use ‖h‖L p to denote
the norm. Throughout this article C denotes a generic constant that may change from
line to line.

Let n ∈ {0} ∪N and fix constants K > 0, κ > 0, α ≥ 2 and p ≥ α. We assume the
following:

A-1 For any i, j = 1, . . . , d, the coefficients ai j , bi and c are real-valued,P×B(D)-
measurable and are bounded by K . The coefficients σ i = (σ ik)∞k=1, μ = (μk)∞k=1 are
�2-valued, P × B(D)-measurable and almost surely

d∑

i=1

∑

k∈N
|σ ik

t (x)|2 +
∑

k∈N
|μk

t (x)|2 ≤ K ∀t ∈ [0, T ], x ∈ D .

A-2 Almost surely

d∑

i, j=1

(
ai jt (x) − 1

2

∑

k∈N
σ ik
t (x)σ jk

t (x)
)
ξiξ j ≥ κ|ξ |2 ∀t ∈ [0, T ], x ∈ D, ξ ∈ R

d .

A-3 The function f = ft (ω, x, r , z) isP ×B(D) ×B(R) ×B(Rd)-measurable, it
is continuous in (r , z) almost surely for all t and x . Furthermore, almost surely

(r − r ′)( ft (x, r , z) − ft (x, r
′, z)) ≤ K |r − r ′|2,

| ft (x, r , z) − ft (x, r , z
′)| ≤ K |z − z′|,

| ft (x, r , z)| ≤ K (1 + |r |)α−1
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for all t, x, r , r ′, z, z′.

A-4 φ ∈ L p(�,F0; L p(D)), f 0 ∈ L p(� × (0, T ),P; L p(D)) and g ∈ L p(� ×
(0, T ),P; L p(D; �2)).

Remark 1 Without loss of generality,wemay assume that almost surely for all t , x and z
the function r �→ ft (x, r , z) is decreasing. If not, then (1) can be rewritten by replacing
ft (x, r , z) with f̄t (x, r , z) := ft (x, r , z) − Kr and ct (x) with c̄t (x) := ct (x) + K ,
where using Assumption A - 3, f̄ is decreasing in r .

Further, we may assume that almost surely for all t and x , ft (x, 0, 0) = 0. Other-
wise, we can replace ft (x, r , z) in (1) by f̃t (x, r , z) := ft (x, r , z) − ft (x, 0, 0) and
f 0t by f̃ 0t (x) := f 0t (x) + ft (x, 0, 0).

Definition 1 (L2-Solution) An adapted, continuous L2(D)-valued process is said to
be a solution of stochastic partial differential equation (1) if

(i) dt × P almost everywhere u ∈ Lα(D) ∩ H1
0 (D) and

E

∫ T

0
(|ut |αLα + |ut |2H1

0
) dt < ∞,

(ii) almost surely for every t ∈ [0, T ] and ξ ∈ C∞
0 (D),

(ut , ξ) = (u0, ξ) +
∫ t

0
〈Ls(us) + fs(us,∇us) + f 0s , ξ 〉ds

+
∑

k∈N

∫ t

0
(ξ, Mk

s (us) + gks )dW
k
s .

The following theorem is the main result of this section.

Theorem 1 If Assumptions A-1 to A-4 hold, then there exists a unique solution u to
(1) and

E sup
0≤t≤T

|ut |pL p + E

∫ T

0

∫

D
|∇us |2|us |p−2dxds

≤ CE

(
|φ|pL p + ‖ f 0‖p

L p + ‖|g|�2‖p
L p

)
,

(3)

where C = C(d, p, K , κ, T ).

The rest of Sect. 2 is devoted to proving Theorem 1 but we give a brief outline of
the proof here.

1. We replace the semilinear term f by truncations f m , depending on some m ∈ N,
chosen in such a way that that the monotonicity is preserved and f m are bounded.
By standard theory of stochastic evolution equations we obtain um which are
solutions to the SPDE with f replaced with f m .
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2. We now wish to get the estimate (3) for these um (uniformly in m). If we were
allowed to apply Itô’s formula directly to r �→ |r |p and the process umt (x) and to
integrate over D then (3) for um would follow from A-1, A-2 and A-3.

3. Since, of course, this is not allowed we instead consider an appropriate bounded
smooth approximation φn to r �→ |r |p and use the Itô formula from Krylov [17].
We then establish an estimate similar to (3) but forφn(um) instead of |um |p andwith
the right-hand-side still depending onm but independent of n. See Lemma 2. This
allows us to take the limit n → ∞ and to use the monotonicity of r �→ f mt (x, r , z)
to obtain (3) for um . See Lemma 3.

4. The final step is then to use compactness argument to obtain u as a weak limit
of (um)m∈N, see Lemma 4, and the usual monotonicity argument to show that u
satisfies (1). Fatou’s lemma will then yield (3) for u.

Before proceeding with the proof of Theorem 1, we observe the following:

Remark 2 Assumptions A-1 and A-2 imply, after some computations using Hölder’s
and Young’s inequalities, the existence of a constant K ′ depending on K , d and κ only
such that almost surely for all t ∈ [0, T ] and w,w′ ∈ H1

0 (D),

2〈Ltw + f 0t , w〉 +
∑

k∈N
|Mk

t w + gkt |2L2 + κ|w|2
H1
0

≤ K ′[| f 0t |2L2 + ∣∣|gt |�2
∣∣2
L2 + |w|2L2

]

and

2〈Ltw − Ltw
′, w − w′〉 +

∑

k∈N
|Mk

t w − Mk
t w′|2L2 + κ|w − w′|2

H1
0

≤ K ′|w − w′|2L2 .

Lemma 1 (Uniqueness) The solution to (1) is unique in the sense that if u and ū both
satisfy (1) then

P

(
sup
t≤T

|ut − ūt |L2 = 0
)

= 1.

Proof Let u and ū be two solutions of (1) in the sense of Definition 1. Then,

ut − ūt =
∫ t

0
(Ls(us) − Ls(ūs) + fs(us,∇us) − fs(ūs,∇ūs)) ds

+
∑

k∈N

∫ t

0

(
Mk

s (us) − Mk
s (ūs)

)
dWk

s

(4)

almost surely for all t ∈ [0, T ]. Using Remark 1, Assumption A-3 and Young’s
inequality, we get

〈 ft (ut ,∇ut ) − ft (ūt ,∇ūt ), ut − ūt 〉
= 〈 ft (ut ,∇ut ) − ft (ūt ,∇ut ) + ft (ūt ,∇ut ) − ft (ūt ,∇ūt ), ut − ūt 〉
≤ κ

2
|∇(ut − ūt )|2L2 + N |ut − ūt |2L2 .

(5)
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Using the product rule and applying Itô’s formula for the the square of the norm to (4),
see Gyöngy and Šiška [10] or Pardoux [22, Chapitre 2, Theoreme 5.2], we obtain

d
(
e−K ′′t |ut − ūt |2L2

)
= e−K ′′t [d|ut − ūt |2L2 − K ′′|ut − ūt |2L2 dt

]

= e−K ′′t
[(

2〈Lt (ut ) − Lt (ūt ) + ft (ut ,∇ut ) − ft (ūt ,∇ūt ), ut − ūt 〉

+
∑

k∈N
|Mk

t (ut ) − Mk
t (ūt )|2L2 − K ′′|ut − ūt |2L2

)
dt

+
∑

k∈N
2
(
ut − ūt , M

k
t (ut ) − Mk

t (ūt )
)
dWk

t

]

(6)

almost surely for all t ∈ [0, T ]. Substituting (5) in (6) and using Remark 2, we get

e−K ′′t |ut − ūt |2L2 ≤ 2
∑

k∈N

∫ t

0
e−K ′′s(us − ūs, M

k
s (us) − Mk

s (ūs)
)
dWk

s

implying that right hand side is a non-negative local martingale (and thus a super-
martingale) starting from 0 and hence for all t ∈ [0, T ],

E[e−K ′t |ut − ūt |2L2 ] ≤ 0.

Thus for all t ∈ [0, T ], we getP(|ut −ūt |2L2 = 0) = 1which, alongwith the continuity

of u − ū in L2(D), concludes the proof. ��
Having proved uniqueness we start preparing the proof of Theorem 1. For m ∈ N,

consider the truncated function

f mt (x, r , z) =
⎧
⎨

⎩

ft (x,−m, z) if r < −m
ft (x, r , z) if − m ≤ r ≤ m
ft (x,m, z) if r > m,

and the equation

dumt = (Ltu
m
t + f mt (umt ,∇umt ) + f 0t )dt +

∑

k∈N
(Mk

t u
m
t + gkt )dW

k
t ,

umt = 0 on ∂D, um0 = φ on D .

(7)

For each m ∈ N, using Assumption A-3, f mt (x, r , z) is bounded and hence (7) can
be viewed as a SPDE on the Gelfand triple H1

0 (D) ↪→ L2(D) ↪→ H−1(D) and all
the conditions for existence and uniqueness of solution in [19] are satisfied. Thus (7)
has a unique L2-solution in the sense of [19, Definition 2.2].

We now prove an estimate similar to (3) for the solutions of (7). We will do this by
applying the Itô formula from Krylov [17] similarly to Dareiotis and Gerencsér [3].
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To that end we need to consider the functions

φn(r) =
{ |r |p if |r | < n
n p−2 p(p−1)

2 (|r | − n)2 + pn p−1(|r | − n) + n p if |r | ≥ n.

We now collect some key properties of these functions. We see that φn are twice
continuously differentiable and

|φn(x)| ≤ C |x |2, |φ′
n(x)| ≤ C |x |, |φ′′

n (x)| ≤ C

where C depends on p and n ∈ N only. Further, for any r ∈ R,

φn(r) → |r |p, φ′
n(r) → p|r |p−2r , φ′′

n (r) → p(p − 1)|r |p−2 (8)

as n → ∞ and

φn(r) ≤ C |r |p, φ′
n(r) ≤ C |r |p−1, φ′′

n (r) ≤ C |r |p−2, (9)

where C depends on p only.

Remark 3 For any r ∈ R we have

(a) |rφ′
n(r)| ≤ pφn(r),

(b) |r2φ′′
n (r)| ≤ p(p − 1)φn(r),

(c) |φ′
n(r)|2 ≤ 4pφ′′

n (r)φn(r),

(d) |φ′′
n (r)|

p
p−2 ≤ [p(p − 1)] p

p−2 φn(r).

These inequalities along with Young’s inequality imply, for any ε > 0,

(i) |ums φ′
n(u

m
s )| ≤ Cφn(ums ),

(ii) |ums |2φ′′
n (u

m
s ) ≤ Cφn(ums ),

(iii)
∑d

i=1 ∂i ums φ′
n(u

m
s ) ≤ εφ′′

n (u
m
s )|∇ums |2 + Cφn(ums ),

(iv) | f 0s φ′
n(u

m
s )| ≤ C | f 0s |[φ′′

n (u
m
s )] 12 [φn(ums )] 12 ≤ C | f 0s |p + Cφn(ums ),

(v) | f ms (ums ,∇ums )φ′
n(u

m
s )| ≤ C | f ms (ums ,∇ums )|[φ′′

n (u
m
s )] 12 [φn(ums )] 12 ≤ C | f ms (ums ,

∇ums )|p + Cφn(ums ) ≤ C | fs(−m,∇ums )|p + Cφn(ums ),
(vi) |gs |2�2φ′′

n (u
m
s ) ≤ Cφn(ums ) + C |gs |p�2 ,

where the last inequality is obtained using Hölder’s inequality and C depends only on
d, p and ε.
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Using Theorem 3.1 from [17], we get that almost surely

∫

D
φn(u

m
t )dx

=
∫

D
φn(u

m
0 )dx +

∑

k∈N

∫ t

0

∫

D

( d∑

i=1

σ ik
s ∂i u

m
s + μk

s u
m
s + gks

)
φ′
n(u

m
s )dxdWk

s

+
∫ t

0

∫

D

( d∑

i=1

bis∂i u
m
s + csu

m
s + f ms (ums ,∇ums ) + f 0s

)
φ′
n(u

m
s )dxds

−
∫ t

0

∫

D

d∑

i, j=1

ai js ∂i u
m
s φ′′

n (u
m
s )∂ j u

m
s dxds

+ 1

2

∫ t

0

∫

D

∑

k∈N

∣∣∣
d∑

i=1

σ ik
s ∂i u

m
s + μk

s u
m
s + gks

∣∣∣
2
φ′′
n (u

m
s )dxds,

for any t ∈ [0, T ] andn ∈ N. Thus usingAssumptionsA-1,A-2 andYoung’s inequality
for any ε > 0, we obtain almost surely

∫

D
φn(u

m
t )dx ≤

∫

D
φn(u

m
0 )dx + M n,m

t

+
∫ t

0

∫

D

( d∑

i=1

bis∂i u
m
s + csu

m
s + f ms (ums ,∇ums ) + f 0s

)
φ′
n(u

m
s )dxds

−
∫ t

0

∫

D
κ|∇ums |2φ′′

n (u
m
s )dxds

+
∫ t

0

∫

D

(
ε|∇ums |2 + C |us |2 + C |gs |2�2

)
φ′′
n (u

m
s ) dxds,

(10)

for any t ∈ [0, T ] and n ∈ N. Here the generic constant C depends only on d, K and
ε and

M n,m
t :=

∑

k∈N

∫ t

0

∫

D

( d∑

i=1

σ ik
s ∂i u

m
s + μk

s u
m
s + gks

)
φ′
n(u

m
s )dxdWk

s

is a martingale.
Further, using Burkholder–Davis–Gundy’s inequality, Remark 3(c) and Hölder’s

inequality, we see that
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E sup
0≤t≤T

|M n,m
t |

≤ CE

( ∫ T

0

∑

k

( ∫

D

∣∣∣
d∑

i=1

σ ik
s ∂i u

m
s +μk

s u
m
s + gks

∣∣∣
(
φ′′
n (u

m
s )φn(u

m
s )

) 1
2
dx

)2

ds

) 1
2

≤ CE

( ∫ T

0

∑

k

( ∫

D

∣∣∣
d∑

i=1

σ ik
s ∂i u

m
s +μk

s u
m
s +gks

∣∣∣
2
φ′′
n (u

m
s )dx

∫

D
φn(u

m
s )dx

)
ds

) 1
2

which, using the same steps as before, in particular Remark 3 points (ii) and (iv), gives

E sup
0≤t≤T

|M n,m
t |

≤ CE

( ∫ T

0

( ∫

D

(
|∇ums |2 + |ums |2 + |gs |2�2

)
φ′′
n (u

m
s )dx

∫

D
φn(u

m
s )dx

)
ds

) 1
2

≤ CE

(
sup

0≤t≤T

∫

D
φn(u

m
t )dx

∫ T

0

∫

D

[
|∇ums |2φ′′

n (u
m
s ) + φn(u

m
s ) + |gs |p�2

]
dxds

) 1
2

≤ 1

2
E sup

0≤t≤T

∫

D
φn(u

m
t )dx+CE

∫ T

0

∫

D

[
|∇ums |2φ′′

n (u
m
s )+φn(u

m
s )+|gs |p�2

]
dxds

(11)

Lemma 2 If um is the solution to (7), then

E sup
0≤t≤T

|umt |pL p + E

∫ t

0

∫

D
|∇ums |2|ums |p−2dxds

≤ CE

(
|φ|pL p + Cm + ‖ f 0‖p

L p + ‖|g|�2‖p
L p

)
,

(12)

where C = C(d, K , κ, p) and Cm := E
∫ T
0

∫
D (1 + |m|)α(p−1)dxds are constants.

Proof From (10) and Remark 3(iv),(v) and Assumption A-3, we get

E

∫

D
φn(u

m
t )dx + κ

2
E

∫ t

0

∫

D
|∇ums |2φ′′

n (u
m
s )dxds ≤ CE

∫

D
φn(u

m
0 )dx + Cm

+ E

∫ t

0

∫

D
| f 0s |pdxds + CE

∫ t

0

∫

D
|gs |p�2dxds + C

∫ t

0
E

∫

D
φn(u

m
s )dxds

≤ CEKm
t + C

∫ t

0
E

∫

D
φn(u

m
s )dxds,

where C = C(d, p, K , ε) and

Km
t :=

∫

D
|φ|pdx + Cm +

∫ t

0

∫

D
| f 0s |pdxds +

∫ t

0

∫

D
|gs |p�2 dxds.

123



432 Stoch PDE: Anal Comp (2020) 8:422–459

Applying Gronwall’s lemma, we obtain for any t ∈ [0, T ]

E

∫

D
φn(u

m
t )dx + E

∫ t

0

∫

D
|∇ums |2φ′′

n (u
m
s )dxds ≤ CEKm

t (13)

where C = C(d, p, K , κ, T ).
Further, taking the supremum over t ∈ [0, T ] in (10), using the same estimates as

given above and then taking expectation, we get using (11)

E sup
0≤t≤T

∫

D
φn(u

m
t )dx

≤ CE

∫

D
φn(u

m
0 )dx + E sup

0≤t≤T

∫ t

0

∫

D
f ms (ums ,∇ums )φ′

n(u
m
s )dxds

+ CE

∫ T

0

∫

D
| f 0s |pdxds + CE

∫ T

0

∫

D
|gs |p�2 dxds + C

∫ T

0
E

∫

D
φn(u

m
s )dxds

+ 1

2
E sup

0≤t≤T

∫

D
φn(u

m
t )dx + CE

∫ T

0

∫

D

[
|∇ums |2φ′′

n (u
m
s ) + φn(u

m
s )

]
dxds

≤ CE

∫

D
φn(u

m
0 )dx + CCm + CE

∫ T

0

∫

D
| f 0s |pdxds

+ CE

∫ T

0

∫

D

[|gs |p�2 + φn(u
m
s )

]
dxds

+ 1

2
E sup

0≤t≤T

∫

D
φn(u

m
t )dx + CE

∫ T

0

∫

D
|∇ums |2φ′′

n (u
m
s )dxds

≤ CEKm
T + 1

2
E sup

0≤t≤T

∫

D
φn(u

m
t )dx < ∞

where C does not depend on n and m. Thus, we have

E sup
0≤t≤T

∫

D
φn(u

m
t )dx + E

∫ T

0

∫

D
|∇ums |2φ′′

n (u
m
s )dxds ≤ CEKm

T < ∞,

where C = C(d, p, K , κ, T ). Now we let n → ∞ and apply Fatou’s lemma to
complete the proof. ��

We can now use Lemma 2 and the monotonicity of r �→ f mt (x, r , z) to obtain an
estimate for umt , where the right-hand-side no longer depends on m. Let

Kt :=
∫

D
|φ|pdx +

∫ t

0

∫

D

[| f 0s |p + |gs |p�2
]
dxds.

Lemma 3 If um is the solution to (7) then there is C = C(d, p, K , κ, T ) such that

E sup
0≤t≤T

|umt |pL p + E

∫ T

0

∫

D
|∇ums |2|ums |p−2 dxds ≤ CEKT . (14)
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Proof From (10) and Remark 3(iv), we get

E

∫

D
φn(u

m
t )dx + κ

2
E

∫ t

0

∫

D
|∇ums |2φ′′

n (u
m
s )dxds

≤CE

∫

D
φn(u

m
0 )dx + E

∫ t

0

∫

D

[
f ms (ums ,∇ums )φ′

n(u
m
s ) + | f 0s |p] dxds

+ CE

∫ t

0

∫

D

[|gs |p�2 + φn(u
m
s )

]
dxds,

where C = C(d, p, K , κ).
Taking limit n → ∞ and using Lebesgue’s dominated convergence theorem in

view of (12), (8) and (9), we get

E

∫

D
|umt |pdx + p(p − 1)

κ

2
E

∫ t

0

∫

D
|∇ums |2|ums |p−2dxds

≤ CEKt + pE
∫ t

0

∫

D
|ums |p−2 f ms (ums ,∇ums )ums dxds + CE

∫ t

0

∫

D
|ums |pdxds.

(15)

Using the fact r f mt (r , 0) ≤ 0 for any r ∈ R,m ∈ N, t ∈ [0, T ], Young’s inequality
and Assumption A-3, we get

pE
∫ t

0

∫

D
|ums |p−2 f ms (ums ,∇ums )ums dxds

= pE
∫ t

0

∫

D
|ums |p−2[ f ms (ums ,∇ums ) − f ms (ums , 0) + f ms (ums , 0)

]
ums dxds

≤ E

∫ t

0

∫

D
|ums |p−2[κ

4
| f ms (ums ,∇ums ) − f ms (ums , 0)|2 + C |ums |2]dxds

≤ κ

4
E

∫ t

0

∫

D
|ums |p−2|∇ums |2dxds + CE

∫ t

0

∫

D
|ums |pdxds

Substituting this in (15) and then applying Gronwall’s lemma, we obtain for any
t ∈ [0, T ]

E

∫

D
|umt |pdx + E

∫ t

0

∫

D
|∇ums |2|ums |p−2dxds ≤ CEKt

where C = C(d, p, K , κ, T ).
Further, taking the supremum over t ∈ [0, T ] in (10), using the same estimates as

given above and then taking expectation, we get using (11)
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E sup
0≤t≤T

∫

D
φn(u

m
t )dx

≤ CE

∫

D
φn(u

m
0 )dx + E sup

0≤t≤T

∫ t

0

∫

D
f ms (ums ,∇ums )φ′

n(u
m
s )dxds

+ CE

∫ T

0

∫

D

[| f 0s |p + |gs |p�2 + φn(u
m
s )

]
dxds

+ 1

2
E sup

0≤t≤T

∫

D
φn(u

m
t )dx + CE

∫ T

0

∫

D
|∇ums |2φ′′

n (u
m
s )dxds,

where C does not depend on n and m. Taking limit n → ∞ using Lebesgue’s domi-
nated convergence theorem and using (13) along with the steps as above, we get

E sup
0≤t≤T

∫

D
|umt |pdx ≤ CEKT + 1

2
E sup

0≤t≤T

∫

D
|umt |pdx

and hence the lemma. ��
To complete the proof of Theorem 1 we need to take the limit, as m → ∞ in (14)

and to show that (1) has a solution. To that end we obtain the following result.

Lemma 4 There is a subsequence of (m) denoted by (m′) and an adapted pro-
cess u such that u ∈ Lα(� × (0, T ),P; Lα(D)) ∩ L2(� × (0, T ),P; H1

0 (D))

and almost surely u ∈ C([0, T ]; L2(D)). Moreover, there exists f ′ ∈ L
α

α−1
(
� ×

(0, T ),P; L α
α−1 (D)

)
such that

um
′
⇀u in Lα(� × (0, T ),P; Lα(D)) ∩ L2(� × (0, T ),P; H1

0 (D)),

f m
′
(um

′
,∇um

′
)⇀ f ′ in L

α
α−1

(
� × (0, T ),P; L α

α−1 (D)
)
,

L(um
′
)⇀L(u) in L2(� × (0, T ),P; H−1(D)

)
,

M(um
′
)⇀M(u) in L2(� × (0, T ),P; �2(L2(D))

)
.

Finally for all t ∈ [0, T ],

ut = u0 +
∫ t

0
(Lsus + f ′

s + f 0s )ds +
∑

k∈N

∫ t

0
(Mk

s us + gks )dW
k
s a.s.

and

|ut |2L2 =|ψ |2L2 + 2
∫ t

0
〈Lsus + f 0s , us〉 ds + 2

∫ t

0
〈 f ′

s , us〉 ds

+ 2
∑

k∈N

∫ t

0
(Mk

s us + gks , us) dW
k
s +

∑

k∈N

∫ t

0
|Mk

s us + gks |2L2 ds.
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Proof By Lemma 3, we have um ∈ Lα(� × (0, T ),P; Lα(D)) ∩ L2(� ×
(0, T ),P; H1

0 (D)). Moreover, using Assumption A-3 and (14), we have

E

∫ T

0

∫

D
| f mt (umt (x),∇umt (x))| α

α−1 dxdt ≤ KE

∫ T

0

∫

D
(1 + |umt (x)|)αdxdt

≤ C + CE sup
0≤t≤T

∫

D
|umt (x)|αdx < ∞.

(16)

Thus, f m(um,∇um) ∈ L
α

α−1
(
�×(0, T ),P; L α

α−1 (D)
)
such that (14) and (16) holds

for each m ∈ N with a constant independent of m. Since these Banach spaces are
reflexive, there exists a subsequence (m′) (see, e.g. Theorem 3.18 in [2]) such that

um
′
⇀v in Lα(� × (0, T ),P; Lα(D)),

um
′
⇀v̄ in L2(� × (0, T ),P; H1

0 (D)) and

f m
′
(um

′
,∇um

′
)⇀ f ′ in L

α
α−1

(
� × (0, T ),P; L α

α−1 (D)
)
.

Moreover, the operators L and M are bounded and linear and hence map a weakly
convergent sequence to a weakly convergent sequence. Thus, we have

L(um
′
)⇀L(v̄) in L2(� × (0, T ),P; H−1(D)

)
and

M(um
′
)⇀M(v̄) in L2(� × (0, T ),P; �2(L2(D))

)
.

Note that for any adapted and bounded real valued process ηt and ξ ∈ C∞
0 (D), we

have

E

∫ T

0
ηt 〈vt − v̄t , ξ 〉dt = E

∫ T

0
ηt 〈vt − um

′
t , ξ 〉dt + E

∫ T

0
ηt 〈um′

t − v̄t , ξ 〉dt → 0

as m′ → ∞. Since C∞
0 (D) is dense in Lα(D) and H1

0 (D), we have the processes
v and v̄ are equal dt × P almost everywhere. Further, the Bochner integral and the
stochastic integral are bounded linear operators and hence are continuous with respect
to weak topologies. Again, we have

E

∫ T

0
ηt (u

m′
t , ξ)dt

= E

∫ T

0
ηt

(
(um

′
0 , ξ) +

∫ t

0
〈Lsu

m′
s + f m

′
s + f 0s , ξ 〉ds

+
∑

k∈N

∫ t

0
(ξ, Mk

s u
m′
s + gks )dW

k
s

)
dt .
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On taking limit m′ → ∞, we get

E

∫ T

0
ηt (vt , ξ)dt

= E

∫ T

0
ηt

(
(u0, ξ) +

∫ t

0
〈Lsvs + f ′

s + f 0s , ξ 〉ds

+
∑

k∈N

∫ t

0
(ξ, Mk

s vs + gks )dW
k
s

)
dt

for any adapted and bounded real valued process ηt and ξ ∈ C∞
0 (D). Since C∞

0 (D)

is dense in Lα(D) and H1
0 (D), we have

vt = u0 +
∫ t

0
(Lsvs + f ′

s + f 0s )ds +
∑

k∈N

∫ t

0
(Mk

s vs + gks )dW
k
s

dt × P almost everywhere. Using Itô formula for processes taking values in inter-
section of Banach spaces from Gyöngy and Šiška [10], there exists an L2(D)-valued
continuous modification u of v which satisfies above equality almost surely for all
t ∈ [0, T ]. ��
Remark 4 For ψ ∈ Lα(� × (0, T ),P; Lα(D)) ∩ L2(� × (0, T ),P; H1

0 (D)), we
have

f m
′
(ψ,∇ψ) → f (ψ,∇ψ)

in L
α

α−1 (� × (0, T ),P; L α
α−1 (D)). Indeed, by definition of f m

′
, as m′ → ∞

f m
′

s (ψs(x),∇ψs(x)) → fs(ψs(x),∇ψs(x)) ∀ω, s, x .

Moreover | f m′
s (r , z)| ≤ | fs(r , z)| and due to Assumption A-3,

E

∫ T

0
| fs(ψs,∇ψs(x))|

α
α−1

L
α

α−1
ds ≤ CE

∫ T

0

∫

D

(
1 + |ψs(x)|α

)
dxds < ∞.

Therefore we may use Lebesgue Dominated Convergence Theorem to obtain

lim
m′→∞

E

∫ T

0

∫

D
| f m′

s (ψs(x),∇ψs(x)) − fs(ψs(x),∇ψs(x))| α
α−1 dxds

= E

∫ T

0

∫

D
lim

m′→∞
| f m′

s (ψs(x),∇ψs(x)) − fs(ψs(x),∇ψs(x))| α
α−1 dxds = 0.

Proof of Theorem 1 In order to show the weak limit u obtained in Lemma 4 is indeed
the unique solution of SPDE (1), it remains to show that f ′ = f (u,∇u) which can
be shown using the monotonicity argument as below.
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Define for each w ∈ Lα(D) ∩ H1
0 (D), s ∈ (0, T ) and k ∈ N, the operators

Asw := Lsw + f 0s and Bk
s w := Mk

s w + gks .

Then for any w,w′ ∈ Lα(D) ∩ H1
0 (D), we have using Remark 2

2〈Asw − Asw
′, w − w′〉+

∑

k∈N
|Bk

s w−Bk
s w

′|2L2 ≤ −κ|w − w′|2
H1
0

+ K ′|w − w′|2L2 .

(17)

Considerψ ∈ Lα(�×(0, T ),P; Lα(D))∩L2(�×(0, T ),P; H1
0 (D)). Then using

Assumption A-3, Remark 1 and definition of f m , we have

〈 f m′
s (um

′
s ,∇um

′
s ) − f m

′
s (ψs,∇um

′
s ), um

′
s − ψs〉 ≤ 0 (18)

almost surely for all s ∈ [0, T ]. Moreover using Young’s inequality and Assumption
A-3, we have almost surely for all s ∈ [0, T ]

2〈 f m′
s (ψs,∇um

′
s )− f m

′
s (ψs,∇ψs), u

m′
s −ψs〉 ≤ κ|∇(um

′
s −ψs)|2L2 + C |um′

s − ψs |2L2 .

(19)

Define K ′′ := K ′ +C , where K ′ and C are as in (17) and (19) above. Then using the
product rule and Itô’s formula, we obtain

E
(
e−K ′′t |ut |2L2

) − E(|u0|2L2)

= E

[ ∫ t

0
e−K ′′s

(
2〈Asus + f ′

s , us〉 +
∑

k∈N
|Bk

s us |2L2 − K ′′|us |2L2

)
ds

]

(20)

and

E
(
e−K ′′t |um′

t |2L2

) − E(|um′
0 |2L2) = E

[ ∫ t

0
e−K ′′s

(
2〈Asu

m′
s + f m

′
s (um

′
s ,∇um

′
s ), um

′
s 〉

+
∑

k∈N
|Bk

s u
m′
s |2L2 − K ′′|um′

s |2L2

)
ds

] (21)

for all t ∈ [0, T ].
We now need to re-arrange the right-hand side of (21) so that we can use the

monotonicity assumptions. We have
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E

[ ∫ t

0
e−K ′′s

(
2〈Asu

m′
s + f m

′
s (um

′
s ,∇um

′
s ), um

′
s 〉 +

∑

k∈N
|Bk

s u
m′
s |2L2 − K ′′|um′

s |2L2

)
ds

]

= E

[ ∫ t

0
e−K ′′s

(
2〈Asu

m′
s − Asψs, u

m′
s 〉 + 2〈Asψs, u

m′
s 〉 + 2〈Asu

m′
s − Asψs, ψs〉

+2〈 f m′
s (um

′
s ,∇um

′
s )− f m

′
s (ψs,∇ψs), u

m′
s −ψs〉 + 2〈 f m′

s (ψs,∇ψs), u
m′
s 〉

+2〈 f m′
s (um

′
s ,∇um

′
s )− f m

′
s (ψs,∇ψs), ψs〉+

∑

k∈N

∣∣Bk
s u

m′
s −Bk

s ψs
∣∣2
L2−

∑

k∈N
|Bk

s ψs |2L2

+2
∑

k∈N

(
Bk
s u

m′
s , Bk

s ψs
) − K ′′ [|um′

s − ψs |2L2 − |ψs |2L2 + 2(um
′

s , ψs)
])

ds
]
.

(22)

Using (18) and (19), we have

2〈 f m′
s (um

′
s ,∇um

′
s ) − f m

′
s (ψs,∇ψs), u

m′
s − ψs〉

= 2〈 f m′
s (um

′
s ,∇um

′
s )− f m

′
s (ψs,∇um

′
s )

+ f m
′

s (ψs,∇um
′

s )− f m
′

s (ψs,∇ψs), u
m′
s − ψs〉

≤ κ|∇(um
′

s − ψs)|2L2 + C |um′
s − ψs |2L2

and hence using (17) in (22) together with (21), we obtain for all t ∈ [0, T ]

E
(
e−K ′′t |um′

t |2L2

) − E(|um′
0 |2L2)

≤ E

[ ∫ t

0
e−K ′′s

(
2〈Asψs, u

m′
s 〉 + 2〈Asu

m′
s − Asψs, ψs〉

+ 2〈 f m′
s (ψs,∇ψs), u

m′
s 〉 + 2〈 f m′

s (um
′

s ,∇um
′

s ) − f m
′

s (ψs,∇ψs), ψs〉
−

∑

k∈N
|Bk

s ψs |2L2 + 2
∑

k∈N

(
Bk
s u

m′
s , Bk

s ψs
) + K ′′[|ψs |2L2 − 2(um

′
s , ψs)

])
ds

]
.

Now, integrating over t from 0 to T , letting m′ → ∞ and using the weak lower
semicontinuity of the norm, we obtain

E

[ ∫ T

0

(
e−K ′′t |ut |2L2 − |u0|2L2

)
dt

]

≤ lim inf
m′→∞

E

[ ∫ T

0

(
e−K ′′t |um′

t |2L2 − |um′
0 |2L2

)
dt

]

≤ E

[ ∫ T

0

∫ t

0
e−K ′′s

(
2〈Asψs, us〉 + 2〈Asus − Asψs, ψs〉
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+ 2〈 fs(ψs,∇ψs), us〉 + 2〈 f ′
s − fs(ψs,∇ψs), ψs〉 −

∑

k∈N
|Bk

s ψs |2L2

+ 2
∑

k∈N
(Bk

s us, B
k
s (ψs)) + K ′′ [|ψs |2L2 − 2(us, ψs)

] )
dsdt

]

(23)

where we have used Remark 4 in last inequality. Again, integrating from 0 to T in (20)
and combining this with (23), we get

E

[ ∫ T

0

∫ t

0
e−K ′′s

(
2〈Asus − Asψs, us − ψs〉 + 2〈 f ′

s − fs(ψs,∇ψs), us − ψs〉

+
∑

k∈N
|Bk

s ψs − Bk
s us |2L2 − K ′′|us − ψs |2L2

)
dsdt

]
≤ 0

which on using (17) gives

E

[ ∫ T

0

∫ t

0
e−K ′′s

(
2〈 f ′

s − fs(ψs,∇ψs), us − ψs〉
)
dsdt

]
≤ 0. (24)

Let η ∈ L∞((0, T ) × �;R), φ ∈ C∞
0 (D), ε ∈ (0, 1) and let ψ = u − εηφ. Then

from (24) one obtains that

E

[ ∫ T

0

∫ t

0
2εe−K ′′s〈 f ′

s − fs(us − εηsφ,∇us − εηs∇φ), ηsφ〉dsdt
]

≤ 0.

Dividing by ε, letting ε → 0, using Lebesgue dominated convergence theorem and
Assumption A-3 leads to

E

[ ∫ T

0

∫ t

0
2e−K ′′sηs〈 f ′

s − fs(us,∇us), φ〉dsdt
]

≤ 0.

Since this holds for any η ∈ L∞((0, T ) × �,P;R) and φ ∈ C∞
0 (D), one gets that

f (u,∇u) = f ′ which concludes the proof.
Further, taking m → ∞ in (14) and using the weak lower semicontinuity of the

norm, we obtain the following estimates for the solution of (1)

E sup
0≤t≤T

|ut |pL p+E

∫ T

0

∫

D
|∇us |2|us |p−2dxds

≤ lim inf
m→∞

[
E sup

0≤t≤T
|umt |pL p + E

∫ T

0

∫

D
|∇ums |2|ums |p−2dxds

]

≤ CE

(
|φ|pL p + ‖ f 0‖p

L p + ‖|g|�2‖p
L p

)
.

��
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3 Interior regularity

In this section, we present the results on interior regularity of the solution to SPDE
(1). The main result is stated in Theorem 2. The idea is to prove the result for the linear
SPDE first and then use it along with the L p-estimates obtained in Sect. 2 to prove
Theorem 2. We do not claim the result for the linear case to be new, however we could
not find such result in literature in sufficient generality.

To raise the regularity of the solution one needs the given data to be sufficiently
smooth. Thus, we assume the following condition on the coefficients before stating
the main result of this section.

A-5 For any i, j = 1, . . . , d, the coefficients ai j , bi and c and their spatial derivatives
up to order n are real-valued, P × B(D)-measurable and are bounded by K . The
coefficients σ i = (σ ik)∞k=1, μ = (μk)∞k=1 and their spatial derivatives up to order n
are �2-valued, P × B(D)-measurable and almost surely

d∑

i=1

∑

k∈N

∑

|γ |≤n

|Dγ σ ik
t (x)|2 +

∑

k∈N

∑

|γ |≤n

|Dγ μk
t (x)|2 ≤ K

for all t and x .
For A, B subsets ofRd let dist(A, B) denote the distance between A and B. Further,

for � = 1, 2 define

I� := E

[ ∑

|γ |≤�

|Dγ φ|2L2+
∑

|γ |≤�−1

‖Dγ f 0‖2L2 +
∑

|γ |≤�

‖|Dγ g|�2‖2L2

+ |φ|2α−2
L2α−2 + ‖ f 0‖2α−2

L2α−2 + ‖|g|�2‖2α−2
L2α−2

]
.

Theorem 2 Let Assumptions A-2 to A-4 hold and u be the solution to (1). Fix some
open D ′′ � D ′ � D such that dist(D ′, ∂D) < 1 and dist(D ′′, ∂D ′) < 1.

(i) If Assumption A-5 holds with n = 1, and if φ ∈ L2(�,F0; H1(D)) and
g ∈ L2(� × (0, T ),P; H1(D; �2)), then

u ∈ C([0, T ], H1(D ′)) a.s. and u ∈ L2(� × (0, T ),P; H2(D ′)).

Moreover, there is C = C(d, T , K , κ) such that

E sup
0≤t≤T

|∂i ut |2L2(D ′)+E

∫ T

0
|∂i ut |2H1(D ′)dt ≤ C dist(D ′, ∂D)−2I1 (25)

for all i = 1, . . . , d.
(ii) Further, in case the semilinear term f does not depend on z, if Assumption A-1

holds with n = 2, if φ ∈ L2(�,F0; H2(D)), f 0 ∈ L2(� × (0, T ),P; H1(D))
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and g ∈ L2(� × (0, T ),P; H2(D; �2)) and if almost surely

|∂r ft (x, r)| ≤ K (1 + |r |)α−2 and |∂i ft (x, r)| ≤ K (1 + |r |)α−1 (26)

for all i = 1, . . . , d, t ∈ [0, T ], x ∈ D and all r ∈ R, then we have

u ∈ C([0, T ], H2(D ′′)) a.s. and u ∈ L2(� × (0, T ),P; H3(D ′′)).

Furthermore, there is C = C(d, T , K , κ) such that

E sup
0≤t≤T

|∂i∂ j ut |2L2(D ′′) + E

∫ T

0
|∂i∂ j ut |2H1(D ′′)dt ≤ C dist(D ′′, ∂D ′)−2I2

+ C dist(D ′′, ∂D ′)−2 dist(D ′, ∂D)−2I1

(27)

for all i, j = 1, . . . , d.

One can obtain regularity results up to the boundary in appropriate weighted
Sobolev spaces using results from Krylov [18] along with the L p-estimates obtained
in Theorem 1. However, obtaining the similar results for the linear equations using
L p-theory is more useful. We will discuss this in Sect. 4.

As mentioned before, we will first get the results for linear equations. So, we
consider the following linear stochastic evolution equation:

dvt = (Ltvt + ft )dt +
∑

k∈N
(Mk

t vt + gkt )dW
k
t on [0, T ] × D, (28)

where the operators L and Mk are defined in (2). As can be seen in what follows, one
can raise the regularity to any order for the linear equation by assuming the given data
to be sufficiently smooth. Thus we make the following assumption on initial data and
the free terms and then state the result in Theorem 3.

Let n ≥ 0 be an integer.

A-6Assume that v0 ∈ L2(�,F0; Hn(D)), g ∈ L2(�× (0, T ),P; Hn(D; �2)) and
f ∈ L2(� × (0, T ),P; Hn−1(D)).

Theorem 3 Assume that v is a continuous L2(D)-valued adapted process such that
v ∈ L2(� × (0, T ),P; H1(D)), and it satisfies (28). If Assumptions A- 2, A- 5 and
A- 6 hold, then for all open D ′ � D ,

v ∈ C([0, T ], Hn(D ′)) a.s. and v ∈ L2(� × (0, T ),P; Hn+1(D ′))

We will prove Theorem 3 via Lemmas 5 and 6. In Lemma 5, we first prove the
special case n = 1.

Lemma 5 Assume that v ∈ C([0, T ]; L2(D)) a.s., v is adapted and satisfies (28) and
moreover v ∈ L2(�×(0, T ),P; H1(D)). If Assumptions A-2, A-5 and A-6 hold with
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n = 1, then there is C = C(d, T , K , κ) such that

E sup
0≤t≤T

|∂ivt |2L2(D ′) + E

∫ T

0
|∂ivt |2H1(D ′)dt ≤ C dist(D ′, ∂D)−2

[
E

∫

D
|∇v0|2dx

+E

∫ T

0

∫

D

[
|∇vt |2 + | ft |2 + |vt |2 +

∑

k∈N
|∇gkt |2

]
dxdt

]

(29)

for all i = 1, . . . , d and all open D ′ � D such that dist(D ′, ∂D) < 1.

Proof Let ζ = dist(D ′, ∂D). We consider a cut-off function η ∈ C∞
0 (D) which is

1 on D ′ and such that η ≤ 1 and |∂iη| ≤ Cζ−1 for i = 1, 2, . . . , d. Define the
lth-difference quotient, l ∈ {1, 2, . . . , d}, by

δhl u(x) := 1

h

(
T h
l u − u

)
(x), x ∈ R

d

where T h
l u(x) = u(x + hel) is the shift operator and the step-size h satisfies 2|h| <

dist(supp η, ∂D). From (28), we get

d(ηδhl vt ) = ηδhl (Ltvt + ft )dt + η
∑

k∈N
δhl (Mk

t vt + gkt )dW
k
t .

Applying Itô’s formula for the square of L2-norm, we get

d|ηδhl vt |2L2(D)
= 2〈ηδhl (Ltvt + ft ), ηδhl vt 〉dt + 2

∑

k∈N
(ηδhl (Mk

t vt + gkt ), ηδhl vt )dW
k
t

+
∑

k∈N
|ηδhl (Mk

t vt + gkt )|2L2(D)
dt .

It follows from the definition of δhl and linearity of ∂ j , that the two operators commute.
Thus, using integration by parts and the formula

δhl (vw)(x) = δhl v(x)T h
l w(x) + v(x)δhl w(x)

we get,

∫

D
η2|δhl vt |2dx =

∫

D
η2|δhl v0|2dx + 2

∫ t

0

∫

D
η2δhl (Lsvs + fs)δ

h
l vsdxds

+ M h
t +

∑

k∈N

∫ t

0

∫

D
η2|δhl (Mk

s vs + gks )|2dxds

=I0 − 2
∫ t

0

∫

D
η2

d∑

i, j=1

ai js ∂i (δ
h
l vs) ∂ j (δ

h
l vs) + I1 + I2 + I3 + M h

t + I4

(30)
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where,

I0 :=
∫

D
η2|δhl v0|2dx,

I1 := − 2
∫ t

0

∫

D
η2

d∑

i, j=1

δhl a
i j
s ∂i (T

h
l vs)∂ j (δ

h
l vs)dxds,

I2 := − 4
∫ t

0

∫

D
η

d∑

i, j=1

[
δhl a

i j
s ∂i (T

h
l vs) + ai js ∂i (δ

h
l vs)

]
∂ jηδhl vsdxds

I3 :=2
∫ t

0

∫

D
η2

[ d∑

i=1

{δhl bis ∂i (T
h
l vs) + bis δhl (∂ivs)}

+ δhl cs T
h
l vs + cs δhl vs + δhl fs

]
δhl vsdxds,

I4 :=
∑

k∈N

∫ t

0

∫

D
η2

∣∣∣
d∑

i=1

δhl σ ik
s ∂i (T

h
l vs) + δhl μk

s T
h
l vs

+
d∑

i=1

σ ik
s ∂i (δ

h
l vs) + μk

s δhl vs + δhl g
k
s

∣∣∣
2
dxds

and

M h
t := 2

∑

k∈N

∫ t

0

∫

D
η2δhl (Mk

s vs + gks )δ
h
l vsdxdW

k
s .

Now, we see that

I4 =
∑

k∈N

∫ t

0

∫

D
η2

[∣∣∣
d∑

i=1

δhl σ ik
s ∂i (T

h
l vs) + δhl μk

s T
h
l vs

∣∣∣
2

+ 2
[ d∑

i=1

δhl σ ik
s ∂i (T

h
l vs) + δhl μk

s T
h
l vs

][ d∑

i=1

σ ik
s ∂i (δ

h
l vs) + μk

s δ
h
l vs + δhl g

k
s

]

+
∣∣∣

d∑

i=1

σ ik
s ∂i (δ

h
l vs)+μk

s δhl vs+δhl g
k
s

∣∣∣
2
]
dxds≤

d∑

i, j=1

σ ik
s ∂i (δ

h
l vs) σ

jk
s ∂ j (δ

h
l vs)+ Ī4

where

Ī4 :=
∑

k∈N

∫ t

0

∫

D
η2

[
(d + 1)

d∑

i=1

|δhl σ ik
s |2|∂i (T h

l vs)|2 + (d + 1)|δhl μk
s T

h
l vs |2

+ 2
d∑

i, j=1

δhl σ ik
s ∂i (T

h
l vs) σ

jk
s ∂ j (δ

h
l vs) + 2

d∑

i, j=1

δhl σ ik
s ∂i (T

h
l vs) μk

s δhl vs
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+2
d∑

i, j=1

δhl σ ik
s ∂i (T

h
l vs) δhl g

k
s + 2

d∑

i=1

σ ik
s ∂i (δ

h
l vs) δhl μk

s T
h
l vs

+2δhl μk
s T

h
l vs μk

s δhl vs + 2δhl μk
s T

h
l vs δhl g

k
s

+|μk
s δhl vs |2 + |δhl gks |2 + 2

d∑

i=1

σ ik
s ∂i (δ

h
l vs) μk

s δhl vs

+2
d∑

i=1

σ ik
s ∂i (δ

h
l vs) δhl g

k
s + 2μk

s δhl vs δhl g
k
s

]
dxds

Substituting this in (30), we get

∫

D
η2|δhl vt |2dx

≤I0 + I1 − 2
∫ t

0

∫

D
η2

d∑

i, j=1

[
ai js − 1

2

∑

k∈N
σ ik
s σ

jk
s

]
∂i (δ

h
l vs) ∂ j (δ

h
l vs)dxds

+ I2 + I3 + M h
t + Ī4.

which on using Assumptions A-2, A-5 (with n = 1) and Young’s inequality for an
ε > 0 gives

∫

D
η2|δhl vt |2dx ≤

∫

D
η2|δhl v0|2dx − 2κ

∫ t

0

∫

D
η2|∇(δhl vs)|2dxds + M h

t

+
∫ t

0

∫

D

d∑

i, j=1

[
εK |η∂i (T

h
l vs)|2 + εK |η∂i (δ

h
l vs)|2 + C

ε
|∂ jηδhl vs |2

]
dxds

+
∫ t

0

∫

D
η2

[
2δhl fs δhl vs + CK ,d

ε

d∑

i=1

|∂i (T h
l vs)|2 + CK ,d

ε
|T h

l vs |2

+C
∑

k∈N
|δhl gks |2 + εCK

d∑

i=1

|∂i (δhl vs)|2 + CK

ε
|δhl vs |2

]
dxds.

(31)

Now extending η, f , g and v to Rd by setting them to 0 on Rd \D and using the fact
that supp η ⊂ D and supp(T−h

l η) ⊂ D for our choice of h, we get
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∫

D
η2 δhl fs δhl vsdx =

∫

Rd
η2 δhl fs δhl vsdx

=
∫

Rd
η2

1

h
T h
l fs δhl vsdx −

∫

Rd
η2

1

h
fs δhl vsdx

=
∫

Rd
T−h
l (η2)

1

h
fs T

−h
l (δhl vs)dx −

∫

Rd
η2

1

h
fs δhl vsdx

=
∫

Rd
fs
1

h

[
T−h
l (η2δhl vs) − (η2δhl vs)

]
dx

= −
∫

Rd
fs δ−h

l (η2 δhl vs)dx = −
∫

D
fs δ−h

l (η2 δhl vs)dx

≤ ε

∫

D
|δ−h
l (η2 δhl vs)|2dx + 1

ε

∫

D
| fs |2dx

(32)

where last inequality has been obtained using Young’s inequality.
Since η2 δhl vs ∈ H1(D), using the relation between difference quotients and weak

derivatives (see e.g. [4, Ch. 5, Sec. 8, Theorem 3]), we have

∫

D
|δ−h
l (η2 δhl vs)|2dx =

∫

Dh
l (η)

|δ−h
l (η2 δhl vs)|2dx ≤ C

∫

D
|∇(η2 δhl vs)|2dx

for some constant C and Dh
l (η) := supp η ∪ supp(T h

l η) ∪ supp(T−h
l η) � D . Substi-

tuting this in (32), we get

∫

D
η2 δhl fs δhl vsdx ≤ εC

∫

D
|∇(η2 δhl vs)|2dx + 1

ε

∫

D
| fs |2dx

= εC
∫

D
|η2 ∇(δhl vs) + 2η ∇η δhl vs |2dx + 1

ε

∫

D
| fs |2dx

≤ εC
∫

D
|η ∇(δhl vs)|2dx + εCμ−2

∫

D
|(η δhl vs)|2dx + 1

ε

∫

D
| fs |2dx .

(33)

Similarly,

∫

D
η2|T h

l vs |2dx =
∫

Dh
l (η)

η2|T h
l vs |2dx =

∫

Dh
l (η)

|T−h
l η|2|vs |2dx ≤ C

∫

D
|vs |2dx

and

d∑

i=1

∫

D
η2|∂i (T h

l vs)|2dx =
d∑

i=1

∫

Dh
l (η)

η2|T h
l (∂ivs)|2dx

≤ C
d∑

i=1

∫

D
|∂ivs |2dx = C

∫

D
|∇vs |2dx .
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Using the assumption g ∈ L2(� × (0, T ),P; H1(D; �2)) and the property of differ-
ence quotients mentioned above,

∑

k∈N

∫

D
η2|δhl gks |2dx =

∑

k∈N

∫

Dh
l (η)

η2|δhl gks |2dx ≤ C
∑

k∈N

∫

D
|∇gks |2dx .

Similarly, v ∈ L2(� × (0, T ),P; H1(D)) and the property of difference quotients
imply

∫

D
|δhl vs |2dx ≤ C

∫

D
|∇vs |2dx . (34)

Substituting (33)–(34) in (31), we get

∫

D
η2|δhl vt |2dx ≤ C

∫

D
|∇v0|2dx − 2κ

∫ t

0

∫

D
η2|∇(δhl vs)|2dxds

+ M h
t +

∫ t

0

∫

D

[CK ,d

ε
μ−2|∇vs |2 + εCK |η∇(δhl vs)|2 + 1

ε
| fs |2

+ CK ,d

ε
|vs |2 + C

∑

k∈N
|∇gks |2

]
dxds.

(35)

Further, it can be seen that the processM h
t defined in (30) is a local martingale where

a localizing sequence of stopping times converging to T as n → ∞ is given by

τn := inf{t ∈ [0, T ] : |ηδhl vs |L2(D)| > n} ∧ T . (36)

Thus, replacing t by t ∧ τn in (35), then taking expectation and choosing ε > 0 small
enough such that 2κ − εCK = Cκ > 0 and finally using Fatou’s lemma, we get

E

∫

D
η2|δhl vt |2dx + CκE

∫ t

0

∫

D
η2|∇(δhl vs)|2dxds ≤ CE

∫

D
|∇v0|2dx

+ E

∫ t

0

∫

D

[CK ,d

ε
μ−2|∇vs |2 + 1

ε
| fs |2 + CK ,d

ε
|vs |2 + C

∑

k∈N
|∇gks |2

]
dxds.

(37)

Using the inequalities of Burkholder–Davis–Gundy, Hölder and Young together with
the estimates above we get that

E sup
0≤t≤T

|M h
t∧τn

| = E sup
0≤t≤T

∣∣∣2
∑

k∈N

∫ t∧τn

0

∫

D
η2δhl (Mk

s vs + gks )δ
h
l vsdxdW

k
s

∣∣∣

≤ 4E
( ∑

k∈N

∫ τn

0

∣∣∣2
∫

D
η2δhl (Mk

s vs + gks )δ
h
l vsdx

∣∣∣
2
ds

) 1
2

≤ 8E
( ∑

k∈N

∫ τn

0
|η δhl (Mk

s vs + gks )|2L2(D)
|η δhl vs |2L2(D)

ds
) 1

2
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≤ 1

2
E sup

0≤t≤T
|η δhl vt |2L2(D)

+ C
∑

k∈N
E

∫ τn

0
|η δhl (Mk

s vs + gks )|2L2(D)
ds

≤ 1

2
E sup

0≤t≤T
|η δhl vt |2L2(D)

+ Cζ−2
E

∫ τn

0

∫

D

[|∇vs |2+| fs |2+|vs |2+|∇gs |2�2
]
dxds.

(38)

Replacing t by t ∧ τn in (35), taking the supremum over t ∈ [0, T ] and using (38) we
obtain

E sup
0≤t≤T

∫

D
η2|δhl vt∧τn |2dx

≤ Cζ−2
[
E

∫

D
|∇v0|2dx + E

∫ T

0

∫

D

[
|∇vs |2 + | fs |2 + |vs |2 + |∇gs |2�2

]
dxds

]
,

which, on applying Fatou’s lemma, yields

E sup
0≤t≤T

∫

D
η2|δhl vt |2dx

≤ Cζ−2
[
E

∫

D
|∇v0|2dx + E

∫ T

0

∫

D

[
|∇vs |2 + | fs |2 + |vs |2 + |∇gs |2�2

]
dxds

]
,

where C = C(K , d, ε). Now note that the right hand side of above equation and (37)
are independent of h and are finite and hence using e.g. [4, Ch. 5, Sec. 8, Theorem 3]),
we get (29). ��

We now extend the result to the case n = 2 as follows. From Lemma 5 we
have that v is a continuous H1(D ′)-valued adapted process such that v ∈ L2(� ×
(0, T ),P; H2(D ′)), and it satisfies (28). If Assumptions A-5 and A-6 hold for n = 2,
then from (28), we get

d(∂lvt ) = ∂l(Ltvt + ft )dt +
∑

k∈N
∂l(M

k
t vt + gkt )dW

k
t

= (
Lt (∂lvt ) + f̄t

)
dt +

∑

k∈N

(
Mk

t (∂lvt ) + ḡkt
)
dWk

t

(39)

on [0, T ] × D ′, where

f̄t :=
d∑

j=1

∂ j

( d∑

i=1

∂la
i j
t ∂ivt

)
+

d∑

i=1

∂lb
i
t ∂ivt + ∂l ct vt + ∂l ft

and

ḡkt :=
d∑

i=1

∂lσ
ik
t ∂ivt + ∂lμ

k
t vt + ∂l g

k
t .
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Using Assumptions A-5, A-6 with n = 2 we get that f̄ ∈ L2(�×(0, T ),P; L2(D ′))
and ḡ ∈ L2(� × (0, T ),P; H1(D ′; �2)).

Thus replacing f , gk,D in (28) by f̄ , ḡk and D ′ respectively, we see that z =
∂lv satisfies (28). Clearly z ∈ C([0, T ]; L2(D ′)) almost surely and z ∈ L2(� ×
(0, T ); H1(D ′)) and hence all the assumptions of Lemma 5 are satisfied for the new
linear equation (39). Therefore for all open D ′′ � D ′ such that dist(D ′′, ∂D ′) < 1,
we have

E sup
0≤t≤T

|∂i zt |2L2(D ′′) + E

∫ T

0
|∂i zt |2H1(D ′′)dt ≤ C dist(D ′′, ∂D ′)−2

[
E

∫

D ′
|∇z0|2dx

+ E

∫ T

0

∫

D ′

[
|∇zt |2 + | f̄t |2 + |zt |2 + |∇ ḡt |2�2

]
dxdt

]
.

which, substituting back the values of f̄ , ḡk and z = ∂lv and then using Assumption
A-5 with n = 2 and (29), gives

E sup
0≤t≤T

|∂i∂lvt |2L2(D ′′) + E

∫ T

0
|∂i∂lvt |2H1(D ′′)dt

≤C dist(D ′′, ∂D ′)−2
[
E

∫

D ′

∑

|γ |≤2

|Dγ v0|2dx

+ E

∫ T

0

∫

D ′

[ ∑

|γ |≤2

|Dγ vt |2 +
∑

|γ |≤1

|Dγ ft |2 +
∑

|γ |≤2

|Dγ gt |2�2
]
dxdt

]
(40)

for all i = 1, . . . , d and open D ′′ � D ′ where C = C(d, T , K , κ). Repeating the
above procedure k times, we have the following result.

Lemma 6 Assume that v is a continuous L2(D)-valued adapted process satisfying
(28) and such that v ∈ L2(� × (0, T ),P; H1(D)). If Assumptions A-2, A-5 and A-6
hold for n = k, then

E sup
0≤t≤T

|∂ik . . . ∂i1vt |2L2(Dk )
+ E

∫ T

0
|∂ik . . . ∂i1vt |2H1(Dk )

dt ≤ C dist(Dk, ∂Dk−1)−2

[
E

∫

Dk−1

∑

|γ |≤k

|Dγ v0|2dx + E

∫ T

0

∫

Dk−1

[ ∑

|γ |≤k

|Dγ vt |2 +
∑

|γ |≤k−1

|Dγ ft |2

+
∑

|γ |≤k

|Dγ gt |2�2
]
dxdt

]

for all ik = 1, . . . , d and open Dk � Dk−1 such that dist(Dk, ∂Dk−1) < 1 where
C = C(d, T , K , κ).

We immediately see that Theorem 3 follows from Lemma 6. Using Theorems 1
and 3, we can now prove Theorem 2.
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Proof of Theorem 2 Let u be the solution to (1) given by Theorem 1. Then considering
ft (ut ,∇ut )+ f 0t as a new free term ft , we observe that u satisfies (28) with such free
term.

Now under the Assumptions A-3, A-4 and due to Theorem 1, applied with p ≥
2α − 2, we get the estimate (3) and hence

E

∫ T

0
| ft |2L2(D)

dt = E

∫ T

0

∫

D
| f (ut ,∇ut ) + f 0t |2dxdt

≤ 2
[
E

∫ T

0

∫

D
K 2(1 + |ut |)2α−2dxdt + E

∫ T

0

∫

D
| f 0t |2dxdt

]

≤ C
[
1+E sup

0≤t≤T

∫

D
|ut |2α−2dx

]
+2E

∫ T

0

∫

D
| f 0t |2dxdt < ∞.

(41)

Hence we can apply Theorem 3 with n = 1 thus proving the first claim in (i). Again
using (29) for the new free term ft we get for each i = 1, . . . , d,

E sup
0≤t≤T

|∂i ut |2L2(D ′) + E

∫ T

0
|∂i ut |2H1(D ′)dt ≤ C dist(D ′, ∂D)−2

E

[ ∫

D
|∇φ|2dx

+
∫ T

0

∫

D

[
|∇ut |2 + | ft |2 + |ut |2 +

∑

k∈N
|∇gkt |2

]
dxdt

]

which on using (41), then Theorem 1 with p = 2α − 2 and finally Hölder’s inequality
proves (25).

Further if f is a function of t, ω, x and r only such that (26) holds, then taking
ft (ut ) + f 0t as a new free term ft , similarly as above, we get

E

∫ T

0
|∂i ft |2L2(D)

dt = E

∫ T

0

∫

D
|∂i ut ∂r ft (ut ) + ∂i ft (ut ) + ∂i f

0
t |2dxdt

≤ CE

∫ T

0

∫

D

[|∇ut |2(1 + |ut |)2α−4 + (1 + |ut |)2α−2 + |∂i f 0t |2]dxdt

≤ CE

∫ T

0

∫

D

[
1 + |∇ut |2 + |∇ut |2|ut |2α−4 + |ut |2α−2 + |∂i f 0t |2]dxdt < ∞

(42)

for any i ∈ {1, . . . , d}. Hence f (u) + f 0 is in L2(� × (0, T ),P, H1(D)). Thus all
the conditions of Theorem 3 are satisfied for n = 2. This yields the first claim in (ii).
Again, using (40) for the new free term ft , we obtain for each i, j = 1, . . . , d
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E sup
0≤t≤T

|∂i∂ j ut |2L2(D ′′) + E

∫ T

0
|∂i∂ j ut |2H1(D ′′)dt

≤ C dist(D ′′, ∂D ′)−2
E

[ ∑

γ≤2

∫

D ′
|Dγ φ|2dx +

∫ T

0

∫

D ′

[ ∑

γ≤2

|Dγ ut |2

+
∑

γ≤1

|Dγ ft |2 +
∑

γ≤2

|Dγ gt |2�2
]
dxdt

]

≤ C dist(D ′′, ∂D ′)−2
E

[ ∑

γ≤2

∫

D ′
|Dγ φ|2dx +

∫ T

0

∫

D ′

[ ∑

γ≤1

|Dγ ut |2

+
∑

γ≤1

|Dγ ft |2 +
∑

γ≤2

|Dγ gt |2�2
]
dxdt

]

+ C dist(D ′′, ∂D ′)−2
E

∫ T

0

∫

D ′

∑

γ=2

|Dγ ut |2dxdt

which on using (41), (42), then Theorem 1 with p = 2α − 2 and (25) proves (27).
��

Remark 5 Note that to prove even higher regularity than that given by Theorem 2 one
would need to show that

E

∫ T

0
|∂ j∂i ft |2L2(D)

dt < ∞.

Using our approach we would require that

E

∫ T

0

∫

D
|∂ j ut∂i ut∂

2
r ft (ut )|2 dxdt < ∞.

However the L p-estimates from Theorem 1 are not sufficient. To overcome this, one
may try to formally apply ∂i to the SPDE (1) and then to try to get the analogous
L p-estimates for the equation for the derivative. However, since the semilinear term
is no longer monotone, the proof will break down.

4 Regularity in weighted spaces using Lp-theory and time regularity

In this section, we raise the regularity of the solution to the SPDE (1) using L p-theory
from Kim [14]. The reason for using L p-theory is that one gets better estimates for
the solution of the corresponding linear equation, see Theorem 4, given below, which
follows immediately from Kim [14, Theorem 2.9].

We will use this together with the L p-estimates we proved in Theorem 1 to obtain
regularity results (both space and time) for the solution of the semilinear equation (1),
see Theorems 5 and 6 below. In particular we obtain Hölder continuity in time of order
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1
2 − 2

q for the solution to (1) as a process in weighted Lq -space, where q comes from
the integrability assumptions imposed on the data.

First, we introduce some notations, concepts and assumptions from Kim [14]. For
r0 > 0 and x ∈ R

d , let Br0(x) := {y ∈ R
d : |x − y| < r0}.

Definition 2 (Domain of class C1
u ) The domain D ⊂ R

d is said to be of class C1
u

if for any x0 ∈ ∂D , there exist r0, K0, L0 > 0 and a one-one, onto continuously
differentiable map � : Br0(x0) → G, for a domain G ⊂ R

d , satisfying the following:

(i) �(x0) = 0 and �
(
Br0(x0) ∩ D

) ⊂ {y ∈ R
d : y1 > 0} ,

(ii) �
(
Br0(x0) ∩ ∂D

) = G ∩ {y ∈ R
d : y1 = 0},

(iii) |�|C1(Br0 (x0)) ≤ K0 and |�−1(y1)−�−1(y2)| ≤ K0|y1−y2| for any y1, y2 ∈ G,
(iv) |�x (x1) − �x (x2)| ≤ L0|x1 − x2| for any x1, x2 ∈ Br0(x0).

Let D be of class C1
u and ρ(x) := dist(x, ∂D). Then, by [14, Lemma 2.5] and

[15, Remark 2.7] (sinceD is bounded), there exists a bounded real valued function ψ

defined on D̄ satisfying

sup
x∈D

ρ|γ |(x)|Dγ ∂iψ(x)| < ∞ (43)

for any i = 1, . . . , d and any multi-index γ , such that

1

C
ρ ≤ ψ ≤ Cρ in D,

for some constant C . In other words, ψ and ρ are comparable in D , and in estimates
they can be used interchangeably (up to multiplication by a constant). Moreover this
implies ψ ≥ 0.

For 1 ≤ q < ∞, θ ∈ R and a non-negative integer n, define the weighted Sobolev
space Hn,q

θ (D) by

Hn,q
θ (D) := {u : ρ|γ |+(θ−d)/q Dγ u ∈ Lq(D) for any |γ | ≤ n}

where the norm for u ∈ Hn,q
θ (D) is given by

|u|q
Hn,q

θ

:=
n∑

i=0

∑

|γ |=i

∫

D
|Dγ u(x)|qρθ−d+iq(x)dx .

For functions u : R
d → R

d ′
, we define the norm analogously and use the same

notation. The following result from Lototsky [21] plays an important role in proving
our results.

Remark 6 The following are equivalent:

(i) u ∈ Hn,q
θ (D),

(ii) u ∈ Hn−1,q
θ (D) and ψ∂i u ∈ Hn−1,q

θ (D) for all i = 1, 2, . . . d ,
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(iii) u ∈ Hn−1,q
θ (D) and ∂i (ψu) ∈ Hn−1,q

θ (D) for all i = 1, 2, . . . d .

Further, let

H
n,q
θ (D) := Lq(� × (0, T ),P, Hn,q

θ (D)).

In the rest of the article, we assume that

q ≥ 2 and d − 2 + q < θ < d − 1 + q (44)

so that in viewof [14, Remark 2.7], the assumption regarding existence of anAp,θ -type
set (see [14, Assumption 2.8]), is satisfied. Finally, we need the following assumption
on the coefficients:

A-7 For any i, j = 1, . . . , d,

(i) the real valued coefficients ai j and their spatial derivatives up to order n + 1 are
P × B(D)-measurable and bounded by K ,

(ii) the real-valued coefficients bi , c and their spatial derivatives up to order n are
P × B(D)-measurable and are bounded by K ,

(iii) the coefficients σ i = (σ ik)∞k=1, μ = (μk)∞k=1 and their spatial derivatives up to
order n + 1 are �2-valued P × B(D)-measurable and almost surely

d∑

i=1

∑

k∈N

∑

|γ |≤n+1

|Dγ σ ik
t (x)|2 +

∑

k∈N

∑

|γ |≤n+1

|Dγ μk
t (x)|2 ≤ K

for all t and x ,
(iv) and for almost every (t, ω), the coefficients ai j (t, x) and σ i (t, x) are uniformly

continuous in x ∈ D .

Note that, the operator L given by (2) is in divergence form but the results from
[14] are for operators in non-divergence form. One knows that (1) can be expressed in
non-divergence form if the coefficients ai j are differentiable. Thus Assumption A-7
implies Assumptions 2.2 and 2.3 in [14]. Hence the following theorem follows from
Theorem 2.9 of Kim [14].

Theorem 4 Assume D is of class C1
u . Further, let Assumptions A-2 and A-7 hold with

some n ≥ 0. If ψ f ∈ H
n,q
θ (D), g ∈ H

n+1,q
θ (D; �2) and ψ

2
q −1

φ ∈ H
n+2,q
θ (D), then

⎧
⎪⎨

⎪⎩

dvt = (Ltvt + ft )dt +
∑

k∈N
(Mk

t vt + gkt )dW
k
t on [0, T ] × D,

vt = 0 on ∂D, v0 = φ on D

(45)

has a unique solution v such that ψ−1v ∈ H
n+2,q
θ (D).

In fact Theorem 2.9 in Kim [14] is proved even for fractional weighted Sobolev
spaces and under somewhat weaker assumptions. We do not use fractional spaces here
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to keep the presentation simpler. As to being able to use weaker assumptions: to obtain
results for the semilinear equation (1) we will need to apply our results from Sect. 2, in
particular Theorem 1 and thus we cannot substantially weaken our assumptions here.
Finally, we can state the main results on regularity for the solution to semilinear SPDE
(1).

Theorem 5 AssumeD is of class C1
u and u is the solution to (1). Further, let Assump-

tions A-2 to A-4 hold with p ≥ max(qα − q, 2) and Assumption A-7 holds with

n = 0. If for some q satisfying (44), ψ
2
q −1

φ ∈ H
2,q
θ (D), g ∈ H

1,q
θ (D; �2) and

f 0 ∈ H
0,q
θ (D), then ψ−1u ∈ H

2,q
θ (D).

Moreover, in the case Assumption A-7 holds with n = 1 and almost surely

|∂i ft (x, r , z)| ≤ K (1 + |r |)α−1, |∂r ft (x, r , z)| ≤ K (1 + |r |)α−2

and |∂z ft (x, r , z)| ≤ K (1 + |r |)α−1
(46)

for all i = 1, . . . , d, t ∈ [0, T ], x ∈ D, r ∈ R and all z ∈ R
d , if for some q

satisfying (44), ψ
2
q −1

φ ∈ H
3,q
θ (D), g ∈ H

2,q
θ (D; �2) and f 0 ∈ H

1,q
θ (D), then

ψ−1u ∈ H
3, q2
θ (D).

Remark 7 Note that if ψ−1u ∈ H
2,q
θ (D), then by using Remark 6, we get

ψ−1u ∈ H
1,q
θ (D) and ∂i u ∈ H

1,q
θ (D) ∀i = 1, 2, . . . d.

Invoking Remark 6 again, we have

ψ−1u ∈ H
0,q
θ (D), ∂i u ∈ H

0,q
θ (D) and ψ∂i∂ j u ∈ H

0,q
θ (D) ∀i, j = 1, 2, . . . d.

(47)

Finally, we present the result on time regularity of the solution of (1).

Theorem 6 Under the assumptions of Theorems 1 and 5,

u ∈ Cγ
([0, T ]; H0,q

θ+q(D)
)

a.s.

i.e. the solution u to SPDE (1), as a H0,q
θ+q(D)-valued process, is Hölder continuous

of order γ for every γ < 1
2 − 2

q for every q satisfying (44).

Note that one would like u to be Hölder continuous with exponent γ as a process
with values in a weighted Sobolev space with the same weight exponent θ as in
the results for spatial regularity (Theorem 5). However we need to use (47) in our
arguments when proving Theorem 6 which leads to requiring the weight exponent to
be θ + q.

Before proving these theorems, we first prove the following lemma:
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Lemma 7 Let θ̃ > d and q̃ ≥ 1. Further, let assumptions of Theorem 1 hold with

p ≥ max(q̃α − q̃, 2) and f 0 ∈ H
0,q̃
θ̃

(D). If u is the solution to (1) and ft :=
ft (ut ,∇ut ) + f 0t , then f ∈ H

0,q̃
θ̃

(D) and thus ψ f ∈ H
0,q̃
θ̃

(D).

Proof First we note that θ̃ > d and D is bounded, therefore supx∈D ρθ̃−d(x) < ∞.
Using this along with Assumption A-3 implies

E

∫ T

0

∫

D
| ft |q̃ρθ̃−ddxdt = E

∫ T

0

∫

D
| ft (ut ,∇ut ) + f 0t |q̃ρθ̃−ddxdt

≤ C
[
E

∫ T

0

∫

D
(1 + |ut |)q̃α−q̃ dxdt + E

∫ T

0

∫

D
| f 0t |q̃ρθ̃−ddxdt

]

≤ C
[
1 + E sup

0≤t≤T
|ut |q̃α−q̃

Lq̃α−q̃

]
+ CE

∫ T

0

∫

D
| f 0t |q̃ρθ̃−ddxdt

(48)

which is finite in view of Theorem 1 and the fact f 0 ∈ H
0,q̃
θ̃

(D). Now note that ψ is

bounded on D̄ and hence

E

∫ T

0

∫

D
|ψ ft |qρθ−d dxdt ≤ CE

∫ T

0

∫

D
| ft |qρθ−d dxdt < ∞.

��

Proof of Theorem 5 Let u be the solution to (1) given by Theorem 1. Then considering
ft (ut ,∇ut )+ f 0t as a new free term ft , the solution u satisfies (45). We wish to apply

Theorem 4 with n = 0 and in order to do so we need to show that ψ f ∈ H
0,q
θ (D).

Indeed this follows immediately by using Lemma 7 with θ̃ = θ and q̃ = q. Hence
applying Theorem 4 with n = 0 we obtain ψ−1u ∈ H

2,q
θ (D). This completes the

proof of the first statement of the theorem.
We now consider the case when Assumption A-7 holds with n = 1. Again we will

apply Theorem 4 (but now with n = 1 and q
2 in place of q) and so we need to show

that ψ f ∈ H
1,q̄
θ (D) with q̄ := q

2 . Taking θ̃ = θ and q̃ = q̄ in Lemma 7, we get

ψ f ∈ H
0,q̄
θ (D). Thus we consider

E

∫ T

0

∫

D
|∂i

(
ψ ft

)|q̄ρθ−d+q̄ dxdt = I1 + I2,

where

I1 := E

∫ T

0

∫

D
| ft |q̄ |∂iψ |q̄ρθ−d+q̄ dxdt and I2 := E

∫ T

0

∫

D
|∂i ft |q̄ψ q̄ρθ−d+q̄ dxdt .
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Clearly I1 < ∞ using (43), the fact ρ is bounded on D and Lemma 7 (with θ̃ = θ

and q̃ = q̄). Further observe that

∂i ft = ∂i ( ft (ut ,∇ut ) + f 0t )

= ∂i ft (ut ,∇ut ) + ∂i ut ∂r ft (ut ,∇ut ) + ∂i (∇ut )∇z ft (ut ,∇ut ) + ∂i f
0
t ,

where ∇z ft is the gradient with respect to z of ft = ft (x, r , z). Thus, we have

I2 ≤ C(I3 + I4 + I5 + I6) (49)

where

I3 := E

∫ T

0

∫

D
|∂i ft (ut ,∇ut )|q̄ψ q̄ρθ−d+q̄ dxdt,

I4 := E

∫ T

0

∫

D
|∂i ut ∂r ft (ut ,∇ut )|q̄ψ q̄ρθ−d+q̄ dxdt,

I5 := E

∫ T

0

∫

D
|∂i (∇ut )∇z ft (ut ,∇ut )|q̄ψ q̄ρθ−d+q̄ dxdt,

and

I6 := E

∫ T

0

∫

D
|∂i f 0t |q̄ψ q̄ρθ−d+q̄ dxdt .

Now, using the fact that ψ and ρ are bounded on D and the assumption on growth of
derivatives of the semilinear term, see (46), we observe that

I3 ≤ CE

∫ T

0

∫

D

(
1+|∂i ft (ut ,∇ut )|

)q
dxdt ≤ C

[
1+E

∫ T

0

∫

D
(1 + |ut |)qα−qdxdt

]
.

This is finite in view of Theorem 1, see the estimate (48) for details. Further, using
Young’s inequality and the fact that ψ and ρ are bounded on D along with growth
assumption (46), we get

I4 ≤ CE

∫ T

0

∫

D

[
|∂i ut |q + |∂r ft (ut ,∇ut )|q

]
ρθ−ddxdt

≤ C
[
|∂i u|q

H
0,q
θ

+ E

∫ T

0

∫

D
(1 + |ut |)qα−2qdxdt

]
.

We see that this is finite using Remark 7 and Theorem 1 again. Furthermore, using
Young’s inequality, growth assumption (46) and the fact that ψ and ρ are comparable,
we obtain
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I5 ≤ CE

∫ T

0

∫

D

[
|∂i (∇ut )|q + |∇z ft (ut ,∇ut )|q

]
ψqρθ−ddxdt

≤ C
[
|ψ∂i (∇u)|q

H
0,q
θ

+ E

∫ T

0

∫

D
(1 + |ut |)qα−qdxdt

]
.

Thus, applying Remark 7 and Theorem 1 as before, we obtain I5 < ∞. Finally, the
fact that ψ and ρ are comparable and bounded on D implies

I6 ≤ CE

∫ T

0

∫

D

(
1+|∂i f 0t |)qρθ−d+qdxdt ≤ C

[
1+E

∫ T

0

∫

D
|∂i f 0t |qρθ−d+qdxdt

]

which is finite since f 0 ∈ H
1,q
θ (D). Thusψ f ∈ H

1,q̄
θ (D) andwe can apply Theorem 4

with n = 1 and q̄ in place of q to complete the proof. ��
Proof of Theorem 6 We will prove the result using Kolmogorov continuity theorem.
To ease the notation we let ft := ft (ut ,∇ut ) + f 0t . Then from (1) we see that

E|ut − us |q
H0,q

θ+q

≤ 2q−1(I1(s, t) + I2(s, t)), (50)

where

I1(s, t) := E

∣∣∣
∫ t

s
(Lrur+ fr )dr

∣∣∣
q

H0,q
θ+q

and I2(s, t) :=
∣∣∣
∑

k∈N

∫ t

s
(Mk

r ur+gkr )dW
k
r

∣∣∣
q

H0,q
θ+q

.

We note that f 0 ∈ H
0,q
θ (D) implies f 0 ∈ H

0,q
θ+q(D) because ρ is bounded onD . Now

using Hölder’s inequality, we get

I1(s, t) ≤ (t − s)q−1
E

∫ t

s
|Lrur + fr |q

H0,q
θ+q

dr

≤ C(t − s)q−1
[
E

∫ t

s
|Lrur |q

H0,q
θ+q

dr + E

∫ t

s
| fr |q

H0,q
θ+q

dr
]
.

(51)

Using Assumption A-7 with n = 0, we get

|Lrur |q
H0,q

θ+q

=
∫

D

∣∣∣
d∑

j=1

∂ j

( d∑

i=1

ai jt ∂i ur
)

+
d∑

i=1

bit ∂i ur + ctur
∣∣∣
q
ρθ+q−ddx

≤ C
∫

D

( d∑

i, j=1

|∂i∂ j ur |q +
d∑

i=1

|∂i ur |q + |ur |q
)
ρθ+q−ddx

≤ C

( d∑

i, j=1

|ψ∂i∂ j ur |q
H0,q

θ

+ |ψ |q
C(D̄)

d∑

i=1

|∂i ur |q
H0,q

θ

+ |ψ |2q
C(D̄)

|ψ−1ur |q
H0,q

θ

)
.
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Substituting this in (51) and using the fact that ψ is bounded on D̄ , we obtain

I1(s, t)

≤ C(t − s)q−1
( d∑

i, j=1

|ψ∂i∂ j u|q
H
0,q
θ

+
d∑

i=1

|∂i u|q
H
0,q
θ

+ |ψ−1u|q
H
0,q
θ

+ | f |q
H
0,q
θ+q

)

≤ C(t − s)q−1,

(52)

where last statement follows using Remark 7 and Lemma 7 with θ̃ = θ +q and q̃ = q.
Furthermore using Burkholder–Davis–Gundy’s inequality, Assumption A-7 with

n = 0, Hölder’s inequality and the fact that ρ is bounded on D , we see that

I2(s, t) = E

∫

D

∣∣∣
∑

k∈N

∫ t

s
(Mk

r ur + gkr )dW
k
r

∣∣∣
q
ρθ+q−ddx

≤
∫

D
E

[ ∫ t

s

∑

k∈N
|Mk

r ur + gkr |2dr
] q

2
ρθ+q−ddx

=
∫

D
E

[ ∫ t

s

∑

k∈N

∣∣∣
d∑

i=1

σ ik
r ∂i ur + μk

r ur + gkr

∣∣∣
2
dr

] q
2
ρθ+q−ddx

≤ C
∫

D
E

[ ∫ t

s

( d∑

i=1

|∂i ur |2 + |ur |2 +
∑

k∈N
|gkr |2

)
dr

] q
2
ρθ+q−ddx

≤ C
∫

D
(t − s)

q
2 −1

E

[ ∫ t

s

( d∑

i=1

|∂i ur |q + |ur |q + |gr |q�2
)
dr

]
ρθ+q−ddx

≤ C(t − s)
q
2 −1

( d∑

i=1

|∂i u|q
H
0,q
θ

+ |ψ−1u|q
H
0,q
θ

+ |g|q
H
0,q
θ

)
≤ C(t − s)

q
2 −1.

(53)

Here, the last inequality is obtained using Remark 7 as before and the assumption that
g ∈ H

1,q
θ (D; �2). Using (52) and (53) in (50), we obtain

E|ut − us |q
H0,q

θ

≤ C |t − s| q2 −1

which on using Kolmogorov continuity theorem concludes the result. ��
Corollary 1 Under the assumptions of Theorems 1, 2 (parts (i) and (ii)) and 5we have

u ∈ Cα
([0, T ]; H1(D ′)

)
a.s.

for every α < 1
4 − 1

q with q satisfying (44) and D ′ � D .
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Proof Note that for any open D ′ � D , there exists a constant M > 0 such that the
distance function ρ satisfies |ρ(x)| ≥ M for all x ∈ D ′. Therefore using Theorem 6,
we get that almost surely

|ut−us |Lq (D ′) =
( ∫

D ′
|ut−us |qdx

) 1
q ≤

(
sup
x∈D ′

1

ρθ+q−d

∫

D
|ut − us |qρθ+q−ddx

) 1
q

≤ 1
(
Mθ+q−d

) 1
q

|t − s| 12− 2
q −ε |u|

C
1
2− 2

q −ε
(
[0,T ];H0,q

θ+q (D)
)

(54)

for any ε > 0 and all s, t ∈ [0, T ]. Further, since q ≥ 2, using Hölder’s inequality we
have that there exists a random variable C such that

|ut − us |L2(D ′) ≤ C |t − s| 12− 2
q −ε

which implies that almost surely u ∈ C
1
2− 2

q −ε([0, T ]; L2(D ′)
)
for any ε > 0. Fur-

thermore using Theorem 2, we have that almost surely u ∈ C
([0, T ]; H2(D ′)

)
. Now

usingGagliardo–Nirenberg inequality, we have that almost surely for any s, t ∈ [0, T ]

|ut − us |H1(D ′) ≤ C |ut − us |
1
2
L2(D ′)|ut − us |

1
2
H2(D ′)

≤ C
(
|t − s| 12− 2

q −ε |u|
C

1
2− 2

q −ε
(
[0,T ];L2(D ′)

)
) 1

2
(
2|u|

C
(
[0,T ];H2(D ′)

)
) 1

2

≤ C |t − s| 14− 1
q − ε

2

for some random variable C which concludes the result since ε > 0 is arbitrary. ��
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