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Abstract
In this paper, we present a quantitative central limit theorem for the d-dimensional
stochastic heat equation driven by a Gaussian multiplicative noise, which is white in
time and has a spatial covariance given by the Riesz kernel. We show that the spatial
average of the solution over an Euclidean ball is close to a Gaussian distribution, when
the radius of the ball tends to infinity. Our central limit theorem is described in the
total variation distance, usingMalliavin calculus and Stein’s method.We also provide
a functional central limit theorem.
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1 Introduction

We consider the stochastic heat equation

∂u

∂t
= 1

2
�u + σ(u)Ẇ , (1.1)

on R+ ×R
d with initial condition u(0, x) = 1, where Ẇ (t, x) is a centered Gaussian

noise with covariance E
[
Ẇ (t, x)Ẇ (s, y)

] = δ0(t − s)|x − y|−β , 0 < β < min(d, 2).
In this paper, | · | denotes the Euclidean norm and we assume the nonlinear term σ is
a Lipschitz function with σ(1) �= 0; see point (iii) in Remark 3.

Our first result is the following quantitative central limit theorem concerning the
spatial average of the solution u(t, x) over BR := {x ∈ R

d : |x | ≤ R}.
Theorem 1.1 For all t > 0, there exists a constant C = C(t, β), depending on t and
β, such that

dTV

(
1

σR

∫

BR

[
u(t, x) − 1

]
dx, Z

)
≤ CR−β/2 ,

where dTV denotes total variation distance (see (1.2)), Z ∼ N (0, 1) is a standard
normal random variable and σ 2

R = Var
( ∫

BR
[u(t, x) − 1] dx). Moreover, the normal-

ization σR is of order Rd− β
2 , as R → +∞ [(see (1.8)].

Remark 1 In the above result we have assumed u(0, x) = 1 for the sake of simplicity.
However, one can easily extend the result to cover more general initial deterministic
condition u(0, x). In fact, this is the topic of Corollary 3.3.

We will mainly rely on the methodology of Malliavin-Stein approach to prove the
above result. Such an approach was introduced by Nourdin and Peccati in [9] to,
among other things, quantify Nualart and Peccati’s fourth moment theorem in [14].
Notably, if F is a Malliavin differentiable (that means, F belongs to the Sobolev space
D
1,2), centered Gaussian functional with unit variance, the well-known Malliavin-

Stein bound implies

dTV(F, Z) : = sup
{
P(F ∈ A) − P(Z ∈ A) : A ⊂ R Borel sets

}
(1.2)

≤ 2
√
Var
(〈DF,−DL−1F〉H

)
with Z ∼ N (0, 1), (1.3)

where D is the Malliavin derivative, L−1 is the pseudo-inverse of the Ornstein-
Uhlenbeck operator and 〈·, ·〉H denotes the inner product in the Hilbert space H
associated with the covariance of W ; see also the monograph [10].

It was observed in [16] that instead of 〈DF,−DL−1F〉H, one can work with
the term 〈DF, v〉H once F can be represented as a Skorohod integral δ(v); see the
following result from [16, Proposition 3.1] (see also [8,12]).
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Proposition 1.2 If F is a centered random variable in the Sobolev space D
1,2 with

unit variance such that F = δ(v) for some H-valued random variable v, then, with
Z ∼ N (0, 1),

dTV(F, Z) ≤ 2
√
Var
(〈DF, v〉H

)
. (1.4)

This estimate enables us to bring in tools from stochastic analysis.

Remark 2 Throughout this paper we only work with the total variation distance. How-
ever, we point out that we can get the same rate in other frequently used distances.
Indeed, if d denotes either the Kolmogorov distance, the Wasserstein distance or the
Fortet-Mourier distance, we have as well

d(F, Z) ≤ 2
√
Var
(〈DF, v〉H

)
,

where F, Z are given as in (1.4); see e.g. [10, Chapter 3] for the properties of Stein’s
solution. Thus, proceeding in the exact same lines as in this paper, we will get the
same rate in these distances.

It is known (see e.g. [4,18]) that Eq. (1.1) has a unique mild solution {u(t, x) : t ≥
0, x ∈ R

d}, in the sense that it is adapted to the filtration generated by W , uniformly
bounded in L2(�) over [0, T ] × R

d (for any finite T ) and satisfies the following
integral equation in the sense of Dalang-Walsh

u(t, x) =
∫

Rd
pt (x − y)u(0, y)dy +

∫ t

0

∫

Rd
pt−s(x − y)σ (u(s, y))W (ds, dy) ,

(1.5)

where pt (x) = (2π t)−d/2 exp
(− |x |2/(2t)) denotes the heat kernel and is the funda-

mental solution to the corresponding deterministic heat equation.
Let us introduce some handy notation. For fixed t > 0, we define

ϕR(s, y) :=
∫

BR

pt−s(x − y)dx and GR(t) :=
∫

BR

[
u(t, x) − 1

]
dx . (1.6)

If we put FR(t) := GR(t)/σR , then we write, due to the Fubini’s theorem,

FR(t) = 1

σR

∫ t

0

∫

Rd
ϕR(s, y)σ (u(s, y))W (ds, dy) = δ(vR) , (1.7)

with vR(s, y) = σ−1
R 1[0,t](s)ϕR(s, y)σ (u(s, y)) taking into account that the Dalang-

Walsh integral (1.5) is a particular case of the Skorohod integral; see [11].
By Proposition 1.2, the proof of Theorem 1.1 reduces to estimating the variance of

〈DFR(t), vR〉H. One of the key steps, our Proposition 3.2, provides the exact asymp-
totic behavior of the normalization σ 2

R :

σ 2
R = Var

(
GR(t)

) ∼
(
kβ

∫ t

0
η2(s) ds

)
R2d−β , as R → +∞; (1.8)
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and throughout this paper, we will reserve the notation kβ and η(·) for

kβ :=
∫

B2
1

|x1 − x2|−βdx1dx2 and η(s) := E
[
σ(u(s, y))

]
. (1.9)

Remark 3 (i) The definition of η does not depend on the spatial variable, due to the
strict stationarity of the solution, meaning that the finite-dimensional distribu-
tions of the process {u(t, x + y), x ∈ R

d} do not depend on y; see [4].
(ii) Another consequence of the strict stationarity is that the quantity

Kp(t) := E
[|u(t, x)|p] (1.10)

does not depend on x . Moreover, Kp(·) is uniformly bounded on compact sets.
(iii) Under our constant initial condition (i.e. u(0, x) ≡ 1), the assumption σ(1) �= 0

is necessary and sufficient in our paper. It is necessary, in view of the usualPicard
iteration, to exclude the situation where u(t, x) ≡ 1 is the unique solution, and
it is sufficient to guarantee that the integral in (1.8) is nonzero. Moreover, we
have the following equivalence

σ(1) = 0 ⇔ σR = 0,∀R > 0 ⇔ σR = 0 for some R > 0 ⇔ lim
R→∞ σ 2

R R
β−2d = 0;

whose verification can be done in the same way as in [5, Lemma 3.4], so we
leave it as an easy exercise for interested readers.

(iv) Due to the stationarity again,we can see that Theorem1.1 still holds truewhenwe
replace BR by {x ∈ R

d : |x−aR | ≤ R}, with aR possibly varying as R → +∞.
Moreover, the normalization σR in this translated version remains unchanged. To
see this translational “invariance”, one can alternatively go through the exactly
same arguments as in the proof of Theorem 1.1. Note that this invariance under
translation justifies the statement in our abstract.

(v) By going through the exactly same arguments as in the proof of Theorem 1.1,
we can obtain the following result: If we replace the ball BR by the box �R :={
(x1, . . . , xd) ∈ R

d : |xi | ≤ R, i = 1, . . . , d
}
, Theorem 1.1 still holds true with

a slightly different normalization σ ′
R given by

σ ′
R ∼
(∫ t

0
η2(s)

∫

�2
1

|z − y|−βdzdy ds

)1/2
Rd− β

2 , as R → +∞.

Our second main result is the following functional version of Theorem 1.1.

Theorem 1.3 Fix any finite T > 0 and recall (1.9). Then, as R → +∞, we have

{
R

β
2 −d
∫

BR

[
u(t, x) − 1

]
dx

}

t∈[0,T ]
⇒
{√

kβ

∫ t

0
η(s)dYs

}

t∈[0,T ]
,

where Y is a standard Brownian motion and the above weak convergence takes place
on the space of continuous functions C([0, T ]).
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Asimilar problem for the stochastic heat equation onRhas been recently considered
in [8], but only in the case of a space-time white noise, where η2(s) appearing in
the limiting variance (1.8) is replaced by E

[
σ 2(u(s, y))

]
. Such a phenomenon also

appeared in the case of the one-dimensional wave equation, see the recent paper [5],
whose authors also considered the Riesz kernel for the spatial fractional noise therein,
which corresponds to the case β = 2 − 2H .

Remark 4 When σ(x) = x , the random variable GR(t) defined in (1.6) has an explicit
Wiener chaos expansion:

GR(t) =
∫ t

0

∫

Rd
ϕR(s, y)W (ds, dy) + higher-order chaoses.

In this linear case, the asymptotic result (1.8) reduces to σ 2
R ∼ tkβ R2d−β , while the

first chaotic component of GR(t) is centered Gaussian with variance equal to

∫ t

0

∫

R2d
ϕR(s, y)ϕR(s, z)|y − z|−β dydz ∼ tkβ R

2d−β , as R → +∞;

see (3.9). Therefore, due to the orthogonality of Wiener chaoses with different orders,
we can conclude that FR(t) = GR(t)/σR is asymptotically Gaussian. It is worth
pointing out that, unlike in our case, for the linear stochastic heat equation driven by
space-time white noise as considered in [8], the central limit is chaotic, meaning that
each projection on the Wiener chaos contributes to the Gaussian limit. In this case,
the proof of asymptotic normality could be based on the chaotic central limit theorem
from [7, Theorem 3] (see also [10, Section 6.3]).

The rest of the paper is organized as follows. We present the proofs in Sects. 3 and
4 , after we recall briefly some preliminaries in Sect. 2.

Along the paper, we will denote by C a generic constant that may depend on the
fixed time T , the parameter β and σ , and it can vary from line to line. We also denote
by ‖ · ‖p the L p(�)-norm and by L the Lipschitz constant of σ .

2 Preliminaries

Let us build an isonormal Gaussian process from the colored noise W as follows.
We begin with a centered Gaussian family of random variables

{
W (ψ) : ψ ∈

C∞
c

([0,∞) × R
d
) }

, defined on some complete probability space, such that

E [W (ψ)W (φ)] =
∫ ∞

0

∫

R2d
ψ(s, x)φ(s, y)|x − y|−β dxdyds =: 〈ψ, φ

〉
H

,

where C∞
c

([0,∞) × R
d
)
is the space of infinitely differentiable functions with com-

pact support on [0,∞) ×R
d . Let H be the Hilbert space defined as the completion of

C∞
c

([0,∞) × R
d
)
with respect to the above inner product. By a density argument,
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we obtain an isonormal Gaussian process W := {W (ψ) : ψ ∈ H
}
meaning that for

any ψ, φ ∈ H,

E [W (ψ)W (φ)] = 〈ψ, φ
〉
H

.

Let F = (Ft , t ≥ 0) be the natural filtration ofW , withFt generated by
{
W (φ) : φ

continuous and with compact support in [0, t]×R
d
}
. Then for any F-adapted, jointly

measurable random field X such that

E(‖X‖2H) = E

(∫ ∞

0
ds
∫

R2d
dxdy X(s, y)X(s, x)|x − y|−β

)
< ∞, (2.1)

the stochastic integral

∫ ∞

0

∫

Rd
X(s, y)W (ds, dy)

is well-defined in the sense of Dalang-Walsh and the following isometry property is
satisfied

E

(∣∣∣
∣

∫ ∞

0

∫

Rd
X(s, y)W (ds, dy)

∣∣∣
∣

2
)

= E(‖X‖2H).

In the sequel, we recall some basic facts on Malliavin calculus and we refer readers
to the books [11,12] for any unexplained notation and result.

Denote by C∞
p (Rn) the space of smooth functions with all their partial derivatives

having at most polynomial growth at infinity. Let S be the space of simple functionals
of the form F = f (W (h1), . . . ,W (hn)) for f ∈ C∞

p (Rn) and hi ∈ H, 1 ≤ i ≤ n,
n ∈ N. Then, DF is the H-valued random variable defined by

DF =
n∑

i=1

∂ f

∂xi
(W (h1), . . . ,W (hn))hi .

The derivative operator D is closable from L p(�) into L p(�;H) for any p ≥ 1 and
we let D1,p be the completion of S with respect to the norm

‖F‖1,p =
(
E
[|F |p]+ E

[‖DF‖p
H

])1/p
.

We denote by δ the adjoint of D characterized by the integration-by-parts formula

E[δ(u)F] = E
[〈u, DF〉H

]

for any F ∈ D
1,2 and u ∈ Dom δ ⊂ L2(�;H), the domain of δ. The operator δ is also

called the Skorohod integral, because in the case of the Brownian motion, it coincides
with Skorohod’s extension of the Itô integral (see e.g. [6,13]). In our context, any

123



408 Stoch PDE: Anal Comp (2020) 8:402–421

adapted random field X satisfying (2.1) belongs to Domδ, and δ(X) coincides with
the Dalang-Walsh stochastic integral. As a consequence, the mild formulation (1.5)
can be rewritten as

u(t, x) = 1 + δ
(
pt−·(x − ∗)σ

(
u(·, ∗)

))
.

It is known that for any (t, x) ∈ R+ × R
d , u(t, x) ∈ D

1,p for any p ≥ 2 and the
derivative satisfies, for t ≥ s, the linear equation

Ds,yu(t, x) = pt−s(x − y)σ (u(s, y))

+
∫ t

s

∫

Rd
pt−r (x − z)�(r , z)Ds,yu(r , z)W (dr , dz), (2.2)

where �(r , z) is an adapted process, bounded by L . If in addition σ ∈ C1(R), then
�(r , z) = σ ′(u(r , z)). This result is proved in [11, Proposition 2.4.4] in the case of
the stochastic heat equation with Dirichlet boundary conditions on [0, 1] driven by a
space-time white noise. Its proof can be easily adapted to our case, see also [1,15].

In the end of this section, we record a technical lemma, whose proof can be found
in [3, Lemma 3.11].

Lemma 2.1 For any p ∈ [2,+∞), 0 ≤ s ≤ t ≤ T and x, y ∈ R
d , we have for every

(s, y) ∈ [0, T ] × R
d ,

‖Ds,yu(t, x)‖p ≤ Cpt−s(x − y) (2.3)

for some constant C = CT ,p that may depend on T and p.

Note that in [5], the p-norm of theMalliavin derivative Ds,yu(t, x) can be bounded
by a multiple of the fundamental solution of the wave equation. So it is natural to
expect that a similar estimate like (2.3) may hold for a large family of stochastic
partial differential equations.

3 Proof of Theorem 1.1

We first state a lemma, which will be used below.

Lemma 3.1 Let Z be a standard Gaussian vector on R
d and β ∈ (0, d). Then

sup
s>0

∫

Rd
ps(x − y)|x |−βdx = sup

s>0
E

[
|y + √

sZ |−β
]

≤ C |y|−β , (3.1)

for some constant C that only depends on d and β.

Proof We want to show that
∫

Rd
ps(x − y)|x |−βdx ≤ C |y|−β ,
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where C does not depend on s. We first prove this for s = 1.

∫

Rd
e− |x−y|2

2 |x |−βdx =
∫

|x |≤ |y|
2

e− |x−y|2
2 |x |−βdx +

∫

|x |> |y|
2

e− |x−y|2
2 |x |−βdx

≤
∫

|x |≤ |y|
2

e− |y|2
8 |x |−βdx + 2β

∫

|x |≥ |y|
2

e− |x−y|2
2 |y|−βdx

≤ C1e
− |y|2

8 |y|−β+d + C2|y|−β,

where the constants C1 and C2 only depend on d, β. So we have proved (3.1) for
s = 1.

Therefore, we have for general s > 0,

E

[
|y + √

sZ |−β
]

= E

[∣∣∣
(
ys−1/2 + Z

)√
s
∣∣∣
−β] ≤ C |ys−1/2|−β(

√
s)−β = C |y|−β.

That is, we have proved (3.1) for general s > 0.

Now we begin with the estimate (1.8) recalled below.

Proposition 3.2 With the notation (1.6) and (1.9), we have

lim
R→+∞ Rβ−2d

E[G2
R(t)] = kβ

∫ t

0
η2(s) ds.

Proof We define �(s, y) = E
[
σ(u(s, 0))σ (u(s, y))

]
. Then

E[G2
R(t)] =

∫ t

0

∫

R2d
ϕR(s, y)ϕR(s, z)E

[
σ(u(s, y))σ (u(s, z))

]|y − z|−βdydzds

=
∫ t

0

∫

R2d
ϕR(s, ξ + z)ϕR(s, z)�(s, ξ)|ξ |−βdξdzds , by stationarity.

We claim that

lim|ξ |→+∞ sup
0≤s≤t

|�(s, ξ) − η2(s)| = 0. (3.2)

To see (3.2), we apply a version of the Clark-Ocone formula for square integrable
functionals of the noise W and we can write

σ(u(s, y)) = E[σ(u(s, y))] +
∫ s

0

∫

Rd
E

[
Dr ,γ
(
σ(u(s, y))

)|Fr

]
W (dr , dγ ) .

As a consequence, E
[
σ(u(s, y))σ (u(s, z))

] = η2(s) + T (s, y, z), where

T (s, y, z) =
∫ s

0

∫

R2d
E

{
E

[
Dr ,γ
(
σ(u(s, y))

)|Fr

]
E

[
Dr ,λ
(
σ(u(s, z))

)|Fr

]}
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× |γ − λ|−βdγ dλdr . (3.3)

By the chain-rule (see [11]), Dr ,γ
(
σ(u(s, y))

) = �(s, y)Dr ,γ u(s, y), with �(·, ∗)

F-adapted and bounded by L (in particular, �(s, y) = σ ′(u(s, y)), when σ is differ-
entiable .) This implies, using (2.3),

∣∣∣E
{
E

[
Dr ,γ
(
σ(u(s, y))

)|Fr

]
E

[
Dr ,λ
(
σ(u(s, z))

)|Fr

]}∣∣∣

≤ L2‖Dr ,γ u(s, y)‖2‖Dr ,λu(s, z)‖2 ≤ Cps−r (γ − y)ps−r (λ − z), (3.4)

for some constant C . Therefore, substituting (3.4) into (3.3) and using the semigroup
property in (3.5), we can write

|T (s, y, z)| ≤ C
∫ s

0

∫

R2d
ps−r (γ − y)ps−r (λ − z)|γ − λ|−βdγ dλdr

= C
∫ s

0

∫

Rd
p2s−2r (γ + z − y)|γ |−βdγ dr (3.5)

≤ C |y − z|−β |y−z|→+∞−−−−−−−→ 0 , (3.6)

by Lemma 3.1. This completes the verification of (3.2).
Let us continue our proof of Proposition 3.2 by proving that

Rβ−2d
∫ t

0

∫

R2d
ϕR(s, ξ + z)ϕR(s, z)

[
�(s, ξ) − η2(s)

]|ξ |−βdξdzds → 0 , (3.7)

as R → +∞. Notice that

∫

Rd
ϕR(s, ξ + z)ϕR(s, z)dz =

∫

B2
R

p2(t−s)(x1 − x2 − ξ)dx1dx2 ≤ CRd . (3.8)

From (3.2) we deduce that given any ε > 0, we find K = Kε > 0 such that |�(s, ξ)−
η2(s)| < ε for all s ∈ [0, t] and |ξ | ≥ K . Now we divide the integration domain in
(3.7) into two parts |ξ | ≤ K and |ξ | > K .

Case (i): On the region |ξ | ≤ K , since �(s, y− z)−η2(s) = T (s, y, z) is uniformly
bounded, using (3.8), we can write

Rβ−2d
∫ t

0

∫

R2d
ϕR(s, ξ + z)ϕR(s, z)

∣∣�(s, ξ) − η2(s)
∣∣1{|ξ |≤K }|ξ |−β dξdzds

≤ CRβ−2d
∫ t

0

∫

|ξ |≤K

(∫

Rd
ϕR(s, ξ + z)ϕR(s, z) dz

)
|ξ |−β dξds

≤ CRβ−d
∫ t

0

∫

|ξ |≤K
|ξ |−β dξds

R→+∞−−−−−→ 0 , because of β < d.
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Case (ii): On the region [0, t] × Bc
K , |�(s, ξ) − η2(s)| < ε. Thus,

Rβ−2d
∫ t

0

∫

R2d
ϕR(s, ξ + z)ϕR(s, z)

∣∣�(s, ξ) − η2(s)
∣∣1{|ξ |>K }|ξ |−β dξdzds

≤ εRβ−2d
∫ t

0

∫

Rd

∫

B2
R

p2(t−s)(x1 − x2 − ξ)|ξ |−βdx1dx2dξds

= εRβ−2d
∫ t

0

∫

B2
R

E

[∣
∣∣x1 − x2 − √

2sZ
∣
∣∣
−β
]
dx1dx2ds

= ε

∫ t

0

∫

B2
1

E

[∣∣
∣x1 − x2 − R−1

√
2sZ
∣∣
∣
−β
]
dx1dx2ds ≤ Cεtkβ , by Lemma 3.1,

with Z a standard Gaussian random vector on R
d . This establishes the limit (3.7),

since ε > 0 is arbitrary.
Now, it suffices to show that

Rβ−2d
∫ t

0
η2(s)

∫

R2
ϕR(s, ξ + z)ϕR(s, z)|ξ |−βdξdzds → kβ

∫ t

0
η2(s)ds. (3.9)

as R → +∞. This follows from arguments similar to those used above. In fact,
previous computations imply that the left-hand side of (3.9) is equal to

∫ t

0
η2(s)

(∫

B2
1

E

[
|x1 − x2 − R−1

√
2sZ |−β

]
dx1dx2

)

ds.

In view of Lemma 3.1 and dominated convergence theorem, we obtain the limit in
(3.9) and hence the proof of the proposition is completed. ��
Remark 5 By using the same argument as in the proof of Proposition 3.2, we obtain an
asymptotic formula forE

[
GR(ti )GR(t j )

]
with ti , t j ∈ R+, which is a useful ingredient

for our proof of Theorem 1.3. Suppose ti , t j ∈ R+, we write

E
[
GR(ti )GR(t j )

] =
∫ ti∧t j

0

∫

R2d
ϕ

(i)
R (s, y)ϕ( j)

R (s, z)�(s, y − z)|y − z|−βdydzds ,

with ϕ
(i)
R (s, y) = ∫BR

pti−s(x − y) dx , and we obtain

lim
R→+∞ Rβ−2d

E
[
GR(ti )GR(t j )

]

= lim
R→+∞ Rβ−2d

∫ ti∧t j

0
ds η2(s)

∫

R2d
ϕ

(i)
R (s, y)ϕ( j)

R (s, z)|y − z|−βdydz

= kβ

∫ ti∧t j

0
η2(s) ds .

We are now ready to present the proof of Theorem 1.1.

123



412 Stoch PDE: Anal Comp (2020) 8:402–421

Proof of Theorem 1.1 Recall from (1.7) that

FR := FR(t) = δ(vR) , with vR(s, y) = σ−1
R 1[0,t](s)ϕR(s, y)σ (u(s, y)).

Moreover,

Ds,y FR = 1[0,t](s)
1

σR

∫

BR

Ds,yu(t, x)dx ,

and by (2.2) and Fubini’s theorem, we can write

∫

BR

Ds,yu(t, x) dx = ϕR(s, y)σ (u(s, y))

+
∫ t

s

∫

Rd
ϕR(r , z)�(r , z)Ds,yu(r , z)W (dr , dz).

Therefore, we have the following decomposition 〈DFR, vR〉H = B1 + B2, with

B1 = σ−2
R

∫ t

0

∫

R2d
ϕR(s, y)ϕR(s, y′)σ

(
u(s, y)

)
σ
(
u(s, y′)

)|y − y′|−β dydy′ds

and

B2 = σ−2
R

∫ t

0

∫

R2d

(∫ t

s

∫

Rd
ϕR(r , z)�(r , z)Ds,yu(r , z)W (dr , dz)

)

× ϕR(s, y′)σ
(
u(s, y′)

)|y − y′|−β dydy′ds.

By Proposition 1.2, dTV(FR, Z) ≤ 2
√
Var
[〈DFR, vR〉H

] ≤ 2
√
2(A1 + A2), with

A1 = σ−2
R

∫ t

0
ds

(∫

R4d
ϕR(s, y)ϕR(s, y′)ϕR(s, ỹ)ϕR(s, ỹ′)|y − y′|−β

× |ỹ − ỹ′|−βCov
[
σ
(
u(s, y)

)
σ
(
u(s, y′)

)
, σ
(
u(s, ỹ)

)
σ
(
u(s, ỹ′)

)]
dydy′d ỹd ỹ′

)1/2

and

A2 = σ−2
R

∫ t

0

(∫

R6d

∫ t

s
ϕR(r , z)ϕR(r , z̃)ϕR(s, y′)ϕR(s, ỹ′)

× E

{
�(r , z)Ds,yu(r , z)�(r , z̃)Ds,ỹu(r , z̃)σ

(
u(s, ỹ′)

)
σ
(
u(s, y′)

)}

× |y − y′|−β |ỹ − ỹ′|−β |z − z̃|−βdydy′d ỹd ỹ′dzdz̃dr
)1/2

ds .

The proof will be done in two steps:
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Step 1: Let us first estimate the term A2. By Lemma 2.1,

∣∣∣E
{
�(r , z)Ds,yu(r , z)�(r , z̃)Ds,ỹu(r , z̃)σ

(
u(s, ỹ′)

)
σ
(
u(s, y′)

)}∣∣∣

≤ K 2
4 (t)L2‖Ds,yu(r , z)‖4‖Ds,ỹu(r , z̃)‖4 ≤ Cpr−s(y − z)pr−s(ỹ − z̃),

where K4(t) is introduced in (1.10). By Proposition 3.2, we have

A2 ≤ CRβ−2d
∫ t

0

(∫

R6d

∫ t

s
ϕR(r , z)ϕR(r , z̃)ϕR(s, y′)ϕR(s, ỹ′)pr−s(y − z)

× pr−s(ỹ − z̃)|y − y′|−β |ỹ − ỹ′|−β |z − z̃|−βdydy′d ỹd ỹ′dzdz̃dr
)1/2

ds ,

where the integral in the spatial variables can be rewritten as

IR :=
∫

B4
R

∫

R6d
pt−r (x − z)pt−r (x̃ − z̃)pt−s(x

′ − y′)pt−s(x̃
′ − ỹ′)pr−s(y − z)

× pr−s(ỹ − z̃)|y − y′|−β |ỹ − ỹ′|−β |z − z̃|−β dxdx̃dx ′dx̃ ′dydy′d ỹd ỹ′dzdz̃ .

Making the change of variables
(
θ = x − z, θ̃ = x̃ − z̃, η′ = x ′ − y′, η̃′ = x̃ ′ − ỹ′,

η = y − z and η̃ = ỹ − z̃
)
yields,

IR =
∫

B4
R

(∫

R6d
pt−r (θ)pt−r (θ̃)pt−s(η

′)pt−s(η̃
′)pr−s(η)pr−s(η̃)

× |x − x ′ − θ + η + η′|−β |x̃ − x̃ ′ − θ̃ + η̃ + η̃′|−β

× |x − x̃ − θ + θ̃ |−β dηdη′dη̃dη̃′dθd θ̃

)
dxdx̃dx ′dx̃ ′.

This can be written as

IR =
∫

B4
R

dxdx̃dx ′dx̃ ′
E

{∣
∣x − x ′ + √

t − r Z1 + √
r − sZ5 + √

t − sZ3
∣
∣−β

× ∣∣x̃ − x̃ ′ + √
t − r Z2 + √

r − sZ6 + √
t − sZ4

∣
∣−β ∣∣x − x̃ + √

t − r(Z1 + Z2)
∣
∣−β
}

≤ C
∫

B4
R

dxdx̃dx ′dx̃ ′
E

{∣
∣x − x ′ + √

t − r Z1
∣
∣−β ∣∣x̃ − x̃ ′ − √

t − r Z2
∣
∣−β

× ∣∣x − x̃ + √
t − r(Z1 + Z2)

∣∣−β
}
,

with Z1, . . . , Z6 i.i.d. standard Gaussian vectors onRd , here we have used Lemma 3.1
repeatedly for Z5, Z3, Z6, Z4 to obtain the last inequality. Making the change of
variables x → Rx , x̃ → Rx̃ , x ′ → Rx ′ and x̃ ′ → Rx̃ ′, we can write
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IR = CR4d−3β
E

∫

B4
1

dxdx̃dx ′dx̃ ′ ∣∣x − x ′ + R−1√t − r Z1
∣∣−β

× ∣∣x̃ − x̃ ′ − R−1√t − r Z2
∣∣−β ∣∣x − x̃ + R−1√t − r(Z1 + Z2)

∣∣−β

≤ CR4d−3β
E

∫

B3
2

dy1dy2dy3
∣∣y1 + R−1√t − r Z1

∣∣−β ∣∣y2 − R−1√t − r Z2
∣∣−β

× ∣∣y3 + R−1√t − r(Z1 + Z2)
∣∣−β

,

where the second inequality follows from the change of variables x−x ′ = y1, x̃− x̃ ′ =
y2, x − x̃ = y3. Taking into account the fact that

sup
z∈Rd

∫

B2

∣∣y + z
∣∣−β

dy < +∞, (3.10)

we obtain

IR ≤ CR4d−3β

(

sup
z∈Rd

∫

B2
|y + z|−βdy

)3
≤ CR4d−3β ,

and it follows immediately that A2 ≤ CR−β/2.
Step 2: We now estimate A1. We begin by estimating the covariance

Cov
[
σ
(
u(s, y)

)
σ
(
u(s, y′)

)
, σ
(
u(s, ỹ)

)
σ
(
u(s, ỹ′)

)]
. (3.11)

Using a version of Clark–Ocone formula for square integrable functionals of the noise
W , we can write

σ
(
u(s, y)

)
σ
(
u(s, y′)

) = E
[
σ
(
u(s, y)

)
σ
(
u(s, y′)

)]

+
∫ s

0

∫

Rd
E

[
Dr ,z

(
σ
(
u(s, y)

)
σ
(
u(s, y′)

))|Fr

]
W (dr , dz).

Then, we represent the covariance (3.11) as

∫ s

0

∫

R2d
E

{
E

[
Dr ,z

(
σ
(
u(s, y)

)
σ
(
u(s, y′)

))|Fr

]

× E

[
Dr ,z′
(
σ
(
u(s, ỹ)

)
σ
(
u(s, ỹ′)

))|Fr

]}
|z − z′|−β dzdz′dr .

By the chain rule, Dr ,z
(
σ(u(s, y))σ (u(s, y′))

) = σ
(
u(s, y)

)
�(s, y′)Dr ,zu(s, y′) +

σ
(
u(s, y′)

)
�(s, y)Dr ,zu(s, y). Therefore,

∥∥E
[
Dr ,z(σ (u(s, y))σ (u(s, y′)))|Fr

]∥∥
2 is

bounded by 2K4(t)L
{‖Dr ,zu(s, y)‖4 + ‖Dr ,zu(s, y′)‖4

}
. Using Lemma 2.1 again,

we see that the covariance (3.11) is bounded by

4L2K 2
4 (t)
∫ s

0

∫

R2d

( ∥
∥Dr ,zu(s, y)

∥
∥
4 + ∥∥Dr ,zu(s, y′)

∥
∥
4

)
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×
(
‖Dr ,z′u(s, ỹ)‖4 + ‖Dr ,z′u(s, ỹ′)‖4

)
|z − z′|−βdzdz′dr

≤ C
∫ s

0

∫

R2d

(
ps−r (y − z) + ps−r (y

′ − z)
)

× (ps−r (ỹ − z′) + ps−r (ỹ
′ − z′)

)|z − z′|−βdzdz′dr .

Consequently, the spatial integral in the expression of A1 can be bounded by

JR := C
∫ s

0

∫

R6d
ϕR(s, y)ϕR(s, y′)ϕR(s, ỹ)ϕR(s, ỹ′)

× |y − y′|−β |ỹ − ỹ′|−β |z − z′|−β
(
ps−r (y − z) + ps−r (y

′ − z)
)

×
(
ps−r (ỹ − z′) + ps−r (ỹ

′ − z′)
)
dydy′d ỹd ỹ′dzdz′dr

= 4C
∫ s

0
dr
∫

R6d
dydy′d ỹd ỹ′dzdz′ ϕR(s, y)ϕR(s, y′)ϕR(s, ỹ)ϕR(s, ỹ′)

× |y − y′|−β |ỹ − ỹ′|−β |z − z′|−β ps−r (y − z)ps−r (ỹ − z′), by symmetry.

Then, it follows from exactly the same argument as in the estimation of IR in the
previous step that JR ≤ CR4d−3β . Indeed, we have

∫ s

0

∫

B4
R

∫

R6d
pt−s(x − y)pt−s(x

′ − y′)pt−s(x̃ − ỹ)pt−s(x̃
′ − ỹ′)

× |y − y′|−β |ỹ − ỹ′|−β |z − z′|−β ps−r (y − z)ps−r (ỹ − z′)
dxdx ′dx̃d x̃ ′dydy′d ỹd ỹ′dzdz′dr

=
∫ s

0
dr
∫

B4
R

dxdx ′dx̃d x̃ ′
∫

R6d
pt−s(θ)pt−s(θ

′)pt−s(θ̃)pt−s(θ̃
′)ps−r (η)

× ps−r (η̃) |x − x ′ − θ + θ ′|−β |x̃ − x̃ ′ − θ̃ + θ̃ ′|−β

× |x − x̃ − η + θ + θ̃ + η̃|−βdθdθ ′d θ̃d θ̃ ′dηdη̃

=
∫ s

0
dr
∫

B4
R

E

{∣
∣x − x ′ + √

t − s(Z2 − Z1)
∣
∣−β ∣∣x̃ − x̃ ′ + √

t − s(Z4 − Z3)
∣
∣−β

× ∣∣x − x̃ + √
t − s(Z1 + Z3) + √

2s − 2r Z5
∣
∣−β
}
dxdx ′dx̃d x̃ ′

≤ C
∫ s

0
dr
∫

B4
R

E

{∣
∣x − x ′ − √

t − sZ1
∣
∣−β ∣∣x̃ − x̃ ′ − √

t − sZ3
∣
∣−β

× ∣∣x − x̃ + √
t − s(Z1 + Z3)

∣∣−β
}
dxdx ′dx̃d x̃ ′ (3.12)

≤ CR4d−3β
E

∫

B4
1

dxdx ′dx̃d x̃ ′∣∣x − x ′ − R−1√t − sZ1
∣
∣−β

× ∣∣x̃ − x̃ ′ − R−1√t − sZ3
∣∣−β × ∣∣x − x̃ + R−1√t − s(Z1 + Z3)

∣∣−β

≤ CR4d−3β
E

∫

B3
2

∣∣y1 − R−1√t − sZ1
∣∣−β
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× ∣∣y2 − R−1√t − sZ3
∣∣−β × ∣∣y3 + R−1√t − s(Z1 + Z3)

∣∣−β
dy1dy2dy3

≤ CR4d−3β

(

sup
z∈Rd

∫

B2

∣
∣y + z

∣
∣−β

dy

)3
≤ CR4d−3β , by (3.10), (3.13)

where we have used Lemma 3.1 for Z5, Z2, Z4 to obtain (3.12). This gives us the
desired estimate for A1 and finishes our proof. ��

With a slight modification of the above proof, we can extend Theorem 1.1 to more
general initial conditions.

Corollary 3.3 Assume that there are two positive constants c1, c2 such that c1 ≤
u(0, x) ≤ c2, and assume one of the following two conditions:

(1) σ is a non-negative, nondecreasing Lipschitz function with σ(c1) > 0.
(2) −σ is a non-negative, nondecreasing Lipschitz function with σ(c1) < 0.

Define

F̃R(t) = 1

σ̃R

∫

BR

[
u(t, x) − Eu(t, x)

]
dx , (3.14)

where

σ̃ 2
R = Var

(∫

BR

[
u(t, x) − Eu(t, x)

]
dx

)
∈ (0,∞)

for every R > 0. Then, there exists a constant C = C(t, β), depending on t and β,
such that

dTV
(
F̃R(t), N (0, 1)

) ≤ CR−β/2 .

Proof We write F̃R(t) as G̃ R(t)/σ̃R . Let u1(t, x) be the solution to Eq. (1.1) with
initial condition u(0, x) = c1. According to the weak comparison principle (see [2,
Theorem 1.1]), u(t, x) ≥ u1(t, x) almost surely for every t ≥ 0 and x ∈ R

d , which
immediately implies

σ
(
u(s, y)

)
σ
(
u(s, z)

) ≥ σ
(
u1(s, y)

)
σ
(
u1(s, z)

) ≥ 0 almost surely,

so that

E
[
G̃2

R(t)
] =
∫ t

0

∫

R2d
ϕR(s, y)ϕR(s, z)E

[
σ
(
u(s, y)

)
σ
(
u(s, z)

)]|y − z|−βdydzds

≥
∫ t

0

∫

R2d
ϕR(s, y)ϕR(s, z)E

[
σ
(
u1(s, y)

)
σ
(
u1(s, z)

)]|y − z|−βdydzds.

(3.15)
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In view of point (iii) from Remark 3, our assumption σ(c1) �= 0 guarantees that the
last integral (3.15) has the exact order R2d−β : More precisely,

(3.15) ∼ κβ

(∫ t

0
η1(s)

2ds

)
R2d−β as R → +∞,

where η1(s) := E
[
σ(u1(s, y))

]
does not depend on y and

∫ t
0 η1(s)2ds ∈ (0,∞); see

also (1.9).
Now let u2(t, x) be the solution to the Eq. (1.1) with initial condition u(0, x) = c2.

Notice that by our assumption on σ , we get σ(c2) �= 0. And by applying the same
weak comparison principle, we deduce that

E
[
G̃2

R(t)
] ≤
∫ t

0

∫

R2d
ϕR(s, y)ϕR(s, z)E

[
σ
(
u2(s, y)

)
σ
(
u2(s, z)

)]|y − z|−βdydzds

∼ κβ

(∫ t

0
η2(s)

2ds

)
R2d−β as R → +∞,

where η2(s) := E
[
σ(u2(s, y))

]
does not depend on y and

∫ t
0 η2(s)2ds ∈ (0,∞). This

implies that

0 < lim inf
R→+∞ σ̃ 2

R R
β−2d ≤ lim sup

R→+∞
σ̃ 2
R R

β−2d < +∞ .

The rest of the proof follows the same lines as the proof of Theorem 1.1. ��

4 Proof of Theorem 1.3

In order to prove Theorem 1.3, we need to establish the convergence of the finite-
dimensional distributions as well as the tightness.

Convergence of finite-dimensional distributions. Fix 0 ≤ t1 < · · · < tm ≤ T and
consider

FR(ti ) := R
β
2 −d
∫

BR

[
u(ti , x) − 1

]
dx = δ

(
v

(i)
R

)
for i = 1, . . . ,m,

where

v
(i)
R (s, y) = 1[0,ti ](s)R

β
2 −dσ

(
u(s, y)

)
ϕ

(i)
R (s, y)

with ϕ
(i)
R (s, y) = ∫BR

pti−s(x − y)dx . Set FR = (FR(t1), . . . , FR(tm)
)
and let Z be

a centered Gaussian vector on R
m with covariance (Ci, j )1≤i, j≤m given by

Ci, j := kβ

∫ ti∧t j

0
η2(r) dr , with η(r) := E

[
σ
(
u(r , y)

)]
.
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To proceed, we need the following generalization of [10, Theorem 6.1.2]; see [8,
Proposition 2.3] for a proof.

Lemma 4.1 Let F = (F (1), . . . , F (m)) be a random vector such that F (i) = δ(v(i))

for v(i) ∈ Dom δ and F (i) ∈ D
1,2, i = 1, . . . ,m. Let Z be an m-dimensional centered

Gaussian vector with covariance (Ci, j )1≤i, j≤m. For any C2 function h : Rm → R

with bounded second partial derivatives, we have

∣∣E[h(F)] − E[h(Z)]∣∣ ≤ m

2
‖h′′‖∞

√√√
√

m∑

i, j=1

E

[(
Ci, j − 〈DF (i), v( j)〉H

)2]
,

where ‖h′′‖∞ := sup
{∣∣ ∂2

∂xi ∂x j
h(x)
∣∣ : x ∈ R

d , i, j = 1, . . . ,m
}
.

In view of Lemma 4.1, the proof of FR
law−−→ Z boils down to the L2(�)-convergence

of 〈DFR(ti ), v
( j)
R 〉H to Ci, j for each i, j , as R → +∞. The case i = j has been

covered in the proof of Theorem 1.1 and for the other cases, we need to show

E
[
FR(ti )FR(t j )

]→ Ci, j (4.1)

and

Var
(〈DFR(ti ), v

( j)
R 〉H

)→ 0, (4.2)

as R → +∞. The point (4.1) has been established in Remark 5. To see point (4.2),
we put

B1(i, j) = Rβ−2d
∫ ti∧t j

0

∫

Rd
ϕ

(i)
R (s, y)ϕ( j)

R (s, y′)σ (u(s, y))σ (u(s, y′))

× |y − y′|−βdydy′ds

and

B2(i, j) = Rβ−2d
∫ ti∧t j

0

∫

R2d
ϕ

( j)
R (s, y′)σ (u(s, y′))|y − y′|−β

×
(∫ ti

s

∫

Rd
ϕ

(i)
R (r , z)�(r , z)Ds,yu(r , z)W (dr , dz)

)
dydy′ds,

so that 〈DFR(ti ), v
( j)
R 〉H = B1(i, j) + B2(i, j). Therefore,

E

[(
Ci j − 〈DFR(ti ), v

( j)
R 〉H

)2]

≤ 3
(
Ci, j − E[B1(i, j)]

)2 + 3Var
[
B1(i, j)

]+ 3Var
[
B2(i, j)

]
.
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Going through the same lines as for the estimation of A1, A2, one can verify easily
that both Var

[
B1(i, j)

]
and Var

[
B2(i, j)

]
vanish asymptotically, as R tends to infinity.

By recalling thatCi j = limR→+∞ E
[
B1(i, j)

]
, the convergence of finite-dimensional

distributions is thus established. ��
Tightness The following proposition together with Kolmogorov’s criterion ensures

the tightness of the processes
{
R

β
2 −d
∫
BR

[
u(t, x) − 1

]
dx , t ∈ [0, T ]}, R > 0.

Proposition 4.2 Recall the notation (1.6). For any 0 ≤ s < t ≤ T , for any p ∈ [2,∞)

and any α ∈ (0, 1), it holds that

E
[|GR(t) − GR(s)|p] ≤ CRp(d− β

2 )(t − s)α p/2 , (4.3)

where the constant C = Cp,T ,α may depend on T , p and α.

Notice that the pth moment of an increment of the solution u(t, x) − u(s, x) is

bounded by a constant times |t − s| α p
2 (1− β

2 ), for any α ∈ (0, 1), see [17]; and here the
spatial averaging has improved the Hölder continuity.

Now we present the proof of Proposition 4.2. Let 0 ≤ s < t ≤ T and set

�x,t,s(r , y) = pt−r (x − y)1{r≤t} − ps−r (x − y)1{r≤s}.

Then,

GR(t) − GR(s) =
∫ T

0

∫

Rd

(∫

BR

�x,t,s(r , y) dx

)
σ
(
u(r , y)

)
W (dr , dy) ,

so that

E

[
|GR(t) − GR(s)|p

]

≤ C

∥∥∥
∥

∫ T

0
dr
∫

R2d
dydy′ |y − y′|−β

(∫

BR

�x,t,s(r , y) dx

)
σ
(
u(r , y)

)

×
[∫

BR

�x̃,t,s(r , y) dx̃

]
σ
(
u(r , y′)

)
∥
∥∥∥

p/2

p/2

by Burkholder’s inequality

≤ C

{∫ T

0
dr
∫

R2d
dydy′|y − y′|−β

∣∣∣∣

∫

BR

�x,t,s(r , y)dx

∣∣∣∣×
∣∣∣∣

∫

BR

�x̃,t,s(r , y)dx̃

∣∣∣∣

× ∥∥σ(u(r , y))σ (u(r , y′))
∥∥
p/2

}p/2
by Minkowski’s inequality.

Therefore, taking into account that ‖σ(u(r , y))σ (u(r , y′))‖p/2 is uniformly
bounded, we obtain

E

[
|GR(t) − GR(s)|p

]

≤ C

{ ∫ T

0

∫

R2d

∣∣
∣
∣

∫

BR

�x,t,s(r , y)dx

∣∣
∣
∣

∣∣
∣
∣

∫

BR

�x̃,t,s(r , y)dx̃

∣∣
∣
∣ |y − y′|−β dydy′dr

}p/2
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≤ C

{∫ s

0

∫

R2d

∣
∣
∣
∣

∫

BR

(
pt−r (x − y) − ps−r (x − y)

)
dx

∣
∣
∣
∣

×
∣∣
∣
∣

∫

BR

(
pt−r (x̃ − y′) − ps−r (x̃ − y′)

)
dx̃

∣∣
∣
∣
∣
∣y − y′∣∣−β dydy′dr

}p/2

+ C

[ ∫ t

s

∫

R2d

(∫

B2
R

pt−r (x − y)pt−r (x̃ − y′) dxdx̃
)

|y − y′|−βdydy′dr
]p/2

=: C(Tp/2
1 + Tp/2

2

)
.

Estimation of the term T1. We need Lemma 3.1 in [2]: For all α ∈ (0, 1), x, y ∈ R
d

and t ′ ≥ t > 0,

|pt (x) − pt ′(x)| ≤ Ct−α/2(t ′ − t)α/2 p4t ′(x) .

Thus,

(t − s)−αT1

≤
∫ s

0
dr(s − r)−α

∫

B2
R

dxdx̃
∫

R2d
dydy′ p4(t−r)(x − y)p4(t−r)(x̃ − y′)|y − y′|−β

=
∫ s

0
dr(s − r)−α

∫

B2
R

dxdx̃
∫

R2d
dydy′ p4(t−r)(θ)p4(t−r)(θ̃ )

∣
∣x − x̃ − θ + θ̃

∣
∣−β

,

by the change of variable θ = x − y, θ̃ = x̃ − y′. Consequently, with Z a standard
Gaussian random vector on Rd , we continue to write

(t − s)−αT1 ≤
∫ s

0
dr(s − r)−α

∫

B2
R

dxdx̃ E

[
|x − x̃ + √

8t − 8r Z |−β
]

= R2d−β

∫ s

0
dr(s − r)−α

∫

B2
1

dxdx̃ E

[
|x − x̃ + R−1

√
8t − 8r Z |−β

]

≤ CR2d−β

∫ s

0
dr(s − r)−α

∫

B2
1

dxdx̃ |x − x̃ |−β using Lemma 3.1

≤ CR2d−β .

Estimation of the term T2. We use a similar change of variable as before:

T2 =
∫ t

s
dr
∫

B2
R

dxdx̃
∫

R2d
pt−r (θ)pt−r (θ̃)

∣∣x − x̃ + θ̃ − θ
∣∣−β

dθd θ̃

=
∫ t

s
dr
∫

B2
R

dxdx̃ E

{∣∣x − x̃ + √
2t − 2r Z

∣∣−β
}
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≤ CR2d−β

∫ t

s
dr
∫

B2
1

dxdx̃
∣∣x − x̃

∣∣−β using Lemma 3.1

= CR2d−β(t − s)kβ .

Combining the above two estimates, we obtain (4.3). ��
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this paper.
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