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Abstract
We show that the solutions to the damped stochastic wave equation converge pathwise
to the solution of a stochastic heat equation. This is called the Smoluchowski–Kramers
approximation. Cerrai and Freidlin have previously demonstrated that this result holds
in the cases where the system is exposed to additive noise in any spatial dimension or
when the system is exposed to multiplicative noise and the spatial dimension is one.
The current paper proves that the Smoluchowski–Kramers approximation is valid in
any spatial dimension when the system is exposed to multiplicative noise.
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1 Introduction

The motion of an elastic material in a region D ⊂ R
d exposed to friction as well as

deterministic and random forcing can be described by the damped stochastic wave
equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ∂2uμ

∂t2
(t, x) = Δuμ(t, x) − ∂uμ

∂t (t, x) + b(t, x, uμ(t, x))

+ g(t, x, uμ(t, x))Q ∂w
∂t (t, x),

uμ(t, x) = 0, x ∈ ∂ D

uμ(0, x) = u0(x), ∂uμ

∂t (0, x) = v0(x).

(1.1)
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In the above equation, μ > 0 is the mass-density of the material. The forcing term
Δuμ describes the forces neighboring particles exert on each other, −∂uμ/∂t models
a constant friction term, b is a nonlinear forcing term, and gQ∂w/∂t is a space and
time dependent stochastic forcing. The noise is driven by w(t), a L2(D)-cylindrical
Wiener processes [15, Chapter 4.2.1]. The Dirichlet boundary conditions guarantee
that the boundary of the elastic material is fixed. Initial conditions are also prescribed.

We study the asymptotics of the solutions to this equation as the mass density
μ → 0 and demonstrate that the solutions converge to the solutions of a stochastic
heat equation

{
∂u
∂t (t, x) = Δu(t, x) + b(t, x, u(t, x)) + g(t, x, u(t, x))Q ∂w

∂t (t, x),

u(t, x) = 0, x ∈ ∂ D, u(0, x) = u0(x).
(1.2)

The heat equation can be thought of as (1.1) with μ formally replaced by 0
This limit, the Smoluchowski–Kramers approximation, was first investigated by

Smoluchowski [28] and Kramers [24] for finite dimensional diffusions of the form

μẌμ(t) = b(t, Xμ(t)) − Ẋμ(t) + g(t, Xμ(t))Ẇ (t) (1.3)

where Xμ isRd -valued, b : [0,+∞)×R
d → R

d is a vector field and g : [0,+∞)×
R

d → R
d×k , and W (t) is a k-dimensional Wiener process. As μ → 0 the solutions

converge pathwise on finite time intervals to the solution of the first-order equation

Ẋ(t) = b(t, X(t)) + g(t, X(t))Ẇ (t). (1.4)

Furthermore, the first-order equation approximates some longer-time behaviors of
the second-order system including invariant measures and exit time problems. Many
Smoluchowski–Kramers results for finite dimensional systems are summarized in
[18] including pathwise convergence, invariant measures, Wong–Zakai approxima-
tion, homogenization, and large deviations. Various generalizations including the
presence of state-dependent friction have been investigated in the finite dimensional
case [1,7,8,14,19–23,25,29].

The Smoluchowski–Kramers approximation for stochastic partial differential equa-
tions such as (1.1) were first investigated by Cerrai and Freidlin [5,6]. In [5], they
considered the additive noise case where g(t, x, u) ≡ 1 and in [6], they considered
the multiplicative noise case when the spatial dimension d = 1. In each case they
show that the solutions uμ(t, x) of (1.1) converge to the solutions of (1.2) pathwise
in probability, in the sense that for any T > 0 and δ > 0

lim
μ→0

P

(

sup
t∈[0,T ]

∫

D
|uμ(t, x) − u(t, x)|2dx > δ

)

= 0. (1.5)

The Smoluchowski–Kramers approximation in the presence of a magnetic field and
Smoluchowski–Kramer’s interplay with large deviations in the small noise regime for
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infinite dimensional systems and with invariant measures have also been investigated
[9–13,26,27].

The main results of this paper fill a gap in the literature by demonstrating that the
Smoluchowski–Kramers approximation is valid in the case of multiplicative noise in
any spatial dimension d ≥ 1 if the noise covariance Q satisfies appropriate assump-
tions. Furthermore, the methods in this paper allow us to improve from convergence
in probability as in (1.5) to L p convergence. In particular the main result of this paper,
Theorem 4.2, proves that for any T > 0 and p ≥ 1,

lim
μ→0

E sup
t∈[0,T ]

(∫

D
|uμ(t, x) − u(t, x)|2dx

)p/2

= 0. (1.6)

If D ⊂ R
d is an open region with smooth boundary then there is a complete

orthonormal basis of L2(D) consisting of eigenfunctions of Δ such that Δek(x) =
−αkek(x) for an increasing sequence of eigenvalues αk ≥ 0. Weyl’s Theorem [17,
page 356] guarantees that the eigenvalues of −Δ with Dirichlet boundary conditions
behave like αk ∼ k2/d as k → +∞. In dimension d = 1, the eigenvalues have the
useful property that

∑∞
k=1

1
αk

< +∞. A consequence is that (1.1) is well-defined
when is exposed to white noise (the case where Q = I is the identity) (see [6]). In
dimensions d ≥ 2, the noise must be more regular than white noise in order for (1.1)
to be well-defined.

In the additive noise case considered in [5], the Smoluchowski–Kramers approx-
imation is proved under the assumption that Q is diagonalized by the same basis of

eigenfunctions as the Laplacian with eigenvalues Qek = λkek and that
∑∞

k=1
λ2k

α1−θ
k

<

+∞ for some θ ∈ (0, 1). This is also the minimal condition that guarantees that the
solutions to (1.1) and (1.2) are well-defined and function valued.

The minimal conditions on the noise covariance Q that guarantee that the heat
equation with multiplicative noise (1.2) is well-defined and function valued are char-
acterized in [2–4]. We assume that Q is diagonalized by the same sequence of
eigenfunctions as the A, Qek = λkek . In the dimension d = 1 case, (1.2) is well-
defined if the eigenvalues of Q are assumed to be uniformly bounded. In dimensions
d ≥ 2, (1.2) is well-defined if the eigenvalues of Q are assumed to satisfy

∞∑

j=1

λ
q
j |e j |2L∞(D) < +∞ and

∞∑

k=1

α
−β
k |ek |2L∞(D) < +∞ (1.7)

for some q, β > 0 satisfying β(q−2)
q < 1. In the case where the eigenfunctions of the

Laplacian are equibounded and the αk ∼ 2
d , this simplifies to the condition that

∞∑

j=1

λ
q
j < +∞ for some 2 < q <

2d

d − 2
. (1.8)
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In this paper, we show that the solutions to (1.1) exist and are function valued under
the same conditions on the eigenvalues of Q. This requires a novel proof because
the argument of [2–4] relies on the fact that the heat equation semigroup is ana-
lytic, but the wave equation semigroup is not analytic. Furthermore, we show that the
Smoluchowski–Kramers approximation is valid in the sense that (1.6) holds under
these same minimal assumptions on Q.

The proofs of the well-posedness of (1.1) and the Smoluchowski–Kramers approx-
imation (1.6) are both based on a careful analysis of the wave equation semigroup.

The paper is organized as follows. In Sect. 2, we describe the assumptions and
notations used in the paper. In Sect. 3, we recall some results about the heat equation.
In Sect. 4, we state the main results of this paper. In Sect. 5, we carefully analyze the
properties of the wave equation semigroup. In Sect. 6, we analyze the properties of the
stochastic convolutions with the wave equation semigroup. In Sect. 7, we apply the
results from Sects. 5 and 6 to prove that the stochastic wave equation is well-defined.
Finally, in Sect. 8 we prove that the mild solutions to the stochastic wave equation
converge to the mild solution of the stochastic heat equation.

2 Assumptions and notations

We consider the damped stochastic wave equation (1.1) under the following assump-
tions.

Assumption 2.1 The functions b : [0,+∞) × D ×R → R and g : [0,+∞) × D ×
R → R are uniformly Lipschitz continuous and have sublinear growth in the third
variable. There exists C ≥ 0 such that for any u, v ∈ R,

sup
x∈D
t≥0

(|b(t, x, u) − b(t, x, v)| + |g(t, x, u) − g(t, x, v)|) ≤ C |u − v|. (2.1)

and

sup
x∈D
t≥0

(|b(t, x, u)| + |g(t, x, u)|) ≤ C(1 + |u|). (2.2)

Assume that D ⊂ R
d is a bounded set with smooth boundary. Define H = L2(D)

and let A be the realization of the Laplace operator in H with Dirichlet boundary
conditions. There exists a sequence of eigenfunctions of A that form a complete
orthonormal basis of H . We list the eigenvalues in increasing order 0 < α1 ≤ αk ≤
αk+1 so that

Aek = −αkek .

Because the boundary of D is smooth, the eigenfunctions ek are infinitely differentiable
functions on the closure of D (see, for example, [17, Thoerem 6.5.1]).
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The cylindrical Wiener process w(t) is defined as the formal sum

w(t) =
∞∑

k=1

ekβk(t) (2.3)

where {βk(t)} is a sequence of independent one-dimensional Brownian motion on a
common probability space. Integration against a cylindrical Wiener process is defined
in [15, Chapter 4.2.1].

For a positive self-adjoint operator Q ∈ L+(H) diagonalized by the basis {e j }with
eigenvalues Qe j = λ j e j , define

‖Q‖q :=
⎧
⎨

⎩

(∑∞
j=1 λ

q
j |e j |2L∞(D)

) 1
q

, if q ∈ (0,+∞)

sup j λ j if q = +∞.

(2.4)

Assumption 2.2 The operator Q ∈ L+(H) is diagonalized by the same orthonormal
basis of H as A. Q has eigenvalues λ j ≥ 0 satisfying

Qe j = λ j e j .

There exist constants q ∈ [2,+∞] and β > 0 satisfying

‖Q‖q < +∞ and ‖(−A)−1‖β < +∞ (2.5)

and

β(q − 2)

q
< 1. (2.6)

In the case where q = +∞, (2.6) means that β < 1.

Remark 2.3 By Weyl’s Theorem ( [17, page 356]), the eigenvalues of the Laplacian

grow like αk ∼ k
2
d where d is the spatial dimension of the domain D. If the ek are

equibounded in the L∞(D) norm (which is the casewhen D is a generalized rectangle)
then (2.5)–(2.6) simplifies to the condition that ‖Q‖q < +∞whereq = +∞ if d = 1
and 2 < q < 2d

d−2 if d ≥ 2. This is the same as Assumption 2 in [2].
Condition (2.5) also guarantees that the heat equation is well-posed in the more

general case that the eigenfunctions are not equibounded (see for example [4, Hypoth-
esis 1]). We will prove that the same conditions on Q that imply the well-posedness of
the stochastoc heat equation imply the well-posedness of the stochastic wave equation
as well as the validity of the Smoluchowski–Kramers approximation.

Remark 2.4 Because the αk ∼ k2/d and infk |ek |L∞(D) > 0, the condition
‖(−A)−1‖β < +∞ requires β > 1 unless the spatial dimension d = 1. This means
that q could only possibly be+∞ if d = 1. On the other hand, |ek |L∞(D) can not grow
arbitrarily quickly. Theremust exist someρ > 0 such that |ek |L∞(D) ≤ Cα

ρ
k ≤ Ck2ρ/d
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(see for example [17, Theorem 6.3.5]). This means that there always exists some
β < +∞ such that ‖(−A)−1‖β < +∞, and therefore one can always choose q > 2.

For δ ∈ R, define the Hilbert spaces H δ to be the completion of C∞
0 (D) under the

norm

| f |2H δ =
∞∑

k=1

αδ
k〈 f , ek〉2H .

For δ > 0, these spaces are equivalent to the fractional Sobolev spaces W δ,2
0 (D) [16].

It is helpful to study the wave equation as a system in an appropriate phase space,

{
∂u
∂t (t, x) = v(t, x),

∂v
∂t (t, x) = 1

μ

(
Δu(t, x) − v(t, x) + b(t, x, u(t, x)) + g(t, x, u(t, x))Q ∂w

∂t

)
.
(2.7)

Define the phase spacesHδ := H δ × H δ−1.We also use the notationH := H0. Define
the linear operator Aμ : D(Aμ) = Hδ−1 → Hδ by

Aμ(u, v) = (v, Au/μ − u/μ). (2.8)

The operator Aμ generates a C0 semigroup Sμ(t) : Hδ → Hδ .
Define the composition mapping B : [0,+∞) × H → H by, for any t ≥ 0 and

u ∈ H

B(t, u)(x) = b(t, x, u(x)). (2.9)

Define the composition operator G : [0,+∞) × H → L (L∞(D) : H) by, for any
t ≥ 0, u ∈ H , and h ∈ L∞(D),

[G(t, u)h](x) = g(t, x, u(x))h(x). (2.10)

Note that for u ∈ H , G(t, u) is also well-defined as a bounded linear mapping from
H to L1(D) by Hölder inequality. Because of Assumption 2.1, B and G are Lipschitz
continuous in the second variable.

Define Π1 : Hδ → H δ is the projection onto the first component and Π2 : Hδ →
H δ−1 is the projection onto the second component. That is, for any (u, v) ∈ Hδ ,

Π1(u, v) = u, and Π2(u, v) = v. (2.11)

Define Iμ : H δ → Hδ such that

Iμu = (0, u/μ). (2.12)
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The Eq. (2.7) can be rewritten in the abstract formulation where zμ(t) =
(uμ(t), vμ(t))

dzμ(t) = [Aμzμ(t) + IμB(t,Π1zμ(t))]dt + IμG(t,Π1zμ(t))Qdw(t).

(2.13)

Definition 2.5 The mild solution to (2.13) is defined to be the solution of the integral
equation.

zμ(t) = Sμ(t)z0 +
∫ t

0
Sμ(t − s)IμB(s,Π1zμ(s))ds

+
∫ t

0
Sμ(t − s)IμG(s,Π1zμ(s))Qdw(s) (2.14)

where z0 = (u0, v0). Then uμ(t) = Π1zμ(t) is the mild solution to (1.1).

For any T > 0 the function spacesC([0, T ] : H) andC([0, T ] : H) are the Banach
spaces of H (resp.H)-valued continuous functions on [0, T ]. They are endowed with
the supremeum norm

|ϕ|C([0,T ]:H) := sup
t∈[0,T ]

|ϕ(t)|H , |ψ |C([0,T ]:H) := sup
t∈[0,T ]

|ψ(t)|H. (2.15)

Let (Ω,F ,P) be a probability space. For anyBanach space E , the space L p(Ω : E)

is the set of all E-valued random variables with the property that E|ϕ|p
E < +∞.

L p(Ω : E) is a Banach space. In this paper we are most interested in the case where
E = C([0, T ] : H) or E = C([0, T ] : H).

Throughout this paper, the letter C refers to an arbitrary positive constant whose
value can change from line to line.

3 Heat equation

In this section we recall some of the well-posedness results for the heat equation (1.2).
Using the notation of Sect. 2, (1.2) can be written in the abstract formulation in H

du(t) = [Au(t) + B(t, u(t))]dt + G(t, u(t))Qdw(t). (3.1)

The mild solution for the heat equation is the solution to the integral equation

u(t) = S(t)u0 +
∫ t

0
S(t − s)B(s, u(s))ds +

∫ t

0
S(t − s)G(s, u(s))Qdw(s)

(3.2)

where S(t) is the heat equation semigroup, which satisfies S(t)ek = e−αk t ek . All of
the results of this section can be found in [2–4].
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Denote the heat equation’s stochastic convolution by

Γ (t) =
∫ t

0
S(t − s)Φ(s)Qdw(s) (3.3)

where we will set Φ(t) = G(t, ϕ(s)) or Φ(t) = (G(t, ϕ(t)) − G(t, ψ(t))).
By the factorization formula of [15, Chapter 5.3.1],

Γ (t) = sin(πα)

π

∫ t

0
(t − s)α−1S(t − s)Γα(s)ds

where

Γα(t) =
∫ t

0
(t − s)−α S(t − s)Φ(s)Qdw(s). (3.4)

We collect some results that we will use later in the paper.

Lemma 3.1 Let q, β satisfy (2.5)–(2.6). For any α ∈ (0, 1/2) satisfying 0 < 2α <

1 − β(q−2)
q , p > 1

α
, and any T > 0, there exists C = C(T , p, α) > 0 such that for

any t ∈ [0, T ],

E |Γα(t)|p
H ≤ C sup

s∈[0,t]
‖Φ(s)‖p

L (L∞(D),H)
. (3.5)

For more information about the proof of this Lemma see Lemma 3.3 of [2] or Lemma
4.1 of [4].

Lemma 3.2 Let q, β satisfy (2.5)–(2.6). For α ∈ (0, 1/2) satisfying 0 < 2α <

1 − β(q−2)
q and p ≥ 1

α
,

E sup
t≤T

|Γ (t)|p ≤ CTE sup
t∈[0,T ]

‖Φ(t)‖p
L (L∞(D),H)

.

Lemma 3.3 Let PN be the projection onto span{ek}N
k=1. Let Φ fixed progressively

measurable L (L∞(D), H) valued process satisfying

E sup
t∈[0,T ]

‖Φ(t)‖p
L (L∞(D),H)

< +∞.

Then for any fixed α > 0 satisfying the conditions of Lemma 3.2,

lim
N→+∞E|(I − PN )Γα(t)|p

H = 0.

Proof This is an immediate consequence of the dominated convergence theorem. �
The following Theorem is presented in [4, Proposition 4.2] and we state it without

proof.
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Theorem 3.4 (Proposition 4.2 of [4]) Assume that Assumptions 2.1 and 2.2 hold. For
any initial condition u0 ∈ H, there exists a unique solution u ∈ L p(Ω : C([0, T ] :
H)) to (3.2) where p ≥ 2 satisfies the conditions of Lemma 3.2.

The proof is based on the well-posedness of the stochastic convolutions and a fixed
point argument.

4 Main results

The first main result of this paper is that the mild solutions zμ solving (2.14) are well
defined.

Theorem 4.1 Assume that Assumptions 2.1 and 2.2 hold. For any initial conditions
(u0, v0) ∈ H and μ > 0, there exists a unique mild solution zμ ∈ L p(Ω : C([0, T ] :
H)) to (2.14).

The proof of Theorem 4.1 is given in Sect. 7. The proof requires careful analysis of the
Fourier decomposition of thewave equation semigroup and the stochastic convolution,
which can be found in Sects. 5 and 6.

The next main result is that the Smoluchowski–Kramers approximation is valid for
these wave equations with multiplicative noise in any spatial dimension. The conver-
gence of uμ to u is in L p(Ω : C([0, T ] : H)), which is an improvement over previous
results, which were known to converge in probability. Furthermore, this result is true
in any spatial dimension d ≥ 1.

Theorem 4.2 (Smoluchowski–Kramers approximation) Assume that Assumptions 2.1
and 2.2 hold. Let u be the mild solution of (3.2) with initial condition u0 ∈ H and
uμ = Π1zμ be the mild solution of (2.14) with the same initial position u0 ∈ H and
any fixed initial velocity v0 ∈ H−1. There exists p ≥ 2 such that for any T > 0,

lim
μ→0

E sup
t∈[0,T ]

∣
∣u(t) − uμ(t)

∣
∣p

H = 0. (4.1)

The proof of Theorem 4.2 is presented in Sect. 8.

5 Estimates on the wave equation semigroupS�(t)

In this section we investigate the properties of the semigroup Sμ(t). The exact form
of the semigroup can be found in [5, Proposition 2.2]. We briefly recall some of the
main observations about this semigroup and then we introduce some new analysis.
Because A is diagonalized by the orthonormal basis {ek}, for any k ∈ N the operator
Aμ is invariant on the two dimensional linear span in H of the form {(ukek, vkek) :
uk, vk ∈ R} . The semigroup Sμ(t) is also invariant on each of these two-dimensional
spans.

Let u ∈ H and v ∈ H−1. Set uk = 〈u, ek〉H , vk = 〈v, ek〉H , and let

f μ
k (t; uk, vk) = 〈ek,Π1Sμ(t)(ukek, vkek)〉H
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and

gμ
k (t; uk, vk) = 〈ek,Π2Sμ(t)(ukek, vkek)〉H .

Then

Sμ(t)(u, v) =
∞∑

k=1

(
f μ
k (t; uk, vk)ek, gμ

k (t; uk, vk)ek
)
. (5.1)

By the definition of Aμ, gμ
k (t; uk, vk) = ( f μ

k )′(t; uk, vk) and f μ
k (t, uk, vk) solves

μ( f μ
k )′′(t) + ( f μ

k )′(t) + αk f (t) = 0, f μ
k (0) = uk, ( f μ

k )′(0) = vk . (5.2)

To study the stochastic convolution, we will be particularly interested in the case
where uk = 0 and vk = 1. According to [5, Proposition 2.2],

f μ
k (t; 0, 1) = μ√

1 − 4μαk

[

exp

(

−t

(
1 − √

1 − 4μαk

2μ

))

− exp

(

−t

(
1 + √

1 − 4μαk

2μ

)) ]

. (5.3)

We use the notation that when 1 − 4μαk < 0,
√
1 − 4μαk := i

√
4μαk − 1. When

1 − 4μαk = 0, f μ
k (t; 0, 1) := te− t

2μ . We see that that the solutions to (5.3) feature
different behaviors depending on whether 1− 4μαk ≥ 0 or 1− 4μαk < 0. When 1−
4μαk ≥ 0, the behavior is dominated by the exponential term exp

(
−t

(
1−√

1−4μαk
2μ

))
.

This exponent is bounded by −αk t because

−1 − √
1 − 4μαk

2μ
= − 4μαk

2μ
(
1 + √

1 − 4μαk
) ≤ −αk .

Consequently, for any fixed μ > 0 there are a finite number of k ∈ N satisfying
1−4μαk ≥ 0, and for this finite number of Fourier modes, f μ

k (t; 0, 1) can be bounded
by terms that behave like μe−αk t .

On the other hand, for the infinite number of modes satisfying 1 − 4μαk < 0,

f μ
k (t; 0, 1) = 2μ√

4μαk − 1
exp

(

− t

2μ

)

sin

(
t
√
4μαk − 1

2μ

)

. (5.4)

In this regime, the functions no longer behave like their parabolic analogue. They

behave approximately as
√

μ
αk

exp
(
− t

2μ

)
. These observations are verified in the next

sequence of lemmas.

Lemma 5.1 Assume that f μ
k (t; u, v) solves (5.2) for u, v ∈ R.
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1. If u = 0 and 1 − 4μαk ≥ 0, then

| f μ
k (t; 0, v)| ≤ 4μ|v|e−αk t (5.5)

and

|( f μ
k )′(t; 0, v)| ≤ 2|v|e−αk t . (5.6)

2. If u = 0 and 1 − 4μαk < 0, then

| f μ
k (t; 0, v)| ≤

√
4μ|v|√
αk

e− t
4μ (5.7)

and

|( f μ
k )′(t; 0, v)| ≤ 2|v|e− t

4μ (5.8)

3. For any k ∈ N, μ > 0 and u, v ∈ R,

μ|( f μ
k )′(t; u, v)|2 + αk | f μ

k (t; u, v)|2 ≤ μ|v|2 + αk |u|2. (5.9)

Remark 5.2 An immediate consequence of (5.9) is that if v = 0 and u ∈ R, then for
any k ∈ N,

| f μ
k (t; u, 0)| ≤ |u|. (5.10)

Proof For the simplicity of notation, we let f (t) = f μ
k (t; u, v) and specify k, μ, u,

and v throughout the proof. Let γ ≥ 0 and define h(t) = eγ t f (t). We will set γ to be
either αk or 1

4μ depending on the relationship between αk andμ. h solves the equation

{
μh′′(t) + (1 − 2μγ )h′(t) + (μγ 2 − γ + αk)h(t) = 0,

h(0) = u, h′(0) = γ u + v.
(5.11)

We calculate two energy estimates. First, by multiplying (5.11) by h′(t),

μ

2

d

dt
|h′(t)|2 + (1 − 2μγ )|h′(t)|2 + 1

2
(μγ 2 − γ + αk)

d

dt
|h(t)|2 = 0.

Therefore, by integrating the above expression and multiplying by 2,

μ|h′(t)|2 + 2(1 − 2μγ )

∫ t

0
|h′(s)|2ds + (μγ 2 − γ + αk)|h(t)|2

= μ|γ u + v|2 + (μγ 2 − γ + αk)|u|2. (5.12)
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We derive a second energy estimate based on the fact that

d

dt
|μh′(t) + (1 − 2μγ )h(t)|2

= 2(μh′′(t) + (1 − 2μγ )h′(t))(μh′(t) + (1 − 2μγ )h(t))

= −2(μγ 2 − γ + αk)h(t)(μh′(t) + (1 − 2μγ )h(t)).

The last equality is a consequence of (5.11). Integrating both sides,

|μh′(t) + (1 − 2μγ )h(t)|2 + 2(μγ 2 − γ + αk)(1 − 2μγ )

∫ t

0
|h(s)|2ds

+ μ(μγ 2 − γ + αk)|h(t)|2
= |μ(γ u + v) + (1 − 2μγ )u|2 + μ(μγ 2 − γ + αk)|u|2. (5.13)

If 1 − 4μαk ≥ 0, we set γ = αk . This choice guarantees that the coefficients in
(5.11) are positive. Specifically,

μγ 2 − γ + αk = μα2
k > 0 and 1 − 2μγ = 1

2
+ 1

2
(1 − 4μαk) ≥ 1

2
. (5.14)

Then according to (5.12), if u = 0

|h′(t)| ≤ |v|

and by the triangle inequality, (5.13), and the previous display,

(1 − 2μαk)|h(t)| ≤ μ|h′(t)| + |μh′(t) + (1 − 2μαk)h(t)| ≤ 2μ|v|.

Then by (5.14),

|h(t)| ≤ 2μ|v|
1 − 2μαk

≤ 4μ|v|.

We chose h(t) = eαk t f (t). It follows that | f (t)| ≤ 4μ|v|e−αk t which is (5.5). Simi-
larly, h′(t) = αk f (t)eαk t + f ′(t)eαk t . Therefore,

| f ′(t)| ≤ αk | f (t)| + e−αk t |h′(t)| ≤ (4μαk + 1)|v|e−αk t

In this regime 4μαk ≤ 1 so we can conclude that (5.6) holds.
Now we study the case where 1 − 4μαk < 0. In this case we set γ = 1

4μ . Then

1 − 2μγ = 1

2
and μγ 2 − γ + αk = αk − 3

16μ
≥ αk

4
(5.15)

because 3
16μ ≤ 3αk

4 . If u = 0, then by (5.12),
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|h(t)| ≤
√

μ
√

μγ 2 − γ + αk
|v|.

and

|h′(t)| ≤ |v|.

Therefore by (5.15),

| f (t)| ≤
√
4μ

αk
|v|e− t

4μ

and

| f ′(t)| ≤ 1

4μ
| f (t)| + |h′(t)|e− t

4μ ≤
(

1√
4μαk

+ 1

)

|v|e− t
2μ ≤ 2|v|e− t

4μ

because 4μαk > 1. This proves (5.7) and (5.8).
Finally, (5.9) is a consequence of (5.12) with γ = 0. �

Lemma 5.3 For any t ≥ 0 and μ > 0 it holds that

‖Π1Sμ(t)Iμ‖L (H) ≤ 4. (5.16)

Proof This is an immediate consequence of (5.5) and (5.7). By (5.1),
Π1Sμ(t)Iμek = f μ

k (t; 0, 1/μ)ek . The ek are a complete orthonormal basis of H and
are eigenfunctions of Π1Sμ(T )Iμ and therefore

‖Π1Sμ(t)Iμ‖L (H) ≤ sup
k∈N

| fk(t; 0, 1/μ)|.

For k satisfying 1− 4μαk ≥ 0, (5.5) implies that | fk(t; 0, 1/μ)| ≤ 4. For k satisfying

1 − 4μαk < 0, (5.7) implies that | f μ
k (t; 0, 1/μ)| ≤

√
4√

μαk
. For these k, μαk > 1

4 and
we can conclude that

‖Π1Sμ(t)Iμ‖L (H) ≤ 4. �
Lemma 5.4 For any μ > 0 and t ≥ 0,

∥
∥
∥
∥Π1Sμ(t)

(
I
0

)∥
∥
∥
∥
L (H)

≤ 1. (5.17)

Proof This is an immediate consequence of (5.10) because

∥
∥
∥
∥Π1Sμ(t)

(
I
0

)∥
∥
∥
∥
L (H)

= sup
k∈N

| f μ
k (t; 1, 0)| ≤ 1. �
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Lemma 5.5 Let Nμ = max{k ∈ N : 1 − 4μαk ≥ 0} and let PNμ be the projection
onto the span of {ek}k≤Nμ . Then for any t ≥ 0,

∥
∥
∥
∥Π1Sμ(t)

(
0

PNμ

)∥
∥
∥
∥
L (H)

≤ 4μ. (5.18)

Proof By (5.5),

∥
∥Π1Sμ(t)I1PNμ

∥
∥
L (H)

≤ sup
k≤Nμ

| f μ
k (t; 0, 1)| ≤ 4μ. �

Lemma 5.6 Let Nμ = max{k ∈ N : 1 − 4μαk ≥ 0} and let PNμ be the projection
onto the span of {ek}k≤Nμ . Then for any t ≥ 0,

∥
∥
∥
∥Π1Sμ(t)

(
0

(I − PNμ)

)∥
∥
∥
∥
L (H−1,H)

≤ √
4μ. (5.19)

Proof Because of the presence of the (I − PNμ) projection and of the fact that
Π1Sμ(t)I1ek = f μ

k (t; 0, 1)ek ,

∥
∥Π1Sμ(t)I1(I − PNμ)

∥
∥
L (H−1,H)

= sup
k>Nμ

√
αk | f μ

k (t; 0, 1)|.

Notice that the
√

αk is included because this is considered as a linear map from
H−1 → H . By (5.7),

∥
∥Π1Sμ(t)I1(I − PNμ)

∥
∥
L (H−1,H)

≤ √
4μ. �

Lemma 5.7 For any μ ∈ (0, 1) and t ≥ 0, it holds that

‖Sμ(t)‖L (H) ≤ μ−1/2. (5.20)

Proof Because μ ∈ (0, 1) and the definition of H, for any (u, v) ∈ H and t ≥ 0,

μ|Sμ(t)(u, v)|2H ≤ μ|Π2Sμ(t)(u, v)|2H−1 + |Π1Sμ(t)(u, v)|2H .

By the Fourier decomposition (5.1), right-hand side of the above expression equals

∞∑

k=1

(
μ

αk
|( f μ

k )′(t; uk, vk)|2 + | f μ
k (t; uk, vk)|2

)

whereuk = 〈u, ek〉H andvk = 〈v, ek〉H . It follows from (5.9) that the above expression
is bounded by

∞∑

k=1

(
μ

αk
|vk |2 + |uk |2

)

.
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Because μ ∈ (0, 1), this implies

μ|Sμ(t)(u, v)|2H ≤
∞∑

k=1

(
μ

αk
|( f μ

k )′(t; u, v)|2 + | f μ
k (t; u, v)|2

)

≤ |(u, v)|2H.

Therefore, for any (u, v) ∈ H,

|Sμ(t)(u, v)|2H ≤ 1

μ
|(u, v)|2H,

proving the result. �
Now we study the convergence of the Fourier coefficients f μ

k (t; u, v) as μ → 0.

Theorem 5.8 (Convergence) Let f μ
k (t; u, v) solve (5.2).

1. For any k ∈ N, T > 0, and u ∈ R,

lim
μ→0

sup
t∈[0,T ]

| f μ
k (t; u, 0) − ue−αk t | = 0. (5.21)

2. For any k ∈ N, T > 0 t0 ∈ (0, T ], and v ∈ R,

lim
μ→0

sup
t∈[t0,T ]

| f μ
k (t; 0, v/μ) − ve−αk t | = 0. (5.22)

3. For any k ∈ N, T > 0, t0 ∈ (0, T ], and v ∈ R,

lim
μ→0

sup
t∈[t0,T ]

|( f μ
k )′(t; 0, v)| = 0. (5.23)

Proof One can prove each of these directly from the explicit formulas in [5, Proposition
2.2]. Below we present an alternative proof based on some arguments from [18]. Let
f μ
k (t) = f μ

k (t; u, v). Then because μ( f μ
k )′′(t) + ( f μ

k )′(t) + αk f μ
k (t) = 0,

d

dt

(
μe

t
μ ( f μ

k )′(t)
)

= −αke
t
μ f μ

k (t).

Integrating both sides,

μe
t
μ

(
f μ
k

)′
(t) = μv − αk

∫ t

0
e

s
μ f μ

k (s)ds

and

(
f μ
k

)′
(t) = ve− t

μ − αk

μ

∫ t

0
e− (t−s)

μ f μ
k (s)ds. (5.24)
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Integrating once more and changing the order of integration,

f μ
k (t) = u + μv

(
1 − e− t

μ

)
− αk

∫ t

0

(

1 − e− (t−s)
μ

)

f μ
k (s)ds. (5.25)

If v = 0 and a limit f μ
k (t) → f̄k(t) exists, then the limit must solve

f̄k(t) = u − αk

∫ t

0
f̄k(s)ds,

the unique solution of which is f̄k(t) = ue−αk t . To prove that f μ
k (t) converges to f̄k ,

set gμ
k (t) = f μ

k (t) − f̄k(t). Then

gμ
k (t) = αk

∫ t

0
e− (t−s)

μ f μ
k (s)ds − αk

∫ t

0
gμ

k (s)ds.

A standard Grönwall along with the estimate (5.10) proves that

sup
t∈[0,T ]

|gμ
k (t)| ≤ μαk |u|eαk T

and consequently supt∈[0,T ] |gμ
k (t)| → 0 and (5.21) follows.

We can use a similar argument to show (5.22). If u = 0 and v = 1
μ
in (5.25), then

f μ
k (t) =

(
1 − e− t

μ

)
− αk

∫ t

0
(1 − e− (t−s)

μ ) f μ
k (s)ds.

Let f̄ (t) = e−αk t and note that f̄ (t) = 1 − αk
∫ t
0 f̄ (s)ds. Setting gμ

k (t) = f μ
k (t) −

f̄ (t), we see that gμ
k solves

gμ
k (t) = −e− t

μ + αk

∫ t

0
e− (t−s)

μ f μ
k (s)ds − αk

∫ t

0
gμ

k (s)ds.

If μ > 0 is small enough that 1 − 4μαk > 0, then (5.5) implies that for any t > 0

| f μ
k (t)| ≤ 4. Therefore,

∣
∣
∣
∣

∫ t
0 e− (t−s)

μ f μ
k (s)ds

∣
∣
∣
∣ ≤ 4μ. By Grönwall’s inequality,

|gμ(t)| ≤ e− t
μ + 4μαk + αk

∫ t

0

(
e− s

μ + 4μαk

)
eαk (t−s)ds

≤ e− t
μ + 5μαkeαk t .

Therefore, for any 0 < t0 < T ,

sup
t∈[t0,T ]

|gμ(t)| = 0
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and (5.22) follows for v = 1. For general v ∈ R, simply multiply both f μ
k and f̄

by v.
Finally, we let u = 0 and v ∈ R in (5.24). Then for t ∈ [t0, T ],

(
f μ
k

)′
(t) = ve− t

μ − αk

μ

∫ t

0
e− (t−s)

μ f μ
k (s)ds.

By (5.5), for μ < 1
4αk

, | f μ
k (s)| ≤ 4μ|v|e−αk s . Therefore,

∣
∣
∣
(

f μ
k

)′
(t)

∣
∣
∣ ≤ |v|e− t

μ + 4αk |v|
∫ t

0
e− (t−s)

μ ds,

which converges to zero uniformly over t ∈ [t0, T ] as μ → 0. �

6 Regularity of the stochastic convolution

Let G be the operator defined in (2.10) and let ϕ(t) and ψ(t) be some H -valued
processes that are adapted to the natural filtration of w(t). In this section we study the
stochastic convolution processes

∫ t

0
Sμ(t − s)IμG(s, ϕ(s))Qdw(s)

and the differences

∫ t

0
Sμ(t − s)Iμ[G(s, ϕ(s)) − G(s, ψ(s))]Qdw(s).

In order to study both of these objects at the same time and to simplify our notation, for
the rest of this section we will let Φ(t) denote either G(ϕ(t)) or G(ϕ(t)) − G(ψ(t)).

Before establishing estimates on the stochastic convolution we discuss the proper-
ties of such a Φ. For any t ≥ 0, Φ(t) is a bounded linear operator from L∞(D) to H .
Φ(t) is also a bounded linear operator from H to L1(D).

If ϕ(t) ∈ H , and h ∈ L∞(D) then by the linear growth of g in Assumption 2.1,

|G(t, ϕ(t))h|2H =
∫

D
|g(t, x, ϕ(t, x))h(x)|2dx ≤ C

∫

D

(
1 + |ϕ(t, x)|2

)2 |h(x)|2dx

≤ C(1 + |ϕ(t)|2H )|h|2L∞(D).

If ϕ(t) ∈ H and h ∈ H , then

|G(t, ϕ(t))h|L1(D) =
∫

D
|g(t, x, ϕ(t, x))h(x)|dx

≤
(∫

D
|g(t, x, ϕ(t, x))|2dx

) 1
2
(∫

D
|h(x)|2dx

) 1
2

≤ C (1 + |ϕ(t)|H ) |h|H .
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Similarly, if Φ(t) = (G(t, ϕ(t))− G(t, ψ(t))), and ϕ(t), ψ(t) ∈ H and h ∈ L∞(D),

|(G(t, ϕ(t)) − G(t, ψ(t)))h|2H =
∫

D
|(g(t, x, ϕ(t, x)) − g(t, x, ψ(t, x)))h(x)|2dx

≤ C
∫

D
|ϕ(t, x) − ψ(t, x)|2|h(x)|2dx ≤ C |ϕ(t) − ψ(t)|2H |h|2L∞(D) (6.1)

and if h ∈ H , then

|(G(t, ϕ(t)) − G(t, ψ(t)))h|L1(D) ≤ C |ϕ(t) − ψ(t)|H |h|H .

Let Φ�(t) denote the adjoint of Φ(t) in H in the sense that if h1 ∈ L∞(D) and
h2 ∈ H = L2(D) or h1 ∈ H and h2 ∈ L∞(D),

〈Φ(t)h1, h2〉H = 〈h1, Φ
�(t)h2〉H .

Notice that if Φ(t) = G(t, ϕ(t)), h1 ∈ L∞(D) and h2 ∈ H ,

〈Φ(t)h1, h2〉H =
∫

D
g(t, x, ϕ(t, x))h1(x)h2(x)dx = 〈h1, Φ

�(t)h2〉h .

In this way, Φ(t) is a self-adjointL (L∞(D), H)∩L (H , L1(D))-valued process
that is adapted to the natural filtration of w(t). We define the stochastic convolution

Γ μ(t) =
∫ t

0
Sμ(t − s)IμΦ(s)Qdw(s). (6.2)

By the stochastic factorization formula [15, Chapter 5.3.1], for 0 < α < 1 to be
chosen later,

Γ μ(t) = sin(απ)

π

∫ t

0
(t − s)α−1Sμ(t − s)Γ μ

α (s)ds (6.3)

where

Γ μ
α (t) =

∫ t

0
(t − s)−αSμ(t − s)IμΦ(s)dw(s). (6.4)

We begin with estimates on Γ
μ
α .

Remark 6.1 All of the proofs in the section are written for the case q < +∞ where
q satisfies Assumption 2.2. A standard straightforward modification of the proofs is
required if q = +∞.
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Lemma 6.2 Let q, β satisfy (2.5)–(2.6). Let 0 < 2α < 1− β(q−2)
q . Then for any p ≥ 2

and T > 0, there exists a constant C = C(α, p, T ) independent of μ such that for
any t ∈ [0, T ],

E
∣
∣Π1Γ

μ
α (t)

∣
∣p

H ≤ CE sup
s∈[0,t]

‖Φ(s)‖p
L (L∞(D),H)

. (6.5)

‘

Proof By the Burkholder–Davis–Gundy inequality [15, Theorem 4.36],

E
∣
∣Π1Γ

μ
α (t)

∣
∣p

H ≤ CE

⎛

⎝
∞∑

j=1

∫ t

0
(t − s)−2α|Π1Sμ(t − s)IμΦ(s)Qe j |2H ds

⎞

⎠

p/2

(6.6)

where {e j } is the complete orthonormal basis of H that diagonalizes Q and A in
Assumption 2.2.

For the rest of the proof, it is enough to study the quadratic variation.

Λμ
α(t) :=

∞∑

j=1

∫ t

0
(t − s)−2α|Π1Sμ(t − s)IμΦ(s)Qe j |2H ds.

We expand this expression into a double sum

∞∑

k=1

∞∑

j=1

∫ t

0
(t − s)−2α〈Π1Sμ(t − s)IμΦ(s)Qe j , ek〉2H ds

=
∞∑

k=1

∞∑

j=1

∫ t

0
(t − s)−2α〈Φ(s)Qe j , I�

μS�
μ(t − s)Π�

1ek〉2H ds.

Notice that for any k, j ∈ N and t ≥ 0

〈I�
μS�

μ(t)Π�
1ek, e j 〉H = 〈Π1Sμ(t)Iμe j , ek〉H

=
{

f μ
k (t) if j = k

0 otherwise

where f μ
k (t) = f μ

k (t; 0, 1/μ) solves (5.2) with uk = 0 and vk = 1/μ. Therefore,
along with the fact that Qe j = λ j e j , the quadratic variation can be written as

Λμ
α(t) =

∞∑

k=1

∞∑

j=1

∫ t

0
(t − s)−2αλ2j ( f μ

k (t − s))2〈Φ(s)e j , ek〉2H ds.
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Apply Hölder’s inequality with exponents q
2 and q

q−2 to the double sum where q is
from Assumption 2.2,

Λμ
α(t) ≤

∫ t

0
(t − s)−2α

⎛

⎝
∞∑

k=1

∞∑

j=1

λ
q
j 〈Φ(s)e j , ek〉2

⎞

⎠

2/q

×
⎛

⎝
∞∑

k=1

∞∑

j=1

(
f μ
k (t − s)

)2q/(q−2) 〈e j , Φ
�(s)ek〉2H

⎞

⎠

(q−2)/q

ds

=
∫ t

0
(t − s)−2α

⎛

⎝
∞∑

j=1

λ
q
j |Φ(s)e j |2H

⎞

⎠

2/q

×
( ∞∑

k=1

(
f μ
k (t − s)

)2q/(q−2) |Φ�(s)ek |2H
)(q−2)/q

ds

≤
∫ t

0
(t − s)−2α

⎛

⎝
∞∑

j=1

λ
q
j |e j |2L∞(D)

⎞

⎠

2/q

×
( ∞∑

k=1

(
f μ
k (t − s)

)2q/(q−2) |ek |2L∞(D)

)(q−2)/q

‖Φ(s)‖2L (L∞(D),H)ds.

The final inequality is a consequence of the fact that Φ(t) = Φ�(t). Letting ‖Q‖q be
defined as in (2.4),

Λμ
α(t) ≤

∫ t

0
(t − s)−2α‖Q‖2q‖Φ(s)‖2L (L∞(D),H)

×
( ∞∑

k=1

(
f μ
k (t − s)

)2q/(q−2) |ek |2L∞(D)

)(q−2)/q

ds. (6.7)

We analyze the sum

( ∞∑

k=1

(
f μ
k (t)

)2q/(q−2) |ek |2L∞(D)

)(q−2)/q

by splitting it into two pieces. Let Nμ = max{k : 1 − 4μαk ≥ 0}. Then by (5.5) and
(5.7) with v = 1/μ

( ∞∑

k=1

(
f μ
k (t)

)2q/(q−2) |ek |2L∞(D)

)(q−2)/q

≤ C

⎛

⎝

Nμ∑

k=1

e−2αkqt/(q−2)|ek |2L∞(D)

+
∞∑

k=Nμ+1

(μαk)
−q/(q−2)e− tq

2(q−2)μ |ek |2L∞(D)

⎞

⎠

(q−2)/q

.
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For any x, y ≥ 0 it follows that (x + y)(q−2)/q ≤ x (q−2)/q + y(q−2)/q . Therefore, the
above expression is bounded by

C

⎛

⎝

Nμ∑

k=1

e−2qαk t/(q−2)|ek |2L∞(D)

⎞

⎠

(q−2)/q

+ Ce− t
2μ

μ

⎛

⎝
∞∑

k=Nμ+1

α
−q/(q−2)
k |ek |2L∞(D)

⎞

⎠

(q−2)/q

:= J1 + J2.

The finite sum J1 behaves like the eigenfunctions of the semigroup in the parabolic
case considered in [2–4]. Let β > 0 be from (2.5) and (2.6). There exists a constant
such that for all k ∈ N and t > 0, e−αk t ≤ C 1

α
β
k tβ

. It follows that

J1 = C

⎛

⎝

Nμ∑

k=1

e−2qαk t/(q−2)|ek |2L∞(D)

⎞

⎠

(q−2)/q

≤ C

( ∞∑

k=1

1

α
β
k tβ

|ek |2L∞(D)

)(q−2)/q

≤ C‖(−A)−1‖β(q−2)/q
β t−β(q−2)/q . (6.8)

We show that the tail sum J2 is small.
It follows from (2.6) that β <

q
q−2 and it follows from the definition of Nμ that

αk ≥ 1
4μ for all k ≥ Nμ+1.Therefore for all k ≥ Nμ+1,αβ−q/(q−2)

k ≤ (4μ)q/(q−2)−β

and by (2.5),

∞∑

k=Nμ+1

α
−q/(q−2)
k |ek |2L∞(D) ≤

∞∑

k=Nμ+1

α
β−q/(q−2)
k α

−β
k |ek |2L∞(D)

≤ (4μ)q/(q−2)−β
∞∑

k=Nμ+1

α
−β
k |ek |2L∞(D) ≤ Cμq/(q−2)−β‖(−A)−1‖β

β. (6.9)

This means that

J2 = Ce− t
2μ

μ

⎛

⎝
∞∑

k=Nμ+1

α
−q/(q−2)
k |ek |2L∞(D)

⎞

⎠

(q−2)/q

≤ Cμ−β(q−2)/qe− t
2μ ‖(−A)−1‖β(q−2)/q

β . (6.10)
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Plugging (6.8) and (6.10) back into (6.7),

Λμ
α(t) ≤ C

∫ t

0
(t − s)−2α

(
(t − s)−β(q−2)/q + μ−β(q−2)/qe− t−s

2μ

)

× ‖Φ(s)‖2L (L∞(D),H)ds

≤ C sup
s∈[0,t]

‖Φ(s)‖L (L∞(D),H)

×
∫ t

0

(
(t − s)−2α−β(q−2)/q + μ−β(q−2)/q(t − s)−2αe− t−s

2μ

)
ds.

By a change of variables,

∫ ∞

0
s−2αe− s

2μ ds = (2μ)1−2α
∫ ∞

0
t−2αe−t dt = Cμ1−2α. (6.11)

From these estimates we see that

Λμ
α(t) ≤ C sup

s∈[0,t]
‖Φ(s)‖L (L∞(D),H)

×
(∫ t

0
(t − s)−2α−β(q−2)/qds + μ1−2α−β(q−2)/q

)

.

We assumed that 2α < 1− β(q−2)
q . Therefore, there exists a constant C > 0 indepen-

dent of μ ∈ (0, 1) such that

Λμ
α(t) ≤ C sup

s≤t
‖Φ(s)‖2L (L∞(D),H).

The result follows by the BDG inequality (6.6). �
Now we analyze the second component of Γ

μ
α (t). This will diverge as μ → 0. It

will be convenient to analyze the moments of Γ
μ
α in two pieces. Let Nμ = max{k :

1 − 4μαk ≥ 0} as above. Let PNμ be the projection in H onto the span of the modes
{e1, ..eNμ}.
Lemma 6.3 Let q, β satisfy (2.5)–(2.6). Let 0 < 2α < 1 − β(q−2)

q . Let Γ
μ
α be given

by (3.4). Then for any p ≥ 2 and T > 0, there exist constants C = C(α, p, T ) > 0
and ζ = ζ(α, p, T ) ∈ (0, p) such that

1. For any t ∈ [0, T ], and μ ∈ (0, 1),

E
∣
∣PNμΠ2Γ

μ
α (t)

∣
∣p

H ≤ C

μp
E sup

s∈[0,t]
‖Φ(s)‖p

L (L∞(D),H)
. (6.12)

2. For any fixed t ∈ [0, T ],

lim
μ→0

μp
E|PNμΠ2Γ

μ
α (t)|p

H = 0. (6.13)
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3. For any fixed t ∈ [0, T ] and μ ∈ (0, 1),

E
∣
∣(I − PNμ)Π2Γ

μ
α (t)

∣
∣p

H−1 ≤ C

μ(p−ζ )/2
E sup

s∈[0,t]
‖Φ(s)‖p

L (L∞(D),H)
.

(6.14)

Proof The proofs of this lemma are similar to the proof of Lemma 6.2. Let Λ1(t) be
the quadratic variation of PNμΠ2Γ

μ
α .

Λ1(t) =
∞∑

j=1

∫ t

0
(t − s)−2α|PNμΠ2Sμ(t − s)IμΦ(s)Qe j |2H ds

=
Nμ∑

k=1

∞∑

j=1

∫ t

0
(t − s)−2α〈Φ(s)Qe j , I�

μS�
μ(t − s)Π�

2ek〉2H ds.

The eigenvalues satisfy Qe j = λ j e j and I�
μS�

μ(t − s)Π�
2ek = ( f μ

k )′(t − s)ek where
f μ
k solves (5.2) with uk = 0 and vk = 1/μ. Then

Λ1(t) ≤
Nμ∑

k=1

∞∑

j=1

∫ t

0
(t − s)−2αλ2j |( f μ

k )′(t)|2〈Φ(s)e j , ek〉2H ds. (6.15)

By (5.6) with v = 1
μ
, for k ∈ {1, . . . , Nμ}

|( f μ
k )′(t)| ≤ 2e−αk t

μ
.

Therefore,

Λ1(t) ≤ C

μ2

Nμ∑

k=1

∞∑

j=1

∫ t

0
(t − s)−2αλ2j e

−2αk (t−s)〈Φ(s)e j , ek〉2H ds.

By the Hölder inequality on the double sum and following the arguments of the proof
of Lemma 6.2,

Λ1(t) = C

μ2

∫ t

0
(t − s)−2α‖Q‖2q‖Φ(s)‖2L (L∞(D),H)

×
⎛

⎝

Nμ∑

k=1

e−2αkq(t−s)/(q−2)|ek |2L∞(D)

⎞

⎠

(q−2)/q

ds.
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By the same reasoning that we used in (6.8),

Λ1(t) ≤ C

μ2 sup
s∈[0,t]

‖Φ(s)‖2L (L∞(D),H)

∫ t

0
(t − s)−2α−β(q−2)/qds

≤ C

μ2 sup
s≤t

‖Φ(s)‖2L (L∞(D),H).

By the BDG inequality,

E
∣
∣PNμΠ1Γ

μ
α (t)

∣
∣p

H ≤ E(Λ1(t))
p/2

and (6.12) follows.
All of the previous calculations allow us to use a dominated convergence theo-

rem to prove (6.13). The upper bound for (6.15) using (5.6) was established above.
Specifically, for k ∈ {1, . . . , Nμ}, j ∈ N, and s, t ∈ [0, T ],

μ2|( f μ
k )′(t; 0, 1/μ)|2〈Φ(s)e j , ek〉2H ≤ Cλ2j e

−2αk t 〈Φ(s)e j , ek〉2H .

Notice that μ( f μ
k )′(t, 0, 1/μ) = ( f μ

k )′(t; 0, 1). By (5.23), for each s > 0, k ≤ Nμ,
and j ∈ N,

lim
μ→0

(t − s)−2αλ2jμ
2|( f μ

k )′(t; 0, 1/μ)|2〈Φ(s)e j , ek〉2H = 0.

Therefore, by (6.15) and the dominated convergence theorem Λ1(t) → 0 with proba-
bility 1. Then by using the BDG inequality and one more application of the dominated
convergence theorem, (6.13) follows.

As for the higher modes, let

Λ2(t) =
∞∑

j=1

∫ t

0
(t − s)−2α|(I − PNμ)Π2Sμ(t − s)IμΦ(s)Qe j |2H−1ds

=
∞∑

j=1

∫ t

0
(t − s)−2α

∣
∣
∣(−A)−1/2(I − PNμ)Π2Sμ(t − s)IμΦ(s)Qe j

∣
∣
∣
2

H
ds.

Expanding this to a double sum,

Λ2(t) ≤
∞∑

k=Nμ+1

∞∑

j=1

∫ t

0
(t − s)−2α

× 〈Φ(s)Qe j , I�
μS�

μ(t − s)Π�
2 (I − PNμ)�(−A)−1/2ek〉2H ds. (6.16)

Recognize that for k, j ∈ N

〈I�
μS�

μ(t − s)Π�
2 (I − PNμ)�(−A)−1/2ek, e j 〉H
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= 〈(−A)−1/2(I − PNμ)Π2Sμ(t − s)Iμe j , ek〉H

=
{

α
−1/2
k ( f μ

k )′(t − s) if k = j > Nμ,

0 otherwise.

By (5.8),

α
−1/2
k |( f μ

k )′(t − s)| ≤ Cα
−1/2
k μ−1e− t

4μ .

By (2.5) and (6.9),

∞∑

k=Nμ+1

(
α−1

k |( f μ
k )′(t − s)|2

)q/(q−2) |ek |2L∞(D)

≤
∞∑

k=Nμ+1

Ce−qt/(2μ(q−2))

μ2q/(q−2)α
q/(q−2)
k

|ek |2L∞(D) ≤ Ce−qt/(2μ(q−2))μ−q/(q−2)−β.

Applying the Hölder inequality to (6.16),

Λ2(t) ≤ C

μ
1+ β(q−2)

q

∫ t

0
(t − s)−2αe− t−s

2μ ‖Φ(s)‖2L (L∞(D),H)ds

By (6.11),

Λ2(t) ≤ C

μ
2α+ β(q−2)

q

sup
s∈[0,t]

‖Φ(s)‖2L (L∞(D),H).

We chose α so that 2α + β(q−1)
q < 1. This means that there exists ζ > 0 such that

Λ2(t) ≤ C

μ1−(ζ/p)
sup

s∈[0,t]
‖Φ(s)‖2L (L∞(D),H).

By the BDG inequality,

E
∣
∣(I − PNμ)Π2Γ

μ
α (t)

∣
∣p

H−1 ≤ C

μ(p−ζ )/2
E sup

s∈[0,t]
‖Φ(s)‖p

L (L∞(D),H)
. �

Now we can establish a priori bounds on the supremum norm of the stochastic
convolution.

Theorem 6.4 Let q, β satisfy (2.5)–(2.6). Let Γ μ(t) be given by (6.2). For any p ≥ 1
α

where 0 < 2α < 1− β(q−2)
q and T ≥ 0, there exists a constant C = C(α, p, T ) such

that for all μ ∈ (0, 1)

E sup
t∈[0,T ]

|Π1Γ
μ(t)|p

H ≤ CE

∫ T

0
sup

s∈[0,t]
‖Φ(s)‖p

L (L∞(D),H)
dt . (6.17)
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Notice that this constant is independent of μ ∈ (0, 1).

Proof We use the stochastic convolution formula (6.3),

Γ μ(t) = sin(απ)

π

∫ t

0
(t − s)α−1Sμ(t − s)Γ μ

α (s)ds.

We divide Γ
μ
α into three different pieces. Recall that Π1,Π2 defined in (2.11) and

PNμ, (I − PNμ) defined above Lemma 6.3 are all projections. We can rewrite the
stochastic convolution formula (6.3) as

Γ μ(t) = sin(απ)

π

∫ t

0
(t − s)α−1Sμ(t − s)

((
I
0

)

Π1Γ
μ
α (s)

+
(

0
PNμ

)

PNμΠ2Γ
μ
α (s) +

(
0

(1 − PNμ)

)

(1 − PNμ)Π2Γ
μ
α (s)

)

.

Choose α > 0 satisfying the assumptions of Lemmas 6.2 and 6.3. Let p > 1
α
.

Applying the Hölder inequality and using (5.17) and (6.5),

E sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
(t − s)α−1Π1Sμ(t − s)

(
I
0

)

Π1Γ
μ
α (s)ds

∣
∣
∣
∣

p

H

≤ C

(∫ T

0
s(α−1)p/(p−1)

∥
∥
∥
∥Π1Sμ(s)

(
I
0

)∥
∥
∥
∥

p/(p−1)

L (H)

ds

)p−1

E

∫ T

0
|Π1Γ

μ
α (s)|p

H ds

≤ C
∫ T

0
E sup

s∈[0,t]
‖Φ(s)‖p

L (L∞(D),H)
dt .

The previous line follows because p > 1
α
implies (α − 1)p/(p − 1) > −1.

By the same argument with (5.18) and (6.12),

E sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
(t − s)α−1Π1Sμ(t − s)

(
0

PNμ

)

PNμΠ2Γ
μ
α (s)ds

∣
∣
∣
∣

p

H

≤ C

(∫ T

0
s(α−1)p/(p−1)

∥
∥
∥
∥Π1Sμ(s)

(
0

PNμ

)∥
∥
∥
∥

p/(p−1)

L (H)

ds

)p−1

×
∫ T

0
|PNμΠ2Γ

μ
α (s)|p

H ds

≤ Cμp
E

∫ T

0
|PNμΠ2Γ

μ
α (t)|p

H dt ≤ CE sup
t∈[0,T ]

‖Φ(t)‖p
L (L∞(D),H)

dt .

By (5.19) and (6.14),

E sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
(t − s)α−1Π1Sμ(t − s)

(
0

(I − PNμ)

)

(I − PNμ)Π2Γ
μ
α (s)ds

∣
∣
∣
∣

p

H
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≤ C

(∫ T

0
s(α−1)p/(p−1)

∥
∥
∥
∥Π1Sμ(s)

(
0

I − PNμ

)∥
∥
∥
∥

p/(p−1)

L (H−1,H)

ds

)p−1

×
∫ T

0
|(I − PNμ)Π2Γ

μ
α (s)|p

H−1ds

≤ Cμp/2
E

∫ T

0
|(I − PNμ)Π2Γ

μ
α (t)|p

H−1dt

≤ Cμζ/2
E

∫ T

0
sup

t∈[0,T ]
‖Φ(t)‖p

L (L∞(D),H)
dt .

Therefore the result follows. �
Theorem 6.5 Let Γ μ(t) be given by (6.2). For any p ≥ 1

α
where 0 < 2α < 1− β(q−2)

q ,
and T ≥ 0, there exists a constant C = C(p, T , μ) such that

E sup
t∈[0,T ]

|Γ μ(t)|p
H ≤ C(T , p, μ)E

∫ T

0
sup

s∈[0,t]
‖Φ(s)‖p

L (L∞(D),H)
dt . (6.18)

Proof The proof is similar to the proof of Theorem 6.4, but it is less complicated
because the constant is allowed to depend on μ. The main difference is that we use
Lemma 5.7 instead of Lemmas 5.4–5.6 in the stochastic convolution argument. We
omit further details. �

7 Well-posedness of the stochastic wave equation: Proof of Theorem
4.1

Let μ > 0. We show that for any (u0, v0) ∈ H there is a unique mild solution
zμ ∈ C([0, T ] : H) solving

zμ(t) = Sμ(t)

(
u0
v0

)

+
∫ t

0
Sμ(t − s)IμB(s,Π1zμ(s))ds

+
∫ t

0
Sμ(t − s)IμG(s,Π1zμ(s))Qdw(s). (7.1)

We prove well-posedness with the contraction mapping principle. Let K μ : L p(Ω :
C([0, T ] : H)) → L p(Ω : C([0, T ] : H)) by

K μ(ϕ)(t) = Sμ(t)

(
u0
v0

)

+
∫ t

0
Sμ(t − s)IμB(s,Π1ϕ(s))ds

+
∫ t

0
Sμ(t − s)IμG(s,Π1ϕ(s))Qdw(s). (7.2)

Well-posedness follows from proving that there exists a unique fixed point for K μ.
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For any ϕ1, ϕ2 ∈ L p(Ω : C([0, T ] : H)),

E sup
t∈[0,T ]

|K μ(ϕ1) − K μ(ϕ2)|p
H

≤ CE sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
Sμ(t − s)Iμ(B(s,Π1ϕ1(s)) − B(s,Π1ϕ2(s)))ds

∣
∣
∣
∣

p

H

+ CE sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
Sμ(t − s)Iμ(G(s,Π1ϕ1(s)) − G(s,Π1ϕ2(s)))Qdw(s)

∣
∣
∣
∣

p

H
.

By Lemma 5.7, supt≥0 ‖Sμ(t)‖L (H) ≤ μ−1/2. By the Lipschitz continuity of B
(Assumption 2.1), for any t ∈ [0, T ],

∣
∣
∣
∣

∫ t

0
Sμ(t − s)Iμ(B(Π1ϕ1(s)) − B(Π1ϕ2(s)))ds

∣
∣
∣
∣H

≤ μ−3/2
∫ t

0
|B(s,Π1ϕ1(s)) − B(s,Π1ϕ2(s))|H ds

≤ Cμ−3/2
∫ t

0
|Π1ϕ1(s) − Π1ϕ2(s)|H ds.

For the stochastic term, Theorem 6.5 and (6.1) guarantee that

E sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
Sμ(t − s)Iμ(G(s, ϕ1(s)) − G(s, ϕ2(s)))Qdw(s)

∣
∣
∣
∣

p

H

≤ C(p, T , μ)E

∫ T

0
sup

s∈[0,t]
‖G(t,Π1ϕ1(s)) − G(t,Π1ϕ2(s))‖p

L (L∞(D),H)
dt

≤ C(p, T , μ)E

∫ T

0
sup

s∈[0,t]
|Π1ϕ1(s) − Π1ϕ2(s)|p

H dt .

It follows from these two estimates that

E sup
t∈[0,T ]

|K μ(ϕ1) − K μ(ϕ2)|p
H ≤ C(T , p, μ)E

∫ T

0
sup

s∈[0,t]
|Π1ϕ1(t) − Π1ϕ2(t)|p

H dt .

Therefore, for small enough T0 > 0,K μ is a contraction on L p(Ω : C([0, T0] : H)).
We can use standard methods to append solutions in the intervals [0, T0], [T0, 2T0],
[2T0, 3T0],…to get a unique solution to (7.1) in L p(Ω : C([0, T ] : H)) for any
T > 0.

8 Convergence: Proof of Theorem 4.2

Before proving Theorem 4.2, we state two auxilliary results about the convergence
of the stochastic convolutions and Lebesgue integral convolutions with the wave and
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heat semigroups.We state a result about the convergence of the stochastic convolutions
where Γ μ defined in (6.2) converge to Γ defined in (3.3).

Theorem 8.1 Let q, β satisfy (2.5)–(2.6). Let T > 0, let α ∈ (0, 1/2) satisfy 0 <

2α < 1 − β(q−2)
q and let p > 1

α
. For any self-adjoint, progressively measurable

Φ ∈ L p(Ω : L∞([0, T ] : L (L∞(D), H))) let Γ μ and Γ be given by (6.2) and (3.3)
respectively. Then

lim
μ→0

E|Π1Γ
μ − Γ |p

C([0,T ]:H) = 0. (8.1)

Theorem 8.1 is really the most technical piece of this paper. We will delay its proof
to Sect. 8.1. We will need a similar result about the Lebesgue integrals.

Theorem 8.2 For any T > 0 and ϕ ∈ L∞([0, T ] : H),

lim
μ→0

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
(S(t − s) − Π1Sμ(t − s)Iμ)ϕ(s)ds

∣
∣
∣
∣

H
= 0. (8.2)

The proof is in Sect. 8.2.
We now prove the main convergence result via Theorems 8.1 and 8.2.

Proof (Proof of Theorem 4.2)We decompose the difference between themild solutions
(2.14) and (3.2) into the following pieces

u(t) − uμ(t) = (S(t)u0 − Π1Sμ(t)(u0, v0))

+
∫ t

0
(S(t − s) − Π1Sμ(t − s)Iμ)B(s, u(s))ds

+
∫ t

0
Π1Sμ(t − s)Iμ(B(s, u(s)) − B(s, uμ(s)))ds

+
[∫ t

0
S(t − s)G(s, u(s))Qdw(s) −

∫ t

0
Π1Sμ(t − s)IμG(s, u(s))Qdw(s)

]

+
∫ t

0
Π1Sμ(t − s)Iμ(G(s, u(s)) − G(s, uμ(s)))Qdw(s)

=:
5∑

k=1

Jμ
k (t). (8.3)

Letting uk = 〈u0, ek〉H it follows from (5.1) that

sup
t∈[0,T ]

|S(t)u0 − Π1Sμ(t)(u0, 0)|2H =
∞∑

k=1

u2
k sup

t∈[0,T ]
(e−αk t − f μ

k (t; 1, 0))2

The above expression converges to zero by the dominated convergence theorem and
(5.21). Similarly, letting vk = 〈v0, ek〉H , and Nμ = max{k ∈ N : 1 − 4μαk ≥ 0} it
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follows from (5.5) and (5.7) that

∣
∣Π1Sμ(t)(0, v0)

∣
∣2

H =
∞∑

k=1

v2k

∣
∣ f μ

k (t : 0, 1)∣∣2 ≤
Nμ∑

k=1

v2k16μ
2 +

∞∑

k=Nμ+1

4μv2k

αk

If k ≤ Nμ, then 1 − 4μαk ≥ 0. In particular, μ ≤ 1
4αk

and μ2 ≤ μ
4αk

. Applying this
bound to the first sum in the above display, it follows that

∣
∣Π1Sμ(t)(0, v0)

∣
∣2

H ≤ 4μ
∞∑

k=1

v2k

αk
≤ 4μ|v|2H−1 .

These calculations show that

lim
μ→0

sup
t∈[0,T ]

|Jμ
1 (t)|H

≤ lim
μ→0

sup
t∈[0,T ]

(|S(t)u0 − Π1Sμ(t)(u0, 0)|H + |Π1Sμ(t)(0, v0)|H
) = 0. (8.4)

By Theorem 3.4, the unique solution to (3.2) is in L p(Ω : C([0, T ] : H)). By the
linear growth of B (see (2.2)), B(·, u(·)) ∈ L p(Ω : C([0, T ] : H) as well. It follows
from Theorem 8.2 and the dominated convergence theorem that

lim
μ→0

sup
t∈[0,T ]

E|J2(t)|p
H = 0. (8.5)

By the Lipschitz continuity of B (2.1), there exists a constant C > 0 such that for
all s ∈ [0, T ], |B(s, u(s)) − B(s, uμ(s))|H ≤ C |u(s) − uμ(s)|H . By Lemma 5.3 and
a Hölder inequality,

sup
t∈[0,T ]

E|J3(t)|p ≤ CT p−1
E

∫ T

0
sup

s∈[0,t]
|u(s) − uμ(s)|pdt . (8.6)

From the linear growth of G (2.2) and the fact that u ∈ L p(Ω : C([0, T ] : H)),
it follows that G(·, u(·)) ∈ L p(Ω : L∞([0, T ] : L (L∞(D), H))). Theorem 8.1
implies that

lim
μ→0

sup
t∈[0,T ]

|J4(t)|p
H = 0. (8.7)

By Theorem 6.4

E sup
t∈[0,T ]

|J5(t)|p
H ≤ CE

∫ T

0
sup

s∈[0,t]
‖G(s, u(s)) − G(s, uμ(s))‖p

L (L∞(D),H)
dt .
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By the Lipschitz continuity of G (6.1), there exists a constant independent of s and
μ such that ‖G(s, u(s)) − G(s, uμ(s))‖L (L∞(D),H) ≤ C |u(s) − uμ(s)|H . It follows
that

E sup
t∈[0,T ]

|J5(t)|p
H ≤ C(T )E

∫ T

0
sup

s∈[0,t]
|u(s) − uμ(s)|p

H dt . (8.8)

It now follows from (8.3), (8.6), and (8.8), that there exists an increasing C(T ) > 0
such that for any T > 0

E sup
t∈[0,T ]

|uμ(t) − u(t)|p
H ≤ C(T )

(

sup
t∈[0,T ]

|J1(t)|p
H + sup

t∈[0,T ]
E|J2(t)|p

H

+ sup
t∈[0,T ]

E|J4(t)|p
H + E

∫ T

0
sup

s∈[0,t]
|u(s) − uμ(s)|p

H dt

)

.

By Grönwall’s inequality, for any T > 0,

E sup
t∈[0,T ]

|uμ(t) − u(t)|p
H

≤ C(T )eT C(T )

(

sup
t∈[0,T ]

|J1(t)|p + sup
t∈[0,T ]

E|J2(t)|p
H + sup

t∈[0,T ]
E|J4(t)|p

H

)

.

Finally, we conclude that the above display converges to zero due to (8.4), (8.5), and
(8.7). �

8.1 Proof of Theorem 8.1

Lemma 8.3 Let α satisfying 0 < 2α < 1 − β(q−2)
q , p > 1

α
and Φ ∈ L p(Ω :

L∞([0, T ] : L (L∞(D), H))) satisfy the assumptions of Theorem 8.1. Let Γ
μ
α be

given by (6.4) and Γα be given by (3.4). For any t > 0,

lim
μ→0

E|Π1Γ
μ
α (t) − Γα(t)|p

H = 0.

Proof The scalar quadratic variation of Π1Γ
μ
α (t) − Γα(t) is

Λ(t) =
∞∑

j=1

∫ t

0
(t − s)−2α|(Π1Sμ(t − s)Iμ − S(t − s))Φ(s)Qe j |2H ds.

Writing this expression as a double sum and using the fact that ek are eigenfunctions
for S(t), Π1Sμ(t)Iμ and Q,

Λ(t) =
∞∑

k=1

∞∑

j=1

∫ t

0
(t − s)−2αλ2j |( f μ

k )(t; 0, 1/μ) − e−αk t |2〈Φ(s)e j , ek〉2H ds.
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For fixed k, j ∈ N and s ∈ [0, t], this integrand is dominated by,

2(t − s)−2αλ2j

(
|( f μ

k )(t; 0, 1/μ)|2 + e−2αk t
)

〈Φ(s)e j , ek〉2H

which is integrable by the arguments of Lemma 6.2 and [2, Section 3]. By (5.22) and
the dominated convergence theorem, Λ(t) → 0. By the BDG inequality,

lim
μ→0

E|Π1Γ
μ
α (t) − Γα(t)|p

H = 0. �

Lemma 8.4 For any N ∈ N and t ≥ 0,

lim
μ→0

∥
∥
∥
∥Π1Sμ(t)

(
PN

0

)

− S(t)PN

∥
∥
∥
∥
L (H)

= 0.

Proof Notice that because these operators are diagonalized by the orthonormal basis
{ek},

∥
∥
∥
∥Π1Sμ(t)

(
PN

0

)

− S(t)PN

∥
∥
∥
∥
L (H)

= max
k≤N

| f μ
k (t; 1, 0) − e−αk t |,

and the above expression converges to zero by (5.21). The limit will not be truewithout
the projection onto a finite dimensional span. �
Proof (Proof of Theorem 8.1) By the factorization method of [15, Chapter 5.3.1],

Γ (t) =
∫ t

0
(t − s)α−1S(t − s)Γα(s)ds, Γ μ(t) =

∫ t

0
(t − s)α−1Sμ(t − s)Γ μ

α (s)ds,

where Γα and Γ
μ
α are defined in (3.4) and (6.4).

We split up the difference into five pieces. Let N ∈ N be chosen later. Let Nμ =
sup{k ∈ N : 1 − 4μαk ≥ 0}.

Γ (t) − Π1Γ
μ(t) =

+
∫ t

0
(t − s)α−1

(

S(t − s)PN − Π1Sμ(t − s)

(
PN

0

))

Γα(s)ds

+
∫ t

0
(t − s)α−1

(

S(t − s)(I − PN ) − Π1Sμ(t − s)

(
I − PN

0

))

Γα(s)ds

+
∫ t

0
(t − s)α−1Π1Sμ(t − s)

(
I
0

)

(Γα(s) − Π1Γ
μ
α (s))ds

−
∫ t

0
(t − s)α−1Π1Sμ(t − s)I1PNμΠ2Γ

μ
α (s)ds

−
∫ t

0
(t − s)α−1Π1Sμ(t − s)I1(I − PNμ)Π2Γ

μ
α (s)ds

=: I μ
1,N (t) + I μ

2,N (t) + I μ
3,N (t) + I μ

4,N (t) + I μ
5,N (t). (8.9)
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We also denote I μ
i (t) := I μ

i,N (t) for i = 3, 4, 5 because these terms are independent
of the choice of N .

By the Hölder inequality, for p > 1
α
and N ∈ N,

E sup
t∈[0,T ]

|I μ
1,N (t)|p

H

≤
(∫ T

0
s

(α−1)p
p−1

∥
∥
∥
∥S(s)PN − Π1Sμ(s)

(
PN

0

)∥
∥
∥
∥

p
p−1

L (H)

ds

)p−1

×
∫ T

0
E|PN Γα(s)|p

H ds.

By Lemma 8.4 and the dominated convergence theorem, for any fixed N ∈ N,

lim
μ→0

(∫ T

0
s

(α−1)p
p−1

∥
∥
∥
∥S(s)PN − Π1Sμ(s)

(
PN

0

)∥
∥
∥
∥

p
p−1

L (H)

ds

)p−1

= 0.

The dominated convergence is valid by Lemma 8.4, the well-known fact that the
heat equation semigroup is uniformly bounded, and the fact that p > 1

α
implies

(α−1)(p−1)
p > −1.

Note that Lemma 3.1 implies that E|Γα(t)|p
H is bounded uniformly in t ∈ [0, T ].

It follows that for any fixed N ∈ N,

lim
μ→0

sup
t∈[0,T ]

|I μ
1,N (t)|p

H = 0. (8.10)

Now we show that I μ
2,N converges to 0 as N → +∞ independently of μ > 0. By

the Hölder inequality,

E sup
t∈[0,T ]

|I μ
2,N (t)|p

H

≤
(∫ T

0
s

(α−1)p
p−1

∥
∥
∥
∥S(s)(I − PN ) − Π1Sμ(s)

(
I − PN

0

)∥
∥
∥
∥

p
p−1

L (H)

ds

)p−1

×
∫ T

0
E|(I − ΠN )Γα(s)|p

H ds.

The first integral is uniformly bounded by Lemma 5.4 and the boundedness of the heat
equation semigroup. Specifically, for any N ∈ N and μ ∈ (0, 1),

∥
∥
∥
∥S(s)(I − PN ) − Π1Sμ(s)

(
I − PN

0

)∥
∥
∥
∥
L (H)

≤ ‖S(s)‖L (H) +
∥
∥
∥
∥Π1Sμ(s)

(
I
0

)∥
∥
∥
∥
L (H)

≤ 2.
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For any fixed s ∈ [0, T ], E|(I − PN )Γα(s)|p
H converges to 0 as N → +∞ by Lemma

3.3. Therefore,

lim
N→+∞ sup

μ∈(0,1)
E sup

t∈[0,T ]
|I μ
2,N (t)|p

H = 0. (8.11)

For I μ
3 , we notice that

E sup
t∈[0,T ]

|I μ
3 (t)|p

H

≤
(∫ T

0
s

(α−1)p
p−1

∥
∥
∥
∥Π1Sμ(s)

(
I
0

)∥
∥
∥
∥

p
p−1

L (H)

ds

) ∫ T

0
E|Γα(s) − Π1Γ

μ
α (s)|p

H ds.

Lemma 5.4 guarantees that the first integral is uniformly bounded. Lemma 8.3 and the
dominated convergence theorem guarantees that

lim
μ→0

E sup
t∈[0,T ]

|I μ
3 (t)|p

H = 0. (8.12)

The dominated convergence is valid due to Lemma 6.2.
For I μ

4 ,

E sup
t∈[0,T ]

|I μ
4 (t)|p

H

≤
(∫ T

0
s

(α−1)p
p−1

∥
∥Π1Sμ(s)Iμ PNμ

∥
∥

p
p−1

L (H)
ds

)p−1 ∫ T

0
E|μΠ2Γ

μ
α (s)|p

H ds.

The first integral is bounded by Lemma 5.5. The second integral goes to zero as μ

goes to zero by (6.12), (6.13), and the dominated convergence theorem. Therefore,

lim
μ→0

E sup
t∈[0,T ]

|I μ
4 (t)|p

H = 0. (8.13)

Finally,

E sup
t∈[0,T ]

∣
∣I μ
5 (t)

∣
∣p

H ≤
(∫ T

0
s

(α−1)p
p−1

∥
∥Π1Sμ(s)I1(I − PNμ)

∥
∥
L (H−1,H)

ds

)p−1

×
∫ T

0
E|(I − PNμ)Π2Γ

μ
α (s)|p

H−1ds.

By Lemma 5.6, there exists C > 0 independent of μ such that

(∫ T

0
s

(α−1)p
p−1

∥
∥Π1Sμ(s)I1(I − PNμ)

∥
∥

p
p−1

L (H−1,H)
ds

)p−1

≤ Cμ
p
2 .
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By (6.14),

∫ T

0
E

∣
∣(I − PNμ)Π2Γ

μ
α (s)

∣
∣p

H−1 ds ≤ CT

μ(p−ζ )/2
E sup

s∈[0,T ]
‖Φ(s)‖p

L (H)
.

Therefore,

lim
μ→0

E sup
t∈[0,T ]

|I μ
5 (t)|p

H = 0. (8.14)

We can now complete the proof. Pick any arbitrary η > 0. There exists a constant
C > 0 such that by (8.9),

E sup
t∈[0,T ]

|Γ (t) − Γ μ(t)|p
H ≤ C

5∑

i=1

E sup
t∈[0,T ]

|I μ
i,N (t)|p

H .

Choose N large enough so that by (8.11), E supt∈[0,T ] |I μ
2,N (t)|p

H <
η
5C . Then choose

μ0 > 0 small enough so that for any μ ∈ (0, μ0), (8.10), (8.12), (8.13), and (8.14)
guarantee that E supt∈[0,T ] |I μ

i,N (t)|p
H <

η
5C for i = 1, 3, 4, 5. Then for μ ∈ (0, μ0),

E sup
t∈[0,T ]

|Γ (t) − Γ μ(t)|p
H < η.

The result follows because η > 0 was arbitrary. �

8.2 Proof of Theorem 8.2

Let PN be the projection onto the finite dimensional span {ek}N
k=1. The following

lemma is a consequence of (5.22).

Lemma 8.5 For any 0 < t0 < T and N ∈ N,

lim
μ→0

sup
t∈[t0,T ]

∥
∥(S(t) − Π1Sμ(t)Iμ)PN

∥
∥
L (H)

= 0. (8.15)

Proof Because for any fixed t > 0, the operators S(t) and Π1Sμ(t)Iμ are both diag-
onalized by the orthonormal basis {ek},

∥
∥(S(t) − Π1Sμ(t)Iμ)PN

∥
∥
L (H)

= max
k∈{1,...,N } | f μ

k (t; 0, 1/μ) − e−αk t |

where f μ
k (t; 0, 1/μ) solves (5.2). The result follows by (5.22) and the fact that we are

only working with a finite number of modes at a time. �
Proof (Proof of Theorem 8.2) Let T > 0 and ϕ ∈ L∞([0, T ] : H). For any N ∈ N,

∣
∣
∣
∣

∫ t

0
(S(t − s) − Π1Sμ(t − s)Iμ)ϕ(s)ds

∣
∣
∣
∣

H
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≤
∫ t

0
|(S(t − s) − Π1Sμ(t − s)Iμ)PN ϕ(s)|H ds

+
∫ t

0
|(S(t − s) − Π1Sμ(t − s)Iμ)(I − PN )ϕ(s)|H ds

≤
(∫ t

0
‖(S(t − s) − Π1Sμ(t − s)Iμ)PN ‖L (H)ds

)

|ϕ|L∞([0,T ]:H)

+ 5
∫ t

0
|(I − PN )ϕ(s)|H ds. (8.16)

The last inequality is due to the fact that by Lemma 5.3 for any t ≥ 0,

‖S(t) − Π1Sμ(t)Iμ‖L (H) ≤ ‖S(t)‖L (H) + ‖Π1Sμ(t)Iμ‖L (H) ≤ 5.

It follows from (8.16) that

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
(S(t − s) − Π1Sμ(t − s)Iμ)ϕ(s)ds

∣
∣
∣
∣

H

≤
(∫ T

0
‖(S(t − s) − Π1Sμ(t − s)Iμ)PN ‖L (H)ds

)

|ϕ|L∞([0,T ]:H)

+ 5
∫ T

0
|(I − PN )ϕ(s)|H ds. (8.17)

By Lemma 8.5 and the dominated convergence theorem,

lim
μ→0

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
(S(t − s) − Π1Sμ(t − s)Iμ)ϕ(s)ds

∣
∣
∣
∣

H
≤ 5

∫ T

0
|(I − PN )ϕ(s)|H ds.

Finally, we recall that N ∈ N was arbitrary and that the dominated convergence
theorem guarantees that the limit of the right-hand side as N → +∞ is 0. �

References

1. Birrell, J., Hottovy, S., Volpe, G., Wehr, J.: Small mass limit of a Langevin equation on a manifold
18(2), 707–755 (2017)

2. Cerrai, S.: Stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction
term. Probab. Theory Relat. Fields 125(2), 271–304 (2003)

3. Cerrai, S.: Asymptotic behavior of systems of stochastic partial differential equations with multiplica-
tive noise. In: Stochastic Partial Differential Equations and Applications VII, pp. 61–75 (2006)

4. Cerrai, S.: A Khasminskii type averaging principle for stochastic reaction–diffusion equations. Ann.
Appl. Probab. 19(3), 899–948 (2009)

5. Cerrai, S., Freidlin, M.: On the Smoluchowski–Kramers approximation for a system with an infinite
number of degrees of freedom. Probab. Theory Relat. Fields 135(3), 363–394 (2006)

6. Cerrai, S., Freidlin, M.: Smoluchowski–Kramers approximation for a general class of SPDEs. J. Evol.
Equ. 6(4), 657–689 (2006)

7. Cerrai, S., Freidlin,M.: Small mass asymptotics for a charged particle in amagnetic field and long-time
influence of small perturbations. J. Stat. Phys. 144(1), 101–123 (2011)

123



122 Stoch PDE: Anal Comp (2019) 7:86–122

8. Cerrai, S., Freidlin, M.: Large deviations for the Langevin equation with strong damping. J. Stat. Phys.
161(4), 859–875 (2015)

9. Cerrai, S., Glatt-Holtz, N.: On the convergence of stationary solutions in the Smoluchowski–Kramers
approximation of infinite dimensional systems. arXiv preprint arXiv:1806.05319 (2018)

10. Cerrai, S., Salins, M.: Smoluchowski–Kramers approximation and large deviations for infinite dimen-
sional gradient systems. Asymptot. Anal. 88(4), 201–215 (2014)

11. Cerrai, S., Salins, M.: On the Smoluchoski–Kramers approximation for a system with infinite degrees
of freedom exposed to a magnetic field. Stoch. Process. Appl. 127(1), 273–303 (2016). https://doi.org/
10.1016/j.spa.2016.06.008

12. Cerrai, S., Salins, M.: Smoluchowski–Kramers approximation and large deviations for infinite-
dimensional nongradient systems wih applications to the exit problem. Ann. Prob. 44(4), 2591–2642
(2016)

13. Chen, G., Duan, J., Zhang, J.: Approximating dynamics of a singularly perturbed stochastic wave
equation with a random dynamical boundary condition. SIAM J.Math. Anal. 45(5), 2790–2814 (2013)

14. Chen, Z., Freidlin, M.: Smoluchowski–Kramers approximation and exit problems. Stoch. Dyn. 5(04),
569–585 (2005)

15. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press,
Cambridge (2014)

16. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhikers guide to the fractional sobolev spaces. Bull. Sci.
Math. 136(5), 521–573 (2012)

17. Evans, L.: Partial Differential Equations. Graduate studies in mathematics. American Mathematical
Society. https://books.google.com/books?id=Xnu0o_EJrCQC (2010)

18. Freidlin, M.: Some remarks on the Smoluchowski–Kramers approximation. J. Stat. Phys. 117(3),
617–634 (2004)

19. Freidlin, M., Hu, W.: Smoluchowski–Kramers approximation in the case of variable friction. J. Math.
Sci. 179(1), 184–207 (2011)

20. Freidlin, M., Hu, W., Wentzell, A.: Small mass asymptotic for the motion with vanishing friction.
Stoch. Process. Appl. 123(1), 45–75 (2013)

21. Herzog, D.P., Hottovy, S., Volpe, G.: The small-mass limit for Langevin dynamics with unbounded
coefficients and positive friction. J. Stat. Phys. 163(3), 659–673 (2016)

22. Hottovy, S., McDaniel, A., Volpe, G., Wehr, J.: The Smoluchowski–Kramers limit of stochastic dif-
ferential equations with arbitrary state-dependent friction. Commun. Math. Phys. 336(3), 1259–1283
(2015)

23. Hu, W., Spiliopoulos, K.: Hypoelliptic multiscale Langevin diffusions: large deviations, invariant
measures and small mass asymptotics. Electron. J. Probab. 22, 1–38 (2017)

24. Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions.
Physica 7(4), 284–304 (1940)

25. Lee, J.J.: Small mass asymptotics of a charged particle in a variable magnetic field. Asymptot. Anal.
86(2), 99–121 (2014)

26. Lv, Y., Roberts, A.: Large deviation principle for singularly perturbed stochastic damped wave equa-
tions. Stoch. Anal. Appl. 32(1), 50–60 (2014)

27. Lv, Y.,Wang,W.: Limiting dynamics for stochastic wave equations. J. Differ. Equ. 244(1), 1–23 (2008)
28. von Smoluchowski, M.: Drei vortrage uber diffusion. Brownsche bewegung und koagulation von

kolloidteilchen. Z. Phys. 17, 557–585 (1916)
29. Spiliopoulos, K.: A note on the Smoluchowski–Kramers approximation for the Langevin equation

with reflection. Stoch. Dyn. 7(02), 141–152 (2007)

123

http://arxiv.org/abs/1806.05319
https://doi.org/10.1016/j.spa.2016.06.008
https://doi.org/10.1016/j.spa.2016.06.008
https://books.google.com/books?id=Xnu0o_EJrCQC

	Smoluchowski–Kramers approximation for the damped stochastic wave equation with multiplicative noise in any spatial dimension
	Abstract
	1 Introduction
	2 Assumptions and notations
	3 Heat equation
	4 Main results
	5 Estimates on the wave equation semigroup mathcalSµ(t)
	6 Regularity of the stochastic convolution
	7 Well-posedness of the stochastic wave equation: Proof of Theorem 4.1
	8 Convergence: Proof of Theorem 4.2
	8.1 Proof of Theorem 8.1
	8.2 Proof of Theorem 8.2

	References




