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Abstract We consider the family known as modified or generalized surface quasi-
geostrophic equations (mSQG) consisting of the classical inviscid surface quasi-
geostrophic (SQG) equation together with a family of regularized active scalars given
by introducing a smoothing operator of nonzero but possibly arbitrarily small degree.
This family naturally interpolates between the 2D Euler equation and the SQG equa-
tion. For this family of equations we construct an invariant measure on a rough
L2-based Sobolev space and establish the existence of solutions of arbitrarily large
lifespan for initial data in a set of full measure in the rough Sobolev space.
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1 Introduction

The inviscid surface quasi geostrophic (SQG) equation,

{
θt + (u · ∇)θ = 0, x ∈ M and t > 0

u = R⊥θ,
(1.1)

withM being eitherT2 orR2 andR⊥ := ∇⊥(−�)− 1
2 the Riesz transform, is by now a

well known geophysical model in atmospheric sciences which has been systematically
studied byConstantin,Majda, and Tabakwho, in particular, developed an analogywith
the 3D Euler equations; by Pierrehumbert, Held, and Swanson; by Held, Pierrehum-
bert, Garner and Swanson and others (see [10,11,18,22] and references therein). This
equation has since attracted a lot of attention. Many interesting results describing the
behavior of (1.1) have been obtained, see e.g. [7,13,15,23,27]. In particular, Resnick
[23], constructed global in time weak solutions to (1.1) for initial data θ0 ∈ L2(R2).
The question of global in time existence and uniqueness of strong solutions to
(1.1) - or global regularity - however, is still an outstanding open problem, just as
for the 3D Navier–Stokes and 3D Euler equations. The SQG equation has strong simi-
larities to the vorticity formulation of the incompressible 2D Euler equation, in which
θ is replaced by the fluid vorticity ω and the relation between the active scalar u and
the solution ω is altered as follows:{

ωt + (u · ∇)ω = 0, x ∈ M and t > 0

u = R⊥|D|−1ω,
(1.2)

where againM could be eitherT2 orR2. Global existence of classical smooth solutions
to (1.2) has been known for a while; see e.g. [28] and references therein. On the other
hand, Albeverio and Cruzeiro [1] used probabilistic tools to prove the existence of
global flows valued in Sobolev spaces Hs(T2), s < −2 via the invariance of (Gibbs)
measure associated to the conservation of enstrophy, ‖ω‖L2(T2), for the incompressible
2D Euler Eq. (1.2).

In light of [1] it is natural to ask whether a similar program can be carried out
for the SQG Eq. (1.1), which also has conservation of ‘enstrosphy’ ‖θ‖L2(T2) . Such
global flows, if they exist, would be less regular than those constructed by Resnick. A
cornerstone of the argument laid in [1] is showing that the Hs-norm of nonlinearity
of the equation is finite almost surely with respect to the associated invariant measure
ρ constructed based on the conservation of SQG enstrophy (say in L2

ρ).
This estimate is a key ingredient in the compactness argument used to construct

the random flows. At this point it is worth noting that the SQG Eq. (1.1) is one
derivative less regular than 2DEuler Eq. (1.2). And this loss of regularity turns out to be
insurmountable for it actually renders eachFouriermodeof the nonlinearity of theSQG
Eq. (1.1) infinite almost surely with respect to ρ, (c.f. Sect. 4.2). However, the nature of
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the divergence is such that convergence is possible as soon as the Biot–Savart law for
the velocity u = R⊥θ is only slightly more regular. That motivated us to consider the
natural family of active scalars that interpolates between the SQG and Euler equations,
which are known as the modified or generalized surface quasi-geostrophic equations
(mSQG). We refer the reader to Constantin et al. [12], Pierrehumbert et al. [22],
Schorghofer [24] and Smith et al. [25] and references therein for a geophysical context
for the mSQG equations.

In this paper we thus consider such inviscid modified surface quasi-geostrophic
equation (mSQG) which is also an active scalar equation describing the transport of
the scalar valued function

θ = θ(x, t) : T2 × [0,∞) → R

under the velocity field u, which itself is related to θ now via a regularized Biot–
Savart law. More precisely, the mSQG equation that we consider in this paper is given
as follows:

{
θt + (u · ∇)θ = 0, x ∈ T

2 and t > 0

u = R⊥|D|−δθ,
(1.3)

where δ > 0. Here |D| := (−�)1/2, and R⊥ = ∇⊥|D|−1 is as before the Riesz
transform, where ∇⊥ = (−∂x2 , ∂x1).

When δ = 1 the Eq. (1.3) coincides with the 2D Euler equation with θ representing
the vorticity ω. When δ = 0 the Eq. (1.3) coincides with the inviscid surface quasi
geostrophic (SQG) equation. For 0 < δ < 1 the relation between the velocity u and
the function θ is less singular than in the case of the SQG Eq. (1.1), but more singular
than in the case of the 2D Euler Eq. (1.2).

The Eq. (1.3) in the regime 0 < δ < 1 has been studied using deterministic tools
by Córdoba, Fontelos, Mancho and Rodrigo [16], where the evolution of patch-like
initial data has been considered, and by Chae, Constantin andWu, [8] who established
a regularity criterion. Furthermore, in recent work by Kiselev, Resnick, Yao and Zlatos
[19] and by Kiselev, Yao and Zlatos [20] patch dynamics and local-in-time regularity
on the whole plane and in the half-plane were studied and initial data leading to finite
time singularity was exhibited. The mSQG Eq. (1.3) with more singular velocities
δ < 0 has been recently studied in [9].

In this paper we use probabilistic tools to obtain a global flow in Hs(R2), s <

−3 + δ, for any 0 < δ ≤ 1, for the mSQG Eq. (1.3) in the support of a Gaussian
measure ρ, which is left invariant under the flow. In particular, we implement the
approach of [1] in the context of mSQG as follows:

(1) We work with the streamline formulation of the equation, whose (sufficiently)
smooth solutions still conserve ‘enstrophy’ (for details see Sect. 2). We then con-
sider the infinite Gaussian measure ρ constructed with respect to this enstrophy.

(2) We rewrite the streamline formulation of the equation in terms of an orthonormal
L2 basis as an infinite ODE system, for which we analyze the coefficient corre-
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sponding to the nonlinear term, with the goal of obtaining an expectation estimate
that will allow subsequent probabilistic analysis.

(3) We introduce an approximate system of ODE, which is still an infinite system,
but which has truncated nonlinear term. We show that each of these systems has
a global flow and leaves the Gaussian measure ρ invariant.

(4) Finally we perform a probabilistic convergence argument, which will give us a
global flow for the streamline formulation of the equation in the support of the
Gaussian measure ρ.

We refer the reader to Sect. 2 for the precise set up and statement of theMain Theorem
as well as to Remark 2.2.

Our paper can be understood as a probabilistic version in the context of the mSQG
equations of the result of Resnick for SQG and as a generalization of the work of
Albeverio and Cruzeiro [1] to velocity fields u that are more singular (0 < δ < 1)
with respect to θ than in the case of Euler equations. As we alluded above, our analysis
does not carry to the δ = 0 case, which corresponds to the SQG equation. In particular,
the expectation result of Proposition 4.1 fails in this case due to a certain logarithmic
divergence that appears already in each Fourier mode (c.f. Sect. 4.2 ) and is hence
independent of the choice of function space from which we consider the initial data.

Finally, we note that in [1] Albeverio and Cruzeiro also considered the 2D Navier–
Stokes equations, stochastically perturbed by a white noise. This line of work on
constructing global weak solutions has been continued for stochastically perturbed
Navier–Stokes equations using sophisticated tools from probability in e.g. [2,17],
where certain types of uniqueness have been established too.

The program of construction of probabilistic weak solutions introduced by Albev-
erio and Cruzeiro [1] was recently implemented for the wave and dispersive equations
by Burq, Thomann and Tzvetkov in [6]. Also we note that upon completion of this
work we learned of the recent work of Symeonides [26], who considered the averaged
Euler equations in 2D and obtained a global flow in the support of a Gaussian mea-
sure constructed based on the associated enstrophy. Just as 2D Euler is to SQG, the
averaged 2D Euler equation is one derivative smoother than the mSQG equation.

Outline of the paper The problem is reformulated using stream functions in Sect. 2;
Sect. 2 also reviews the standard construction of the Gaussian measure. In Sect. 3 we
recall the probabilistic tools used in the proof of our main result. Section 4 is devoted
to checking the crucial fact that the expectation of the nonlinearity is finite whenever
δ > 0. We then introduce the approximate flows in Sect. 5, where we then show the
invariance of the Gaussian measure under these flows. Using the tools of Sect. 3, we
construct the candidate random flows in Sect. 6. The proof of the main result is given
in Sect. 7.

2 The statement of the main result

In this section we rewrite the mSQG equation in the streamline formulation, and we
then review the standard construction the Gaussian invariant measure based on the
conservation of the “enstrophy” for solutions of the streamline formulation of the
mSQG. Then we state the main result of this paper.
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2.1 Streamline formulation for the mSQG

In an analogywith 2DEuler equations in the vorticity form,we introduce the streamline
function ϕ for our Eq. (1.3) so that we can write the velocity u as

u = ∇⊥ϕ. (2.1)

Having in mind that according to (1.3)

u = R⊥|D|−δθ = ∇⊥|D|−1|D|−δθ (2.2)

such streamline function ϕ is related to θ via

ϕ = |D|−1−δθ

resulting in the streamline formulation of the mSQG Eq. (1.3):

{
(|D|1+δϕ)t + (u · ∇)|D|1+δϕ = 0

u = ∇⊥ϕ.
(2.3)

Remark 2.1 We observe that by taking δ = 1 in the streamline formulation (2.3) we
indeed recover the known streamline formulation for 2D Euler equations:

{
(�ϕ)t + (u · ∇)�ϕ = 0

u = ∇⊥ϕ
(2.4)

which was the starting point for the work [1].

We find it convenient to rewrite the streamline formulation (2.3) in terms of the
regularized stream function ψ introduced via

|D|δϕ = ψ. (2.5)

Then the regularized streamline formulation that we work with reads as follows:

{
ψt + |D|−1(u · ∇)|D|ψ = 0

u = ∇⊥|D|−δψ.
(2.6)

Below we will abbreviate the nonlinearity in (2.6) by

B(ψ,ψ) := −|D|−1(∇⊥|D|−δψ · ∇)|D|ψ (2.7)

We recall that for classical solutions to (1.3) the SQG enstrophy ‖θ‖L2 is conserved
in time. We also note that, thanks to (2.5), we have thatψ is mean zero. Consequently,

123



Stoch PDE: Anal Comp (2018) 6:184–210 189

the homogeneous and inhomogeneous Sobolev spaces restricted to our space of solu-
tions are comparable. We therefore take the Sobolev norm

‖ f ‖2Hs (T2)
:=

∑
k∈Z2

|k|2s | f̂ (k)|2,

and following the notation in [6], we introduce the spaces

Xσ :=
⋂
s<σ

Hs . (2.8)

Similarly, we slightly abuse notation by defining the associated path space by

C
([0, T ] : Xσ

) :=
⋂
s<σ

C
([0, T ] : Hs) . (2.9)

Since both of these spaces are defined as nested intersections, they inherit the natural
subspace topology.

Finally, it follows from the definitions ofψ and ϕ and the conservation of ‖θ‖L2 for
solutions θ of (1.3) that ‖ψ‖H1 is formally conserved in time. It is this conservation
of ‖ψ‖H1 that gives rise to the Gaussian measure ρ introduced in the next subsection.

2.2 The Gaussian invariant measure and its support

Here we review the construction of a centered Gaussian measure defined on functions
Hs . The construction presented here is standard (see for example [5]) and we include
it for the sake of completeness.

Ifψk denote the Fourier coefficients ofψ , then heuristically we would like to define

“ dρ(ψ) := 1

Z

∏
k∈Z2

exp
(
−2|k|2|ψk |2

)
dψk” (2.10)

where dψk := dxk dyk is the Lebesgue measure on C associated to the variable
ψk = xk + iyk ∈ C, and Z is the appropriate normalization factor needed to yield a
probability measure. Unfortunately this heuristic expression is not well-defined.

To proceed rigorously, one constructs this measure as the weak limit of a sequence
of premeasures defined on Hs whose index will be determined later. In order to agree
with the heuristically defined measure introduced above, fix the Hilbert space H =
H1 corresponding to the conserved quantity of (2.6), and introduce the correlation
operator

T : H → H : T (ψ) = |D|2−2sψ.

The operator T has eigenvalues

λk = |k|2−2s
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and corresponding eigenvectors

esk := |k|−seik·x

for k ∈ Z
2. Note that

∞∑
k∈Z2

|k|2|ψk |2 = 〈ψ,ψ〉H1 = 〈T ψ,ψ〉Hs .

This correlation operator is then used to build a sequence of pre-measures. Fix for
the moment some s ∈ R. In what follows, define for k ∈ Z

2 the maximum norm
|k| = |(k1, k2)| = max(|k1|, |k2|). For each N ∈ N, define the projections

πN : Hs → C
(2N+1)2

by

πN (ψ) = (〈ψ, esk〉H
)
{k∈Z2 :|k|≤N }

corresponding to the orthonormal basis (esk) of H
s(T2). We denote

EN := span{esk : |k| ≤ N }

Wesay that a setM ⊂ Hs is N-cylindrical if there exists someBorel set F ⊂ C
(2N+1)2

for which M = π−1
N (F). Denote the algebra of N -cylindrical sets by AN . Similarly,

call M ⊂ H cylindrical if it is N -cylindrical for some N ≥ 1. Introduce the σ -algebra
A of cylindrical sets consisting of the smallest σ -algebra containing

⋃
N AN .

Now define the following pre-measure for each M = π−1
N (F) ∈ ⋃

N∈NAN :

ρ(M) :=
⎛
⎝ ∏

|k|≤N

1√
2πλk

⎞
⎠ ∫

F
exp

⎛
⎝−1

2

∑
|k|≤N

λ−1
k |ψk |2

⎞
⎠ dψ1 · · · dψ(2N+1)2 .

(2.11)

This pre-measure is not necessarily countably additive. The following proposition (c.f.
Proposition 1.3.1 of [1]) gives us a criterion for when the pre-measure is countably
additive:

Proposition 2.1 The Gaussian measure ρ defined above is countably additive if and
only if T −1 is of trace class. In this case, A is the Borel σ -algebra on H.

In our case, we have that T −1 is of trace class provided

∞∑
k∈Z2

λ−1
k =

∑
k∈Z2

|k|2s−2 < ∞, (2.12)
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which occurs provided we choose s < 0. Therefore the support of ρ is in the space
X0.

Having constructed ρ, we adopt the usual notation for the expectation with respect
to ρ:

Eρ(F(ψ)) =
∫
X0

F(ψ) dρ(ψ).

We note the following moment expectations which can be calculated explicitly from
the definition (2.11):

Eρ(ψk) = 0,

Eρ(ψkψk′) = 0,

Eρ(ψkψk′) = 2δk,k′

|k|2|k′|2 . (2.13)

Given two Banach spaces X,Y for which the support of ρ is contained in X, we
denote by L2

ρ(X,Y) the space of all functions F : X → Y for which

‖F(ψ)‖2L2
ρ(X,Y)

:=
∫
X

‖F(ψ)‖2Y dρ(ψ) < ∞.

Often in the sequel the domain X will be understood from context, at which point we
abbreviate L2

ρ(X,Y) = L2
ρ(Y).

It will be useful in the sequel to decompose ρ along the perpendicular subspaces
Hs = EN ⊕ E⊥

N for s < 0. Fixing some N ∈ N, introduce the measure ρN defined
for N -cylindrical subsets M of Hs by

ρN (M) :=
⎛
⎝ ∏

|k|≤N

1√
2πλk

⎞
⎠ ∫

πN (M)

exp

⎛
⎝−1

2

∑
|k|≤N

λ−1
k ψ2

k

⎞
⎠ dψ1 · · · dψ(2N+1)2

For N ′ > N , define πN ,N ′ : Hs → C
(2N ′+1)2−(2N+1)2 by

πN ,N ′(ψ) = (〈ψ, esk〉)N<|k|≤N ′

Introduce the cylindrical measure ρ⊥
N defined on the set of cylindrical subsets M ′ =

πN ,N ′(F) with F ⊂ πN ,N ′(H) by

ρ⊥
N (M ′) =

⎛
⎝ ∏

N<|k|≤N ′

1√
2πλk

⎞
⎠∫

F
exp

⎛
⎝−1

2

∑
N<|k|≤N ′

λ−1
k ψ2

k

⎞
⎠ dψ(2N+1)2+1 · · · dψ(2N ′+1)2

By Proposition 2.1, the measure ρ⊥
N extends to a measure defined on E⊥

N supported on
the same space X0 as ρ. Moreover, if we decompose ψ = πN (ψ)+ (ψ −πN (ψ)) =:
ψN +ψ⊥

N , we have by the Fubini–Tonelli Theorem that dρ(ψ) = dρN (ψN )dρ⊥
N (ψ⊥

N ).
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2.3 Statement of the main result

With the construction of theGaussianmeasure ρ we can state our result that establishes
global flows for the regularized streamline formulation (2.6) of the (mSQG) equation.
More precisely:

Theorem 2.1 Let T > 0 be given. Then there exists a flow ̃(ω, t) defined on a
probability space (�̃, F̃ , P̃) with values in C([0, T ] : X−2) such that for P̃-almost
every ω ∈ �̃,

̃(ω, t) = ̃(0, ω) +
∫ t

0
B(̃(ω, τ)) dτ, (2.14)

where B is as in (2.7), as well as a Gaussian measure ρ supported on X−2 which
is invariant with respect to ̃(t, ω), i.e., for all measurable F : X−2 → R and
t ∈ [0, T ], ∫

�̃

F(̃(ω, t)) d P̃(ω) =
∫
X−2

F(ψ) dρ(ψ). (2.15)

We will prove this theorem in Sect. 7.

Remark 2.2 As mentioned in the introduction, the case δ = 1 corresponds to the 2D
Euler equations for which [1] proves a similar result with global flows with values in
X−1. It is therefore natural to wonder why in Theorem 2.1 the space X−2 on which the
flows take values is not instead the space X−2+δ , improving as the smoothingparameter
δ increases. This apparent discrepancy is resolved by the fact that we construct global
flows for the regularized stream function ψ = |D|−δϕ rather than the streamline
function ϕ used in [1]. In order to directly compare our result with that of [1] we must
rewrite Theorem 2.1 in terms of ϕ via (2.5). Doing so, our result implies the existence
of global flows in the quantity ϕ with values in the space X−2+δ, 0 < δ ≤ 1, thus
recovering the probabilistic result of Albeverio–Cruzerio for Euler [1] when δ = 1.

Remark 2.3 If one takes the nonlinearity B to be that of the Eq. (2.3) for the streamline
function instead of Eq. (2.6) and follows the argument of this paper1, one can similarly
construct global flows for ϕ directly, based on the conservation in time of ‖ϕ‖H1+δ .
Doing so however, offers no advantage over our approach here as explained in Remark
2.2 while complicating somewhat the exponents appearing in the calculations.

Remark 2.4 We briefly discuss the question of uniqueness of solutions to (mSQG).
One expects due to the roughness of the solutions that uniqueness will be difficult
to prove. We make no claim of uniqueness here, but instead mention some standard
approaches which cannot be used in our setting. Existing deterministic local well-
posedness results require too much regularity to be of use in our setting (c.f. [10,14]).
An approach that recovers a weaker almost sure version of uniqueness can be found
in the work of Ambrosio and Figalli [3], where almost sure uniqueness of nonlinear
flows of the form

X ′(t) = B(X (t), t) (2.16)

1 For the analogue of Sect. 4.2 see the calculations in Appendix A.
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is a consequence of uniqueness of the continuity equation

∂μ

∂t
+ divρ(Bμ) = 0 (2.17)

satisfied by the generalized flows μ associated to (2.16)2. However, in [3], uniqueness
for (2.17) itself crucially depends on the nonlinearity B taking values in the Cameron-
Martin space associated to the Gaussian measure. In our case we show that B takes
values in a rougher space, which is not sufficient to allow the application of the result
in [3].

3 Probabilistic toolbox

In this section we present a brief review of some classical probabilistic results on
convergence of random variables. Throughout this section, for a metric space S we
denote by B(S) the Borel σ -algebra.

We start by recalling the definitions of weak compactness and tightness, see e.g.
[21], Section 8.3.

Definition 3.1 Let S be a metric space. A family of probability measures {Pα} on
(S,B(S)) is said to be weakly compact if from any sequence {Pn}∞n=1 ⊂ {Pα} one can
extract a weakly convergent subsequence {Pnk }∞k=1.

Definition 3.2 Let S be a metric space. A family of probability measures {Pα} on
(S,B(S)) is said to be tight if for every ε > 0 there exists a compact set Kε ⊂ S such
that P(Kε) ≥ 1 − ε for each P ∈ {Pα}.

Now we are ready to state the compactness criterion of Prokhorov, see e.g. [21],
Section 8.3 or [4], Sect. 5, which we shall use in our Sect. 6. In particular, we shall use
only the first part of Prokhorov theorem, but for completeness purposes we included
the full statement.

Theorem 3.1 (Prokhorov) Suppose S is a metric space.

(i) If a family of probability measures {Pα} on (S,B(S)) is tight, then it is weakly
compact.

(ii) Suppose that S is a separable complete metric space. If a family of probability
measures {Pα} on (S,B(S)) is weakly compact, then it is tight.

We conclude this short review with the statement of Skorokhod’s Theorem (for
details see e.g. [4] page 70), which we shall also use in Sect. 6 in order to construct
our random flows. Given a probability space (�,F , P) equipped with a probability
measure, a measurable space (E, E), and a random variable X : (�,F , P) → (E, E),
the law L(X) of X is the measure defined on the state space (E, E) given by

L(X)(A) = P({ω ∈ � : X (ω) ∈ A}) for every A ∈ E . (3.1)

2 Here divρ is the formal L2ρ -adjoint of the gradient.
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Theorem 3.2 (Skorokhod) Suppose S is a separable metric space and {Pn}∞n=1 and
P∞ are probability measures on (S,B(S)). If Pn → P∞ weakly, then there exist
random variables {Xn}∞n=1 and X defined on a common probability space (�,F , P)

such that L(Xn) = Pn, L(X) = P∞, and Xn → X almost surely in P.

4 The streamline formulation as an infinite system of ODE

In this section, we expand (2.6) explicitly into an infinite systemofODEs in the Fourier
frequencies. This explicit representation is then used to show that the Hs-norm of the
nonlinearity of the equation is finite in L2

ρ provided that s < −2. Informally, this
calculation shows that X−2 is the smallest space with respect to which the system
(2.6) is closed in ρ-expectation. Moreover this estimate is a key ingredient of the
compactness argument used to construct the random flows in our main result.

4.1 An infinite system of ODE

Introducing an orthonormal basis (ek) of L2(T2), we write

ψ =
∑
k

ψkek .

Now we can write our modified streamline formulation (2.6) in terms of coefficients
with respect to the orthonormal basis (ek) as follows:

dψk

dt
= Bk(ψ), (4.1)

where Bk denotes the coefficients of the nonlinearity B

B(ψ,ψ) := −|D|−1(∇⊥|D|−δψ · ∇)|D|ψ (4.2)

in this basis.
We calculate the coefficients Bk for k �= 0 of the nonlinearity B in this basis to be

Bk =
∑

h+h′=k, h,h′ �=0

−|k|−1|h|−δh⊥ · h′|h′|ψhψh′

= 1

2

( ∑
h+h′=k, h,h′ �=0

−|k|−1|h′|−δ(h′)⊥ · h|h|ψhψh′

+
∑

h+h′=k, h,h′ �=0

−|k|−1|h|−δh⊥ · h′|h′|ψhψh′
)

= 1

2

( ∑
h+h′=k, h,h′ �=0

|k|−1|h′|−δh⊥ · h′|h|ψhψh′
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+
∑

h+h′=k, h,h′ �=0

−|k|−1|h|−δh⊥ · h′|h′|ψhψh′
)

= 1

2

∑
h+h′=k, h,h′ �=0

|k|−1(h⊥ · h′)(|h′|−δ|h| − |h|−δ|h′|)ψhψh′

where in the above we symmetrized the sum using the divergence-free structure with
an eye towards minimizing the number of positive factors of |h| and |h′|. This gives

Bk = −1

2

∑
h �=0, k

(
h⊥ · k

|k|
)

(|k−h|−δ|h|−|h|−δ|k−h|)ψhψk−h=:
∑

h �=0, k

αk,hψhψk−h

(4.3)
Notice that one can readily check that αk,h = αk,k−h for all k, h ∈ Z

2.

4.2 Expectation of the nonlinear term

The subsequent analysis depends strongly on controlling the expectation of the non-
linearity in a rough Sobolev space. We first record the following elementary calculus
lemma.

Lemma 4.1 Suppose that 0 < δ ≤ 1. Then whenever k, h ∈ Z
2
0 satisfies |h| ≥ 2|k|,

we have the estimate

∣∣|k − h|−δ − |h|−δ
∣∣ ≤ Cδ|k||h|−1−δ

Proof Note that |h| ≥ 2|k| implies that 1
2 |h| ≤ |k − h| ≤ 3

2 |h|. Then

∣∣|k − h|−δ − |h|−δ
∣∣ =

∣∣∣∣
∫ |k−h|

|h|
δz−1−δ dz

∣∣∣∣
≤ ||k − h| − |h|| δ max

λ∈[0,1]

(
λ|k − h| + (1 − λ)|h|

)−δ−1

≤ Cδ|k||h|−1−δ,

as δ > 0. ��
We then have the following crucial proposition:

Proposition 4.1 Let 0 < δ ≤ 1. Then B given by (4.2) satisfies

B ∈ L2
ρ(Hs, Hs), for all s < −2.

Proof We need to show that expectation of the expression ‖B(ψ)‖2Hs is finite. Using
the expectations of the moments in (2.13) as well as the fact that αk,h = αk,k−h , we
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first have that

Eρ(‖B‖2Hs ) =
∑
k �=0

|k|2s
∑

h, h′ �=0

αk,hαk,h′Eρ(ψhψk−hψ̄h′ψ̄k−h′)

= 2
∑
k �=0

|k|2s
∑

h,h′ �=0

αk,hαk,h′

|h|2|h − k|2 (δh,h′ + δh,k−h′)

= 4
∑
k �=0

|k|2s
∑

h,h′ �=0

α2
k,h

|h|2|h − k|2 .

We focus first on establishing that the inner sum in this last expression converges3.
Substituting our expression for αk,h , we have4

∑
h �=0,k

α2
k,h

|h|2|h − k|2

= 1

4

∑
h �=0,k

(
h⊥ · k

|k|
)2

(|k − h|−δ |h| − |h|−δ |k − h|)2
|h|2|h − k|2

�
∑
h �=0,k

(|k − h|−δ |h| − |h|−δ |k − h|)2
|h − k|2

=
∑
h �=0,k

(
|h|−δ(|h| − |k − h|) + |h|(|k − h|−δ − |h|−δ)

)2
|h − k|2

=
∑
h �=0,k

(
|h − k|−δ(|h|−|k−h|)+(|h|−δ−|h−k|−δ)(|h|−|k − h|)+|h|(|k−h|−δ−|h|−δ)

)2
|h−k|2

�
∑
h �=0,k

|h − k|−2δ(|h| − |k − h|)2
|h − k|2 +

∑
h �=0,k

(|h|−δ − |h − k|−δ)2(|h| − |k − h|)2
|h − k|2

+
∑
h �=0,k

|h|2(|k − h|−δ − |h|−δ)2

|h − k|2

:= S1 + S2 + S3, (4.4)

where we have decomposed the sum into three sums based on the three terms in
the numerator of the summand. In estimates on S1 and S2 we utilize the immediate
consequence of the triangle inequality:

3 This is precisely the step that fails in the classical inviscid SQG model with δ = 0.
4 We remark that for our particular choice of smoothing operator from expression (4.4) there is a shorter
proof which we report in Appendix B.
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| |h| − |k − h| | ≤ |k|. (4.5)

Then, for any δ > 0, the sum S1 can be bounded from above as follows:

S1 ≤
∑
h �=0,k

|k|2
|k − h|2+2δ � |k|2.

Next, utilizing (4.5) and decomposing S2 = Slo2 + Shi2 depending on whether |h| is
less or greater than 2|k| respectively, and using Lemma 4.1 we have that

S2 = Slo2 + Shi2

�
∑

|h|≤2|k|, h �=0,k

|k|2
|h|2δ|k − h|2 +

∑
|h|≤2|k| h �=0,k

|k|2
|k − h|2+2δ

+
∑

|h|≥2|k|,k �=0

δ2|k|4|h|−2−2δ

|h − k|2

� |k|2 + |k|2−2δ.

Similarly, by applying Lemma 4.1, we have

S3 = Slo3 + Shi3

�
∑

|h|≤2|k|, h �=0,k

|h|2
|h|2δ|k − h|2 +

∑
|h|≤2|k| h �=0,k

|h|2
|k − h|2+2δ

+
∑

|h|≥2|k|, k �=0

|h|2δ2|k|2|h|−2−2δ

|h − k|2

� |k|2 + |k|2−2δ.

The maximum amount of smoothness imposed on k from evaluating these sums is
comparable to |k|2. Therefore, the expectation at the beginning of the calculation can
be estimated by

Eρ(‖B‖2Hs ) �
∑
k

|k|2s+2, (4.6)

which is finite provided we choose s < −2. ��
By repeating the argument above that gives the finiteness of the expectation5 we

establish a crucial convergence result, that relates the full nonlinearity and its truncated
version appearing in Galerkin approximations of (2.6) (which will be introduced and
analyzed in Sect. 5). In order to state the convergence result we introduce the projection
onto the subspace spanned by (ek)|k|≤N and denote it by�N , as well as the orthogonal

5 Using sums ranging over frequencies N1 ≤ |h|, |k − h| ≤ |N2|.
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projection �⊥
N := (I − �N ). Now we are ready to introduce the truncated version of

the nonlinearity via:
BN (ψ) := �N B(�Nψ). (4.7)

The convergence results can be stated as follows:

Proposition 4.2 If s < −2 then BN → B in L2
ρ(Hs, Hs).

5 Construction and invariance of the truncated mSQG flows

We will construct our eventual random flows from a sequence of flows satisfying a
truncated version of (2.6). The dynamics of these approximate flows are only nontrivial
on finite dimensional subspaces, leave ρ invariant and conserve the H1-norm. We
show in this section that these properties suffice to construct flows for the approximate
systems with arbitrarily long lifespans.

Since Hs for s < −2 is the natural space in which to consider the nonlinearity B
in expectation, from this point we regard ρ as defined on X−2.

We introduce the N th approximate flow N (t, ψ) as the solution of the Cauchy
problem {

∂t
N (t) = BN (N (t))

N (0, ψ) = ψ.
(5.1)

If we let V N satisfy the finite dimensional system

{
∂t V N (t) = BN (V N )

V N (0, ψ) = �Nψ,
(5.2)

then observe that the flow N can be decomposed into

N (t, ψ) = V N (t,�Nψ) + �⊥
Nψ. (5.3)

Denote the ek-component of N by N
k .

Lemma 5.1 Let T > 0 be given. Then there exists a unique flow N (t, ψ) solving
(5.1) for all t ∈ [0, T ] with N

k (t, ψ) ∈ C([0, T ],C) and which leaves the measure
ρ invariant.

Proof LetN (t, ψ) solve (5.1), and consider V N as defined in (5.2). In order to check
that the H1-norm of N (t, ψ) is conserved, it suffices by (5.3) it suffices to check
that that the H1 norm of V N is conserved. By definition

BN (V N ) = −�N |D|−1(∇⊥|D|−δV N · ∇)�N |D|V N ,

and so

1

2

d

dt
‖ |D|V N‖2L2 = 〈|D|V N ,−�N (∇⊥|D|−δV N · ∇)|D|�NV

N 〉
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= 〈�N |D|V N ,−(∇⊥|D|−δV N · ∇)�N |D|V N 〉 (5.4)

= 〈�N |D|V N , (�N |D|V N )(∇ · ∇⊥)|D|−δV N 〉
+ 〈(∇⊥|D|−δV N · ∇)�N |D|V N ,�N |D|V N 〉

= 〈�N |D|V N , (∇⊥|D|−δV N · ∇)�N |D|V N 〉 (5.5)

= 0, (5.6)

where (5.6) follows since (5.4) and (5.5) in the above chain of equalities are exactly
opposites of each other. Therefore, ‖V N‖2

H1 is conserved in time. Local existence

of the flow V N follows by the classical Picard-Lindelöf Theorem, and then global
existence of the flow follows by the uniform boundedness of the H1 norm of V N in
time.

Next,we claim that the flowV N preserves the finite dimensional Lebesguemeasure.
By Liouville’s Theorem, it suffices to check that the divergence of BN (V N ) is zero.
Denoting the coordinates of V N in EN by (v1, v2, . . . , vN ), we have

divEN (BN (V N )) = divEN

⎛
⎝ ∑

|h|≤N

αh,kvhvk−h

⎞
⎠

=
∑

|k|≤N

∂

∂vk

∑
|h|≤N

αh,kvhvk−h

=
∑

|k|≤N

(αk,k + α0,k)v0

= 0,

where the last inequality follows immediately by inspection of the formula (4.3) for
αh,k .

Since the flow V N both conserves the H1 norm and leaves Lebesgue measure
invariant, it also leaves the finite dimensional Gaussian measure ρN ◦ π−1

N invariant.
Then, writing

ψ = �Nψ + �⊥
Nψ =: ψN + ψ⊥

N

along the orthogonal decomposition Hs = EN ⊕ E⊥
N , we have by Fubini–Tonelli that

for any F : Hs → R with s < 0,

∫
Hs

F(N (t, ψ)) dρ(ψ) =
∫
E⊥
N

(∫
EN

F
(
V N (t, ψN ) + ψ⊥

N

)
dρN (ψN )

)
dρ⊥

N (ψ⊥
N )

=
∫
E⊥
N

(∫
EN

F
(
ψN + ψ⊥

N

)
dρN (ψN )

)
dρ⊥

N (ψ⊥
N )

=
∫
Hs

F(ψ) dρ(ψ)
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where we applied the invariance of ρN (ψN ) under V N (t, ψN ) with the measurable
function F(· + ψ⊥

N ). Finally, since every ψ ∈ Xσ is in some Hs for s < σ , the
invariance also holds in any space Xσ with σ ≤ 0 and measurable F : Xσ → R. ��

6 Convergence argument

From this point onward, we consider only a Gaussian measure ρ constructed as in
Sect. 2.2 defined on X−2.

In order to construct random flows from our (essentially) finite-dimensional deter-
ministic flows, we regard the deterministic flows N (t, ψ) as stochastic processes
sampled from X−2 with state space C([0, T ] : X−2) and introduce the measures νN
supported on the infinite dimensional path space C([0, T ] : X−2) as their laws:

νN (�) = ρ({ψ ∈ X−2 : N (ψ, ·) ∈ �}), � ⊂ C([0, T ] : X−2). (6.1)

Our first goal is to show that the laws νN can be used to construct a measure ν that
will serve as the law of our eventual candidate flows. We accomplish this using the
compactness provided by Prokorov’s Lemma; to verify the hypotheses of that lemma
we first need to show some useful analytic estimates.

Lemma 6.1 Let T > 0 be given. Let −∞ < s2 ≤ s1 < +∞, and denote s =
1
2 (s1 + s2). Suppose that γ ∈ L2

T H
s1 and ∂tγ ∈ L2

T H
s2 . Then for all s < s, we have

γ ∈ L∞
T Hs and

‖γ ‖L∞
T Hs � ‖γ ‖

1
2

L2
T Ḣ

s1
‖γ ‖

1
2

H1
T H

s2
(6.2)

Proof By a paradifferential version of the classical Gagliardo–Nirenberg inequality,
c.f. Lemma 3.3 of [6].

Let X be a Banach space containing the support of somemeasureμ. In what follows
we abuse notation slightly by introducing the abbreviated notation

‖ f ‖2L2
μX

:=
∫
X

‖ f ‖2X dμ( f ) (6.3)

Lemma 6.2 Let T > 0 and σ < −2 be given. Then for any γ ∈ L2
T H

σ we have

‖γ ‖L2
νN

L2
T H

σ � T . (6.4)

Proof We calculate that

‖γ ‖2
L2

νN
L2
T H

σ :=
∫
C([0,T ]:X−2)

‖γ ‖2
L2
T H

σ dνN (γ )

=
∫
C([0,T ]:X−2)

∫ T

0
‖γ (τ)‖2Hσ dτ dνN (γ )
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=
∫ T

0

∫
X−2

‖N (·, ψ)‖2Hσ dρ(ψ) dτ (6.5)

= T
∫
X−2

‖ψ‖2Hσ dρ(ψ)

� T . (6.6)

where to obtain (6.5) we used the Fubini–Tonelli Theorem along with the definition
of the law (6.1), and to obtain (6.6) we used the invariance of the flow t �→ N (t, ψ)

with respect to the measure ρ. ��

Lemma 6.3 Let T > 0 and σ < −2 be given. Then for any γ such that ∂tγ ∈ L2
T H

σ

‖∂tγ ‖2
L2

νN
L2
T H

σ � T . (6.7)

Proof

‖∂tγ ‖2
L2

νN
L2
T H

σ :=
∫
C([0,T ]:X−2)

∫ T

0
‖∂tγ (τ)‖2Hσ dτ dνN (γ )

=
∫ T

0

∫
C([0,T ]:X−2)

‖∂tγ (τ)‖2Hσ dνN (γ ) dτ (6.8)

=
∫ T

0

∫
X−2

‖∂tN (τ, ψ)‖2Hσ dρ(ψ) dτ (6.9)

=
∫ T

0

∫
X−2

‖BN (�NN (τ, ψ))‖2Hσ dρ(ψ) dτ (6.10)

=
∫ T

0

∫
X−2

‖BN (ψ)‖2Hσ dρ(ψ) dτ (6.11)

� T, (6.12)

where in (6.8) we used the Fubini–Tonelli Theorem, to obtain (6.9) we used the
definition of the law (6.1), to obtain (6.10) we used (5.1), to obtain (6.11) we used the
invariance of ρ under N , and to obtain (6.12) we crucially used Proposition 4.1. ��

Proposition 6.1 Let T > 0 and s < −2 be given. Then the family (νN ) of measures
is tight on C([0, T ], Hs).

Proof Introduce the Hölder space C
1
2 ([0, T ], Hσ ) =: C

1
2
T H

σ with norm

‖γ ‖
C

1
2
T Hσ

:= ‖γ ‖L∞
T Hσ + sup

t1 �=t2∈[0,T ]
‖γ (t1) − γ (t2)‖Hσ

|t1 − t2| 12
. (6.13)
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For s < −2 given, choose −∞ < s2 ≤ s1 < +∞ so that s1 < −2 and s < s :=
1
2 (s1 + s2). By Lemma 6.1, we have the estimate

‖γ ‖
C

1
2
T Hs

� ‖γ ‖L2
T H

s1 + ‖γ ‖L2
T H

s2 + ‖∂tγ ‖L2
T H

s2 + sup
t1 �=t2∈[0,T ]

‖γ (t1) − γ (t2)‖Hs

|t1 − t2| 12
:= M1 + M2 + M3 + M4.

By Lemma 6.2, we have ‖M1‖L2
νN

+ ‖M2‖L2
νN

� T , and by Lemma 6.3 we have

‖M3‖L2
νN

� T . We also have using Hölder’s inequality that

M4 = 1

|t1 − t2| 12

∥∥∥∥
∫ t2

t1
∂tγ (τ) dτ

∥∥∥∥
Hs

≤ 1

|t1 − t2| 12
∫ t2

t1
‖∂tγ (τ)‖Hs dτ

≤ ‖∂tγ ‖L2
T H

s

so that ‖M4‖L2
νN

� T as well, by Lemma 6.3. To sum, we obtain

‖γ ‖
C

1
2
T Hs

� T . (6.14)

We now construct the compact exhaustion of sets required to show tightness: for δ > 0,
define

Kδ = {γ ∈ C0
T H

s : ‖γ ‖
C

1
2
T Hs

≤ δ−1}. (6.15)

Since the inclusion C
1
2
T H

s ⊂ C0
T H

s is compact, Kδ is also compact. But by Cheby-
chev’s inequality and (6.14) we have

νN (Kc
δ ) ≤ δ2‖γ ‖2

L2
νN

C
1
2
T Hs

� δ2T 2, (6.16)

which demonstrates that the family {νN : N ∈ N} is tight in C([0, T ], Hs). ��
For any fixed s < −2, Prokhorov’s Lemma now implies the existence of a

subsequence ofmeasureswhich convergesweakly to anothermeasure νs . Since Propo-
sition 6.1 holds for arbitrary s < −2, a standard diagonalization argument allows us
to select another subsequence (for which we abuse notation in denoting it by (νN ))
which converges to the measure ν supported on C([0, T ], X−2).

Then, Skorokhod’s Lemma assures the existence of a probability space (�̃, F̃ , P̃)

as well as random processes ̃N (ω) and ̃(ω) with values in C([0, T ], X−2) whose
laws are νN and ν respectively, and moreover so that

̃N (ω) → ̃(ω) in C([0, T ], X−2), a.e. ω ∈ �̃.
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Observe that by construction the laws of ̃N and that of N in the path space
C([0, T ], X−2) are the same.

7 Proof of theorem 2.1

With the construction of ̃ given in Sect. 6, we may now give the

Proof of Theorem 2.1 We first claim that ρ agrees with the measures ν(t) conditioned
on evaluation at a fixed time t ∈ [0, T ], defined as the law of ̃(t, ω) for fixed
t ∈ [0, T ]. To see this, construct for fixed t and A ⊂ X−2 the subset

�A,t := {γ ∈ C([0, T ] : X−2) : γ (t) ∈ A}.

Then

ν
(t)
N (A) := νN (�A,t ) (7.1)

= ρ({ψ ∈ X−2 : N (ψ) ∈ �A,t }) (7.2)

= ρ({ψ ∈ X−2 : N (ψ, t) ∈ A}) (7.3)

= ρ({ψ ∈ X−2 : ψ ∈ A}) (7.4)

= ρ(A), (7.5)

where in (7.2)weused the definition of the law (6.1), and in (7.4)weused the invariance
of ρ under the flow N in (5.1). Therefore ν

(t)
N = ρ, so that ρ is the distribution of

̃N (ω, t) for each t ∈ [0, T ]. Now we may identify the time-evaluated measure ν(t)

to be

ν(t)(A) = lim
N→∞ ν

(t)
N (A) = ρ(A).

Thus ρ is an invariant measure for the random flow ̃; in particular for every measur-
able F : X−2 → R, we have shown (2.15):

∫
�̃

F(̃(ω, t)) d P̃(ω) =
∫
X−2

F(ψ) dρ(ψ) (7.6)

This in turn implies that ̃ takes values in X−2 almost surely in �̃, upon choosing
F(·) = ‖ · ‖Hσ for each σ < −2 above. Therefore we can expand

̃(ω, x, t) =:
∑
k∈Z2

0

̃k(ω, t)ek(x)

as usual.
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Next we verify (2.14). Recall that for each N we have from (5.1) that

N (t, ψ) = N (0, ψ) +
∫ t

0
BN (N (τ, ψ)) dτ (7.7)

Consider the residual associated to this equation

Y N (t, ψ) := N (t, ψ) − N (0, ψ) −
∫ t

0
BN (N (τ, ψ)) dτ (7.8)

as well as the corresponding residual for the random variable ̃N :

Ỹ N (t, ω) := ̃N (t, ω) − ̃N (0, ω) −
∫ t

0
BN (̃N (τ, ω)) dτ (7.9)

Since L(N ) = L(̃N ) by Skorokhod’s Lemma, we have L(Y N ) = L(Ỹ N ). How-
ever, sinceN is a solution of (5.1), we have thatL(Ỹ N ) = L(Y N ) = δ0. This implies
that Ỹ N = 0 almost surely in �̃, and so we have the following almost everywhere
pointwise equation for ̃N :

̃N (t, ω) = ̃N (0, ω) +
∫ t

0
BN (̃N (τ, ω)) dτ, a.e. ω ∈ �̃. (7.10)

By the construction using Skorokhod’s Lemma, we already have that ̃N (t, ω) →
̃(t, ω) and ̃N (0, ω) → ̃(0, ω) for each t ∈ [0, T ], a.s. in �̃. Hence to show P̃-a.e.
convergence of the Duhamel term it suffices to show (possibly up to the extraction of
another subsequence) that

∫
�̃

∣∣∣∣
∫ t

0
BN (̃N (ω, τ) dτ −

∫ t

0
B(̃(ω, τ)) dτ

∣∣∣∣ d P̃(ω) (7.11)

approaches zero as N → ∞. Following [17], introduce an auxiliary index M ∈ N;
then we expand (7.11) as

lim
N→∞ (7.11) ≤ lim

N→∞

∫
�̃

∫ t

0
|BN (̃N (ω, τ)) − B(̃N (ω, τ))| dτ d P̃(ω)

+ lim inf
M→∞ lim

N→∞

∫
�̃

∫ t

0
|B(̃N (ω, τ)) − BM (̃N (ω, τ))| dτ d P̃(ω)

+ lim inf
M→∞ lim

N→∞

∫
�̃

∣∣∣∣
∫ t

0
BM (̃N (ω, τ)) dτ −

∫ t

0
BM (̃(ω, τ)) dτ

∣∣∣∣ d P̃(ω)

+ lim inf
M→∞

∫
�̃

∫ t

0
|BM (̃(ω, τ)) − B(̃(ω, τ))| dτ d P̃(ω)

:= I1 + I2 + I3 + I4
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By Hölder’s inequality in (7.12), the invariance (2.15) of ρ under ̃ in (7.13), and
Proposition 4.2 in (7.14), we have that

I4 = lim inf
M→∞

∫
�̃

∫ t

0
|BM (̃(ω, τ)) − B(̃(ω, τ))| dτ d P̃(ω)

≤ lim inf
M→∞

∫ t

0

(∫
�̃

|BM (̃(ω, τ)) − B(̃(ω, τ))|2 d P̃(ω)

) 1
2

dτ (7.12)

≤ lim inf
M→∞ T

(∫
X−2

|BM (ψ) − B(ψ)|2 dρ(ψ)

) 1
2

(7.13)

= 0. (7.14)

In order to bound I1, first we fix N and consider the chain of inequalities below.

∫
�̃

∫ t

0
|BN (̃N (ω, τ)) − B(̃N (ω, τ))| dτ d P̃(ω) (7.15)

=
∫ t

0

∫
�̃

|BN (̃N (ω, τ)) − B(̃N (ω, τ))| d P̃(ω) dτ (7.16)

≤ T 1/2
(∫ T

0

∫
�̃

|BN (̃N (ω, τ)) − B(̃N (ω, τ))|2 d P̃(ω) dτ

) 1
2

(7.17)

= T 1/2
(∫ T

0

∫
X−2

|BN (N (ψ, τ)) − B(N (ψ, τ))|2 dρ(ψ) dτ

) 1
2

(7.18)

= T

(∫
X−2

|BN (ψ) − B(ψ)|2 dρ(ψ)

) 1
2

, (7.19)

where we used the Fubini–Tonelli theorem in (7.16) followed by Cauchy–Schwartz
in (7.17), after which we used from the Skorokhod Lemma that L(̃N ) = L(N )

along with the definition of νN in (7.18), and the fact that ρ is invariant under N in
(7.19). Now we let N → ∞ and apply Proposition 4.2 to conclude:

I1 = 0.

Next we estimate I2. For a fixed M , we repeat the argument above treating I4 to
obtain the following identity and estimate:

∫
�̃

∫ t

0
|B(̃N (ω, τ)) − BM (̃N (ω, τ))| dτ d P̃(ω) (7.20)

=
∫ t

0

∫
X−2

|B(ψ) − BM (ψ)| dρ(ψ) dτ (7.21)

≤ T

(∫
X−2

|B(ψ) − BM (ψ)|2dρ(ψ)

) 1
2

. (7.22)
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Notice that the equality (7.21) implies that (7.20) is independent of N . Therefore to
evaluate I2 we need only take the limit inferior M → ∞ in I2. But then applying
Proposition 4.2 to (7.22) implies that

I2 = 0.

Before we estimate I3, observe that for each fixed M , the mapping ψ �→ BM (ψ) is
continuous on X−2 thanks to the fact that the projection �M makes the problem com-
pletely finite dimensional (the continuity is not uniform with respect to M). Recalling
that the Skorokhod Lemma gives us that ̃N (ω) → ̃(ω) in C([0, T ] : X−2), a.s. in
�̃, we conclude that for almost every ω ∈ �,

∫ t

0
BM (̃N (ω, τ)) dτ →

∫ t

0
BM (̃(ω, τ)) dτ as N → ∞. (7.23)

However, to obtain desired L1(P̃) convergence, we will apply the Vitali Convergence
Theorem (c.f. Theorem A.3.2 of [5]). To do that we show that, for each fixed M , the
family of functions

FN (ω) :=
∫ t

0
BM (̃N (ω, τ)) dτ

is equiintegrable with respect to the probability space (�̃, F̃ , P̃). That is, we must
verify the following properties:

• The FN are uniformly bounded in N in L1(P̃),
• The FN satisfy lim�→∞ supN∈N P̃({ω ∈ �̃ : |FN (ω)| ≥ �}) = 0.

First we have

‖FN‖L1(P̃)
≤ ‖FN‖L2(P̃)

=
(∫

�̃

∣∣∣∣
∫ t

0
BM (̃N (ω, t)) dτ

∣∣∣∣
2

d P̃(ω)

) 1
2

≤ T

(∫
X−2

∣∣∣BM (ψ)

∣∣∣2 dρ(ψ)

) 1
2

(7.24)

< ∞ (7.25)

where in order to obtain (7.24) we used Minkowski inequality, and to obtain (7.25)
we used the expectation result. Similarly by Chebyshev’s inequality we have

P̃({ω ∈ �̃ : |FN (ω)| ≥ �}) ≤
‖FN‖2

L2(P̃)

�2
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and since we have already shown that ‖FN‖L2(P̃)
is bounded uniformly in N , the

equiintegrability of the FN ’s follows. Then by the Vitali Convergence Theorem we
conclude that∫ t

0
BM (̃N (ω, τ)) dτ →

∫ t

0
BM (̃(ω, τ)) dτ in L1(P̃) as N → ∞ (7.26)

But since the above limit holds for each fixed M , we have I3 = 0. ��
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Appendix A. Summary of calculation for non-regularized streamline for-
mulation

In this section we indicate the main steps of the calculation for the expectation for
the nonlinear term corresponding to the stream line formulation (2.3). We recall the
Eq. (2.3) {

(|D|1+δϕ)t + (u · ∇)|D|1+δϕ = 0,

u = ∇⊥ϕ.
(A.1)

Recast the nonlinearity as

B(ϕ, ϕ) = −|D|1+δ(∇⊥ϕ · ∇)|D|1+δϕ. (A.2)

Expand both ϕ = ∑
k ϕkek and B = ∑

k Bkek in the usual L2 orthonormal basis
and find

Bk = |k|1+δ
∑

h+h′=k

(h⊥ · h′)|h′|1+δϕhϕh′

= |k|1+δ
∑
h

(h⊥ · k)|k − h|1+δϕhϕk−h

= 1

2
|k|1+δ

∑
h

(h⊥ · k)(|k − h|1+δ − |h|1+δ)ϕhϕk−h .

The conserved enstrophy is now ‖ |D|1+δϕ‖L2 , and so we adjust the correlation for
the Gaussian measure accordingly,

ρ(M)=
⎛
⎝ ∏

|k|≤N

1√
2π |k|2+2δ

⎞
⎠ ∫

F
exp

⎛
⎝−1

2

∑
|k|≤N

|k|−2−2δ|ϕk |2
⎞
⎠ dϕ1 · · · dϕ(2N+1)2 ,

(A.3)
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from which the moment expectations now read

Eρ(ϕk) = 0,

Eρ(ϕkϕk′) = 0,

Eρ(ϕkϕk′) = 2δk,k′

|k|2+2δ|k′|2+2δ . (A.4)

Following the proof of Proposition 4.1 we find that

Eρ

(
‖B‖2Hs

)
�

∑
k

|k|2s−2δ
∑
h

(
h⊥
|h| · k

|k|
)2 (|k − h|1+δ − |h|1+δ

)2
|h|2δ|h − k|2+2δ . (A.5)

Following Lemma 4.1, we have the bound |k− h|1+δ −|h|1+δ ≤ C |k||h|δ which is
valid for all k, h ∈ Z

2. For high frequencies where |h−k| ∼ |h|we have that the inner
sum is at worst

∑
h�k

|k|2|h|2δ
|h|2+4δ � |k|2−2δ . Using the same estimate, the low frequency

sum is at worst
∑

h�k
|k|2|h|2δ

|h|2δ |k−h|2+2δ � |k|2 ∑
h �=0

1
|k−h|2+2δ � |k|2. Thus together we

have
Eρ

(
‖B‖2Hs

)
�

∑
k

|k|2s−2δ(|k|2 + |k|2−2δ) ≤
∑
k

|k|2s−2δ+2, (A.6)

which converges provided s < −2 + δ.

Appendix B. A shorter estimate in the case of power smoothing multipler

Since the particular smoothingmultiplier |D|−δ used in this paper is a powermultiplier,
we can give a shorter derivation of the convergence of the expected value of the
nonlinearity.6 Using the Mean Value Theorem and the fact that δ ∈ (0, 1], we have
for some λ ∈ (0, 1) that

∣∣∣|k − h|1+δ − |h|1+δ
∣∣∣ ≤ (1 + δ) ||h| − |k − h|| (λ|h| + (1 − λ)|k − h|)δ

≤ (1 + δ)|k|(λδ|h|δ + (1 − λ)δ|k − h|δ)
≤ (1 + δ)|k|(|h|δ + |k − h|δ),

from which we have

∣∣∣∣ |k − h|
|h|δ − |h|

|k − h|δ
∣∣∣∣ ≤ 2|k|(|h|−δ + |k − h|−δ). (A.7)

6 We thank the anonymous referee for pointing out this alternate approach.
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Inserting this estimate into expression (4.4) then yields the bound

Eρ

(
‖B‖2Hs

)
�

∑
k

|k|2(s−δ+1)
∑
h

(
1

|k − h|2+2δ + 1

|h|2δ|k − h|2
)

. (A.8)

The first of the inner sums is bounded by a constant independent of k but depending
on δ. The second of these inner sums can be controlled by Hölder’s inequality

∑
h

1

|h|2δ|k − h|2 ≤
(∑

h

1

|h|4
) 2δ

4
(∑

h

1

|k − h| 4
2−δ

) 2−δ
2

≤ Cδ, (A.9)

so that when s < −2 + δ we have

Eρ

(
‖B‖2Hs

)
�

∑
k

|k|2(s−δ+1) ≤ Cδ, (A.10)

as desired.
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