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Abstract We consider the linear stochastic heat equation onR�, driven by a Gaussian
noise which is colored in time and space. The spatial covariance satisfies general
assumptions and includes examples such as the Riesz kernel in any dimension and
the covariance of the fractional Brownian motion with Hurst parameter H ∈ ( 14 ,

1
2 ]

in dimension one. First we establish the existence of a unique mild solution and
we derive a Feynman-Kac formula for its moments using a family of independent
Brownian bridges and assuming a general integrability condition on the initial data.
In the second part of the paper we compute Lyapunov exponents and lower and upper
exponential growth indices in terms of a variational quantity.
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1 Introduction

The purpose of this paper is to study the stochastic heat equation

∂u

∂t
= 1

2
�u + u � ∂�+1W

∂t∂x1 . . . ∂x�

, (1.1)

where t ≥ 0, x ∈ R
� (� ≥ 1) and W is a centered Gaussian field, which is correlated

in both temporal and spatial variables. We assume that the noise W is described by a
centered Gaussian family W = {W (φ), φ ∈ S(R+ × R

�)}, with covariance

E[W (φ)W (ψ)] = 1

(2π)�

∫ ∞

0

∫ ∞

0

∫
R�

Fφ(s, ξ)Fψ(r, ξ)γ0(s − r)μ(dξ)dsdr,

(1.2)
where γ0 is a nonnegative and nonnegative definite locally integrable function, μ is
a tempered measure and F denotes the Fourier transform in the spatial variables.
Throughout the paper, we denote by | · | the Euclidean norm in R

� and by x · y the
usual inner product between two vectors x, y in R

�. We are going to consider two
types of spatial covariances:

(H.1) � = 1, the spectral measure μ is absolutely continuous with respect to the
Lebesgue measure on R with density f , that is μ(dξ) = f (ξ)dξ , and f satis-
fies:

(a) For all ξ, η in R and for some constant κ0 > 0,

f (ξ + η) ≤ κ0( f (ξ) + f (η)). (1.3)

(b) ∫
R

f 2(ξ)

1 + |ξ |2 dξ < ∞ . (1.4)

To state the second type of covariance,we recall that the space of Schwartz functions
is denoted by S(R�). The Fourier transform of a function u ∈ S(R�) is defined with
the normalization

Fu(ξ) =
∫
R�

e−iξ ·xu(x)dx,

so that the inverse Fourier transform is given by F−1u(ξ) = (2π)−�Fu(−ξ).

(H.2) The inverse Fourier transform of μ is a nonnegative locally integrable function
(or generalized function) denoted by γ

γ (x) = 1

(2π)�

∫
R�

eiξ ·xμ(dξ) , (1.5)
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and μ satisfies Dalang’s condition

∫
R�

μ(dξ)

1 + |ξ |2 < ∞. (1.6)

For the case (H.2), γ is nonnegative definite and (1.2) can be written as

E[W (φ)W (ψ)] =
∫ ∞

0

∫ ∞

0

∫
R2�

φ(s, x)ψ(r, y)γ0(s−r)γ (x−y)dxdydsdr . (1.7)

Examples of covariance functions satisfying condition (H.2) are the Riesz kernel
γ (x) = |x |−η, with 0 < η < 2 ∧ �, the space-time white noise in dimension one,
where γ = δ0, and the multidimensional fractional Brownian motion, where γ (x) =∏�

i=1 Hi (2Hi − 1)|xi |2Hi−2, assuming that
∑�

i=1 Hi > � − 1 and Hi ∈ ( 12 , 1) for
i = 1, . . . , �.

In the case (H.1), the inverse Fourier transform of μ is at best a distribution and
the expression (1.5) is only formal. The right-hand side of (1.7), however, makes
sense by pairing between Schwartz functions and distributions. For our convenience,
we will address γ as a generalized covariance function if its Fourier transform is
a (nonnegative) tempered measure. It also worths noting that by Jensen’s inequality,
(1.4) implies Dalang’s condition (1.6). The basic example of a noise satisfying (H.1) is
the rough fractional noise, where the spectral density is given by f (ξ) = cH |ξ |1−2H ,
with H ∈ ( 14 ,

1
2 ] and cH = 
(2H + 1) sin(πH). In this case, the noise W has the

covariance of a fractional Brownian motion with Hurst parameter H ∈ ( 14 ,
1
2 ] in the

spatial variable. Condition (a) holds with κ0 = 1 and condition (b) holds because of
the restriction H > 1

4 .
These types of spatial covariances were introduced in our paper [10], where the

noise is white in time. In [10] we proved the existence of a unique mild solution
formulated using Itô-type stochastic integrals, we derived Feynman-Kac formulas for
the moments of the solution using a family of independent Brownian bridges and we
computed Lyapunov exponents and lower and upper exponential growth indices. The
purpose of this paper is to carry out this program when the noise is not white in time.
While the general methodology of the current article is similar to [10], the case of
colored temporal noises has some distinct features and needs a different treatment. In
particular the existence and estimation of Lyapunov exponents offer new difficulties
that require techniques different from the white-time case.

After a section on preliminaries, Sect. 3 is devoted to show (see Theorem 3.2)
the existence of a unique mild solution to Eq. (1.1), when the stochastic integral is
understood in the Skorohod sense, and the initial condition satisfies the general inte-
grability condition (3.2). We want to mention that the existence and uniqueness of a
solution for the (H.2) type covariance in the case of a colored noise in time has been
also obtained in the recent paper [1] by Balan and Chen. Then, in Sect. 4 we establish
Feynman-Kac formulas for themoments of the solution in terms of independent Brow-
nian motions or Brownian bridges (see Proposition 4.3 and Corollary 4.4). Section 5
is devoted to obtain Lyapunov exponents for exponential functionals of Brownian
bridges, assuming that γ0(t) = |t |−α0 and γ (cx) = c−αγ (x) for all c > 0, where
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α0 ∈ (0, 1) and α ∈ (0, 2). The main result of this section is Theorem 5.2, whose
proof is inspired by Theorem 1.1 of [2].While Chen’s article [2] deals with exponential
functionals of Brownian motions, we deal with exponential functionals of Brownian
bridges. Another difference is that we allow noises which satisfy condition (H.1). In
this case, the spatial covariance is generally a distribution and even if it is a function,
it is not necessary non-negative and may switch signs. The former issue is solved
by an appropriate approximation procedure. For the later issue, the compact folding
argument in [2] is no longer applicable here. Instead, we use a moment comparison
between Brownian motions and Ornstein-Uhlenbeck processes, which is observed by
Donsker and Varadhan [7]. We refer to [3] for related results on temporal asymptotics
for the fractional parabolic Anderson model.

Finally, in Sect. 6we study the speed of propagation of intermittent peaks. The prop-
agation of the farthest high peaks was first considered by Conus and Khoshnevisan [6]
for a one-dimensional heat equation driven by a space-time white noise with com-
pactly supported initial condition, where it is shown that there are intermittency fronts
that move linearly with time as λt . More precisely, they defined the lower and upper
exponential growth indices as follows:

λ∗(n) = sup

{
λ > 0 : lim inf

t→∞
1

t
sup

|x |≥λt
logE|u(t, x)|n > 0

}

and

λ∗(n) = inf

{
λ > 0 : lim sup

t→∞
1

t
sup

|x |≥λt
logE|u(t, x)|n < 0

}
.

Generalizing previous results byChen andDalang [4],weproved in [10] that, assuming
that u0 is nonnegative,

√
2En(γ )

n
≤ λ∗(n) ≤ λ∗(n) ≤ inf

β:∫
R� eβ|y|u0(y)dy<∞

(
β

2
+ En(γ )

nβ

)
, (1.8)

where En(γ ) is the nth Lyapunov exponent. In particular, If u0 is nontrivial and sup-
ported on a compact set, then

λ∗(n) = λ∗(n) =
√
2En(γ )

n
. (1.9)

In the reference [8], using the Feynman-Kac formula for the moments of the solu-
tion established in [9], the authors have obtained lower and upper bounds for the
exponential growth indices when the noise has a general covariance of the form
E[Ẇ (t, x)Ẇ (s, y)] = γ0(t − s)γ (x − y), where γ0 is locally integrable and the

spatial covariance γ satisfies (H.2). Here Ẇ (t, x) stands for ∂�+1W
∂t∂x1···∂x�

. In this general

situation, to obtain non-trivial limits the factor t−1 and the set {|x | ≥ λt} appearing in
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the definition of the exponential growth indices, need to be changed. In the particular
case γ0(t) = |t |−α0 and γ (x) = |x |−α we need to replace t−1 by t−a and the set

{|x | ≥ λt} by {|x | ≥ λt
a+1
2 }, where a = 4−α−α0

2−α
. In the present paper, we complete

this analysis with the methodology developed in [10], based on large deviations.
As a consequence of the large deviation results obtained in Sects. 5 and 6, under

suitable scaling hypotheses on the covariance of the noise, we deduce the following
results on the exponential growth indices, that should be compared with (1.8) and
(1.9):

(i) If the initial condition u0 is a nonnegative function such that
∫
R� eβ|y|bu0(y)dy <

∞, where b = 4−α−2α0
3−α−α0

, then

λ∗(n) ≤ g−1
β

((
n − 1

2

) 2
2−α

E(α0, γ )

)
.

where gβ is an increasing function on (0,∞) defined by Eq. (6.9), and E(α0, γ )

is a variational quantity defined in (5.1).
(ii) Suppose u0 is bounded below in a ball of radius M , and for some technical

reasons assume that the spatial covariance satisfies (H.2). Then,

λ∗(n) ≥ a
a
2 (a + 1)−

a+1
2

√√√√
2

(
n − 1

2

) 2
2−α

E(α0, γ ) ,

where a = 4−α−2α0
2−α

. Moreover, as β tends to infinity, the function gβ(x) converges

to
√
2x and in the compact support case, the two bounds above differ only on the

constant a
a
2 (a + 1)− a+1

2 .

2 Preliminaries

Let H be the completion of S(R+ × R
�) endowed with the inner product

〈ϕ,ψ〉H = 1

(2π)�

∫
R
2+×R�

Fϕ(s, ξ)Fψ(t, ξ)γ0(s − t)μ(dξ) dsdt. (2.1)

The mapping ϕ → W (ϕ) defined on S(R+ ×R
�) can be extended to a linear isometry

between H and the Gaussian space spanned by W . We will denote this isometry by

W (φ) =
∫ ∞

0

∫
R�

φ(t, x)W (dt, dx)

for φ ∈ H. If μ satisfies (H.2), the righ-hand side of (2.1) can be written in Cartesian
coordinates as

∫
R
2+×R2� ϕ(s, x)ψ(t, y)γ0(s− t)γ (x− y)dxdydsdt . Hence, a standard
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approximation (still assuming (H.2)) shows that H contains the class of measurable
functions φ on R+ × R

� such that

∫
R
2+×R2�

|φ(s, x)φ(t, y)| γ0(s − t)γ (x − y) dxdydsdt < ∞ . (2.2)

2.1 Elements of Malliavin calculus

We denote by D the Malliavin derivative. That is, if F is a smooth and cylindrical
random variable of the form

F = f (W (φ1), . . . ,W (φn)) ,

with φi ∈ H, f ∈ C∞
p (Rn) (that is, f and all its partial derivatives have polynomial

growth), then DF is the H-valued random variable defined by

DF =
n∑
j=1

∂ f

∂x j
(W (φ1), . . . ,W (φn))φ j .

The operator D is closable from L2(�) into L2(�;H), and we define the Sobolev
space D

1,2 as the closure of the space of smooth and cylindrical random variables
under the norm

‖DF‖1,2 =
√
E[F2] + E[‖DF‖2H] .

We denote by δ the adjoint of the derivative operator given by the duality formula

E [δ(u)F] = E [〈DF, u〉H] , (2.3)

for any F ∈ D
1,2 and any element u ∈ L2(�;H) in the domain of δ. The operator

δ is also called the Skorohod integral because in the case of the Brownian motion, it
coincides with an extension of the Itô integral introduced by Skorohod.

If F ∈ D
1,2 and h is an element of H, then Fh is Skorohod integrable and, by

definition, the Wick product equals the Skorohod integral of Fh, that is,

δ(Fh) = F � W (h). (2.4)

We refer to the book [14] of Nualart for a detailed account of the Malliavin calculus
with respect to a Gaussian process.

When handling the stochastic heat equation in the Skorohod sense we will make
use of chaos expansions, which we briefly describe in the following. For any integer
n ≥ 0 we denote by Hn the nth Wiener chaos of W . We observe that H0 is R and for
n ≥ 1, Hn is the closed linear subspace of L2(�) generated by the family of random
variables {Hn(W (h)), h ∈ H, ‖h‖H = 1}. Here Hn is the nth Hermite polynomial.

123



620 Stoch PDE: Anal Comp (2017) 5:614–651

For any n ≥ 1, we denote by H⊗n (resp. H�n) the nth tensor product (resp. the
nth symmetric tensor product) of H. Then, the mapping In(h⊗n) = Hn(W (h)) can
be extended to a linear isometry between H�n , equipped with the modified norm√
n!‖ · ‖H⊗n , and Hn .
Let us consider a random variable F ∈ L2(�) which is measurable with respect to

the σ -field FW generated by W . This random variable can be expressed (called the
Wiener-chaos expansion of F) as

F = E [F] +
∞∑
n=1

In( fn), (2.5)

where the series converges in L2(�), and the elements fn ∈ H�n , n ≥ 1, are deter-
mined by F .

The Skorohod integral (or the divergence) of a random field u can be computed
using theWiener chaos expansion. More precisely, suppose that u = {u(t, x), (t, x) ∈
R+ ×R

�} is a random field such that for each (t, x), u(t, x) is anFW -measurable and
square integrable random variable. Then, for each (t, x), u(t, x) has the Wiener chaos
expansion of the form

u(t, x) = E [u(t, x)] +
∞∑
n=1

In( fn(·, t, x)). (2.6)

Suppose additionally that the trajectories of u belong toH and E[‖u‖2H] < ∞. Then,
we can interpret u as a square integrable random function with values in H and the
kernels fn in the expansion (2.6) are functions inH⊗(n+1) which are symmetric in the
first n time-space variables. In this situation, u belongs to the domain of the divergence
(that is, u is Skorohod integrable with respect toW ) if and only if the following series
converges in L2(�)

δ(u) =
∫ ∞

0

∫
R�

u(t, x)δW (t, x) = W (E[u]) +
∞∑
n=1

In+1( f̃n), (2.7)

where f̃n denotes the symmetrization of fn in all its n + 1 time-space variables.

2.2 Brownian bridges

Let {B(s), s ≥ 0} be an �-dimensional Brownian motion starting at 0. For every fixed
time t > 0 and x, y ∈ R

�, the process

{
B̃(s) = x + B(s) − s

t
(B(t) + x − y), 0 ≤ s ≤ t

}

is an �-dimensional Brownian bridge from x to y, i.e. B̃(0) = x and B̃(t) = y. Away
from the terminal time t , the law of Brownian bridge admits a density with respect
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to Brownian motion. Indeed, it is shown in [13, Lemma 3.1] that for every bounded
measurable function F ,

E
[
F({B̃(s), 0 ≤ s ≤ λt})]

= (1 − λ)−
�
2E

[
exp

{
−|y − x − B(λt)|2

2t (1 − λ)
+ |y − x |2

2t

}
F({B(s), 0 ≤ s ≤ λt})

]
.

(2.8)

Throughout the paper, we denote by {B0,t (s), 0 ≤ s ≤ t} an �-dimensional Brownian
bridge which starts and ends at the origin. A Brownian bridge from x to y can be
expressed as

{
B0,t (s) + s

t
y + (1 − s

t
)x, 0 ≤ s ≤ t

}
.

3 Existence and uniqueness of a solution via chaos expansions

We denote by pt (x) the �-dimensional heat kernel pt (x) = (2π t)−�/2e−|x |2/2t , for
any t > 0, x ∈ R

�. For each t ≥ 0 let Ft be the σ -field generated by the random
variables W (ϕ), where ϕ has support in [0, t] × R

�. We say that a random field
u = {u(t, x), (t, x) ∈ R+ ×R

�} is adapted if for each (t, x) the random variable ut,x
is Ft -measurable.

We assume that the initial condition u0 is a measurable function satisfying the
condition

(pt ∗ |u0|)(x) < ∞ for all t > 0 and x ∈ R
� , (3.1)

where pt ∗ |u0| denotes the convolution of the heat kernel pt and the function |u0|.
This condition is equivalent to

∫
R�

e−κ|x |2 |u0(x)|dx < ∞, (3.2)

for all κ > 0.
We define the solution of Eq. (1.1) as follows.

Definition 3.1 An adapted random field u = {u(t, x), t ≥ 0, x ∈ R
�} such that

Eu2(t, x) < ∞ for all (t, x) is a mild solution to Eq. (1.1) with initial condi-
tion u0 satisfying (3.2), if for any (t, x) ∈ [0,∞) × R

�, the process {pt−s(x −
y)u(s, y)1[0,t)(s), s ≥ 0, y ∈ R

�} is Skorohod integrable, and the following equation
holds

u(t, x) = pt ∗ u0(x) +
∫ t

0

∫
R�

pt−s(x − y)u(s, y) δWs,y . (3.3)

Suppose now that u = {u(t, x), t ≥ 0, x ∈ R
�} is a mild solution to Eq. (3.3).

Then according to (2.5), for any fixed (t, x) the random variable u(t, x) admits the
following Wiener chaos expansion
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u(t, x) =
∞∑
n=0

In( fn(·, t, x)) , (3.4)

where for each (t, x), fn(·, t, x) is a symmetric element in H⊗n . Thanks to (2.7) and
using an iteration procedure, one can then find an explicit formula for the kernels fn
for n ≥ 1

fn(s1, y1, . . . , sn, yn, t, x) = 1

n! pt−sσ(n)
(x − yσ(n)) · · ·

psσ(2)−sσ(1) (yσ(2) − yσ(1))psσ(1) ∗ u0(yσ(1)) ,

where σ denotes the permutation of {1, 2, . . . , n} such that 0 < sσ(1) < · · · < sσ(n) <

t (see, for instance, equation (4.4) in [11], where this formula is established in the case
of a noise which is white in space). Then, to show the existence and uniqueness of the
solution it suffices to show that for all (t, x) we have

∞∑
n=0

n!‖ fn(·, t, x)‖2H⊗n < ∞ . (3.5)

Theorem 3.2 Suppose that the spatial covariance satisfies (H.1) or (H.2). Then rela-
tion (3.5) holds for each (t, x) ∈ (0,∞)×R

�. Consequently, Eq. (1.1) admits a unique
mild solution in the sense of Definition 3.1.

Proof Notice that the kernel fn can be written as

fn(s, y, t, x) =
∫
R�

gn(s, y, t, z)u0(z)dz,

where s = (s1, . . . , sn), y = (y1, . . . , yn) and

gn(s, y, t, z) = 1

n! pt−sσ(n)
(x − yσ(n)) · · · psσ(2)−sσ(1) (yσ(2) − yσ(1))psσ(1) (yσ(1) − z) .

(3.6)
Then

n!‖ fn(·, t, x)‖2H⊗n = n!
(2π)n�

∫
[0,t]2n

∫
(R�)n

�(s, ξ)�(r, ξ)μ(dξ)

n∏
j=1

γ0(s j − r j )dsdr

≤ n!
(2π)n�

∫
[0,t]2n

(∫
(R�)n

|�(s, ξ)|2μ(dξ)

) 1
2

×
(∫

Rn�
|�(r, ξ)|2μ(dξ)

) 1
2

n∏
j=1

γ0(s j − r j )dsdr,
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where ξ = (ξ1, . . . , ξn), μ(dξ) =∏n
i=1 μ(dξ i ),

�(s, ξ) =
∫
R�

Fgn(s, ·, t, z)(ξ)u0(z)dz,

ds = ds1 · · · dsn and dr = dr1 · · · drn . Using the inequality ab ≤ 1
2 (a

2 + b2) and the
fact that γ0 is locally integrable, we obtain

n!‖ fn(·, t, x)‖2H⊗n ≤ Cnn!
∫

[0,t]n

∫
Rn�

|�(s, ξ)|2μ(dξ)ds.

By symmetry, this leads to

n!‖ fn(·, t, x)‖2H⊗n ≤ Cn(n!)2
∫

[0,t]n<

∫
Rn�

|�(s, ξ)|2μ(dξ)ds, (3.7)

where for each n ≥ 2, we denote

[0, t]n< := {(t1, . . . , tn) : 0 < t1 < · · · < tn < t}. (3.8)

Fix 0 < s2 < s2 < · · · < sn < t . Notice that (y, z) �→ n!gn(s, y, t, z) is the
joint density of the random vector (Bs1 , Bs2 , . . . , Bsn , Bt ) at the point (y1 − z, y2 −
z, . . . , yn − z, x − z) where B = {Bt , t ≥ 0} is an �-dimensional Brownian motion.
Therefore, n!gn(s, ·, t, z)/pt (x − z) is the conditional density of (Bs1 , Bs2 , . . . , Bsn )

given Bt = x − z, which coincides with the law of the random vector

Z =
(
Bs1 − s1

t
Bt + s1

t
(x − z), . . . , Bsn − sn

t
Bt + sn

t
(x − z)

)
.

The characteristic function of this vector is given by

E[eiξ ·Z ] = exp

⎛
⎜⎝−1

2
E

⎡
⎢⎣
∣∣∣∣∣∣

n∑
j=1

ξ j · B0,t (s j )

∣∣∣∣∣∣
2
⎤
⎥⎦
⎞
⎟⎠ ei

s1+···+sn
t (x−z)·ξ ,

where we recall that {B0,t (s), s ∈ [0, t]} denotes an �-dimensional Brownian bridge
from zero to zero. This implies

|�(s, ξ)| ≤ 1

n! |pt ∗ u0(x)| exp
⎛
⎝−1

2
Var

⎛
⎝ n∑

j=1

ξ j · B0,t (s j )

⎞
⎠
⎞
⎠ .
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Substituting the previous estimate into (3.7) yields

n!‖ fn(·, t, x)‖2H⊗n ≤ Cn |pt ∗ u0(x)|2
∫

[0,t]n<

∫
Rn�

exp

⎛
⎝−Var

⎛
⎝ n∑

j=1

ξ j · B0,t (s j )

⎞
⎠
⎞
⎠μ(dξ)ds.

(3.9)
Finally, from Lemmas 9.1 and 9.4 of [10] we conclude that (3.5) holds. ��

4 Feynman-Kac formulas for the moments of the solution

For any ε > 0, we define γε by

γε(x) = 1

(2π)�

∫
R�

e−ε|ξ |2eiξ ·xμ(dξ) . (4.1)

Notice that for each ε > 0, the spectral measure of γε is με(dξ) := e−ε|ξ |2μ(dξ),
which has finite total mass because μ is a tempered measure. Thus, γε is a bounded
positive definite function. The next proposition is the key ingredient in the proof of the
Feynman-Kac formula for the moments of the solution to Eq. (1.1) using Brownian
bridges.

Proposition 4.1 Suppose that the spatial covariance satisfies (H.1) or (H.2). Let κ be
a real number. Let {B j

0,t (s), s ∈ [0, t]}, j = 1 . . . , n, be independent �-dimensional

Brownian bridges from 0 to 0. Then for each ε > 0, the function Fε : (R�)n → R

given by

Fε(x
1, . . . , xn) = E exp

⎧⎨
⎩κ

∑
1≤ j<k≤n

∫ t

0

∫ t

0
γ0(s − r)γε(B

j
0,t (s) − Bk

0,t (r) + x j − xk)drds

⎫⎬
⎭

is well-defined and continuous. Moreover, as ε ↓ 0, Fε converges uniformly to a limit
function denoted by

E exp

⎧⎨
⎩κ

∑
1≤ j<k≤n

∫ t

0

∫ t

0
γ0(s − r)γ (B j

0,t (s) − Bk
0,t (r) + x j − xk)drds

⎫⎬
⎭ . (4.2)

Remark 4.2 Actually, for each 1 ≤ j < k ≤ n, the integral

∫ t

0

∫ t

0
γ0(s − r)γε(B

j
0,t (s) − Bk

0,t (r) + x j − xk)drds

converges in L p(�) as ε tends to zero, for each p ≥ 1, and we can also denote the
limit as

1

(2π)�

∫ t

0

∫ t

0

∫
R�

γ0(s − r)eiξ ·(B j
0,t (s)−Bk

0,t (r)+x j−xk )
μ(dξ)drds.
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Proof We claim that for every κ ∈ R

sup
ε>0

E exp

⎧⎨
⎩κ

∑
1≤ j<k≤n

∫ t

0

∫ t

0
γ0(s − r)γε(B

j
0,t (s) − Bk

0,t (r))drds

⎫⎬
⎭ < ∞ . (4.3)

By Hölder inequality, it suffices to show the previous inequality for n = 2. For every
d ∈ N, we have

E

[∫ t

0

∫ t

0
γε(B

1
0,t (s) − B2

0,t (r))γ0(s − r)drds

]d

= E

[
1

(2π)�

∫ t

0

∫ t

0

∫
R�

eiξ ·(B1
0,t (s)−B2

0,t (r))γ0(s − r)με(dξ)drds

]d

= 1

(2π)�d

∫
[0,t]2d

∫
(R�)d

E exp

{
i

d∑
k=1

ξ k ·
(
B1
0,t (sk) − B2

0,t (rk)
)}

d∏
k=1

γ0(sk − rk)με(dξ)drds ,

where we use the notation με(dξ) = ∏d
k=1 e

−ε|ξ k |2μ(dξ k) and ds = ds1 · · · dsd .
Using the independence of B1 and B2, Cauchy-Schwarz inequality, the inequality
ab ≤ 1

2 (a
2 + b2) and the fact that γ0 is locally integrable, we obtain

E

[∫ t

0

∫ t

0
γε(B

1
0,t (s) − B2

0,t (r))γ0(s − r)drds

]d

≤ Cd
∫

[0,t]d

∫
(R�)d

∣∣∣∣∣E exp

{
i

d∑
k=1

ξ k · B1
0,t (sk)

}∣∣∣∣∣
2

με(dξ)ds

≤ Cdd!
∫

[0,t]d<

∫
(R�)d

exp

{
−Var

(
d∑

k=1

ξ k · B1
0,t (sk)

)}
με(dξ)ds, (4.4)

where [0, t]d< is defined in (3.8). Then (4.3) follows from the Taylor expansion of ex

and Lemmas 9.1 and 9.4 in [10]. Finally, the proof of the uniform convergence of Fε

as ε tends to zero can be done by the same arguments as in the proof of Proposition
4.2 in [10]. Notice that Lemma 4.1 in [10] has to be replaced by the inequality

E exp

⎧⎨
⎩
∫

[0,t]2
∑

1≤ j<k≤n

κγε(G
j
s − Gk

r + y jk
s,r )drds

⎫⎬
⎭

≤ E exp

⎧⎨
⎩
∫

[0,t]2
∑

1≤ j<k≤n

|κ|γε(G
j
s − Gk

r )drds

⎫⎬
⎭ , (4.5)
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where κ ∈ R, G = (G1, . . . ,Gn) ∈ (R�)n is a centered Gaussian process indexed by
[0, t] and y = (y jk)1≤ j<k≤n : [0, t]2 → (R�)n(n−1)/2 is a measurable matrix-valued
function. ��

As an application, we have the following Feynman-Kac formula based onBrownian
bridges.

Proposition 4.3 Suppose that the spatial covariance satisfies (H.1) or (H.2). Suppose
that {B j

0,t (s), s ∈ [0, t]}, j = 1, . . . , n are �-dimensional independent Brownian

bridges from zero to zero. Then for every x1, . . . , xn ∈ R
�,

E

⎡
⎣ n∏

j=1

u(t, x j )

⎤
⎦ =

∫
(R�)n

E exp

{∫
[0,t]2

∑
1≤ j<k≤n

γ
(
B j
0,t (s) − Bk

0,t (r) + x j − xk + s

t
y j − r

t
yk
)

×γ0(s − r)drds

} n∏
j=1

[u0(x j + y j )pt (y
j )]dy1 · · · dyn . (4.6)

Proof For any ε > 0 we denote by uε(t, x) the solution to the stochastic heat equation

∂uε

∂t
= 1

2
�uε + uεẆε , u(0, ·) = u0(·) ,

where Ẇε is a Gaussian centered noise with covariance

E[Ẇε(s, y)Ẇε(t, x)] = γ0(s − t)γε(x − y).

From the results ofHu,Huang, Nualart and Tindel [9]we have the following Feynman-
Kac formula for the moments of uε

E

⎡
⎣ n∏

j=1

uε(t, x
j )

⎤
⎦ = E

( n∏
j=1

u0(B
j (t) + x j ) exp

{ ∑
1≤ j<k≤n∫

[0,t]2
γε(B

j (s) − Bk(r) + (x j − xk))

×γ0(s − r)drds
})

, (4.7)

where {B j , j = 1, . . . , n} are independent �-dimensional standardBrownianmotions.
We remark that in [9] it is required that γ is a non-negative function, which is not
necessarily true for γε. However, γε is bounded, and, in this case, it is not difficult to
show that (4.7) still holds. Also, [9] assumes that u0 is bounded, but it is not difficult
to show that (4.7) still holds assuming (3.2).

For each j = 1, . . . , n and every fixed t > 0, the Brownian motion B j admits the
following decomposition

123



Stoch PDE: Anal Comp (2017) 5:614–651 627

B j (s) = B j
0,t (s) + s

t
B j (t), (4.8)

where {B j
0,t (s), s ∈ [0, t]}, j = 1, . . . , n, are Brownian bridges on R

� independent

from {B j (t), 1 ≤ j ≤ n} and from each other. Thus, identity (4.7) can be written as

E

⎡
⎣ n∏

j=1

uε(t, x
j )

⎤
⎦ =

∫
(R�)n

E exp
{ ∫

[0,t]2
∑

1≤ j<k≤n

γε

(
B j
0,t (s)

−Bk
0,t (r) + x j − xk + s

t
y j − r

t
yk
)

×γ0(s − r)drds
} n∏

j=1

[u0(x j + y j )pt (y
j )]dy1 · · · dyn .

(4.9)

From Proposition 4.1 and the dominated convergence theorem, the right-hand side
of (4.9) converges to the right-hand side of (4.6). From theWiener chaos expansion of
the solution and the computations in the proof of Theorem 3.2, it follows easily that
uε(t, x) converges in L2(�) to u(t, x). On the other hand, from (4.9) it follows that
the moments of all orders of uε(t, x) are uniformly bounded in ε. As a consequence,
the left-hand side of (4.9) converges to the left-hand side of (4.6). This completes the
proof. ��
Corollary 4.4 Under the assumptions of Proposition 4.3 we have, for any x ∈ R

�

E
[
u(t, x)n

] = E

( n∏
j=1

u0(B
j (t) + x) exp

{ ∑
1≤ j<k≤n

∫
[0,t]2

γ (B j (s)

−Bk(r))γ0(s − r)drds
})

, (4.10)

where B j , j = 1, . . . , n, are independent �-dimensional Brownian motions.

Remark 4.5 If the initial condition u0 is nonnegative, one can show that u(t, x) ≥ 0
a.s., for all t ≥ 0 and x ∈ R

�. This follows from the fact that uε(t, x) is nonnegative
for any ε, where uε is the random field introduced in the proof of Proposition 4.3.

5 Lyapunov exponents of Brownian bridges

The following variational formula occurs frequently in our considerations,

E(α0, γ ) = sup
g∈A�

{∫
[0,1]2

∫
R2�

γ (x − y)

|s − r |α0 g
2(s, x)g2(r, y)dxdydrds

−1

2

∫ 1

0

∫
R�

|∇x g(s, x)|2dxds
}

, (5.1)
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where A� is the class of functions defined by

A� =
{
g : g(s, ·) ∈ W 1,2(R�) and

∫
R�

g2(s, x)dx = 1, for all 0 ≤ s ≤ 1

}
, (5.2)

where α0 ∈ [0, 1) and γ is a generalized covariance function.
In general, if η0 is a covariance function (nonnegative and nonnegative definite

locally integrable function) on R and η is a generalized covariance function on R
�

with spectral measure ν, we can define the variational quantity

E(η0, η) = sup
g∈A�

{∫
[0,1]2

∫
R2�

η(x − y)η0(s − r)g2(s, x)g2(r, y)dxdydrds

−1

2

∫ 1

0

∫
R�

|∇x g(s, x)|2dxds
}

. (5.3)

It is evident that E(α0, γ ) = E(| · |−α0 , γ ). The first integration in (5.3) is defined
through Fourier transforms,

∫
[0,1]2

∫
R2�

η(x − y)η0(s − r)g2(s, x)g2(r, y)dxdydrds

= 1

(2π)�

∫
[0,1]2

∫
R�

Fg2(s, ·)(ξ)Fg2(r, ·)(ξ)ν(dξ)η0(s − r)drds . (5.4)

A priori, E(η0, η) can be infinite. However, if η0 belongs to L1([−1, 1]) and η satisfies
theDalang’s condition (1.6) (as in all cases in the current article), thenE(η0, η) is finite.
Indeed, applying Cauchy-Schwarz inequality, we have

∫
[0,1]2

∫
R�

Fg2(s, ·)(ξ)Fg2(r, ·)(ξ)ν(dξ)η0(s − r)drds

≤
∫ 1

0

∫ 1

0

[∫
R�

|Fg2(s, ·)(ξ)|2ν(dξ)

] 1
2
[∫

R�

|Fg2(r, ·)(ξ)|2ν(dξ)

] 1
2

η0(s − r)dsdr

≤ 1

2

∫ 1

0

∫ 1

0

∫
R�

|Fg2(s, ·)(ξ)|2ν(dξ)η0(s − r)dsdr

+ 1

2

∫ 1

0

∫ 1

0

∫
R�

|Fg2(r, ·)(ξ)|2ν(dξ)η0(s − r)dsdr

≤ ‖η0‖L1([−1,1])
∫ 1

0

∫
R�

|Fg2(s, ·)(ξ)|2ν(dξ)ds .
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Moreover, for each s ∈ [0, 1], |Fg2(s, ·)(ξ)| is bounded by 1 and by 2
√

�
|ξ |‖∇x g(s, ·)‖L2(R�). In fact, integrating by parts, we have

|Fg2(s, ·)(ξ)| ≤ min
1≤ j≤�

1

|ξ j |
∫
R�

∣∣∣∣∂g
2(s, x)

∂x j

∣∣∣∣ dx

= min
1≤ j≤�

1

|ξ j |
∥∥∥∥∂g2(s, ·)

∂x j

∥∥∥∥
L1(R�)

≤ 2
√

�

|ξ | ‖∇x g(s, ·)‖L2(R�).

It follows that for every R > 0,

∫ 1

0

∫
R�

|Fg2(s, ·)(ξ)|2ν(dξ)ds

=
∫ 1

0

∫
|ξ |≤R

|Fg2(s, ·)(ξ)|2ν(dξ)ds +
∫ 1

0

∫
|ξ |>R

|Fg2(s, ·)(ξ)|2ν(dξ)ds

≤
∫

|ξ |≤R
ν(dξ) + 4�

∫
|ξ |>R

ν(dξ)

|ξ |2
∫ 1

0

∫
R�

|∇x g(s, x)|2dxds .

Since ν satisfies Dalang’s condition
∫
R�

ν(dξ)

1+|ξ |2 < ∞, we can choose R > 0 such that

‖η0‖L1([−1,1])(2π)−�4�
∫

|ξ |>R

ν(dξ)

|ξ |2 <
1

2
.

This implies that the right-hand side of (5.3) is at most ‖η0‖L1([−1,1])(2π)−�
∫
|ξ |<R

ν(dξ), which is also an upper bound for E(η0, η).
To conclude our discussion on basic properties of E(η0, η), we describe a useful

comparison principle. Suppose η0, η̃0 are covariance functions on R and η, η̃ are
generalized covariance functions on R

� such that the spectral measures of η0, η are
less than the spectral measures of η̃0, η̃ respectively. In other words, η0 ≤ η̃0 and
η ≤ η̃ in quadratic sense. Then

E(η0, η) ≤ E(η̃0, η̃) . (5.5)

This is immediate from (5.3).
In the remaining of the article, we consider the following scaling condition on the

noise:

(S) There exist α0 ∈ (0, 1) and α ∈ (0, 2) such that γ0(t) = |t |−α0 and γ (cx) =
c−αγ (x) for all t, c > 0 and x ∈ R

�.

Under the scaling assumption (S), it is easy to check that for every θ > 0,

E(α0, θγ ) = θ
2

2−α E(α0, γ ) . (5.6)
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Proposition 5.1 Let K and ψ be symmetric functions in L2(R�) and L2(R) respec-
tively. We assume in addition that ψ is nonnegative and ψ ′ exists and belongs to
L2(R). The functions η0 = ψ ∗ ψ and η = K ∗ K are bounded and nonnegative
definite functions. Then for every θ > 0 and every integer n ≥ 1,

lim sup
t→∞

1

t
logE exp

⎧⎨
⎩

θ

(n − 1)t

∑
1≤ j �=k≤n

∫ t

0

∫ t

0
η(B j (s) − Bk(r))η0

(
s − r

t

)
dsdr

⎫⎬
⎭

≤ nE(θη0, η) , (5.7)

where E(η0, η) is the variational quantity defined in (5.3).

Before giving the proof, let us explain our contribution. This result, together with
Theorem 5.2 below, extends the result of Chen in [2, Section 4] , where η is assumed
to be nonnegative. In the aforementioned paper, the author uses a compact folding
argument. When η switches signs, this argument no longer works. In particular, [2,
inequality (4.15)] fails. Here, we replace the compact folding argument by a moment
comparison between Brownian motions and Ornstein-Uhlenbeck processes, which
was observed earlier by Donsker and Varadhan [7] [see (5.9) below]. Unlike Brown-
ian motions, the Ornstein-Uhlenbeck processes are ergodic. This makes the essential
arguments of [2] carry through. Lastly, although the occupation times of Ornstein-
Uhlenbeck processes satisfy (strong) large deviation principles, it cannot be applied
here due to the time-dependent structure (namely η0).

Proof of Proposition 5.1 We first observe that

∑
1≤ j �=k≤n

∫ t

0

∫ t

0
η(B j (s) − Bk(r))η0

(
s − r

t

)
dsdr

=
∫
R�+1

⎡
⎣ n∑

j=1

∫ t

0
ψ
(
u − s

t

)
K (x − B j (s))ds

⎤
⎦
2

dudx

−
n∑
j=1

∫
R�+1

[∫ t

0
ψ
(
u − s

t

)
K (x − B j (s))ds

]2
dudx

≤ (n − 1)
n∑
j=1

∫
R�+1

[∫ t

0
ψ
(
u − s

t

)
K (x − B j (s))ds

]2
dudx .

In conjunction with the independence of the Brownian motions, we see that the left-
hand side of (5.7) is at most

lim sup
t→∞

n

t
logE exp

{
θ

t

∫
R�+1

[∫ t

0
ψ
(
u − s

t

)
K (x − B(s))ds

]2
dudx

}
.
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Hence, it suffices to show

lim sup
t→∞

1

t
logE exp

{
θ

t

∫
R�+1

[∫ t

0
ψ
(
u − s

t

)
K (x − B(s))ds

]2
dudx

}
≤ E(θη0, η) .

(5.8)
The proof is now divided into several steps.

Step 1. For each κ > 0, let Pκ be the law of an Ornstein-Uhlenbeck process in R
�

starting from 0with generator 1
2�−κx ·∇. LetEκ denote the expectation with respect

to Pκ . We will show that

E exp

{
θ

t

∫
R�+1

[∫ t

0
ψ
(
u − s

t

)
K (x − B(s))ds

]2
dudx

}

≤ Eκ exp

{
θ

t

∫
R�+1

[∫ t

0
ψ
(
u − s

t

)
K (x − B(s))ds

]2
dudx

}
. (5.9)

We note that

∫
R�+1

[∫ t

0
ψ(u − s

t
)K (x − B(s))ds

]2
dudx =

∫ t

0

∫ t

0
η(B(s) − B(r))η0(s − r)dsdr .

Hence, it suffices to check that for each integer d ≥ 1

E

[∫ t

0

∫ t

0
η(B(s) − B(r))η0(s − r)dsdr

]d
≤ Eκ

[∫ t

0

∫ t

0
η(B(s) − B(r))η0(s − r)dsdr

]d
.

Since η0 is nonnegative, this amounts to show

E

⎡
⎣ d∏

j=1

η(B(s j ) − B(r j ))

⎤
⎦ ≤ Eκ

⎡
⎣ d∏

j=1

η(B(s j ) − B(r j ))

⎤
⎦ (5.10)

for arbitrary times s1, r1, . . . , sd , rd in [0, t]. By writing η(z) = (2π)−�
∫
R� eiξ ·z

|FK (ξ)|2dξ , we see that

E

⎡
⎣ d∏

j=1

η(B(s j ) − B(r j ))

⎤
⎦ = (2π)−�d

∫
R�d

Eei
∑d

j=1 ξ j ·(B(s j )−B(r j ))
d∏
j=1

|FK (ξ j )|2dξ j

= (2π)−�d
∫
R�d

e
− 1

2E

[(∑d
j=1 ξ j ·(B(s j )−B(r j ))

)2] d∏
j=1

|FK (ξ j )|2dξ j .

Hence, (5.10) is evident provided that

E

⎡
⎢⎣
⎛
⎝ d∑

j=1

ξ j · (B(s j ) − B(r j ))

⎞
⎠

2
⎤
⎥⎦ ≥ Eκ

⎡
⎢⎣
⎛
⎝ d∑

j=1

ξ j · (B(s j ) − B(r j ))

⎞
⎠

2
⎤
⎥⎦ .
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An observationmade byDonsker-Varadhan [7, proof of Lemma 3.10] is thatE[B(s)⊗
B(r)] ≥ Eκ [B(s) ⊗ B(r)] in quadratic sense. This fact implies the above inequality.

Step 2. As a consequence, (5.8) is reduced to showing

lim sup
κ↓0

lim sup
t→∞

1

t
logEκ exp

{
θ

t

∫
R�+1

[∫ t

0
ψ
(
u − s

t

)
K (x − B(s))ds

]2
dudx

}

≤ E(θη0, η) . (5.11)

For each t > 0 and each path B, we denote

Zt,B(u, x) = 1

t

∫ t

0
ψ
(
u − s

t

)
K (x − B(s))ds

and observe that

∫
R�+1

|Zt,B(u, x)|2dudx = 1

t2

∫
R�+1

[∫ t

0
ψ
(
u − s

t

)
K (x − B(s))ds

]2
dudx

= 1

t2

∫ t

0

∫ t

0
η(B(s) − B(r))η0

(
s − r

t

)
dsdr .

In particular Zt,B belongs to L2(R�+1) and

‖Zt,B‖2L2(R�+1)
≤ η(0)η0(0) . (5.12)

Let N be a fixed positive number and denote �t,N = {B : 1
t

∫ t
0 |B(s)|ds ≤ N }. The

only advantage of Pκ over P, for which we need, is the following inequality

lim sup
t→∞

1

t
logPκ(�c

t,N ) ≤ −N + 1

2κ2 + �

2
κ . (5.13)

In fact, by Girsanov’s theorem we have

dPκ

dP

∣∣∣∣[0,t] = exp

{
−κ

∫ t

0
B(s) · dB(s) − 1

2
κ2
∫ t

0
|B(s)|2ds

}

= exp

{
−1

2
κ|B(t)|2 + �

2
κt − 1

2
κ2
∫ t

0
|B(s)|2ds

}
. (5.14)

It follows that

Eκ

{
exp
∫ t

0
|B(s)|ds

}
≤ E exp

{∫ t

0

(
|B(s)| − 1

2
κ2|B(s)|2

)
ds + �

2
κt

}

≤ exp

{
1

2κ2 t + �

2
κt

}
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where the last inequality is a consequence of a Cauchy-Schwarz inequality. Hence, in
conjunction with Chebyshev’s inequality, we obtain

Pκ

(
1

t

∫ t

0
|B(s)|ds > N

)
≤ e−Nt

Eκe
∫ t
0 |B(s)|ds ≤ e

−Nt+ 1
2κ2

t+ �
2 κt

.

The estimate (5.13) is directly derived from here.
The set M = {Zt,B}B∈�t,N ,t>0 is then a subset of L2(R�+1). We will show that M

is relatively compact in L2(R�+1). Indeed, we verify that FM = {F Zt,B}B∈�t,N ,t>0

satisfies theKolmogorov-Riesz’s compactness criterion in L2(R�+1) (cf. [12, Theorem
5]). More precisely, we check that

sup
B∈�t,N ,t>0

‖Zt,B‖L2(R�+1) < ∞ , (5.15)

lim
ρ→∞ sup

B∈�t,N ,t>0

∫
|(η,ξ)|>ρ

|F Zt,B(η, ξ)|2dηdξ = 0 , (5.16)

lim
ρ↓0 sup

|(τ ′,ξ ′)|<ρ

sup
B∈�t,N ,t>0

∫
R�+1

|F Zt,B(τ + τ ′, ξ + ξ ′) − F Zt,B(τ, ξ)|2dτdξ = 0.

(5.17)

Notice that (5.15) is evident from (5.12).We can easily compute the Fourier transform
of Zt,B

F Zt,B(τ, ξ) = Fψ(τ)FK (ξ)
1

t

∫ t

0
e−iτ s

t −iξ ·B(s)ds .

Hence,

sup
B∈�t,N ,t>0

∫
|(τ,ξ)|>ρ

|F Zt,B(τ, ξ)|2dτdξ ≤
∫

|(τ,ξ)|>ρ

|Fψ(τ)|2|FK (ξ)|2dτdξ ,

which implies (5.16). To show (5.17), let us first fix ε > 0 and choose a function
g in C∞

c (R�+1) such that ‖Fψ ⊗ FK − g‖L2(R�+1) < ε. We denote Yt,B(τ, ξ) =
g(τ, ξ) 1t

∫ t
0 e

−iτ s
t −iξ ·B(s)ds and observe that for every path B in�t,N and |(τ ′, ξ ′)| <

ρ, we have

|Yt,B(τ + τ ′, ξ + ξ ′) − Yt,B(τ, ξ)|
≤ ∣∣g(τ + τ ′, ξ + ξ ′) − g(τ, ξ)

∣∣+ |g(τ, ξ)|
∣∣∣∣1t
∫ t

0
e−iτ s

t −iξ ·B(s)(e−iτ ′ s
t −iξ ′·B(s) − 1)ds

∣∣∣∣
≤ ∣∣g(τ + τ ′, ξ + ξ ′) − g(τ, ξ)

∣∣+ 2 |g(τ, ξ)|
(

|τ ′| + |ξ ′|1
t

∫ t

0
|B(s)|ds

)
.

≤ |g(τ + τ ′, ξ + ξ ′) − g(τ, ξ)| + 2ρ(N + 1)|g(τ, ξ)|.
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It follows that

lim
ρ↓0 sup

|(τ ′,ξ ′)|<ρ

sup
B∈�t,N ,t>0

∫
R�+1

|F Zt,B(τ + τ ′, ξ + ξ ′) − F Zt,B(τ, ξ)|2dτdξ

≤ 4ε2 + lim
ρ↓0 sup

|(τ ′,ξ ′)|<ρ

sup
B∈�t,N ,t>0

∫
R�+1

|Yt,B(τ + τ ′, ξ + ξ ′) − Yt,B(τ, ξ)|2dτdξ

≤ 4ε2 + lim
ρ↓0 sup

|(τ ′,ξ ′)|<ρ

∫
R�+1

|g(τ + τ ′, ξ + ξ ′) − g(τ, ξ)|2dτdξ .

Since g is uniformly continuous, the last limit above vanishes. Hence,

lim
ρ↓0 sup

|(τ ′,ξ ′)|<ρ

sup
B∈�t,N ,t>0

∫
R�+1

|F Zt,B(τ + τ ′, ξ + ξ ′) − F Zt,B(τ, ξ)|2dτdξ ≤ 4ε2

for every ε > 0. This in turn implies (5.17).

Step 3. Applying (5.12),

Eκe
tθ‖Zt,B‖2

L(R�+1) ≤ Eκ

[
1�t,N e

tθ‖Zt,B‖2
L2(R�+1)

]
+ Pκ(�c

t,N )etθη(0)η0(0) .

Together with (5.13), the previous estimate yields

lim sup
t→∞

1

t
logEκe

tθ‖Zt,B‖2
L(R�+1) ≤ (θη(0)η0(0) − N + 1

2κ2 + �

2
κ) ∨

lim sup
t→∞

1

t
logEκ

[
1�t,N e

tθ‖Zt,B‖2
L2(R�+1)

]
. (5.18)

To deal with the limit on the right-hand side above, we adopt an argument from [2].
Let ε be a fixed positive number and define

Oh = {g ∈ L2(R�+1) : ‖g‖2 < −‖h‖2 + 2〈g, h〉 + ε} .

The collection {Oh}h∈M forms an open cover of M in L2(R�+1). Since M is rel-
atively compact, we can find deterministic functions h1, . . . , hm ∈ M such that
M ⊂ ∪m

j=1Oh j . It follows that for every t > 0 and B ∈ �t,N ,

‖Zt,B‖2L2(R�+1)
< max

j=1,...,m

(
−‖h j‖2L2(R�+1)

+ 2〈h j , Zt,B〉L2(R�+1) + ε
)

and hence,

lim sup
t→∞

1

t
logEκ

[
1�t,N e

tθ‖Zt,B‖2
L2(R�+1)

]

≤ max
j=1,...,m

(
−θ‖h j‖2L2(R�+1)

+ εθ + lim sup
t→∞

1

t
logEκe

2tθ〈h j ,Zt,B 〉L2(R�+1)

)
.

(5.19)
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We note that

〈h j , Zt,B〉L2(R�+1) = 1

t

∫
R�+1

h j (u, x)

[∫ t

0
ψ
(
u − s

t

)
K (x − B(s))ds

]
dudx

= 1

t

∫ t

0
h̄ j

( s
t
, B(s)

)
ds ,

where

h̄ j (s, z) =
∫
R�+1

h j (u, x)ψ(u − s)K (x − z)dudx = h j ∗ (ψ ⊗ K )(s, z) .

Since h̄ j is the convolution of L2-functions, it is continuous and bounded. Moreover,
since ψ ′ belongs to L2(R), ∂s h̄ j exists and ‖∂s h̄ j‖L∞ ≤ ‖h j‖L2‖∂sψ ⊗ K‖L2 . In
particular, h̄ j satisfies the hypothesis of [5, Proposition 3.1]. We also note that from

(5.14), dPk
dP

∣∣[0,t] ≤ e
�
2 κt . In conjunction with [5, Proposition 3.1], it follows that

lim sup
t→∞

1

t
logEκe

2tθ〈h j ,Zt,B 〉L2(R�+1)

≤ �

2
κ + lim sup

t→∞
1

t
logE exp

{
2θ
∫ t

0
h̄ j

( s
t
, B(s)

)
ds

}

≤ �

2
κ + sup

g∈A�

{
2θ
∫ 1

0

∫
R�

h̄ j (s, x)g
2(s, x)dxds − 1

2

∫ 1

0

∫
R�

|∇x g(s, x)|2dxds
}

= �

2
κ + sup

g∈A�

{
2θ〈h j , (ψ ⊗ K ) ∗ g2〉L2(R�+1) − 1

2

∫ 1

0

∫
R�

|∇x g(s, x)|2dxds
}

,

where each for g ∈ A� we conventionally set g(s, x) = 0 if s /∈ [0, 1]. Gluing together
our argument since (5.19), we obtain

lim sup
t→∞

1

t
logEκ

[
1�t,N e

tθ‖Zt,B‖2
L2(R�+1)

]

≤ max
j=1,...,m

sup
g∈A�

{
−θ‖h j‖2L2(R�+1)

+ 2θ〈h j , (ψ ⊗ K ) ∗ g2〉L2(R�+1)

− 1

2

∫ 1

0

∫
R�

|∇x g(s, x)|2dxds
}

+ εθ + �

2
κ.

Applying the Cauchy-Schwarz inequality−‖h j‖2L2 +2〈h j , (ψ ⊗K )∗g2〉L2 ≤ ‖(ψ ⊗
K ) ∗ g2‖2

L2 , we further have

lim sup
t→∞

1

t
logEκ

[
1�t,N e

tθ‖Zt,B‖2
L2(R�+1)

]

≤ sup
g∈A�

{
θ‖(ψ ⊗ K ) ∗ g2‖2L2(R�+1)

− 1

2

∫ 1

0

∫
R�

|∇x g(s, x)|2dxds
}

+ εθ + 3

2
κ� .
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Together with (5.9), (5.18) and the fact that

‖(ψ⊗K )∗g2‖2L2(R�+1)
=
∫ 1

0

∫ 1

0

∫
R�×R�

η(x−y)η0(s−r)g2(s, x)g2(r, y)dxdydsdr

we see that the left-hand side of (5.8) is at most

(
θη(0)η0(0) − N + 1

2κ2 + �

2
κ

)
∨
(
E(θη0, η) + εθ + �

2
κ

)
.

We now send N → ∞, κ ↓ 0 and ε ↓ 0 to obtain (5.8) and complete the proof. ��
The following result provides an upper bound for the Lyapunov exponents of Brownian
bridges.

Theorem 5.2 Suppose that the covariance of the noise satisfies condition (H.1)
or (H.2) and also (S). Assume that the spectral density f (ξ) exists. Suppose that
{B j

0,t (s), s ∈ [0, t]}, j = 1 . . . , n, are independent �-dimensional Brownian bridges
from zero to zero. Then,

lim sup
t→∞

t−a logE exp

⎧⎨
⎩

∑
0≤ j<k≤n

∫
[0,t]2

γ (B j
0,t (s) − Bk

0,t (r))

|s − r |α0 drds

⎫⎬
⎭

≤ n

(
n − 1

2

) 2
2−α

E(α0, γ ) , (5.20)

where we recall that a = 4−α−2α0
2−α

.

Proof For suitable distributions η0, η, we are going to make use of the notation

Qt (η0, η) :=
∑

0≤ j<k≤n

∫
[0,t]2

η(B j
0,t (s) − Bk

0,t (r))η0(
s − r

t
)drds .

Let γ0(s) = |s|−α0 denote the temporal covariance. With these notation, the expec-
tation in (5.20) can be written as E exp

{
t−α0Qt (γ0, γ )

}
. We note that γ0 = ψ ∗ ψ

where ψ(s) = c(α0)|s|−
1+α0
2 with some suitable constant c(α0). For each δ > 0 we

setψδ = pδ/2 ∗ψ and γ0,δ = ψδ ∗ψδ . To prove (5.20), the main ideas are first approx-
imate the singular covariances γ0, γ by regular covariances γ0,δ, γε; then upper bound
the exponential functional of Brownian bridges by that of Brownian motions. At the
final stage, we will apply Proposition 5.1. This procedure will be carried out in detail

in several steps below. For the moment, let us put tn = (n − 1)
2

2−α ta and observe that
by making change of variables s → t

tn
s, r → t

tn
r and using the scaling properties of

γ and of Brownian bridges (i.e. (S) and {B0,t (λs), s ≤ t/λ} d= √
λ{B0, t

λ
(s), s ≤ t/λ}
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for any λ > 0) we have

E exp
{
t−α0Qt (γ0, γ )

} = E exp

{
1

(n − 1)tn
Qtn (γ0, γ )

}
. (5.21)

Therefore, in conjunction with (5.6), (5.20) is equivalent to

lim sup
t→∞

1

t
logE exp

{
1

(n − 1)t
Qt (γ0, γ )

}
≤ nE(

1

2
γ0, γ ) . (5.22)

Step 1. Fix ε > 0. For any p, q > 1, 1
p + 2

q = 1, applying Hölder inequality, we have

logEe
1

(n−1)t Qt (γ0,γ ) ≤ 1

p
logEe

p
(n−1)t Qt(γ0,δ ,γε)

+ 1

q
logEe

q
(n−1)t Qt (γ0,γ−γε) + 1

q
logEe

q
(n−1)t Qt(γ0−γ0,δ ,γε) .

(5.23)

We claim that

lim sup
ε↓0

lim sup
t→∞

1

t
logEe

q
(n−1)t Qt (γ0,γ−γε) ≤ 0 (5.24)

and

lim sup
ε↓0

lim sup
δ↓0

lim sup
t→∞

1

t
logEe

q
(n−1)t Qt(γ0−γ0,δ ,γε) ≤ 0 . (5.25)

Let us focus on (5.24). By Hölder’s inequality, it suffices to show that for any κ ∈ R

lim sup
ε↓0

lim sup
t→∞

1

t
logE exp

{
κtα0−1

∫
[0,t]2

(γ − γε)(B1
0,t (s) − B2

0,t (r))

|s − r |α0 drds

}
≤ 0.

(5.26)
For each integer d ≥ 1, we can write

E

[∫
[0,t]2

(γ − γε)(B1
0,t (s) − B2

0,t (r))

|s − r |α0 drds

]d

= 1

(2π)�d

∫
[0,t]2d

∫
(R�)d

Eei
d∑
j=1

ξ j · (B1
0,t (s j ) − B2

0,t (r j )

d∏
j=1

|s j − r j |−α0(1 − e−ε|ξ j |2)μ(dξ)drds.
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Then, using Cauchy-Schwarz inequality and the inequality ab ≤ 1
2 (a

2 + b2), we
obtain

E

[
κtα0−1

∫
[0,t]2

(γ − γε)(B1
0,t (s) − B2

0,t (r))

|s − r |α0 drds

]d

≤ Cd
∫

[0,t]d

∫
(R�)d

∣∣∣Eei∑d
j=1 ξ j ·B1

0,t (s j )
∣∣∣2

d∏
j=1

(1 − e−ε|ξ j |2)μ(dξ)ds

= E

[
C
∫ t

0
(γ − γε)(B

1
0,t (s) − B2

0,t (s))ds

]d
,

for some constant C depending only on κ . Therefore, the claim (5.26) is reduced to

lim
ε→0

lim sup
t→∞

1

t
logE exp

{
C
∫ t

0
(γ − γε)(B

1
0,t (s) − B2

0,t (s))ds

}
≤ 0,

which follows from Lemma 5.3 in [10]. This completes the proof of (5.24).
To show (5.25), we use the estimate

Qt (γ0 − γ0,δ, γε) ≤ n(n − 1)t2

2
‖γε‖L∞(R�)‖γ0 − γ0,δ‖L1([0,1])

to obtain

1

t
logEe

q
(n−1)t Qt (γ0−γ0,δ ,γε) ≤ n

2
‖γε‖L∞(R�)‖γ0 − γ0,δ‖L1([0,1]) .

This implies (5.25) since γ0 ∈ L1([0, 1]) and limδ↓0 γ0,δ = γ0 in L1([0, 1]).
Step 2. We claim that

lim sup
t→∞

1

t
logE exp

{
p

(n − 1)t
Qt
(
γ0,δ, γε

)} ≤ nE(
p

2
γ0,δ, γε). (5.27)

Notice that the function γε is bounded and can be expressed in the form γε = Kε ∗Kε,
where the function Kε, defined by

Kε(x) = 1

(2π)�

∫
R�

eiξ ·x− ε
2 |ξ |2√ f (ξ)dξ, (5.28)

is bounded with bounded first derivatives, symmetric and Kε ∈ L2(R�). Let λ be a
fixed number in (0, 1) and set ρλ = ∫[0,1]2\[0,λ]2 γ0,δ(s − r)dsdr . For each j �= k, we
use the estimate
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∫ t

0

∫ t

0
γε(B

j
0,t (s) − Bk

0,t (r))γ0,δ

(
s − r

t

)
dsdr

≤
∫ λt

0

∫ λt

0
γε(B

j
0,t (s) − Bk

0,t (r))γ0,δ

(
s − r

t

)
dsdr + ‖γε‖∞ρλt

2

together with (2.8) to obtain

Ee
p

(n−1)t Qt (γ0,δ ,γε)

≤ e
n
2 p‖γε‖∞ρλtE exp

⎧⎨
⎩

p

(n − 1)t

∑
0≤ j<k≤n

∫
[0,λt]2

γε(B
j
0,t (s) − Bk

0,t (r))γ0,δ

(
s − r

t

)
drds

⎫⎬
⎭

≤ e
n
2 p‖γε‖∞ρλt

(1 − λ)�/2
E exp

⎧⎨
⎩

p

(n − 1)t

∑
0≤ j<k≤n

∫
[0,λt]2

γε(B
j (s) − Bk(r))γ0,δ

(
s − r

t

)
drds

⎫⎬
⎭ .

At this point, we apply Proposition 5.1 to get

lim sup
t→∞

1

t
logEe

p
(n−1)t Qt (γ0,δ ,γε) ≤ n

2
p‖γε‖∞ρλ + λnE

(
pλ

2
γ0,δ, γε

)
.

Passing through the limit λ ↑ 1, noting that ρλ → 0, we obtain (5.27).

Step 3. We combine (5.23), (5.24), (5.25) and (5.27) to get

lim sup
t→∞

1

t
logEe

1
(n−1)t Qt (γ0,γ ) ≤ lim sup

ε↓0
lim sup

δ↓0
n

p
E
( p
2

γ0,δ, γε

)

Note that the order of the limits δ ↓ 0 and ε ↓ 0 can not be interchanged. It is evident
to check that γ0,δ ≤ γ0 and γε ≤ γ in quadratic sense. Hence, using (5.5) we have

lim sup
t→∞

1

t
logEe

1
(n−1)t Qt (γ0,γ ) ≤ n

p
E(

p

2
γ0, γ ) .

Finally, letting p ↓ 1, we obtain (5.22), which completes the proof. ��
Remark 5.3 The case of time-independent noises corresponds to α0 = 0. In this case,
the function γ0 ≡ 1 can not be written as a convolution of a function with itself. Thus
the proof of Proposition 5.1 does not work in this case.

Corollary 5.4 Suppose that the covariance of the noise satisfies (H.1) or (H.2), con-
dition (S) holds and the spectral measure μ is absolutely continuous. Let u(t, x) be
the solution to (1.1) with nonnegative initial condition u0 satisfying condition (3.1).
Then for any integer n ≥ 2,

lim sup
t→∞

t−
4−α−2α0

2−α log sup
(x1,...,xn)∈(R�)n

E

[∏n
j=1 u(t, x j )

]
∏n

j=1 pt ∗ u0(x j )
≤ n

(
n − 1

2

) 2
2−α

E(α0, γ ) .

(5.29)
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Proof Let {B j
0,t (s), s ∈ [0, t], j = 1, . . . , n}, be �-dimensional Brownian bridges

from zero to zero. Using the moment formula for the solution (4.6) proved in Propo-
sition 4.3, we have

E

⎡
⎣ n∏

j=1

u(t, x j )

⎤
⎦ = E

(∫
(R�)n

n∏
j=1

u0(x
j + y j )pt (y

j )

× exp

⎧⎨
⎩
1

2

n∑
j �=k

∫
[0,t]2

γ (B j
0,t (s) − Bk

0,t (r) + s
t y

j − r
t y

k + x j − xk)

|s − r |α0 drds

⎫⎬
⎭ dy

)

≤
n∏
j=1

pt ∗ u0(x
j )E exp

⎧⎨
⎩
1

2

n∑
j �=k

∫ t

0

∫ t

0

γ (B j
0,t (s) − Bk

0,t (r))

|s − r |α0 drds

⎫⎬
⎭ ,

where the last inequality follows from (4.5). Then, the upper bound is a consequence
of Theorem 5.2. ��

Remark 5.5 Using the approach developed in [2], we can also show the corresponding
lower bound in (5.20), assuming (H.1) or (H.2) and (S) (but not necessarily the absolute
continuity ofμ). However, a lower bound similar to that proved inCorollary 5.4 cannot
be obtained. For this reason, the proof of a lower bound for the exponential growth
indices needs a direct approach as it is done in the next section.

6 Exponential growth indices

In this section we denote by u(t, x) the solution to (1.1) with nonnegative initial
condition u0 satisfying condition (3.1). The exponential growth indices are defined as
follows:

λ∗(n) = sup

⎧⎨
⎩λ > 0 : lim inf

t→∞ t−a sup

|x |≥λt
a+1
2

logEun(t, x) > 0

⎫⎬
⎭ (6.1)

and

λ∗(n) = inf

⎧⎨
⎩λ > 0 : lim sup

t→∞
t−a sup

|x |≥λt
a+1
2

logEun(t, x) < 0

⎫⎬
⎭ , (6.2)

where we recall that a = 4−α−2α0
2−α

.

6.1 Upper bound for λ∗(n)

Set

b = 2a

a + 1
= 4 − α − 2α0

3 − α − α0
. (6.3)

123



Stoch PDE: Anal Comp (2017) 5:614–651 641

It may be helpful to note that a, b ∈ (1, 2). For each positive number β, we define two
auxiliary functions ψβ and φβ . The function ψβ : (0,∞) → (0,∞) is defined by

ψβ(w) = 1

2
β2b2w2b−2 + βwb (6.4)

and φβ : (0,∞) → (0,∞) is uniquely defined by the relation

βb(φβ(x))b−1 = x − φβ(x) , ∀x > 0 . (6.5)

For every fixed x > 0,φβ(x) can be recognized as the uniqueminimizer of the function

y �→ fβ,x (y) := 1

2
(y − x)2 + βyb (6.6)

on (0,∞). Together with (6.5), it follows that

fβ,x (y) ≥ ψβ(φβ(x)) (6.7)

for every β, x > 0. Relation (6.5) implies that φβ is strictly increasing.

Theorem 6.1 Assume conditions (H.1) or (H.2), condition (S) and the absolute con-
tinuity of μ. Suppose that u0 satisfies

∫
R�

eβ|y|bu0(y)dy < ∞ (6.8)

for some β > 0, then

λ∗(n) ≤ g−1
β

((
n − 1

2

) 2
2−α

E(α0, γ )

)
,

where the function gβ(λ) = ψβ(φβ(λ)) is given by

gβ(λ) = 1

2
β2b2φβ(λ)2b−2 + βφβ(λ)b, (6.9)

and φβ is characterized by (6.5).

Proof It suffices to show that for any λ > 0,

lim sup
t→∞

t−a log sup

|x |≥λt
a+1
2

Eun(t, x) ≤ n

(
n − 1

2

) 2
2−α

E(α0, γ ) − nψβ(φβ(λ)).
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We write

sup

|x |≥λt
a+1
2

Eun(t, x) ≤
(
sup
y∈R�

E

(
u(t, y)

pt ∗ u0(y)

)n
)⎛
⎝ sup

|x |≥λt
a+1
2

pt ∗ u0(x)

⎞
⎠

n

.

Together with Corollary 5.4, it suffices to show the inequality

lim sup
t→∞

t−a log sup

|x |≥λt
a+1
2

pt ∗ u0(x) ≤ −ψβ(φβ(λ)) . (6.10)

We observe that by the triangle inequality,

1

2t
|y − x |2 + β|y|b ≥ ta f

β,|x |t− a+1
2

(|y|t− a+1
2 ) .

Hence, together with (6.7), we see that for every |x | ≥ λt
a+1
2

1

2t
|y − x |2 + β|y|b ≥ taψβ(φβ(λ)) .

Thus,

sup

|x |≥λt
a+1
2

∫
R�

e− 1
2t |y−x |2u0(y)dy ≤ e−taψβ(φβ(λ))

∫
R�

eβ|y|bu0(y)dy .

which implies (6.10). ��

As β tends to infinity, φβ(λ) tends to zero and it behaves as (λ/bβ)
1

b−1 . Therefore,
gβ(λ) behaves as 1

2λ
2. These facts lead to the following result.

Corollary 6.2 Under theassumptions of Theorem 6.1, if u0 satisfies
∫
R� eβ|y|bu0(y)dy

< ∞ for all β > 0, then

λ∗(n) ≤
√√√√
2

(
n − 1

2

) 2
2−α

E(α0, γ ).

6.2 Lower bound for λ∗(n)

The main result is the following.
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Theorem 6.3 Assume conditions (H.2) and (S). Suppose that u0 is non-trivial and
non-negative. In addition, we assume that

lim sup
t→∞

1

ta

∣∣∣∣∣∣ sup

|x |≥λt
a+1
2

log pt ∗ u0(x)

∣∣∣∣∣∣ < ∞

for any λ > 0. Then,

λ∗(n) ≥ a
a
2 (a + 1)−

a+1
2

√√√√
2

(
n − 1

2

) 2
2−α

E(α0, γ ).

Proof Set

I (t) := 1

ta
sup

|x |≥λt
a+1
2

logEun(t, x).

To derive a lower bound for It we proceed as follows.Wewill make use of the notation

Qtγ (y) :=
∑

0≤ j<k≤n

∫
[0,t]2

γ (B j
0,t (s) − Bk

0,t (r) + s

t
y j − r

t
yk)|s − r |−α0drds.

Then, by the Feynman-Kac formula for the moments of the solution in terms of Brow-
nian bridges proved in Proposition 4.3, we have

Eun(t, x) =
∫

(R�)n
E

n∏
j=1

u0(x + y j )pt (y
j ) exp {Qtγ (y)} dy. (6.11)

For each ε > 0, p > 1, applying Hölder inequality, we see that

Eun(t, x) ≥
⎛
⎝
∫
(R�)n

E

n∏
j=1

u0(x + y j )pt (y
j ) exp

{
1

p
Qtγε(y)

}
dy

⎞
⎠

p

×
⎛
⎝
∫
(R�)n

n∏
j=1

u0(x + y j )pt (y
j )E exp

{
1

p − 1
Qt (γε − γ )(y)

}
dy

⎞
⎠
1−p

.

(6.12)

Notice that, from (4.5) we can write

E exp

{
1

p − 1
Qt (γε − γ )(y)

}
≤ E exp

{
1

p − 1
Qt (γ − γε)(0)

}
. (6.13)
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Substituting (6.13) into (6.12) yields

I (t) ≥ − p − 1

ta
logE exp

{
1

p − 1
Qt (γ − γε)(0)

}

−n
p − 1

ta

∣∣∣∣∣∣ sup

|x |≥λt
a+1
2

log(pt ∗ u0(x))

∣∣∣∣∣∣

+ p

ta
sup

|x |≥λt
a+1
2

log
∫

(R�)n

n∏
j=1

u0(x + y j )pt (y
j )E exp

{
1

p
Qtγε(y)

}
dy

:= I1(t) + I2(t) + I3(t). (6.14)

Choosing ε = ε(t) = δt1−a with δ > 0, from (5.24) we obtain

lim
δ→0

lim sup
t→∞

1

ta
logE exp

{
q

p
Qt (γ − γδt1−a )(0)

}
≤ 0.

In addition, from our assumption,

lim
p→1

lim sup
t→∞

I2(t) = 0 .

In other words, I1(t) and I2(t) are negligible in the limits t → ∞, δ → 0 and p → 1.
We now consider I3. It can be written as

I3(t) = p

ta
sup

|x |≥λt
a+1
2

logE(unε,p(t, x)),

where uε,p(t, x) denotes the solution of Eq. (1.1) with initial condition u0 and spatial
covariance 1

pγε(t), where ε = ε(t) = δt1−a . Define Hp,ε as in (2.1), but with μ(dξ)

replaced by 1
p e

−ε|ξ |2μ(dξ).
For every φ inHp,ε, we denote by Z(φ) the (Wick) exponential functional

Z(φ) = exp

{
W (φ) − 1

2
‖φ‖2Hp,ε

}
.

By the Feynman-Kac formula for the solution of Eq. (1.1), when the spatial covariance
is bounded, we obtain

uε,p(t, x) = EB

∫
R�

u0(x + y)pt (y)Z(ψx,y)dy,

where ψx,y(s, z) = δ(B0,t (t − s) + x + t−s
t y − z)1[0,t](s) and

‖ψx,y‖2Hp,ε
=
∫

[0,t]2
1

p
γε

(
B0,t (s) − B0,t (r) + s − r

t
y

)
|s − r |−α0dsdr.
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Let q be such that 1
n + 1

q = 1. Using Hölder inequality, for any φ ∈ Hp,ε we have

E(unε,p(t, x)) = EW

(
EB

∫
R�

u0(x + y)pt (y)Z(ψx,y)dy

)n

≥ ‖Z(φ)‖−n
Lq (�)

(
EW

(
Z(φ)EB

∫
R�

u0(x + y)pt (y)Z(ψx,y)dy

))n

= exp

{
− n

2(n − 1)
‖φ‖2Hp,ε

}

×
(∫

R�

u0(x + y)pt (y)EB[exp{〈φ,ψx,y〉Hp,ε }]dy
)n

. (6.15)

We are going to choose an element φ, which depends on t and x .
Our next step is the computation of the inner product 〈φ,ψx,y〉Hp,ε . We can write

〈φ,ψx,y〉Hp,ε = 1

p

∫ t

0

∫ t

0
|s − r |−α0

∫
R�

φ(r, z)γε(B0,t (t − s) + x

+ t − s

t
y − z)dzdsdr

= 1

p

∫ t

0

∫ t

0
|s − r |−α0

∫
R�

φ(t − r, z + x)γε(B0,t (s)

+ s

t
y − z)dzdsdr.

Set
tn = cta,

where a = 4−α−2α0
2−α

and c = (n − 1)
2

2−α . Making the change of variables s → t
tn
s

and r → tr and using the scaling property for Brownian bridge, we obtain that

〈φ,ψx,y〉Hp,ε = 1

p
c

α
2 −1

∫ 1

0

∫ tn

0

∣∣∣∣ stn − r

∣∣∣∣
−α0 ∫

R�

φ(t − r t, z + x)

×γε
tn
t

(
B0,tn (s) + s√

tnt
y −

√
tn
t
z

)
dzdsdr.

Finally, the change of variables z →
√

t
tn
z yields

〈φ,ψx,y〉Hp,ε = 1

p

(
t

tn

) �
2

c
α
2 −1

∫ 1

0

∫ tn

0

∣∣∣∣ stn − r

∣∣∣∣
−α0 ∫

R�

φ(t − r t,

√
t

tn
z + x)

×γcδ

(
B0,tn (s) + s√

tnt
y − z

)
dzdsdr.
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Choosing φ of the form

φ(r, z) =
(
tn
t

) �
2

c1−
α
2 φ̂

(
t − r

t
,

√
tn
t

(z − x)

)
1[0,t](r),

where φ̂ satisfies

sup
r∈[0,1]

∫
R�

|φ̂(r, y)|dy < ∞, (6.16)

we can write

〈φ,ψx,y〉Hp,ε = 1

p

∫ 1

0

∫ tn

0

∣∣∣∣ stn − r

∣∣∣∣
−α0

∫
R�

φ̂(r, z)γcδ

(
B0,tn (s) + s√

tnt
y − z

)
dzdsdr.

Set

f (s, w) = 1

p

∫ 1

0

∫
R�

φ̂(r, z)γcδ(w − z)

|s − r |α0 dzdr.

Then, we obtain

〈φ,ψx,y〉Hp,ε =
∫ tn

0
f

(
s

tn
, B0,tn (s) + s√

tnt
y

)
ds. (6.17)

On the other hand, for this choice of φ, we obtain

‖φ‖2Hp,ε
= 1

p

(
tn
t

)�

c2−α

∫ t

0

∫ t

0
|s − r |−α0

×
∫

(R�)2
φ̂

(
t − r

t
,

√
tn
t

(z − x)

)
φ̂

(
t − s

t
,

√
tn
t

w − x

)

γε(z − w)dzdwdrds.

The change of variables s → t − ts, r → t − tr , z →
√

t
tn
z + x and w →

√
t
tn

w + x

leads to

‖φ‖2Hp,ε
= 1

p
tac2−

α
2

∫ 1

0

∫ 1

0

∫
(R�)2

φ̂(r, z)φ̂(s, w)

|s − r |−α0
γcδ(z − w)dzdwdrds. (6.18)
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Substituting (6.17) and (6.18) into (6.15), we get

p

ta
logE(unε,p(t, x)) ≥ − n

2(n − 1)
c2−

α
2

∫ 1

0

∫ 1

0

∫
(R�)2

φ̂(r, z)φ̂(s, w)

|s − r |α0 γcδ(z − w)dzdwdrds

+ np

ta
log
∫
R�

u0(x + y)pt (y)EB exp

{∫ tn

0
f (

s

tn
, B0,tn (s) + s√

tn t
y)ds

}
dy.

This together with (6.14) leads to the inequality, for any K > 0,

I3(t) ≥ I3,1 + I3,2(t) + I3,3(t),

where

I3,1 = − n

2(n − 1)
c2−

α
2

∫ 1

0

∫ 1

0

∫
(R�)2

φ̂(r, z)φ̂(s, w)

|s − r |α0 γcδ(z − w)dzdwdrds,

I3,2(t, x) = np

ta
log
∫

|y|≤K
√
t tn

u0(x + y)pt (y)dy

and

I3,3(t) = np

ta
inf|y|≤Ktn

logEB exp

{∫ tn

0
f

(
s

tn
, B0,tn (s) + s

tn
y

)
ds

}
.

We are going to analyze these three terms and this will be done in several steps.

Step 1. Using the properties of the initial condition, we claim that if λ < K
√
c, then

lim inf
t→∞ I3,2(t) ≥ −np

2
K 2c. (6.19)

Notice first that
√
t tn = √

ct
a+1
2 . Recall that u0 is non-trivial, there exists M > 0 such

that
∫
|y|≤M u0(y)dy > 0. For t large enough, λt

a+1
2 + M ≤ K

√
ct

a+1
2 . Therefore,

choosing x0 such that |x0| = λt
a+1
2 implies that

{y : |x0 + y| ≤ M} ⊂ {y : |y| ≤ K
√
ct

a+1
2 }.

Thus we obtain

lim inf
t→∞ I3,2(t) ≥ lim inf

t→∞
np

ta
log
∫

|x0+y|≤M
e− K2cta

2 u0(x0 + y)dy = −np

2
K 2c,

which is (6.19).

Step 2. We can write

lim inf
t→∞ I3,3(t) = lim inf

t→∞
npc

t
inf|y|≤Kt

logEB exp

{∫ t

0
f
( s
t
, B0,t (s) + s

t
y
)
ds

}
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For any ρ ∈ (0, 1), we can write

EB exp

{∫ t

0
f
( s
t
, B0,t (s) + s

t
y
)
ds

}
≥ EB exp

{∫ ρt

0
f
( s
t
, B0,t (s) + s

t
y
)
ds

}
.

From (2.8), we get

EB exp

{∫ ρt

0
f
( s
t
, B0,t (s) + s

t
y
)
ds

}

≥ (1 − ρ)−
�
2EB

(
1AR exp

{∫ ρt

0
f
( s
t
, B(s)

)
ds + |y|2

2t
− |y − B(ρt)|2

2t (1 − ρ)

})
,

(6.20)

where AR = {sup0≤s≤ρt |B(s)| ≤ R} for R > 0. Notice that, if |y| ≤ Kt , on the set
AR we have

|y|2
2t

− |y − B(ρt)|2
2t (1 − ρ)

≥ − ρ

1 − ρ

K 2

2
t − K R

(1 − ρ)
− R2

2t (1 − ρ)
. (6.21)

On the other hand, by Proposition 3.1 of [5] we obtain

lim
t→∞

1

t
logEB

(
1AR exp

{∫ ρt

0
f
( s
t
, B(s)

)
ds

})
= ρ

∫ 1

0
�R( f (ρs, ·))ds,

where

�R( f (ρs, ·)) = sup
g∈F�(BR)

{∫
BR

f (ρs, x)g2(x)dx − 1

2

∫
BR

|∇g(x)|2dx
}

,

andF�(BR) is the set of smooth functions on BR := {x : |x | ≤ R}with ‖g‖L2(BR) = 1
and g(∂BR) = {0}. For this result we need that for each 0 ≤ s ≤ 1, the function
f (ρs, ·) is bounded and continuous and the family of functions {s → f (ρs, x), x ∈
R

�} is equicontinuous in [0, 1]. These properties are a consequence of assumption
(6.16). In conclusion, we have proved that

lim inf
t→∞ I3,3(t) ≥ −npc

ρ

1 − ρ

K 2

2
+ cnpρ

∫ 1

0
�R( f (ρs, ·))ds. (6.22)

From (6.22), (6.21) and (6.19), letting K ↓ λ/
√
c and R ↑ ∞, we obtain

lim inf
t→∞ (I3,2(t) + I3,3(t)) ≥ − np

2(1 − ρ)
λ2

+ncρp

(∫ 1

0

∫
R�

f (sρ, x)g2(s, x)dxds − 1

2

∫ 1

0

∫
R�

|∇g(s, x)|2dxds
)

, (6.23)
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for any function g(s, x) in A�, where A� has been defined in (5.2). We can write

∫ 1

0

∫
R�

f (sρ, x)g2(s, x)dsdx = 1

p

∫ 1

0

∫ 1

0

∫
R2�

φ̂(r, y)g2(s, x)

|ρs − r |α0 γcδ(x − y)dxdydsdr.

Making the change of variables sρ → s, yields

∫ 1

0

∫
R�

f (sρ, x)g2(s, x)dsdx = 1

pρ

∫ 1

0

∫ ρ

0

∫
R2�

φ̂(r, y)g2(s/ρ, x)

|s − r |α0
γcδ(x − y)dxdydsdr.

Now choose the function φ̂ of the form φ̂(r, x) = g2( r
ρ
, x)1[0,ρ](r). With this choice

we obtain

∫ 1

0

∫
R�

f (sρ, x)g2(s, x)dsdx ≥ 1

pρ

∫ ρ

0

∫ ρ

0

∫
R2�

g2(r/ρ, y)g2(s/ρ, x)

|s − r |α0 γcδ(x − y)dxdydsdr

= 1

p
ρ1−α0

∫ 1

0

∫ 1

0

∫
R2�

g2(r, y)g2(s, x)

|s − r |α0 γcδ(x − y)dxdydsdr.

Step 3. With the above choice for φ̂ and letting p → 1, the term I3,1 can be written as

I3,1 = − n

2(n − 1)
c2−

α
2

∫ ρ

0

∫ ρ

0

∫
R2�

g2(r/ρ, y)g2(s/ρ, x)

|s − r |α0 γcδ(z − x)dxdydrds

= −nc

2
ρ2−α0

∫
[0,1]2

∫
R2�

g2(r, y)g2(s, x)

|s − r |α0 γcδ(z − x)dxdydrds. (6.24)

Finally, from (6.23) and (6.24), we obtain

lim
p↓1 lim inf

t→∞ I3(t) ≥ − n

2(1 − ρ)
λ2

+ ncρ

(
ρ1−α0

2

∫
[0,1]2

∫
R2�

g2(r, y)g2(s, x)

|s − r |α0 γcδ(x − y)dxdydrds

−1

2

∫ 1

0

∫
R�

|∇g(s, x)|2dxds
)

,

Letting δ ↓ 0, we obtain

lim
δ↓0,p↓1 lim inf

t→∞ I3(t) ≥ − n

2(1 − ρ)
λ2

+ ncρ

(
ρ1−α0

2

∫
[0,1]2

∫
R2�

g2(r, y)g2(s, x)

|s − r |α0 γ (x − y)dxdydrds

−1

2

∫ 1

0

∫
R�

|∇g(s, x)|2dxds
)

,
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Now we write ĝ(r, x) = √
�g(r, �x) where � is a constant whose value will be

determined very soon, and we obtain, using the scaling properties of γ ,

ρ1−α0

2

∫
[0,1]2

∫
R2�

ĝ2(r, y)ĝ2(s, x)

|s − r |α0 γ (x − y)dxdydrds − 1

2

∫ 1

0
‖∇ ĝ(s, ·)‖2L2(R�)

ds

= �αρ1−α0

2

∫
[0,1]2

∫
R2�

g2(r, y)g2(s, x)

|s − r |α0 γ (x − y)dxdydrds

−�2

2

∫ 1

0
‖∇g(s, ·)‖2L2(R�)

ds

Finally, choosing � = 2
1

α−2 ρ
1−α0
2−α and taking the supremum over g, we obtain

lim inf
t→∞ I3(t) ≥ − n

2(1 − ρ)
λ2 + nρa

(
n − 1

2

) 2
2−α

E(α0, γ ).

Optimizing in ρ, this produces the lower bound

λ∗(n) ≥ a
a
2 (a + 1)−

a+1
2

√√√√
2

(
n − 1

2

) 2
2−α

E(α0, γ ).

The proof is now complete. ��
Remark 6.4 Putting together the results from Corollary 6.2 and Theorem 6.3 we
obtain, for a nontrivial u0 with compact support and assuming a covariance satis-
fying conditions (H.2), (S) and the absolute continuity of μ,

a
a
2 (a + 1)−

a+1
2

√√√√
2

(
n − 1

2

) 2
2−α

E(α0, γ ) ≤ λ∗(n) ≤ λ∗(n)

≤
√√√√
2

(
n − 1

2

) 2
2−α

E(α0, γ ).

Notice that when α0 ↑ 1 the constant a converges to 1 and the above factor converges
to 1

2 . In this sense, in comparison with (1.9), our result is not optimal. We conjecture
that the constant in the left-hand side should be 1, but our techniques do not allow to
show this.
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