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1 Introduction

The purpose of this paper is to study the stochastic heat equation

du 1 attlw
— ==-Au+tu

O —, (1.1)
ot 2 0toxy...0xy

where t > 0, x € R¢ (€ > 1) and W is a centered Gaussian field, which is correlated
in both temporal and spatial variables. We assume that the noise W is described by a
centered Gaussian family W = {W(¢), ¢ € S(Ry x R%)}, with covariance

1

E[W(p)W(¥)] = om)t

oo o

[ [ [ 7o omiomne - nuaedsar
1.2)

where yy is a nonnegative and nonnegative definite locally integrable function, u is

a tempered measure and F denotes the Fourier transform in the spatial variables.

Throughout the paper, we denote by | - | the Euclidean norm in R® and by x - y the

usual inner product between two vectors x, y in R¢. We are going to consider two

types of spatial covariances:

(H.1) £ = 1, the spectral measure p is absolutely continuous with respect to the
Lebesgue measure on R with density f, thatis u(d§) = f(§)d&, and f satis-
fies:

(a) Forall &,  in R and for some constant kg > 0,

fE+n) <ko(fE)+ fF). (1.3)
(b) ,
(3
R—1+|<§|2d§ < 00. (1.4)

To state the second type of covariance, we recall that the space of Schwartz functions
is denoted by S(R?). The Fourier transform of a function u € S(R?) is defined with
the normalization

Fu(€) =/ e u(x)dx,
R¢

so that the inverse Fourier transform is given by F _114(& Y= Q) tF u(=§).

(H.2) The inverse Fourier transform of u is a nonnegative locally integrable function
(or generalized function) denoted by y

1 .
Y = G /R 5 (), (15)
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and p satisfies Dalang’s condition

[ (d§)

For the case (H.2), y is nonnegative definite and (1.2) can be written as

oWl = [ [ [ o6oveme—nye—ydrdydsar. 1.7

Examples of covariance functions satisfying condition (H.2) are the Riesz kernel
y(x) = |x|77, with 0 < n < 2 A ¢, the space-time white noise in dimension one,
where y = &g, and the multidimensional fractional Brownian motion, where y (x) =
[Ti_) Hi2H; — D)|x;|*"i~2, assuming that 3°{_ H; > ¢ — 1 and H; € (%, 1) for
i=1,...,¢

In the case (H.1), the inverse Fourier transform of w is at best a distribution and
the expression (1.5) is only formal. The right-hand side of (1.7), however, makes
sense by pairing between Schwartz functions and distributions. For our convenience,
we will address y as a generalized covariance function if its Fourier transform is
a (nonnegative) tempered measure. It also worths noting that by Jensen’s inequality,
(1.4) implies Dalang’s condition (1.6). The basic example of a noise satisfying (H.1) is
the rough fractional noise, where the spectral density is given by f (&) = cy|€| 1-2H
with H € (%, %] and cy = I'(2H + 1) sin(r H). In this case, the noise W has the
covariance of a fractional Brownian motion with Hurst parameter H € (%, %] in the
spatial variable. Condition (a) holds with ko = 1 and condition (b) holds because of
the restriction H > %.

These types of spatial covariances were introduced in our paper [10], where the
noise is white in time. In [10] we proved the existence of a unique mild solution
formulated using Itd-type stochastic integrals, we derived Feynman-Kac formulas for
the moments of the solution using a family of independent Brownian bridges and we
computed Lyapunov exponents and lower and upper exponential growth indices. The
purpose of this paper is to carry out this program when the noise is not white in time.
While the general methodology of the current article is similar to [10], the case of
colored temporal noises has some distinct features and needs a different treatment. In
particular the existence and estimation of Lyapunov exponents offer new difficulties
that require techniques different from the white-time case.

After a section on preliminaries, Sect. 3 is devoted to show (see Theorem 3.2)
the existence of a unique mild solution to Eq. (1.1), when the stochastic integral is
understood in the Skorohod sense, and the initial condition satisfies the general inte-
grability condition (3.2). We want to mention that the existence and uniqueness of a
solution for the (H.2) type covariance in the case of a colored noise in time has been
also obtained in the recent paper [1] by Balan and Chen. Then, in Sect. 4 we establish
Feynman-Kac formulas for the moments of the solution in terms of independent Brow-
nian motions or Brownian bridges (see Proposition 4.3 and Corollary 4.4). Section 5
is devoted to obtain Lyapunov exponents for exponential functionals of Brownian
bridges, assuming that y(¢r) = [£|7* and y(cx) = ¢ %y (x) for all ¢ > 0, where
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ag € (0,1) and o € (0, 2). The main result of this section is Theorem 5.2, whose
proofis inspired by Theorem 1.1 of [2]. While Chen’s article [2] deals with exponential
functionals of Brownian motions, we deal with exponential functionals of Brownian
bridges. Another difference is that we allow noises which satisfy condition (H.1). In
this case, the spatial covariance is generally a distribution and even if it is a function,
it is not necessary non-negative and may switch signs. The former issue is solved
by an appropriate approximation procedure. For the later issue, the compact folding
argument in [2] is no longer applicable here. Instead, we use a moment comparison
between Brownian motions and Ornstein-Uhlenbeck processes, which is observed by
Donsker and Varadhan [7]. We refer to [3] for related results on temporal asymptotics
for the fractional parabolic Anderson model.

Finally, in Sect. 6 we study the speed of propagation of intermittent peaks. The prop-
agation of the farthest high peaks was first considered by Conus and Khoshnevisan [6]
for a one-dimensional heat equation driven by a space-time white noise with com-
pactly supported initial condition, where it is shown that there are intermittency fronts
that move linearly with time as Af. More precisely, they defined the lower and upper
exponential growth indices as follows:

1
Ag(n) = sup {k >0: 1itm inf — sup logE|u(z, x)|" > 0}
—00

[x|=2s

and

1
A*(n) = inf {A > 0:limsup — sup logElu(t, x)|" < 0} .

t—>00 I |x|>ar

Generalizing previous results by Chen and Dalang [4], we proved in [10] that, assuming
that u¢ is nonnegative,

< Ax(n) <1*(n) <

2&,(y) (1.8)
n

o <é+5n(y)>’
B: e ePl¥lug(y)dy<oco \ 2 np

where &, (y) is the nth Lyapunov exponent. In particular, If uq is nontrivial and sup-
ported on a compact set, then

28,
A () = Ae(n) = % . (1.9)

In the reference [8], using the Feynman-Kac formula for the moments of the solu-
tion established in [9], the authors have obtained lower and upper bounds for the
exponential growth indices when the noise has a general covariance of the form
E[W(t,x)W(s, )] = y(t — s)y(x — y), where yp is locally integrable and the
spatial covariance y satisfies (H.2). Here W (z, x) stands for % In this general

situation, to obtain non-trivial limits the factor 7! and the set {|x| > At} appearing in
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the definition of the exponential growth indices, need to be changed. In the particular
case yo(t) = |t|7% and y(x) = |x|™ we need to replace ~! by =% and the set
{lx] = At} by {|x| > M%}, where a = 472“_—;"“’. In the present paper, we complete
this analysis with the methodology developed in [10], based on large deviations.

As a consequence of the large deviation results obtained in Sects. 5 and 6, under
suitable scaling hypotheses on the covariance of the noise, we deduce the following
results on the exponential growth indices, that should be compared with (1.8) and

(1.9):

(i) If the initial condition u( is a nonnegative function such that fR( ePly 1’ up(y)dy <

_ 4—a—2a
00, where b = s , then

2
— 1\ =«
NOEYrS (("T) & (e, y)) :

where gg is an increasing function on (0, co) defined by Eq. (6.9), and & (o, ¥)
is a variational quantity defined in (5.1).

(ii) Suppose ug is bounded below in a ball of radius M, and for some technical
reasons assume that the spatial covariance satisfies (H.2). Then,

2

. . 1\
)»*(n)Za?(a—i-l)7%1 2(112 ) E(ag, ),

4—a

where a = 2—7“2“0. Moreover, as $ tends to infinity, the function gg(x) converges

to +/2x and in the compact support case, the two bounds above differ only on the
a atl
constant afl(a + 1" 2.

2 Preliminaries

Let H be the completion of S(R. x RY) endowed with the inner product

1 -
(0. ¥)n = 7 f Fols, E)F Y (1, 8)yo(s —)u(dé) dsdt. 2.1)
(2m)* Jr2 xre

The mapping ¢ — W (¢) defined on S(R, x RY) can be extended to a linear isometry
between H and the Gaussian space spanned by W. We will denote this isometry by

W) =/OO/ o(t, x)W(dt,dx)
0 R¢

for ¢ € H.If u satisfies (H.2), the righ-hand side of (2.1) can be written in Cartesian
coordinates as fRixR% o(s, )Y, y)yo(s —t)y (x —y)dxdydsdt. Hence, a standard
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approximation (still assuming (H.2)) shows that H contains the class of measurable
functions ¢ on R x R such that

/ (s, x)p(t, y)| yo(s — 1)y (x — y)dxdydsdt < co. (2.2)
R% xR2¢

2.1 Elements of Malliavin calculus

We denote by D the Malliavin derivative. That is, if F is a smooth and cylindrical
random variable of the form

F=f(W(p1),.... W(gn)),

with ¢; € H, f € C°(R") (thatis, f and all its partial derivatives have polynomial
growth), then DF is the H-valued random variable defined by

_y A |
DF = ; (V@D W@

The operator D is closable from L?() into L*(; H), and we define the Sobolev
space D2 as the closure of the space of smooth and cylindrical random variables
under the norm

IDFlli2 = (ELF?) +ELIDFI3,.
We denote by 6 the adjoint of the derivative operator given by the duality formula
E[8(u)F]1=E[(DF,u)x], (2.3)

for any F € D2 and any element u € L*(2; ) in the domain of 8. The operator
d is also called the Skorohod integral because in the case of the Brownian motion, it
coincides with an extension of the It6 integral introduced by Skorohod.

If F € D'? and h is an element of H, then Fh is Skorohod integrable and, by
definition, the Wick product equals the Skorohod integral of F'h, that is,

8(Fh) = F o W(h). 2.4)

We refer to the book [14] of Nualart for a detailed account of the Malliavin calculus
with respect to a Gaussian process.

When handling the stochastic heat equation in the Skorohod sense we will make
use of chaos expansions, which we briefly describe in the following. For any integer
n > 0 we denote by H,, the nth Wiener chaos of W. We observe that Hy is R and for
n > 1, H, is the closed linear subspace of L(2) generated by the family of random
variables {H,(W (h)),h € H, ||h||x = 1}. Here H, is the nth Hermite polynomial.
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For any n > 1, we denote by H®" (resp. H®") the nth tensor product (resp. the
nth symmetric tensor product) of H. Then, the mapping I,(h®") = H, (W (h)) can
be extended to a linear isometry between H®", equipped with the modified norm
V| - [l3en, and H,,.

Let us consider a random variable F € L?($2) which is measurable with respect to
the o-field 7% generated by W. This random variable can be expressed (called the
Wiener-chaos expansion of F) as

F=E[F1+ Y L(f. (2.5)

n=1

where the series converges in L2(2), and the elements fu € HO", n > 1, are deter-
mined by F.

The Skorohod integral (or the divergence) of a random field u can be computed
using the Wiener chaos expansion. More precisely, suppose that u = {u(t, x), (¢, x) €
Ry x RZ} is a random field such that for each (z, x), u(z, x) is an F W _measurable and
square integrable random variable. Then, for each (¢, x), u(z, x) has the Wiener chaos
expansion of the form

u(t, x) =E[u(l,x)]+Zln(fn(-,l,x))- (2.6)
n=1

Suppose additionally that the trajectories of u belong to H and E[||u ||%_[] < 00. Then,
we can interpret u as a square integrable random function with values in H and the
kernels f,, in the expansion (2.6) are functions in H®""*+1 which are symmetric in the
first n time-space variables. In this situation, u belongs to the domain of the divergence
(that is, u is Skorohod integrable with respect to W) if and only if the following series
converges in L%(Q)

8(u) = /0 /R )W) = WELD + Y L (f). @)

n=1

where f,; denotes the symmetrization of f, in all its n + 1 time-space variables.

2.2 Brownian bridges

Let {B(s), s > 0} be an £-dimensional Brownian motion starting at 0. For every fixed
timer > 0and x, y € RY, the process

{B6)=x+B@-2B0O+x-y.0=5 <1

is an £-dimensional Brownian bridge from x to y, i.e. B (0) =x and B (t) = y. Away
from the terminal time 7, the law of Brownian bridge admits a density with respect
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to Brownian motion. Indeed, it is shown in [13, Lemma 3.1] that for every bounded
measurable function F,

E[F({B(s).0 <s < a})]
Iy —x=BGHP |y —xP
21(1 — 1) 2t

} F(B(s),0 <5 < m)} _
(2.8)

=(1- )»)_%IE |:exp {

Throughout the paper, we denote by { By ;(s), 0 < s < t} an £-dimensional Brownian
bridge which starts and ends at the origin. A Brownian bridge from x to y can be
expressed as

N N
{Bou) + =y + =0 =s =t}

3 Existence and uniqueness of a solution via chaos expansions

We denote by p;(x) the ¢-dimensional heat kernel p,(x) = Qrt)~ 2= lx2/2t , for
any t > 0, x € RY. For each r > 0 let F; be the o-field generated by the random
variables W (¢), where ¢ has support in [0, 7] x Rf. We say that a random field
u = {u(t,x), (t, x) € Ry x R is adapted if for each (¢, x) the random variable Ur x
is F;-measurable.
We assume that the initial condition u#( is a measurable function satisfying the
condition
(pr * |uo|)(x) < oo forall 7 > 0 and x € R, (3.1

where p; * |ug| denotes the convolution of the heat kernel p; and the function |ug]|.
This condition is equivalent to

/W ¢ o (x) [dx < o0, (3.2)

for all « > 0.
We define the solution of Eq. (1.1) as follows.

Definition 3.1 An adapted random field u = {u(r,x),t > 0,x € R’} such that
Eu?(t,x) < oo for all (7, x) is a mild solution to Eq. (1.1) with initial condi-
tion uq satisfying (3.2), if for any (¢, x) € [0, 00) % R¢, the process {p;_s(x —
nuls, y)1j0,n(s),s >0,y € R’Z} is Skorohod integrable, and the following equation
holds

t
u(t, x) = pr * uo(x) + /0 /Ré Pr—s(x — Y)u(s, y) §Ws y. (3.3)

Suppose now that u = {u(t,x),t > 0,x € R’Z} is a mild solution to Eq. (3.3).
Then according to (2.5), for any fixed (¢, x) the random variable u(z, x) admits the
following Wiener chaos expansion
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w(t, x) =Y Li(ful1,2)), (3.4)

n=0

where for each (¢, x), f, (-, t, x) is a symmetric element in H®". Thanks to (2.7) and
using an iteration procedure, one can then find an explicit formula for the kernels f;,
forn > 1

1
Su(S1, Y1, oo S, Yo 8, X) = Ept—sg(,,)(x - ya(n)) s
Psey=sony V@) = Yo (1)) Psyqry * 40(Yo (1)) »
where o denotes the permutation of {1, 2, ..., n} suchthat0 < s5(1) < -+ < Son) <
t (see, for instance, equation (4.4) in [11], where this formula is established in the case

of a noise which is white in space). Then, to show the existence and uniqueness of the
solution it suffices to show that for all (¢, x) we have

o0
D ol t ) [ Fgen < 00 3.5)
n=0
Theorem 3.2 Suppose that the spatial covariance satisfies (H.1) or (H.2). Then rela-
tion (3.5) holds for each (¢, x) € (0, 00) xR, Consequently, Eq. (1.1) admits a unique

mild solution in the sense of Definition 3.1.

Proof Notice that the kernel f,, can be written as

fu(s,y,t,x) = /W gn(s, y,t, Duo(z)dz,

where s = (s1,...,8,),y = (1, ..., yn) and

1
gn(sa Y, t, Z) = Ept—sa(,,) (X - ya(n)) e ps,,(z)—s(f(l) (ya(Z) - ya(l))Psg(])(ya(l) - Z) .
’ (3.6)
Then

2 ™ D0 E) - R
nll Gyt ) 1340 = pET /[0,,]% /(Rz)n @(s,s)d>(r,$)u(d$)j]:[1)fo(sj rjdsdr

B / (/ 1D (s, &) (dé))é
o .
— o)t Jio,920 \J®Ey #

1L n

2
x ( /R . |<I><r,5)|2u(d5)) [ = rpdsar,

j=1
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where & = (€1, ..., &"), u(d&) = [T, n(dé’),
(s, &) = /R Faals. 1 @)

ds =dsi -+ -dsy and dr = dry - - - dr,. Using the inequality ab < 3 (a® +b?) and the
fact that yy is locally integrable, we obtain

P fo ot ) o < C"n!/

[0,7]"

/ | (s, £)1* 11 (dE)ds.
Rnl
By symmetry, this leads to
U fu Gt )13 o SC"(nY)Z/[O] /szb(s,sn%(ds)ds, (3.7)
L] n

where for each n > 2, we denote
[0,¢]0 :={(t1,...., 1) :0<t1 <--- <t <t}. (3.8)

Fix0 < 50 < s < --- < s, < t. Notice that (y, z) — nlg,(s, v, t,z) is the
joint density of the random vector (By,, By,, ..., By,, By) at the point (y; — z, y2 —
Zy..uy Yn — 2, X —7) Where B = {B;, t > 0} is an £-dimensional Brownian motion.
Therefore, n!g, (s, -, t, z)/p:(x — z) is the conditional density of (By,, By,, ..., By,)
given B; = x — z, which coincides with the law of the random vector

S1 51 Sn Sn
Z = (le _?Bt+7(-x_z)v---aBSn_?BI+T(X_Z))~

The characteristic function of this vector is given by

2

. 1 n , L5+t
Ele* 7] =exp | —3B | Y67 Boatsp)| | |7 0%,
j=1

where we recall that {By ;(s), s € [0, ¢]} denotes an £-dimensional Brownian bridge
from zero to zero. This implies

1 1 L
I<I>(s,§)|§alpz*uo(X)leXp —EVar Zlgj'BO,t(Sj)
J=
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Substituting the previous estimate into (3.7) yields

n

Aot O e < Clpe o [ fR e (—Var (Zsf : Bo,,<sj))) 1(d8)ds,
[0,¢]2 nt —
< j=1

(3.9)
Finally, from Lemmas 9.1 and 9.4 of [10] we conclude that (3.5) holds. O
4 Feynman-Kac formulas for the moments of the solution
For any ¢ > 0, we define y, by
— —el§l? pikx ), q 4.1
e(x) (271)4/[@/3 5 u(dE) @1)

Notice that for each ¢ > 0, the spectral measure of y; is u.(d§) = 6_5\5\2,“(615)’
which has finite total mass because p is a tempered measure. Thus, y; is a bounded
positive definite function. The next proposition is the key ingredient in the proof of the
Feynman-Kac formula for the moments of the solution to Eq. (1.1) using Brownian
bridges.

Proposition 4.1 Suppose that the spatial covariance satisfies (H.1) or (H.2). Let k be
a real number. Let {Béy[(s), s €[0,¢]}, j = 1...,n, be independent £-dimensional

Brownian bridges from 0 to 0. Then for each ¢ > 0, the function F, : (R — R
given by

t t . .
Fg(xl,...,x"):]Eexp{K Z /0 /0 Yo(s = r)ye(BY,(s) — B§ (r) + x/ — x¥)drds

1<j<k<n

is well-defined and continuous. Moreover, as € |, 0, Fe converges uniformly to a limit
function denoted by

t t . .
Eexp {« Z //)/o(s—r)y(Bét(s)—Bgt(r)-i—xf—xk)drds . 4.2
0 Jo ’ ’

1<j<k<n

Remark 4.2 Actually, for each 1 < j < k < n, the integral

t t . .
/ / yo(s = r)ye(Bg () — By, (r) + x/ — x")drds
0 JO

converges in L”(€2) as ¢ tends to zero, for each p > 1, and we can also denote the
limit as

1 t t X i p
2 )‘z/ f / yols — r)e€ BB O =0 gy drds.
T 0 Jo JR¢
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Proof We claim that for every k € R

t t .
supEexp { « Z /0foyo(s—r)yg(Bé’[(s)—B(])‘J(r))drds <o00. (43)

e>0 1<j<k<n

By Holder inequality, it suffices to show the previous inequality for n = 2. For every
d € N, we have

topt .
E |:/0 /0 VS(B(%J(S) - B(%,z(”)))/o(s _ V)drds]

1 t t ) d
=FK [_(m) - /O /0 fR z PE B V=B (Do r)ug(d.f;)drdsi|

o A
- @m) v/[O,t]Zd /(R/é)d Eexp {l ZS (Bo*t(sk) BO,t(rk))}
d

k=1

[ 1otk = r)pe@&)dras
k=1

where we use the notation u.(d§) = ]_[zzl e“?'Sk'z,u(d?;k) and ds = ds;---dsy.
Using the independence of B! and B?, Cauchy-Schwarz inequality, the inequality
ab < %(a2 + b?) and the fact that yp is locally integrable, we obtain

t t J
E |:/0 /0 ys(Bé,t(S) — Bg,t(’"))VO(S _ ,.)d},dsi|

d
SCd/ / Eexpqi Sk-Bl (sk)
[0,114 J (R*)d ,; o
d
SCdd!/ f exp | —Var ng.Bgt(sk) we(d€)ds, (4.4)
[0,114 J (RE)4 '

k=1

2
te(dE)ds

where [0, t]‘i is defined in (3.8). Then (4.3) follows from the Taylor expansion of e*
and Lemmas 9.1 and 9.4 in [10]. Finally, the proof of the uniform convergence of F;
as ¢ tends to zero can be done by the same arguments as in the proof of Proposition
4.2 in [10]. Notice that Lemma 4.1 in [10] has to be replaced by the inequality

Eexp / Z Kye(Gg — G]f + ysjﬁ)drds
[0

2
1] 1<j<k<n

<Eexp / Y Iklye(Gl = Ghydrds ¢ (4.5)
[0.]?

1<j<k<n
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where k € R, G = (G, ...,G™ e (RY" is a centered Gaussian process indexed by
[0,#]and y = (/%) 1<jk<p : [0, 11> — (RH"=D/2 is a measurable matrix-valued
function. O

As an application, we have the following Feynman-Kac formula based on Brownian
bridges.
Proposition 4.3 Suppose that the spatial covariance satisfies (H.1) or (H.2). Suppose
that {B(J)’t(s), s € [0,t]}, j = 1,...,n are €-dimensional independent Brownian
bridges from zero to zero. Then for every x', ..., x" € R,

n

E u(t,xj) =/ Eexp{/
H RO" [0,

j=1

i . s r
Yo v (Bl =B+ =t 2y =Dy
1<j<k<n
n . . .
XY0(s — r)drds} [ Jlwo? + 7)) pi(y)ldy" -+ dy™ . (4.6)
j=1

Proof Forany ¢ > 0 we denote by u, (¢, x) the solution to the stochastic heat equation

oug 1 .
ot = EAMS + uSWS ’ M(Oa ) = “0() ’

where W, is a Gaussian centered noise with covariance

E[W, (s, Y)We(t, )] = yo(s — 1) ye(x — y).

From the results of Hu, Huang, Nualart and Tindel [9] we have the following Feynman-
Kac formula for the moments of u,

E Hus(t,xj) :E(Huo(Bj(t)—i—xj)exp{ Z
j=1

j=1 1<j<k<n

/ Ve(B(s) — BX(r) + (x/ — x%))
[0,112
Xyo(s — r)drds}), 4.7

where {Bj ,j =1,..., n}areindependent £-dimensional standard Brownian motions.
We remark that in [9] it is required that y is a non-negative function, which is not
necessarily true for y,. However, y, is bounded, and, in this case, it is not difficult to
show that (4.7) still holds. Also, [9] assumes that uq is bounded, but it is not difficult
to show that (4.7) still holds assuming (3.2).

Foreach j = 1,...,n and every fixed ¢t > 0, the Brownian motion B/ admits the
following decomposition
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BI(s) = B],(5) + ;Bj(t), 4.8)

where {Bé!t(s), s € [0,¢]}, j = 1, ..., n, are Brownian bridges on R¢ independent
from {B/(t), 1 < j < n} and from each other. Thus, identity (4.7) can be written as

n

E | []ue. ) :/ Eexp > ys(Bét(s)

j=1 ®Y)" (0,172 1<j<k<n

,
—Bg, (r) +x/ —x" + ;y’ - ;yk)
n

xo(s = r)drds | TTluoG? +y)pi67)ldy! - dy".
j=1
(4.9)

From Proposition 4.1 and the dominated convergence theorem, the right-hand side
of (4.9) converges to the right-hand side of (4.6). From the Wiener chaos expansion of
the solution and the computations in the proof of Theorem 3.2, it follows easily that
ug(t, x) converges in L2(2) to u(z, x). On the other hand, from (4.9) it follows that
the moments of all orders of u, (¢, x) are uniformly bounded in €. As a consequence,
the left-hand side of (4.9) converges to the left-hand side of (4.6). This completes the
proof. O

Corollary 4.4 Under the assumptions of Proposition 4.3 we have, for any x € R

E[u(t, x)"] (Huowf(r)ﬂ)exp [ > / y (B (s)

1<j<k<n

—B () yols — r)drds}), (4.10)

where BJ, j =1, ..., n, are independent {-dimensional Brownian motions.

Remark 4.5 1f the initial condition u( is nonnegative, one can show that u(z, x) > 0
a.s., forall r > 0 and x € R’. This follows from the fact that u, (¢, x) is nonnegative
for any &, where u, is the random field introduced in the proof of Proposition 4.3.

5 Lyapunov exponents of Brownian bridges

The following variational formula occurs frequently in our considerations,

E(ag, y) = sup {/ / y(x Y) 2(s x)g (r, y)dxdydrds
geA, W2 Jrae |s —r|®0

—1/ / |vxg<s,x>|2dxds}, (5.1)
2 0 R(
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where Ay is the class of functions defined by
A = {g 1 g(s,) € WHE(R") and / ¢%(s,x)dx = 1, for all0 < s < 1} , (5.2)
R¢

where o € [0, 1) and y is a generalized covariance function.

In general, if 5o is a covariance function (nonnegative and nonnegative definite
locally integrable function) on R and 7 is a generalized covariance function on R¢
with spectral measure v, we can define the variational quantity

E@mo.n) = sup { / f n(x — Y)no(s — r)g(s, x)g>(r, y)dxdydrds
ge Ay (0,112 JR2E

1
—%/0 fRZ |ng(s,x)|2dxds} . (5.3)

It is evident that E(ag, y) = E(| - |79, y). The first integration in (5.3) is defined
through Fourier transforms,

/0 112 [l%zg n(x o y)n()(s - r)gz(s’ x)gz(r’ y)dxdydrds
[0,1]

1
- @n)t

/[0 e e Fg*(s, V@) Fg2(r, )(EW(dE)no(s — rydrds . (5.4)

A priori, (19, n) can be infinite. However, if o belongs to L! ([—1, 1]) and 7 satisfies
the Dalang’s condition (1.6) (as in all cases in the current article), then & (19, n) is finite.
Indeed, applying Cauchy-Schwarz inequality, we have

/[0 e g2 (s, )GV F2(r, ) (E)v(@E)mo(s — rydrds

1

1 1 % 1
5/ / [/ 'fgz(s")@'z”(d&)} [/ lfgz(r,-)(é)lzv(ds)}
0o Jo R¢ R¢

no(s — r)dsdr

1 1 1
= E/ f / |Fg*(s, )E)Pv(dE)no(s — r)dsdr
0o Jo JR¢
1 1 1
T3 / / / | Fg2(r. ) () Pv(dé)no(s — r)dsdr
0o Jo JR¢

1
< lmoll -1 /O /R IFg (s, @) Pyideds
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S

Moreover, for each s € [0, 1], |fg2(s, -)(§)| is bounded by 1 and by 2|
Vxg(s, )l p2re)- In fact, integrating by parts, we have

o

ag- (s, x)
1F¢%(s.)(€)] < min —/ 3876, x)
1<j<t |§j| R¢ xj
1 | ag3(s, ) 2/¢
_ — &2 < T IVeg (s, 2oy
1=j=t |§j|‘ 0x;j i@y~ & B

It follows that for every R > 0,

1
/ / Fg(s, ) () Pv(de)ds
0 R

! 1
- /m R'fg2(s")(5)'2”(d“?)dS+/f 1F g2, @) Pr(de)ds

= vaovaf mE f | 1¥ssts oPaxds.
lg1<R lgl>r 1§l

Since v satisfies Dalang’s condition [ lufli;)z < 00, we can choose R > 0 such that

_ v(dé) 1
Imoll g1 1 (20) 542/ <.
pE -k 1EP 2

This implies that the right-hand side of (5.3) is at most ||n0||L1([_1’1])(271)’e f\§\<R
v(d&), which is also an upper bound for £(ng, ).

To conclude our discussion on basic properties of £(ng, ), we describe a useful
comparison principle. Suppose 179, fjo are covariance functions on R and 7, 7 are
generalized covariance functions on R¢ such that the spectral measures of 79, 1 are
less than the spectral measures of 7jg, 17 respectively. In other words, ng < 7o and
n < 7 in quadratic sense. Then

EMmo,m) = EMo. 7). (5.5)

This is immediate from (5.3).
In the remaining of the article, we consider the following scaling condition on the
noise:

(S) There exist g € (0, 1) and @ € (0, 2) such that yo(¢) = [t|7% and y(cx) =
c %y (x) forallt,c > 0and x € R,

Under the scaling assumption (S), it is easy to check that for every 6 > 0,

£, 0y) = 075 E (@), 7) - (5.6)
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Proposition 5.1 Let K and  be symmetric functions in L>(RY) and L*(R) respec-
tively. We assume in addition that v is nonnegative and ' exists and belongs to
L2(R). The functions no = ¥ % ¥ and n = K % K are bounded and nonnegative
definite functions. Then for every 0 > 0 and every integer n > 1,

htn_l)s;;p - log]Eexp I " _9 D1 Z / / n(BJ (s) — Bk(r))no ( )dsdr}

1<j#k=<n
=n&Ono.m) . (5.7

where £(no, 1) is the variational quantity defined in (5.3).

Before giving the proof, let us explain our contribution. This result, together with
Theorem 5.2 below, extends the result of Chen in [2, Section 4] , where 7 is assumed
to be nonnegative. In the aforementioned paper, the author uses a compact folding
argument. When n switches signs, this argument no longer works. In particular, [2,
inequality (4.15)] fails. Here, we replace the compact folding argument by a moment
comparison between Brownian motions and Ornstein-Uhlenbeck processes, which
was observed earlier by Donsker and Varadhan [7] [see (5.9) below]. Unlike Brown-
ian motions, the Ornstein-Uhlenbeck processes are ergodic. This makes the essential
arguments of [2] carry through. Lastly, although the occupation times of Ornstein-
Uhlenbeck processes satisfy (strong) large deviation principles, it cannot be applied
here due to the time-dependent structure (namely 7).

Proof of Proposition 5.1 We first observe that

3 / / n(BI(s) - Bk(F))ﬂo( )dsdr

1<j#k<n
2

f Z/ “— -) K(x — B/ (s))ds | dudx
RE+I

2
S .
_gfwﬂ [/o 1/[<u_?> K(X_BJ(S))dS} dudx
2
<(n—1)Z/“|:/ ”‘?)K(X—Bj(s))ds} dudx .
+

In conjunction with the independence of the Brownian motions, we see that the left-
hand side of (5.7) is at most

lim sup — logEexp / |:/ v (u - —) K(x — B(s))ds:|
t—>00 r Jre+1 LJo
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Hence, it suffices to show

¢
lim sup ! log E exp ’ 0 / |:/ W (u — 7) Kx — B(s))ds}
t—00 RO+! 0

The proof is now divided into several steps.

2
dudx] < E&@Ono,1n).

(5.8)

Step 1. For each k > 0, let P, be the law of an Ornstein-Uhlenbeck process in R¢
starting from O with generator %A —«x-V.Let E, denote the expectation with respect
to P.. We will show that

2
fexp { t /Rz+1 |:/ ( ) K(x - B(s))ds] dudx}
2
< E.exp : / |:/ u— - K(x — B(s))ds] dudx} . (5.9
REH

We note that

t 2 t pt
/ [/ v(u— 5)K(x — B(s))ds] dudx = / / n(B(s) — B(r))no(s — r)dsdr .
R+ LJo t 0 Jo

Hence, it suffices to check that for each integer d > 1

d

topt d topt
E |:/ / n(B(s) — B(r))no(s — r)dsdr] < E, |:/ / n(B(s) — B(r))no(s — r)dsdr] .
0 JO 0 JO

Since 7 is nonnegative, this amounts to show

d d
[[nBG) =B | <Ec | [[nBG)) — B (5.10)
j=1 =1

for arbitrary times sy, 7y, ..., Sq,7q¢ in [0, t]. By writing n(z) = 2m)~¢ le P

|FK (&)|?dE, we see that
d .d d
E|[[nBG) - Be) | =@~ /M Re! Xj=1§i°(BGsj)=B}) [117Kk € rds;
Jj=1 R =

"y *%E[(z 1 &j(BGs)~ B“f”)z] 2
= @) /Rme [T17K P

j=1
Hence, (5.10) is evident provided that
2 d 2

d
E| | & (BGs)) - By Ee | [ & - BGs)) — B(rj)

j=1 j=1

v
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An observation made by Donsker-Varadhan [7, proof of Lemma 3.10] is that E[ B(s) ®
B(r)] = E.[B(s) ® B(r)] in quadratic sense. This fact implies the above inequality.

Step 2. As a consequence, (5.8) is reduced to showing

1 0 ' :
lim sup lim sup —logE, exp { / |:/ v (u - —) K(x — B(s))ds:| dudx}
K0 100 t Jre+t LJo
< &@no, m . (5.11)

For each t > 0 and each path B, we denote

1 t
Zip(u,x) = ;/0 v (u — —) K(x — B(s))ds

and observe that

t 2
/ |Z: B (u, x)|2dudx = 12 |:/ Y (M - —) K(x — B(s))ds] dudx
RC+! t RE+1

:—/ f n(B(s) — B(r))n0< )dsdr

In particular Z, p belongs to L*>(R**!) and
||Zt,B||%2(R/3+1) < n(0)no(0). (5.12)

Let N be a fixed positive number and denote 2; y = {B : %fé |B(s)|ds < N}. The
only advantage of P, over P, for which we need, is the following inequality

1 £
lim sup—log]P (2 N) <-N+_-—>5+5k. (5.13)
t—00 2K 2

In fact, by Girsanov’s theorem we have

dP,

' Lo 2
— = exp {—K/ B(s)-dB(s) — =« |B(s)] ds}
dP o, 0 2 Jo

=expy—=«|B®)|" + =«xt — =k |B(s)|“ds ¢ . (5.14)
2 2 2 0
It follows that

! t
B {exp/ |B(s)|ds} SECXP{/ <|B(S)|—1K2|B(S)|2) ds—l-é/ct}
0 0 2 2

- 1 £
< exp ﬁt + EKZ‘
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where the last inequality is a consequence of a Cauchy-Schwarz inequality. Hence, in
conjunction with Chebyshev’s inequality, we obtain

t
P, (l/ |B(s)|ds > N) < e_NtEKef(;IB(s)\ds < eiNHz,%z”F%Kt'
tJo

The estimate (5.13) is directly derived from here.

The set M = {Z; p}pegq, y,1>0 is then a subset of LZ(R”]). We will show that M
is relatively compact in LZ(R[H). Indeed, we verify that FM = {FZ; p}Beq, y.1>0
satisfies the Kolmogorov-Riesz’s compactness criterion in L2(RE*1) (cf. [12, Theorem
5]). More precisely, we check that

sup ”ZIZB”LZ(R“') < 00, (5.15)
BeQ; n,t>0
lim  sup / \FZ: 5(1. §)Pdndg =0, (5.16)
P00 BeQ N.t>0J|(n.6)|>p

lim  sup sup / \FZig(c+1.E+&) — FZi 5(c, &)2drde = 0.
P40 (17 &) <p BEQ n.t>0 JREF]

(5.17)

Notice that (5.15) is evident from (5.12). We can easily compute the Fourier transform
Of Zt, B

1 0 s
fZ[’B(T’%-):]:w(T)]:K(E);‘/O e_l.[?_lg'B(‘Y)ds,

Hence,
sup / \FZ: p(z,&)|PdrdE < / \Fyr (o) 2| FK (&) *drdé
BeQ; y,t>0J|(1,8)|>p [(z.6)]>p

which implies (5.16). To show (5.17), let us first fix ¢ > 0 and choose a function
g in CSO(R“'I) such that |7y @ FK — gl 2ge+ty < & We denote Y p(7,§) =

g(r, é)% fé e~ iT1 I8 BG) g g and observe that for every path B in Q; y and |(/, &§')| <
p, we have

1Y gt +7'.6 +&) — Y p(z,8)|

1 1 o 5 : 1S s s/
< |g(r 16+ E) — g, g)| + |g(z, &)| ‘;/ e—tr;—zS‘B(s)(e—zr L—i&"-B(s) _ )ds
0

, 1 [
<|gc+7 E+E)—g(r. O] +2Ig(.8)l <|r | + |s/|;/0 |B<s)|ds> .

<lge+7,5+8) - g O +2p(N + Dlg(z, ).
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It follows that

llm sup sup / |fZ[,B(7: + ‘[/7.5;: + é:/) _ th,B(‘C7 €)|2dfd$
PO (7 &) <p Bey y,t>0 JREF]

< 4g% 4 lim sup sup / Y, B(1 + O E4E) — Y, 5(r, §)|2dzdg
o0 (¢ &) | <p BeQ y,t>0 JREFT

<4e® +1lim  sup f lg(t + 1,6 +&) — g(r, &) drdE .
PO |7 gn)<p JREH

Since g is uniformly continuous, the last limit above vanishes. Hence,

llm Sup Sllp / |fZ[,B(7: + ‘[/7.5;: + E/) _ th,B(‘C7 €)|2d‘[d$ < 482
PO (7 &) <p Bey y,t>0 JREF]

for every ¢ > 0. This in turn implies (5.17).

Step 3. Applying (5.12),

1011Z; g%

E, e LR < B |:19th t9|\ZrB||L2(R/+1 ] +]P)K(Qf N)eten(O)no(O) )

Together with (5.13), the previous estimate yields

1 . L
lim sup — logEe O Ze8 1 e, < (61(0)no(0) — + k) V
t—00 2K2 2
1
lim sup — log E, [IQLN iz, BI|L2(R2+1)i| . (5.18)
t—00 '

To deal with the limit on the right-hand side above, we adopt an argument from [2].
Let ¢ be a fixed positive number and define

On =1{g € PR 1 lIgll? < —lIhl* + 2(g, h) + ¢}

The collection {Op}nep forms an open cover of M in L2(RY). Since M is rel-
atively compact, we can find deterministic functions hy, ..., h, € M such that
M C U’;’Zl(’)hj. It follows that for every t > 0 and B € Q; v,

.....

and hence,

—0o0

1 ‘)
hmsup log E, [IQLN Bz BILZ(RZ+1)1|

1
= <_9||hj||iZ(Re+l) + &0 + lim sup log B,.e*? " Z’B)L2<R“'>> .

—>00

(5.19)
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We note that

t

:;/()tEJ-(;,B(s))ds

1 t
(hjs Ze B) 2esty = — /Rm hj(u, x) UO " (u - -) K(x — B(s))dsi| dudx

where

i_zj(s,z) = /H hj(u, )Y@ —s)K(x —2)dudx =hj * (Y ® K)(s,2).
RE+I1

Since h j is the convolution of L_2-functi0ns, itis gontinuous and bounded. Moreover,
since ¥’ belongs to L% (R), Oshj exists and [|05hlle < A}l 2110s¢ @ K|[z2. In
particular, /; satisfies the hypothesis of [5, Proposition 3.1]. We also note that from

(5. 14) Py | 0.1 < eg" !, In conjunction with [5, Proposition 3.1], it follows that

lim sup — log]E 202l et

t—>0o0

14 1 l s
EI( +11msup—10gIEexp 26 (;, B(s)) ds

1—>00

V4 _ 1 1
< —k + sup {29/ / hj(s,x)gz(s,x)dxds — —/ / |ng(s,x)|2dxds}
2 geA; 0 JRt 2 Jo Jre

14 1!
= Kk + sup {29<h,-, (¥ ® K) % g%) 2 met1y — —/ / |ng(s,x)|2dxds} ,
2 gE.Az 2 0 R¢

where each for g € A, we conventionally set g(s, x) = 0ifs ¢ [0, 1]. Gluing together
our argument since (5.19), we obtain

1 :
hmsup—logIE |:lgt’N 11z BI|L2(R£+1)j|

—00

< max sup {—9||h,»||iz<w+l)+29<hj,<w®K>*g2>Lz<Re+1>
meeAy

1! ¢
— —/ / |ng(s,x)|2dxds + €6 + —«k.
2Jo Jre 2

Applying the Cauchy-Schwarz inequality — ||/ ; ||i2 +2(h;, Y ®K) *gz)Lz <Y

K) * g2|? 12> We further have

t—>0o0

lim sup—log]E |:1g2t,N le’Blﬂ(RHl)]

1

3

< sup {9||<w®1<)*g 2 ety — / / |ng(s,x>|2dxds}+se+—d.
geAy 0 JR¢ 2
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Together with (5.9), (5.18) and the fact that

1 pl
I @K)*g> 172 gesty = / / / NG —y)no(s—r)g?(s, x)g* (r, y)dxdydsdr
0 Jo JRExRC

we see that the left-hand side of (5.8) is at most

<9n(0)no(0) N+ fk> v (5(9n0, n) + 66 + §K> |

%22
We now send N — o0, k¥ | 0and ¢ | O to obtain (5.8) and complete the proof. O

The following result provides an upper bound for the Lyapunov exponents of Brownian
bridges.

Theorem 5.2 Suppose that the covariance of the noise satisfies condition (H.I)
or (H.2) and also (S). Assume that the spectral density f (&) exists. Suppose that
{Bé)t(s), s €[0,1]}, j = 1...,n, are independent {-dimensional Brownian bridges
from zero to zero. Then,

(B}, () — Bf ,(r))
limsupt~“logE exp E / Y0 01" " drds
[0,11?

=00 0<j<k<n |S - r|0t0
2
n—1\2«
<n <T) E(ap, y), (5.20)
where we recall that a = 4_5‘_%.

Proof For suitable distributions 19, 1, we are going to make use of the notation

Qi) = ) f[o B8 6) = B o drds
ot

0<j<k=<n

Let yp(s) = |s|7%0 denote the temporal covariance. With these notation, the expec-

tation in (5.20) can be written as E exp {r~* Q; (v, y)}. We note that yp = ¥ * ¥
I+«
where ¥ (s) = c(ozo)|s|_¥ with some suitable constant c(cg). For each § > 0 we

set Y5 = psj2x Y and yp,s = Vs * ¥s. To prove (5.20), the main ideas are first approx-
imate the singular covariances )y, y by regular covariances yp s, ¥, ; then upper bound
the exponential functional of Brownian bridges by that of Brownian motions. At the
final stage, we will apply Proposition 5.1. This procedure will be carried out in detail

2
in several steps below. For the moment, let us put #, = (n — 1) 2« ¢ and observe that
by making change of variables s — [ls, r— tLr and using the scaling properties of

y and of Brownian bridges (i.e. (S) and {By ;(As), s < t/A} S \/X{BO’%(S), s <t/A}
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for any A > 0) we have

Eexp {17 Q; (0. )} = Eexp { 01, (Yo, y)} (5.21)

1
(n — Dty

Therefore, in conjunction with (5.6), (5.20) is equivalent to

1
lim sup log E exp {

—0o0

1
Y Q:(vo. )/)} =n&(zv0.v)- (5.22)

Step 1. Fix ¢ > 0. For any p,q > 1, % + % = 1, applying Holder inequality, we have

log Ee e & 0er) < 1 log Ee i & (10.7)
p

1 _ 1 _
+ 5 log Ee (njl)t 01 (Y0¥ —Ve) + glog Ee (n:]l)t Qr(VO VO,SsVS) .

(5.23)

We claim that |
lim sup lim sup — log Ee G @100,y =) <0 (5.24)

el0  t—oo I

and
: : : 1 i O (W0—=70,5.7¢)
lim sup lim sup lim sup — log Ee =07 = e < 0. (5.25)
el0 840 100 1

Let us focus on (5.24). By Holder’s inequality, it suffices to show that for any k € R

1 (y — 7)(By () — Bj,(r)
lim sup lim sup log E exp {KI“O_I/ LA e 0127 drds } < 0.
(0,712

£l0  1—00 ls — r|eo
(5.26)
For each integer d > 1, we can write

d
. [ / (v — ve)(B,(s) — Bj ,(r)) o ds}
[0,

|s — r|®
1 d
= — Ee' ) & - (By,(s;) — Bj,(r))
(27‘[)&1 \/[\0’1]211 /(\Re)d ]; i !

[T1s; —ril~ 0 — €' u(@g)dras.

@ Springer



638 Stoch PDE: Anal Comp (2017) 5:614-651

Then, using Cauchy-Schwarz inequality and the inequality ab < %(a2 + b?), we
obtain

_ 1 _ p2 d
E[M%_l / (v = 7o) (B, (5) = B3, (r)) ds}
[0,]

|S — I"|°‘0
<C / /
[0,¢14 J(RE)

t d
—E [C /0 (v = ye)(BL(5) - B&,(s))ds} ,

Rt L=t € B3, (s5)

2 d .
[T e Nus)ds
j=1

for some constant C depending only on «. Therefore, the claim (5.26) is reduced to

1 t
lim lim sup " log Eexp {C/ (y — yg)(B&l(s) — B&,(s))ds} <0,
0

e=>0 100

which follows from Lemma 5.3 in [10]. This completes the proof of (5.24).
To show (5.25), we use the estimate

n(n — 1)t
O:(Yo — Y08, Ve) < T”Vs”LOO(Rl)”VO - )’0,8||L1([0,1])

to obtain

1 q _ n

7 log Ee @=Dr i (0=705.72) = E”Va”Lw(RZ)”VO = vosllLqo.p -
This implies (5.25) since y € L1([0, 11) and lims}0 y0.5 = 3o in L1 ([0, 1]).
Step 2. We claim that

1
lim sup n log E exp {

—00

(n fl)t Qi (vo.s. VS)} = ”5(53/0,6, Ye). (5.27)

Notice that the function y; is bounded and can be expressed in the form y, = K, % K,,
where the function K, defined by

Ke(x) =

/ ETSER SR E)de, (5.28)
]RZ

@2m)*

is bounded with bounded first derivatives, symmetric and K, € L2(RY). Let A be a
fixed number in (0, 1) and set p; = f[o 112\[0,2]2 Y0.s(s — r)dsdr. For each j # k, we
use the estimate
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//VS(B(),(S) Bo,("))VOa( ; )dsdr

A pAt )
< /0 fo ve (B, (s) - Bo,(r)))/os< t )dsdr+||ya||oomt

together with (2.8) to obtain

]Ee("li)”’ Q1 (v0,5.e)

< e%pllyg\loomtﬂ;exp
- (n— 1)l

Z /0 ZVa(B({,,(S) Bo,(r)))/oa( )drds}

0<j<k<n

> b

0<j<k<n 0,21

K%P“Vs lloo 021

S Ao ayuE e { Iy

ve(B/ (s) = B ()05 ( : ) drds} :
At this point, we apply Proposition 5.1 to get

1 n DA
lim sup — log Ee =" ) < = 5 Plellocps + 2né (—7/03 Ve)-

—>0o0

Passing through the limit A 1 1, noting that p; — 0, we obtain (5.27).
Step 3. We combine (5.23), (5.24), (5.25) and (5.27) to get

1
lim sup — log Ee #=Dr 17 1 (10-) < limsuplim sup 5 (Eyo,g, ys)
oo 1 el 510 2

Note that the order of the limits § |, 0 and ¢ | 0 can not be interchanged. It is evident
to check that yp s < o and y, < y in quadratic sense. Hence, using (5.5) we have

1 1
lim sup — log Ee &=Dr 2wy) < z5(21/0, 7).

t—o0 I 2

Finally, letting p | 1, we obtain (5.22), which completes the proof. O

Remark 5.3 The case of time-independent noises corresponds to oy = 0. In this case,
the function yp = 1 can not be written as a convolution of a function with itself. Thus
the proof of Proposition 5.1 does not work in this case.

Corollary 5.4 Suppose that the covariance of the noise satisfies (H.1) or (H.2), con-
dition (S) holds and the spectral measure | is absolutely continuous. Let u(t, x) be
the solution to (1.1) with nonnegative initial condition u satisfying condition (3.1).
Then for any integer n > 2,

i ioaci E[H?:l”(f,xj)] (n—l
msup ¢ —a og sup = <n
t— 00 (x1,...,xM e l_[,}=1 Dt * Mo(x]) 2

2
2—a
> E(ao, ) -
(5.29)
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Proof Let {Bé’t(s), s € [0,¢7],j = 1,...,n}, be £-dimensional Brownian bridges
from zero to zero. Using the moment formula for the solution (4.6) proved in Propo-
sition 4.3, we have

E {]_[ u(t,xj):| = JE</ [T +3)pe37)
®Oy ]

j=1
(BJ () — B, (r) + Syi — Lyk 4 xJ — xky
X exp Z/ 0 01 ke R drds dy)
25w, ls —r|eo

t?

B Bk
< Hp,*uo(x/)Eexp[ Z[ f Wdrds] R

J#k

where the last inequality follows from (4.5). Then, the upper bound is a consequence
of Theorem 5.2. O

Remark 5.5 Using the approach developed in [2], we can also show the corresponding
lower bound in (5.20), assuming (H.1) or (H.2) and (S) (but not necessarily the absolute
continuity of ). However, a lower bound similar to that proved in Corollary 5.4 cannot
be obtained. For this reason, the proof of a lower bound for the exponential growth
indices needs a direct approach as it is done in the next section.

6 Exponential growth indices

In this section we denote by u(z, x) the solution to (1.1) with nonnegative initial
condition ug satisfying condition (3.1). The exponential growth indices are defined as
follows:

Ax(n) =sup{ A > 0:liminfz=* sup logEu"(r,x) >0 6.1)
11— 00 a+1
IX\ZMT
and
A*(n) =inf {1 > 0 : limsupr~¢ sup logEu"(,x) <0} , (6.2)
—00 a+l
[x|>At 2

4—a—2ag

where we recall thata = =——~

6.1 Upper bound for A*(n)

Set
2a _4—a—2a0

= = . 6.3
a+1 3—a—ow 6.3)
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It may be helpful to note that a, b € (1, 2). For each positive number 8, we define two
auxiliary functions ¥g and ¢g. The function ¥4 : (0, 0c0) — (0, 00) is defined by

vp(w) = %ﬂ%zwz”‘z +pu’ 6.4)
and ¢ : (0, 00) — (0, 00) is uniquely defined by the relation
Bb(pp(x)P ™! = x —pp(x), Vx>0. (6.5)
Forevery fixed x > 0, ¢g(x) can be recognized as the unique minimizer of the function
Y foa(y) = %(y — )2+ By” (6.6)
on (0, 00). Together with (6.5), it follows that

Tpx(y) = Vp(gp(x)) (6.7
for every B, x > 0. Relation (6.5) implies that ¢g is strictly increasing.

Theorem 6.1 Assume conditions (H.1) or (H.2), condition (S) and the absolute con-
tinuity of . Suppose that ug satisfies

f AP uo(y)dy < 00 (6.8)
]R[

for some B > 0, then

2
1\«
NOEYTE ((”2 ) 5(ao,y)),

where the function gg(A) = V¥p(¢p(L)) is given by

1 _
gp() = S BB 7 + B, (6.9)
and ¢g is characterized by (6.5).
Proof 1t suffices to show that for any A > 0,

2
limsups~“log sup Eu"(r,x) <n (%) " E@o, y) — nPp(p(0).

t—00 atl

[x|=At 2
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We write

n

sup Eu"(t,x) < (sup E (M> ) sup  py * ug(x)

afl yeR? pr *uo(y) ail

[x|>At [x[>At

Together with Corollary 5.4, it suffices to show the inequality

limsupt™“log sup p;*kug(x) < —vplpgr)). (6.10)

t—00 atl

[x[>=At 2

We observe that by the triangle inequality,

1 2 b a —atl
—ly — >t a t 2).
Sy AP B = ()

a+l

Hence, together with (6.7), we see that for every |x| > Az 2

1 2 b a
z—tly—xl +BIyI" = t%Yp(pp(A)) .

Thus,
sup [[ e_%t|y—x|2u0(y)dy < e—t“‘/fﬂ@ﬂ()»)) /[ eﬂ|y|bu0(y)dy.
\xlzkt%d R R
which implies (6.10). O

As f tends to infinity, ¢g (1) tends to zero and it behaves as (A /bB) ﬁ Therefore,
gp (1) behaves as %)\2. These facts lead to the following result.

Corollary 6.2 Under the assumptions of Theorem 6.1, ifuq satisfies ng eP |»"|bu0(y)dy
< oo forall B > 0, then

n—1 e
A(n) < 2( 5 ) E(@o, y).

6.2 Lower bound for A, (n)

The main result is the following.
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Theorem 6.3 Assume conditions (H.2) and (S). Suppose that ug is non-trivial and
non-negative. In addition, we assume that

1
limsup— | sup logp; * ug(x)| < oo
t—>00 e a+l

[x[=ar 2

forany X > 0. Then,

n—
2

a+l

As(n) > a%(cz + D72 (2 (

1\ e
) E(ao, ¥)-
Proof Set

1
I1(t) = sup log Eu" (1, x).
iz

To derive a lower bound for I; we proceed as follows. We will make use of the notation

; s . r _
01y (y) := E /[0 . y (B, (s) — B{,(r) + ;y’ - ;yk)ls —r|"™drds.
N

0<j<k=<n

Then, by the Feynman-Kac formula for the moments of the solution in terms of Brow-
nian bridges proved in Proposition 4.3, we have

Eao= [ B[Tweypohepi@rmid. 61D
(\n iz

For each ¢ > 0, p > 1, applying Holder inequality, we see that

P
n . . 1
Eu"(t, x) > / E1_[uo(x+y])Pt(yj)eXP{*Qt)/s(Y)}dy
®" P

1-p
n ) ) 1
x / [ #ot +y)pi (3 Eexp {7Q1()’e - )/)(y)}dy :

(R()n j=1 p— 1

6.12)

Notice that, from (4.5) we can write

1
p—1

1
p—1

Eexp { Qi (ve — J/)(y)} =< ECXP{ iy — Vs)(o)} . (6.13)
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Substituting (6.13) into (6.12) yields

p—1 1
I(t) > — p 10gEeXp{p — Oy — ys)(O)}
p—1
—n— sup log(ps * uo(x))
wizar T

n
. ‘ 1
+z£a sup llog/( ]_[uo(x+y/)pt(yf)EeXp{;Qn/s(y)}dy

|x|2kt% REy" j=1
=L@+ L)+ I3(0). (6.14)

Choosing ¢ = ¢(t) = 8t17% with § > 0, from (5.24) we obtain

-0 150

1
lim lim sup t_“ log E exp {iQt(y - )/5,1‘1)(0)} <0.
p

In addition, from our assumption,

lim limsup I>(t) = 0.

r—>1 15000

In other words, 71 (¢) and I»(¢) are negligible in the limits t — 00, § — Oand p — 1.
We now consider /3. It can be written as

13(z)=t£a sup  Tog E(ul, (1, X)),
Ix\z/\t%

where u, (¢, x) denotes the solution of Eq. (1.1) with initial condition u and spatial
covariance %yg(t), where ¢ = &(7) = 8t17%. Define Hp.e asin (2.1), but with (d§)

replaced by %e’smzu(dé).
For every ¢ in H, ¢, we denote by Z(¢) the (Wick) exponential functional

1
Z(¢) = exp {W(¢) - §||¢II%{N} :

By the Feynman-Kac formula for the solution of Eq. (1.1), when the spatial covariance
is bounded, we obtain

0000 =B [ tole+3)pi )20, )d.
where ¥ (s, 2) = 8(Bo,: (1 — 5) + x + =2y — 2)110,11(s) and

) 1 s—r —ao
s ylyy = —Ye | Bo.t(s) — Bo:(r) + ——y | Is —r|""dsdr.
e (0,112 P !
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Let ¢ be such that % + é = 1. Using Holder inequality, for any ¢ € H, . we have

E@! ,(t.x)) = Ew (EB /R ol + y)m(y)zm,y)dy)
> 2@ z;zm (]Ew (Z<¢)EB fR o + y)m(y)zo/fx,y)dy))

:exp{ - )||¢>||H,,F}

X </R€ uo(x + y) pi (y)Eplexp{(o, wx,y)')'{p,g}]dy> : (6.15)

We are going to choose an element ¢, which depends on ¢ and x.
Our next step is the computation of the inner product (¢, Y« y)#, .. We can write

1 t t
(D, Ve y)H,, = — Is —r|7% [ @ (r,2)ye(Bo,(t —s) +x
’ rJo Jo R

r—s
—i—Ty —2)dzdsdr

1 t t
= —/ / Is—rlf"“)/ ¢t —r, 2+ x)ye(Bo,i(s)
P Jo Jo R¢

+§ y — 2)dzdsdr.

Set
t, = ct?,

2
where a = % and ¢ = (n — 1)2-«. Making the change of variables s — és
and r — tr and using the scaling property for Brownian bridge, we obtain that

g
<¢>,wx,y>m,a= f/ /chb(t—rt,z—i-x)
s I
Xyngn B(),,”(S)-i-\/tn_ty— TZ dzdsdr.

Finally, the change of variables 7 — \/E z yields

(6 Vxy)Hye —l( ) J]/ /

X Ves <BO,tn (s) +

R

R

/ ot —rt, \/>Z%-x)

— Z) dzdsdr.

n
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Choosing ¢ of the form

ty 5 anft—1 [t
¢(r,z) = (t) c2¢ et 7(z—X) 10,0 (r),

where $ satisfies

sup / |6 (r, y)|dy < oo, (6.16)

rel0,1]

we can write

<¢ 1/[)(} Hpe — / /

——r
-~ S
. s | B ——vy —2z)dzdsdr.
/H;lfb(r Z))Qa( o,tn(S)+Wy z) zdsdr
Set
1 (1 [ b -
Flsow) = _/ ¢ s w=2) ,
pJo Jre |s —r|xo
Then, we obtain
(B V) —fl"f 5 Boy () + ——y)d 6.17)
> VXY HP,S - 0 tn’ 0,t, s \/tn_ty . .

On the other hand, for this choice of ¢, we obtain

191, =~ ( ) /f|s—r| o
ft=r [1 ft—s [t
X/;Rz)zqs t T(Z_x) ¢ t Tw_x

ve(z — w)dzdwdrds.

The change of variables s — t —ts,r -t —tr,z - J+z+xandw — [Lfw+x
leads to

1612, / f / G IPG W) dwdrds. 6.18)
e (R)2

|s —r|7%
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Substituting (6.17) and (6.18) into (6.15), we get

n__2-5 o(r, )P(s, w)
20-10° ///(Rm s — 7|0 Yes (z — w)dzdwdrds

S
+20 log/ up(x + y)pr(y)Ep exp {/0 f(;, Bo 1, (s) + ﬁy)dS} dy

[u

— log]E(uF p(t X)) >

This together with (6.14) leads to the inequality, for any K > 0,

I(t) = 131+ L) + 133(1),

where
b(r, 2)¢(s, w)
L= — w)dzdwdrds,
3,1 2(n_1) / / f(w)z 5 — r[ Ves (2 — w)dzdwdrds
np
I3t x) = —alOg/ uo(x + y) pr(y)dy
t V1<K /it
and

1,
np . " N s
e A ]

n

We are going to analyze these three terms and this will be done in several steps.

Step 1. Using the properties of the initial condition, we claim that if A < K \/c, then

liminf I ,(t) > — L k2. (6.19)
t—00 ’ 2

Notice first that /77, = /¢ ¢ ot . Recall that u is non -trivial, there ex1sts M > 0 such

that f|>\<M up(y)dy > 0. For ¢ la.rge enough, Az M < K. Jct* “* Therefore,

choosing xq such that |xg| = MT implies that

a+l
{y:ilxo+yl <M}ycC{y:lyl <K et 7}

Thus we obtain

.. . . .hp _ K% np 5
liminf /3 7(¢) > liminf — log e 2 uglxo+ydy=——K"c
t—00 t—oo t4 [xo+y|<M 2

which is (6.19).

Step 2. We can write

t
hmlnf L3(t) = 11m1nf pe inf logEB exp {/ f (;, By (s) + ;y) ds}
0

—oo I |yl=K
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For any p € (0, 1), we can write

t ot
Ep exp{/(; f (;, By (s) + ;y> ds} > Ep exp{/o f (; By (s) + §y> ds}.

From (2.8), we get

ot
Egexp{/o f(;,Bo,,(s)+;y>ds}

_t Pr s IvI2 |y — B(pn)|?
>(1—p) 2Ep <1ARexp{/0 f(;,B(s))ds+7—m}>,
(6.20)

where A = {supofsfp, |B(s)] < R} for R > 0. Notice that, if |y| < K¢, on the set
AR we have

I _ly=Ben?® __ p K> KR R?
20 ud-p) T 1-p (I=p) 201 =p)

S 6.21)

On the other hand, by Proposition 3.1 of [5] we obtain

1 pt s 1
lim —logEp (IAR exp {/ f (—, B(s)) ds}) = pf ARr(f(ps,-))ds,
1—00 t 0 t 0

where

1
Ar(f(ps,)) = sup { f(ps,x)g%x)dx—z / |Vg<x>|2dx},
geFi(Br) /B Bpg

and F¢(Bg) is the set of smooth functions on Bg := {x : [x| < R} with [[g|l;2(p,) = 1
and g(dBg) = {0}. For this result we need that for each 0 < s < 1, the function
f(ps, -) is bounded and continuous and the family of functions {s — f(ps,x),x €
R} is equicontinuous in [0, 1]. These properties are a consequence of assumption
(6.16). In conclusion, we have proved that

K2 1
5 CnP,O/ AR(f(ps,))ds. (6.22)
—p 2 0

liminf I3 3(t) > —npc
11— 00

From (6.22), (6.21) and (6.19), letting K | A/+/c and R 1 0o, we obtain

"
2(1-p)

1 1
+ncpp (/ f fsp,x)g>(s, x)dxds — 1/ / |Vg(s,x)|2dxds>, (6.23)
0 JRre 2 Jo Jre
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for any function g(s, x) in Ay, where A, has been defined in (5.2). We can write

/ / f(sp, x)g (s, x)dsdx = / / 5y ¢(r y)g (s, x) Ves(x — y)dxdydsdr.
R

— r|%o
Making the change of variables sp — s, yields
1
/ / f(sp.x)g*(s, x)dsdx = / / o 90 0)8"(5/p, )
0 JR¢ R2¢ |s — r|®o
)/ca (x — y)dxdydsdr.

Now choose the function a of the form a(r, X) = gz(%, x)1j0,01(r). With this choice
we obtain

v

! P 2 2
/0 fw‘ f(sp, x)g(s, x)dsdx i[ /p A@u 8 (r/p, ¥)8 (S/p,x)m(x ~ yydxdydsdr

|s —r|@o
8. )8 (s, x )ycg(x — y)dxdydsdr.
R2¢ |s —r|*0

Step 3. With the above choice for $and letting p — 1, the term /3,1 can be written as

2 2
L= / / / g (r/p.y)g (s/p,x)yca(z_x)dxdydrds
’ 2(n — 1) R2¢

[s —r|*0

50 ao/ / T (r D80 Yes(z — x)dxdydrds. (6.24)
[0, 1]2 R2¢

— r|%

Finally, from (6.23) and (6.24), we obtain

lim lim inf I3(f) > ————32
pil 1= 2(1—=p)
1 —Qq
—i—nc,o( / / g8 . y)g (s, ) Ves(x — y)dxdydrds
0,112 Jr2e |s — r|®0
- / / |Vg(s,x>|2dxds) ,
2 0 R¢
Letting 6 | 0, we obtain
. . . n 2
lim liminf I3(t) > ————A\
810,py1 t—00 2(1—p)
1—ap
+ncp (,0 / / SENAREL S 2 )8 ) y(x — y)dxdydrds
2 [0, 1]2 R2¢ |S — r|°‘0

1 1
—f/ / |Vg(s,x>|2dxds),
2 0 ]RZ
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Now we write g(r, x) = 4/xg(r, %xx) where »x is a constant whose value will be
determined very soon, and we obtain, using the scaling properties of y,

1 —a 1 1
/ / FOVECN (0 ivdydrds — 1 / IV8 (5. )22 e, ds
[0, 1]2 R2¢ 2 0

S—H%

1—ap
:%p / / g(ry)g(s x) y(x — y)dxdydrds
[0, 1]2 R2¢ |S

— |050

x? 2
_7 /0 ||Vg(S, ')”LZ(RZ)ds

Finally, choosing » = 2@=2 p 2=« and taking the supremum over g, we obtain
2

lim inf I3(1) > n A2+ a n—1 2—ag( )
1m 1n _ n —_— o .
mnt st = 2(1—p) P B 0,V

Optimizing in p, this produces the lower bound

n—

2

2
(n) > at(a+ 1)~ T 2( 1)2' E(o, ).

The proof is now complete. O

Remark 6.4 Putting together the results from Corollary 6.2 and Theorem 6.3 we
obtain, for a nontrivial uo with compact support and assuming a covariance satis-
fying conditions (H.2), (S) and the absolute continuity of p,

2

gl n—1\z«
az(a+1) 2( 3 ) E(o, y) < As(n) < 2% (n)

2

— 1\ ==
< 2(”2) £, v).

Notice that when «¢ 1 1 the constant @ converges to 1 and the above factor converges
to % In this sense, in comparison with (1.9), our result is not optimal. We conjecture
that the constant in the left-hand side should be 1, but our techniques do not allow to
show this.
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