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Abstract In this paper,we address the long time behavior of solutions of the stochastic
Schrödinger equation du + (λu + i�u + iα|u|2σu)dt = �dWt in Rd . We prove the
existence of an invariant measure in H1 for σ < 2/(2 − d) in the defocusing case
and for σ < 2/d in the focusing case. We also establish asymptotic compactness of
invariant measures, implying in particular the existence of an ergodic measure.
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1 Introduction

The main purpose of the paper is to study the long time behavior of the stochastic
damped Schrödinger equation

du + (λu + i�u + iα|u|2σu)dt = �dWt (1.1)
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in an unbounded domain. Our main result provides the existence of an invariant mea-
sure of theMarkov semigroup for the Eq. (1.1) driven by an additive noise. In addition,
using the asymptotic compactness, we prove that the set of invariant measures is closed
and convex leading to an existence of an ergodic measure.

The problem of existence of an invariant measure for stochastic partial differential
equations with dissipation and in a bounded domain is now relatively well-understood
with the construction of the invariant measure following the classical Krylov–
Bogolyubov procedure. The smoothing properties of the equation and the boundedness
of the domain guarantee the necessary compactness. For example, the existence of
invariant measures for the reaction diffusion equations, for the Navier–Stokes equa-
tions, complex Ginzburg–Landau, and fractionally dissipated Euler equations was
established in [6,14,15]. Also, for the primitive equations, the invariant measure was
constructed in [16]. For invariant measures in unbounded domains, cf. [4,12,26].

Dissipation is not necessary for construction of invariant measures. For instance,
the invariant measures were constructed for the stochastic nonlinear damped wave
equation [2,5] and scalar conservation laws [10].

In the case of nondegenerate noise, a coupling method can be used to establish exis-
tence and uniqueness of the ergodic measure. For instance, in the case of Schrödinger
equation with nondegenerate noise and when the domain is bounded, Debussche
and Odasso established in [9] the existence of a unique ergodic measure (cf. also
[7,10,17,24,27,28]).

The main goal of this paper is to address the existence of an invariant measure for
the stochastic damped Schrödinger equation in an unbounded domain. The main diffi-
culties are the lack of smoothing and compactness properties of the solution operator in
finite time. For instance, the coupling method is not expected to work in this situation
since Foias-Prodi type estimates, necessary for the approach, are not available.

In order to overcome these difficulties, we establish an asymptotic compactness
property of the solution operator (cf. Lemma 3.5). Namely, we prove that for every
sequence of solutions resulting from H1-bounded initial conditions and for every
sequence of times diverging to ∞, there exists a subsequence of solutions and a
sequence of times such that marginals of these solutions at these times converge in
distribution in H1. For this purpose we employ the conserved quantities used classi-
cally for the deterministic analog of the equations. We also use the energy equation
approach introduced in the deterministic setting case by Ball [1]. His method was
further developed to more general deterministic situations, in particular to establish
the existence and regularity of attractors for the damped KdV equation [23,32] and for
the damped Schrödinger equation [18–22]. Two byproducts of the asymptotic com-
pactness property established in this paper are the existence of an invariant measure
for the stochastic Schrödinger equation and the compactness of the set of invariant
measures. We note that the existence and uniqueness of solutions was established by
de Bouard and Debussche in [8].

Previously, in [26], Kim obtained the existence of an invariant measure for the
defocusing Schrödinger equation (the case α = −1) in L2 for a restricted range of
exponents σ < 2/d, where d is the space dimension. The proof in [26] is based on
the existence of two invariants, yielding uniform bounds in L2 and H1 along with
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the Feller property in L2. Note that the L2-Feller property can be obtained only when
σ < 2/d (cf. [25, p. 257]).

In order to extend the range of exponents to σ ≥ 2/d, we need to work in the space
H1. However, we face the problem of the lack of an invariant controlling the H2 norm
(yielding the necessary compactness). In order to circumvent this difficulty and obtain
the necessary tightness of Krylov–Bogolyubov averages, we need to rely directly on
the equation. The main contribution is to develop the stochastic version of the energy
equation method due to Ball in the deterministic setting.

Therefore we are able to extend the range of exponents to σ < 2d/(d − 2) in the
defocusing case and also establish the existence of an invariant measure in the focusing
case (i.e., α = 1) for σ < 2/d. Note that, in the defocusing case and in d = 1, 2 there
is no restriction on the degree of the polynomial in the nonlinearity.

Also, we emphasize that there are additional advantages when constructing the
invariant measure in H1 as in the present paper. For instance, we have the asymptotic
compactness property in H1 (cf. Theorem 6.1 below).

The paper is organized as follows. In Sect. 4, we prove an abstract tightness result
that links the evolution of some scalar quantities to the asymptotic compactness stated
above. The main feature of the kth order scalar quantity is that it is equivalent to
the Hk norm, while the drift of square of its expectation is continuous in the Hk−1

norm. We also make an Aldous type continuity assumption (cf. (iii) in Definition 4.4)
which allows us to use the Aldous criterion [3] for convergence of distributions in
L2
loc to pass to a limiting martingale solution [11,29,30]. We note that while the linear

part is assumed to be a Schrödinger type operator i�, our criterion can be used for
more general linear operators as well after suitable adjustments. In Sect. 5, we use
this asymptotic compactness criterion for the Schrödinger equation by considering
the first two classical Schrödinger invariants and prove the main tightness lemma. The
paper is concluded by showing that the set of invariant measures is closed and convex,
which implies the existence of an ergodic measure.

2 Notations

For functionsu, v ∈ L2(Rd) = L2(Rd;C), denote by‖u‖L2 the L2(Rd)normofu and
by (u, v) = ∫

Rd u(x)v(x)dx the L2-inner product of u and v. We fix an orthonormal
basis {ei }i≥0 of L2(Rd).

For a Banach space B and with T > 0 and p ≥ 1, denote by L p([0, T ]; B) the
space of functions from [0, T ] into B with integrable pth power over [0, T ] and by
C([0, T ]; B) the set of continuous functions from [0, T ] into B. Similarly to functional
spaces, for p > 0, denote by L

p(�, B) the space of random variables with values in
B and a finite pth moment.

Denote by � = ∑
i ∂

2
i the Laplace operator and by Hr (Rd) the Sobolev space of

functions u satisfying

‖u‖2Hr =
∫

Rd
(1 − �)

r/2(u(x)u(x))dx < ∞, (2.1)
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with the inner product denoted by (u, v)Hr . Write B(H1(Rd)) for the set of Borel
measurable subsets of H1(Rd). Also, denote by L2

loc(R
d) the space of locally square

integrable functions which with the usual metric is a complete metric space.
For a Hilbert space H , we write HS(L2, H) for the space of linear operators

� : L2(Rd) → H with finite Hilbert–Schmidt norm

‖�‖HS(L2,H) =
( ∞∑

i=1

‖�ei‖2H
)1/2

. (2.2)

3 The Schrödinger equation

We fix a probability space (�, {Ft },P) carrying a countable family of independent
Brownian motions {Bi

t }i∈N,t≥0 adapted to the filtration {Ft } and define the Wiener
process

Wt =
∑

i∈N
ei B

i
t . (3.1)

Fix λ > 0 and α ∈ {−1, 1}. In this paper, we investigate the long time behavior of
solutions of the stochastic damped nonlinear Schrödinger equation

du + (λu + i�u + iα|u|2σu)dt = �dWt , (3.2)

on the space-time domain [0,∞) × R
d with an additive noise, by establishing the

existence of an invariant measure and the asymptotic tightness of solutions of the
equation. We emphasize that unlike in [28, Assumption H1], our problem in the whole
space Rd does not allow any compact embeddings.

Recall the functionals

M(v) = |v|2L2 (3.3)

H(v) = 1

2

∫

Rd
|∇v(x)|2dx − α

2σ + 2

∫

Rd
|v(x)|2σ+2dx (3.4)

which are the classical invariant quantities for the Schrödinger equation. The existence
of solutions for the Eq. (3.2) was proven in [8]. In order to be able to apply the existence
results in [8], we make the following assumptions.

Assumption 3.1 (i) If α = −1 and d ≥ 3, then we require 0 ≤ σ < 2/(d−2).
If α = −1 and d = 1, 2, then we require σ ≥ 0.
If α = 1, then we require 0 ≤ σ < 2/d.
(ii) � ∈ HS(L2(Rd); H1(Rd)).

We now recall the existence result from [8, Theorem 3.4, Propositions 3.2 and 3.3].
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Theorem 3.2 Under Assumptions 3.1, for every F0 measurable, H1(Rd) valued ran-
dom variable u0, there exists an H1(Rd)-valued and continuous solution {ut }t≥0 of
(3.2) with the initial condition u0. Additionally, the quantities M and H evolve as

dM(us) + 2λM(us)ds = 2
∑

i

Re (us,�ei ) dB
i (s) + ‖�‖2HS(L2;L2)

ds (3.5)

and

dH(us) + 2λH(us)ds

= αλσ

σ + 1

∫
|u(s, x)|2σ+2dxds −

∑

i

Re
(
�u(s) + α|u(s)|2σu(s),�ei

)
dBi

s

+
(‖∇�‖2

HS(L2;L2)

2
−

α‖|u(s)|σ �‖2
HS(L2;L2)

2

)

ds

− σα
∑

i

(
|u(s)|2σ−2, (Re(u(s)�ei ))

2
)
ds, (3.6)

where |u(s)|σ � is the operator that to a function v associates the function |u(s)|σ �v.

Note that the results in [8] are given for λ = 0 but one can easily pass from λ = 0
to any λ > 0.

3.1 The semigroup

Let u0 ∈ H1(Rd) be a deterministic initial condition, and let u be the corresponding
solution of (3.2). For all B ∈ B(H1(Rd)) we define the transition probabilities of the
equation by

Pt (u0, B) = P(ut ∈ B). (3.7)

For any H1(Rd)-valued measure ν, we denote by (νPt )(·) = ∫
H1(Rd )

Pt (v, ·)ν(dv)

the distribution at time t of the solution of (3.2) with the initial condition having the
distribution ν.

For any function ξ ∈ Cb(H1(Rd);R) and t ≥ 0, denote

Ptξ(u0) = E [ξ(ut )] =
∫

H1(Rd )

ξ(v)Pt (u0, dv). (3.8)

Definition 3.3 Letμbe a probabilitymeasure on H1(Rd).We say thatμ is an invariant
measure for Pt if we have

∫

H1(Rd )

ξ(v)μ(dv) =
∫

H1(Rd )

Ptξ(v′)μ(dv′) (3.9)
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for all ξ ∈ Cb(H1(Rd);R) and t ≥ 0.

3.2 Main results concerning the Schrödinger equation

The following statement is the main result of this paper.

Theorem 3.4 Under Assumptions 3.1, there exists an invariant measure for Pt .

The main ingredient in the proof is the next lemma.

Lemma 3.5 Under Assumptions 3.1 the following two tightness assertions hold.
(i) For all sequences of times tn → ∞ and F0-measurable initial conditions un0 ∈

H1(Rd) with distributions νn satisfying

E

[
‖un0‖4∨�4dσ�

H1 + ‖un0‖�4σ(2−d)+8�
L2 + 1{α=1}‖un0‖4+8σ/(2−σd)

L2

]
≤ R

for some R > 0, the family of measures

{
(νn Ptn )(·) : n ∈ N

}
(3.10)

on H1(Rd) is tight.
(ii) For all compact sets K ⊆ H1(Rd) the family of probabilities

{Ps(v, ·) : s ∈ [0, 1], v ∈ K } (3.11)

on H1(Rd) is tight.

Assuming the lemma, we now prove the main theorem. The lemma is then proven
in Sect. 5 below.

Proof of Theorem 3.4 An invariant measure is constructed using the classical Krylov–
Bogolyubov theorem, which requires the Feller property of the semigroup and the
tightness of averaged measures

μn(·) := 1

n

∫ n

0
Pt (0, ·)dt. (3.12)

The Feller property is a consequence of [8, Proposition 3.5]. Thus in order to conclude
the proof, we only need to show tightness of the family of measures μn .

Let ε > 0. Lemma 3.5 applied to the family {Pk(0, ·) : k ∈ N} gives the existence
of a compact set Kε ⊆ H1(Rd) such that

sup
k

Pk(0, K
c
ε ) ≤ ε

2
. (3.13)
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We then consider the family of probabilities {Ps(v, ·) : s ∈ [0, 1], v ∈ Kε}. By the
second part of Lemma 3.5, this family is tight. Therefore, there exists another compact
set Aε ⊆ H1(Rd) such that

sup
s∈[0,1],v∈Kε

Ps(v, Ac
ε) ≤ ε

2
. (3.14)

By a direct computation

μn(A
c
ε) = 1

n

∫ n

0
Pt (0, A

c
ε)dt = 1

n

n−1∑

k=0

∫ k+1

k
Pt (0, A

c
ε)dt (3.15)

= 1

n

n−1∑

k=0

∫ k+1

k

∫

H1(Rd )

Pk(0, dv)Pt−k(v, Ac
ε)dt (3.16)

= 1

n

n−1∑

k=0

∫ k+1

k

(∫

H1(Rd )∩Kc
ε

Pk(0, dv)Pt−k(v, Ac
ε)

+
∫

H1(Rd )∩Kε

Pk(0, dv)Pt−k(v, Ac
ε)

)

dt (3.17)

whence

μn(A
c
ε) ≤ 1

n

n−1∑

k=0

(

Pk(0, K
c
ε ) + Pk(0, Kε) sup

s∈[0,1], v∈Kε

Ps(v, Ac
ε)

)

(3.18)

≤ 1

n

n−1∑

k=0

(

Pk(0, K
c
ε ) + sup

s∈[0,1], v∈Kε

Ps(v, Ac
ε)

)

≤ ε. (3.19)

We have thus shown that the set of measures {μn} is tight, concluding the proof of the
theorem. ��

The rest of the paper is devoted to the proof of Lemma 3.5 and to establishing the
compactness of the set of invariant measures.

4 An abstract tightness result

In this section, we give certain distributional convergence results that we use below to
prove Lemma 3.5.

Lemma 4.1 Let k ∈ N0, and let ξn and ξ be an Hk(Rd)-valued square inte-
grable random variables such that ξn → ξ in distribution in L2

loc(R
d). Assume that

E[‖ξn‖2Hk ] → E[‖ξ‖2
Hk ] as n → ∞ and suppose that the family {‖ξn‖2Hk : n ∈ N} is

uniformly integrable. Then ξn converges to ξ in distribution in Hk(Rd).

Note that when k = 0, we have H0(Rd) = L2(Rd).
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Proof Lemma 4.1 Let { fi } be a complete orthonormal system for Hk(Rd) consisting
of smooth compactly supported functions. We first claim that

lim
N→∞ sup

n
E

[ ∞∑

i=N

|(ξn, fi )Hk |2
]

= 0 (4.1)

which then quickly implies asserted convergence. Let ε > 0. By the uniform integra-
bility assumption, there exists R > 0 such that

sup
n

E

[
‖ξn‖2Hk1{‖ξn‖2Hk≥R}

]
≤ ε (4.2)

and, by possibly enlarging R, we may also assume that

E

[
‖ξ‖2Hk1{‖ξ‖2

Hk≥R}
]

≤ ε. (4.3)

For all N ∈ N, the convergence in distribution in L2
loc(R

d) and the fact that { fi } have
compact support imply

E

[(
N∑

i=1

|(ξn, fi )Hk |2
)

∧ R

]

→ E

[(
N∑

i=1

|(ξ, fi )Hk |2
)

∧ R

]

(4.4)

as n → ∞. Since

∣
∣
∣
∣
∣
E

[
N∑

i=1

|(ξn, fi )Hk |2
]

− E

[
N∑

i=1

|(ξ, fi )Hk |2
]∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
E

[(
N∑

i=1

|(ξn, fi )Hk |2
)

∧ R

]

− E

[(
N∑

i=1

|(ξ, fi )Hk |2
)

∧ R

]∣
∣
∣
∣
∣

+ E

[
‖ξn‖2Hk1{‖ξn‖2Hk≥R}

]
+ E

[
‖ξ‖2Hk1{‖ξ‖2

Hk≥R}
]

(4.5)

we have that

lim
n

E

[
N∑

i=1

|(ξn, fi )Hk |2
]

= E

[
N∑

i=1

|(ξ, fi )Hk |2
]

. (4.6)

This convergence combined with the assumption E[‖ξn‖2Hk ] → E[‖ξ‖2
Hk ] implies

E

[ ∞∑

i=N+1

|(ξn, fi )Hk |2
]

→ E

[ ∞∑

i=N+1

|(ξ, fi )Hk |2
]

. (4.7)
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Since ξ is Hk(Rd)-square integrable, there is N0 ∈ N0 such that

E

⎡

⎣
∞∑

i=N0+1

|(ξ, fi )Hk |2
⎤

⎦ ≤ ε

2
. (4.8)

Then, using (4.7), there exists nε ∈ N for which

sup
n≥nε

E

⎡

⎣
∞∑

i=N0+1

|(ξn, fi )Hk |2
⎤

⎦ ≤ ε. (4.9)

The family {‖ξn‖Hk : n = 1, . . . , nε − 1} is square integrable. Therefore,

lim
N→∞E

[ ∞∑

i=N

|(ξn, fi )Hk |2
]

= 0, n ≤ nε − 1. (4.10)

By (4.9) and (4.10), there exists N1 ≥ N0 such that

sup
n∈N

E

⎡

⎣
∞∑

i=N1+1

|(ξn, fi )Hk |2
⎤

⎦ ≤ ε. (4.11)

Therefore, (4.1) is established.
By [31, Theorem 1.13], the convergence (4.1) then implies the tightness in distri-

bution in Hk(Rd) of the laws of {ξn}. Note that any limiting measure can only be the
distribution of ξ . Thus

ξn → ξ (4.12)

in distribution in Hk(Rd). ��
We shall work on the space Z = C([0, T ]; L2

loc(R
d)). Denote by z the canonical

process on this space and D its right continuous filtration. We state our main theorem
for an SPDE of the form

du(t) = (−i�u(t) + b(u(t))
)
dt + �dWt (4.13)

with

u(t) ∈ L2
loc(R

d)

where b : C → C is, for simplicity, a finite sum of terms of the form um |u|a where
m ∈ N0 and a ≥ 0 are such that

m + a <
2d

d − 2k
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if d > 2k. We need this bound to establish that for smooth compactly supported φ the
mapping

v ∈ L2
loc(R

d) →
∫

b(v(x))φ(x)dx (4.14)

is continuous on bounded sets of Hk . This can be established by using Gagliardo–
Nirenberg inequality and Hölder inequality. We note that under Assumptions 3.1, this
upper bound for m + a is satisfied for the Eq. (3.2) as k = 1.

Definition 4.2 A measure ν on Z is a martingale solution of the Eq. (4.13) if for all
φ smooth and compactly supported functions

∫ T

0

(|b(zs)|, |φ|)ds < ∞, ν-a.s. (4.15)

and if

Mφ
t = (zt − z0, φ) −

∫ t

0
(−i�zs + b(zs), φ)ds (4.16)

and

(Mφ
t )2 −

∫ t

0

∑

i

(�ei , φ)2 ds (4.17)

are ν-local martingales. We say that ν is a Hk square integrable martingale solution
if

sup
t∈[0,T ]

E
ν
[
‖zt‖2Hk

]
< ∞. (4.18)

Remark 4.3 (i) Note that a martingale solution can be obtained from any strong solu-
tion of (4.13). Indeed, let u be a solution of (4.13) on the interval [0, T ]. Define the
measure

ν(dz) =
∫

�

δ{{us (ω)}s∈[0,T ]}(dz)P(dω) (4.19)

meaning the measure onZ such that for all continuous bounded F : Z → R we have

∫

Z
F(z)ν(dz) = E[F({u(s)}s∈[0,T ])]. (4.20)

In order to facilitate the statement of the main result of this section, we introduce
the concept of Hk-evolution property.
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Definition 4.4 Let k ∈ N. The Eq. (4.13) has the Hk-norm evolution property if for
i = 0, . . . , k there exist continuous functions Fi : L2

loc → R, F̃i : R× L2
loc → R, and

Gi : R × R × L2
loc → R satisfying the following conditions.

(i) For all t, r the functions Fi (·), F̃i (t, ·) and Gi (t, r, ·) are continuous in Hi−1-
topology on bounded sets of Hi (for i = 0we require the continuity in L2

loc on bounded
sets of L2).

(ii) For all t, r the functions Fi (·), F̃i (r, ·) and G(r, ·) have at most polynomial
growth in the Hi -norm.

(iii) For all Hk square integrable martingale solutions ν of (4.13), the conservation
equality

E
ν
[
‖zt‖2Hi

]
− e−2λ(t−s)

E
ν
[
‖zs‖2Hi

]
= E

ν
[
Fi (zt ) − F̃i (t − s, zs)

]

+
∫ t

s
E

ν [Gi (t − r, zr )] dr (4.21)

holds for all t ≥ s.

We now state a theorem, which, combined with Lemma 4.1, gives us a tightness
result needed for the Krylov–Bogolyubov procedure.

Theorem 4.5 Assume that the Eq. (4.13) has the Hk-norm evolution property, and
let un be a sequence of strong solutions of (4.13) satisfying the following conditions:

(a) We have a uniform bound

γ = sup
r≥0

sup
k≥i≥0

sup
n,t

E

[
‖b(unt )‖2L1 + |Fi (unt )|2 + |F̃i (r, unt )|2

+ |Gi (r, u
n
t )|2 + ‖unt ‖4Hk

]
< ∞. (4.22)

(b) For every sequence of stopping times Tn and positive numbers δn such that δn → 0
as n → ∞, we have

E

[
‖unTn+δn

− unTn‖2L2

]
→ 0 as n → ∞. (4.23)

(c) There exists a sequence tn → ∞ and an Hk-valued random variable ξ such that
untn → ξ in distribution in L2

loc.
Then E[‖untn‖2Hk ] → E[‖ξ‖2

Hk ] as n → ∞.

Remark 4.6 The powers in (4.22) have been chosen so we can obtain the uniform
integrability of the family and then the De la Vallee Poussin’s theorem can be applied.

Proof of Theorem 4.5 Since

lim inf
n

E[‖untn‖2Hk ] ≥ E[‖ξ‖2Hk ] (4.24)
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we only need to prove

lim sup
n

E[‖untn‖2Hk ] ≤ E[‖ξ‖2Hk ]. (4.25)

We establish (4.25) by induction on k, reasoning by contradiction at each step. For
k = 0 (cf. Step 1), we use (4.23) and the Aldous’s criterion to obtain a compactness
of measures induced by the process {un}. Then using (4.21) for a limiting measure we
obtain a contradiction.

Step 1: First we prove (4.25) for k = 0. We assume that the convergence does not
hold. This means that, passing to a subsequence, there exists ε > 0 such that

E[‖untn‖2L2 ] ≥ E[‖ξ‖2L2 ] + ε, n ∈ N. (4.26)

We now pick T > 0 such that 3γ 1/2e−2λT ≤ ε. Note that, by (4.22), the sequence
{untn−T } satisfies

sup
n

E

[
‖untn−T ‖4L2

]
≤ γ. (4.27)

Therefore, passing to a further subsequence, there exists an L2-valued random variable
ξ−T such that untn−T converges in distribution in L2

loc(R
d) to ξ−T . Define a sequence

of measures νn on Z by

νn(dz) =
∫

�

δ{{untn−T+r (ω)}r∈[0,T ]}(dz)P(dω). (4.28)

The assumption (4.23) and the Aldous criterion [1, Theorem 16.10] imply that the
sequence {νn}∞n=1 is tight in distribution inZ . Taking a further subsequence, we obtain
the existence of ν such that

E
νn [F(z)] = E

[
F({untn−T+s}s∈[0,T ])

] → E
ν [F(z)] as n → ∞, F ∈ Cb(Z).

(4.29)

Identifying the marginals, we easily see that the distribution of zT under ν is the same
as the distribution of ξ . Similarly, the distribution of z0 under ν is the same as the
distribution of ξ−T . We write the Eq. (4.21) at times tn and tn − T for the measure νn

E

[
‖untn‖2L2

]
− e−2λT

E

[
‖untn−T ‖2L2

]
= E

[
F0(u

n
tn ) − F̃0(T, untn−T )

]

+
∫ T

0
E

[
G0(T − r, untn−T+r )

]
dr. (4.30)

We claim that by the assumptions (i), (ii), and (a), we have sufficient integrability and
continuity at the right hand side of the equation to use the convergence of νn to ν and
pass to the limit to obtain
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lim
n

(
E

[
‖untn‖2L2

]
− e−2λT

E

[
‖untn−T ‖2L2

])
= E

ν
[
F0(zT ) − F̃0(T, z0)

]

+
∫ T

0
E

ν [G0(T − r, zr )] dr. (4.31)

Indeed, the convergence of νn to ν in Z implies that for all s ∈ [0, T ] and every
function ξ : L2

loc(R
d) → R continuous and bounded we have

E
[
ξ(untn−T+s)

] → E
ν [ξ(zs)] . (4.32)

Note that, by the assumption (i), the mappings F0(·), F̃0(T, ·), and G0(T − s, ·) are
continuous in L2

loc(R
d) on bounded sets of L2(Rd). Additionally the assumption (ii)

and the uniform bound (4.22) allows us to truncate F0(·), F̃0(T, ·), and G0(T − s, ·)
when they are large in order to obtain

E
[
ψ(untn−T+s)

] → E
ν [ψ(zs)] (4.33)

for ψ = F0(·), ψ = F̃(T, ·), and ψ = G0(T − s, ·). Thus

lim
n

(
E

[
‖untn‖2L2

]
− e−2λT

E

[
‖untn−T ‖2L2

])
= E

ν
[
F0(zT ) − F̃0(T, z0)

]

+
∫ T

0
E

ν [G0(T − r, zr )] dr.

(4.34)

We shall show in Step 3 that ν is a L2-square integrable martingale solution of (4.13).
Using this result and by the assumption (4.21) one has

E
ν
[
F0(zT ) − F̃0(T, z0)

] +
∫ T

0
E

ν [G0(T − r, zr )] dr = E
ν
[
‖zT ‖2L2

]

−e−2λT
E

ν
[
‖z0‖2L2

]
.

(4.35)

Noting the bound (4.22), we may pass to the limit and obtain

lim
n

(
E

[
‖untn‖2L2

]
− e−2λT

E

[
‖untn−T ‖2L2

])
= E

ν
[
‖zT ‖2L2

]
− e−2λT

E
ν
[
‖z0‖2L2

]

= E

[
‖ξ‖2L2

]
− e−2λT

E

[
‖ξ−T ‖2L2

]
.

(4.36)

By convergence of untn−T to ξ−T in distribution in L2
loc and the Fatou’s lemma, we

obtain

E

[
‖ξ−T ‖2L2

]
≤ lim inf

n
E

[
‖untn−T ‖2L2

]
≤ γ 1/2. (4.37)
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Using (4.26) and (4.36), we obtain

ε ≤ lim inf
n

E

[
‖untn‖2L2

]
− E

[
‖ξ‖2L2

]

≤ lim sup
n

e−2λT
(
E

[
‖untn−T ‖2L2

]
− E

[
‖ξ−T ‖2L2

])
≤ γ 1/2e−2λT ≤ 2ε

3
(4.38)

which is a contradiction.
Step 2: Now we prove that ν is a L2-square integrable martingale solution of

(4.13). Note that the uniform bound (4.22), the lower semicontinuity of the L2 norm
with respect to the L2

loc topology, and the distributional convergence of νn to ν give
that for all t ∈ [0, T ]

E
ν
[
‖zt‖2L2

]
≤ γ.

Additionally the choice of the power for b implies that the mapping z ∈ Z → Mφ
t (z)

is continuous. Thus for all f bounded continuous

lim
n

E
νn [ f (Mφ

t )] = E
ν[ f (Mφ

t )].

For all φ smooth, there exists Kφ,T depending only on φ and T such that

|Mφ
t |2 ≤ Kφ,T

(

‖z0‖2L2 + ‖zt‖2L2 +
∫ t

0
‖zr‖2L2 + ‖b(zr )‖2L1dr

)

, t ∈ [0, T ].
(4.39)

We will use these points to prove that Mφ
t is a martingale under ν. We fix a family of

smooth truncation functions �R satisfying |�R | ≤ 2R and �R(x) = x if |x | ≤ R.
For 0 ≤ s1 ≤ s2 ≤ . . . ≤ sm ≤ s ≤ t ≤ T smooth compactly supported functions
functions φi and a random variable of the form F = F(

∫
φ1zs1dx, . . . ,

∫
φmzsmdx)

smooth and bounded by 1, we have the equalities

∣
∣
∣Eν

[
(Mφ

t − Mφ
s )F

]∣∣
∣

=
∣
∣
∣Eν

[
(�R(Mφ

t ) − �R(Mφ
s ))F

]∣∣
∣ + E

ν
[
|�R(Mφ

t ) − Mφ
t |

]

+ E
ν
[|�R(Mφ

s ) − Mφ
s |]

= lim
n

∣
∣
∣Eνn

[
(�R(Mφ

t ) − �R(Mφ
s ))F

]∣∣
∣ + 1

R

(
E

ν
[
|Mφ

t |2
]

+ E
ν
[
|Mφ

s |2
])

= lim
n

∣
∣
∣Eνn

[
(Mφ

t − Mφ
s )F

]∣∣
∣ + 4T γ Kφ,T

R
.

Note that by the martingale property of Mφ
t under νn we have Eνn

[
(Mφ

t − Mφ
s )F

]
=

0. Thus, taking R to infinity we get Eν
[
(Mφ

t − Mφ
s )F

]
= 0 which is sufficient to
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claim that Mφ
t is a ν martingale. Due to the smoothness of φ, the continuity of z in

L2
loc and (4.39), M

φ
t is a continuous and square integrable martingale under ν. We now

proceed to characterize its quadratic variation.
By the definition of martingale solutions under νn the process Mφ

t /
√∑

i (�ei ,φ)2 is a
Brownianmotion and thus has Gaussian independent increments. By the distributional
convergence of νn and the continuity of Mφ

t /
√∑

i (�ei ,φ)2 in the L2
loc topology with

respect to z the distribution and the independence of the increments still hold under
ν. Thus the continuous process Mφ

t /
√∑

i (�ei ,φ)2 is a Brownian motion under ν which
implies that (4.17) holds under ν.

Step 3: For the induction step, assume that E[‖untn‖2Hr ] → E[‖ξ‖2Hr ] as n → ∞
for r = 0, . . . , k − 1. We need to show that

E[‖untn‖2Hk ] → E[‖ξ‖2Hk ]. (4.40)

Note that using Lemma 4.1 at each step of the induction one can also show that

untn → ξ (4.41)

in distribution in Hr (Rd) for all r ≤ k − 1.
In order to obtain a contradiction, assume that the convergence we are proving does

not hold. This means that, up to a subsequence, there exists ε > 0 such that

E[‖untn‖2Hk ] ≥ E[‖ξ‖2Hk ] + ε, n ∈ N. (4.42)

Similarly to the previous step, we introduce T such that 3γ 1/2e−2λT ≤ ε and define
the measures νn on Z . We also prove similarly that there exist an Hk-valued ran-
dom variable ξ−T , a distribution ν on Z which is a Hk square integrable solution of
(4.13) and a subsequence of tn (still denoted tn) such that νn → ν on Z as n → ∞
and untn−T → ξ−T in distribution in L2

loc(R
d). Note that for all s ∈ [0, T ] the fam-

ily untn−T+s converges in distribution in L2
loc(R

d) to the distribution of zs under ν.
Therefore, using the induction hypothesis on the family untn−T+s and zs we obtain

untn−T+s → zs (4.43)

in distribution in Hr (Rd) and

E[‖untn−T+s‖2Hr ] → E
ν[‖zs‖2Hr ] (4.44)

for r ≤ k − 1 as n → ∞.
We first use (4.21) on νn for k to obtain

E

[
‖untn‖2Hk

]
− e−2λT

E

[
‖untn−T ‖2Hk

]
= E

[
Fk(u

n
tn ) − F̃k(T, untn )

]

+
∫ T

0
E

[
Gk(T − s, untn−T+s)

]
ds. (4.45)
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We have proven that the distribution of untn−T+s converges in distribution in Hk−1(Rd)

to the distribution of zs under ν. Similarly to the previous step, we have enough inte-
grability and continuity on the right hand side of the equation to use this convergence
and pass to the limit to obtain

lim
n

E

[
‖untn‖2Hk

]
− e−2λT

E

[
‖untn−T ‖2Hk

]
= E

ν
[
Fk(zT ) − F̃k(T, z0)

]

+
∫ T

0
E

ν [Gk(T − s, zs)] ds. (4.46)

Using Fatou’s lemma and (4.22) we have that ν is a Hk(Rd) square integrable solution
of (4.13). Thus, by assumption, Definition 4.4 (iii) gives

E
ν
[
‖zT ‖2Hk

]
− e−2λT

E
ν
[
‖z0‖2Hk

]
= E

ν
[
Fk(zT ) − F̃k(T, z0)

]

+
∫ T

0
E

ν [Gk(T − s, zs)] ds, (4.47)

which implies

lim
n

(
E

[
‖untn‖2Hk

]
− e−2λT

E

[
‖untn−T ‖2Hk

])
= E

ν
[
‖zT ‖2Hk

]

−e−2λT
E

ν
[
‖z0‖2Hk

]
. (4.48)

Using the same arguments as in the previous step, we obtain a contradiction. ��

5 Proofs of tightness for the Schrödinger equation

We now return to the Schrödinger equation (3.2). We fix λ > 0 and α ∈ {−1, 1};
thus all the constants are allowed to depend on λ, α. Also, recall that we impose
Assumptions 3.1 on σ and �.

Lemma 5.1 For every k ∈ N we have

sup
t≥0

E[M(u(s))k] ≤ Ck(E[|M(u0)|k] + 1) (5.1)

and

sup
t≥0

E[H(u(s))k] ≤ Ck

(

E

[

|H(u0)|k + 1{α=1}‖u(0)‖2k+
4kσ
2−σd

L2

]

+ 1

)

(5.2)

where Ck ≥ 0 is a constant.
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Proof of Lemma 5.1 Using similar ideas as in [13], one can show that the local mar-
tingale appearing in (3.5) is a martingale. Thus we have

E[M(u(t))] + 2λ
∫ t

0
E[M(u(s))]ds = E[M(u0)] + t‖�‖2HS(L2;L) . (5.3)

Solving this ODE for E[M(u(t))], we get

E[M(u(t))] = e−2λt
E[M(u0)] + ‖�‖2HS(L2;L2)

∫ t

0
e−2λ(t−s)ds ≤ E[M(u0)]

+ 1

2λ
‖�‖2HS(L2;L2)

(5.4)

which proves (5.1) for k = 1. For general k we proceed by induction. We assume the
existence of Ck for a given k ≥ 1 and apply Ito’s lemma to M(u(t))k+1 to obtain

dMk+1(u(t)) + 2(k + 1)λMk+1(u(t))dt

= (k + 1)Mk(u(t))‖�‖2HS(L2;L2)
dt

+ k(k + 1)

2
Mk−1(u(t))

∑

i

Re(u(t),�ei )
2dt + M̃ (5.5)

where similarly M̃ can be shown to be amartingale. Thus the functionE
[
Mk+1(u(t))

]

satisfies the ODE

(
E

[
Mk+1(u(t))

])′ + 2(k + 1)λE
[
Mk+1(u(t))

]

= (k + 1)E
[
Mk(u(t))‖�‖2HS(L2;L2)

]

+ k(k + 1)

2
E

[

Mk−1(u(t))
∑

i

Re(u(t),�ei )
2

]

=: gk(t), (5.6)

where gk is a bounded function of t by the induction assumption. By solving this ODE,
we see that the function E

[
Mk+1(u(t))

]
is bounded.

To obtain the bounds for for H we treat two cases separately.
Case α = −1 In this case the Eq. (3.6) gives that f (s) := E[H(us)] satisfies the

ODE

f ′(s) + 2λ f (s) ≤
‖∇�‖2

HS(L2,L2)

2
+ E

[‖|u(s)|σ �‖2
HS(L2,L2)

2

]

+ ασ
∑

i

E

[
(|u(s)|2σ−2, (Re(u(s)�ei ))

2)
]

≤ C

(

1 +
∑

i

∫
|u(s, x)|2σ |�ei (x)|2dx

)
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≤ C

(

1 +
(∫

|u(s, x)|2σ+2dx

) 2σ
2σ+2 ∑

i

‖�ei‖2L2σ+2

)

≤ C

(

1+
(∫

|u(s, x)|2σ+2dx

) 2σ
2σ+2 ∑

i

‖�ei‖2−
σd

σ+1

L2 ‖∇�ei‖
σ

σ+1 d

L2

)

≤ C
(
ε, ‖�‖2HS(L2,H1)

)
+ ε

∫
|u(s, x)|2σ+2dx

where we have successively used the Hölder, Gagliardo–Nirenberg, and ε-Young
inequalities. Note that α = −1, we can absorb this last term by λ f (s) to obtain

f ′(s) + λ f (s) ≤ C

which implies

ft ≤ C( f0 + 1).

Case α = 1 In this case f satisfies the inequality

f ′(s) + 2λ f (s) ≤ C + λσ

σ + 1
E

[
‖u(s)‖2σ+2

L2σ+2

]
.

Note that by the Gagliardo–Nirenberg inequality and σd < 2 we obtain

λσ

σ + 1
‖u(s)‖2σ+2

L2σ+2 ≤ λH(u(s)) + C‖u(s)‖2+
4σ

2−σd

L2 .

This shows that

ft ≤ C

(

1 + f0 + sup
s≥0

E

[

‖u(s)‖2+
4σ

2−σd

L2

])

.

We now use (5.1) to obtain that

ft ≤ C

(

1 + E

[

|H(u0)| + ‖u(0)‖2+
4σ

2−σd

L2

])

.

Repeating the same argument for Hk(u(t)) we obtain (5.2). ��
In order to obtain the tightness of the averaged measures, we use Lemma 4.1 and

Theorem 4.5. The last ingredient we need is the following lemma.

Lemma 5.2 Under the assumptions of Lemma 3.5, for all stopping times Tn and real
numbers δn such that δn → 0 as n → ∞, we have

E

[
‖unTn+δn

− unTn‖2L2

]
→ 0 as n → ∞. (5.7)
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Proof of Lemma 5.2 We denote by Sλ the semigroup associated with the linear part
of the equation. With this notation, we have

unTn+δn
− unTn = Sλ(δn)u

n
Tn − uTn + i

∫ δn

0
Sλ(δn − s)(|un(Tn + s)|2σun(s))ds

+
∫ δn

0
Sλ(δn − s)�dWTn+s . (5.8)

The lemma would follow from the following three convergence statements:

E

[
‖Sλ(δn)u

n
Tn − unTn‖2L2

]
→ 0, (5.9)

E

[∥
∥
∥
∥

∫ δn

0
Sλ(δn − s)(|un(Tn + s)|2σun(s))ds

∥
∥
∥
∥

2

L2

]

→ 0, (5.10)

E

[∥
∥
∥
∥

∫ δn

0
Sλ(δn − s)�dWTn+s

∥
∥
∥
∥

2

L2

]

→ 0. (5.11)

By PDE arguments, the first convergence is obvious. For the second convergence
(5.10), we simply write

E

[∥
∥
∥
∥

∫ δn

0
Sλ(δn − s)(|u(Tn + s)|2σu(s))ds

∥
∥
∥
∥

2

L2

]

≤ δn

∫ δn

0
E

[
‖Sλ(δn − s)(|u(Tn + s)|2σu(s))‖2L2

]
ds. (5.12)

Given the uniform bounds (5.1), the integrand is uniformly bounded and the
convergence thus holds. For the third convergence (5.11), we use the the Burkholder–
Davis–Gundy Inequality [7, Lemma 5.24] and obtain

E

[∥
∥
∥
∥

∫ δn

0
Sλ(δn − s)�dWTn+s

∥
∥
∥
∥

2

L2

]

≤
∫ δn

0
‖Sλ(δn − s)�‖2HS(L2,L2)

ds → 0

(5.13)

as n → ∞. ��

5.1 Proof of Lemma 3.5

Proof of (i): We show that the assumptions of Theorem 4.5 with k = 1 are satisfied
for the Eq. (3.2) and the set {(νn Ptn )(·) : n ∈ N} is relatively weakly compact over
H1(Rd). We define
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F0 = F̃0 = 0

G0(t, r, v) := e−2λ(t−r)‖�‖2HS(L2,L2)
, (5.14)

F1(v) = α

2σ + 2

∫
|v(x)|2σ+2dx (5.15)

F̃1(r, v) := e−2λr α

2σ + 2

∫
|v(x)|2σ+2dx, (5.16)

G1(r, v) := e−2λr
(∫

Rd

αλσ

σ + 1
|v(x)|2σ+2dx +

‖∇�‖2
HS(L2,L2)

2

−α

2
‖|v|σ �‖2HS(L2,L2)

− ασ
∑

i

Re(|v|2σ−2v2, (�ei )
2)

)

.

(5.17)

We apply the Gagliardo–Nirenberg interpolation inequality to obtain

‖v‖2σ+2
L2σ+2 ≤ C‖v‖dσ

H1‖v‖σ(2−d)+2
L2 (5.18)

which shows that F1(·), F̃1(r, ·), and G1(r, ·) are continuous in L2(Rd) on bounded
sets of H1(Rd). They also have at most polynomial growth in H1(Rd) and given
the bounds on un0 and Lemma 5.1, with b(u) = |u|2σu, we have the bound (4.22).
Additionally, given Assumption 3.1 on σ , we can easily verify that the degree of b
satisfy for d > 2,

2σ + 1 <
d + 2

d − 2
≤ 2d

d − 2
. (5.19)

Since ν is a H1-square integrable martingale solution of (3.2), by [11, The-
orem 2.4], we can extend the probability space (Z,D, ν) to obtain a family of
Brownian motions B̂i such that the H−1(Rd)-valued continuous martingale Mt =
z(t) − z(0) + ∫ t

0 (λz(s) − i�z(s) − i |z(s)|2σ z(s))ds can be represented as

dMt =
∑

i

�ei d B̂
i
t . (5.20)

Similarly to [8, Propositions 3.2 and 3.3],we apply Ito’s lemma toM(z(t)) and H(z(t))
on this probability space to obtain that (4.21) holds for i = 0, 1 under ν. This shows
that the Eq. (3.2) has the H1-norm evolution property.

Next, we consider the sequence of measures (νn Ptn )(dv) as measures on the space
L2
loc(R

d). Denote by Bk ⊆ R
d the ball with radius k, centered at the origin. Given the

uniform estimates (5.2), by the compact embedding of the space H1(Bk) in L2(Bk)

and a successive application of Prokhorov’s theorem, we obtain that there exists a
subsequence of {tn, un0}, whichwe still denote {tn, un0}, and a distributionμ on H1(Rd)

such that

(νn Ptn )(dv) → μ in distribution in L2
loc(R

d). (5.21)
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We also note that the solutions un satisfy the assumptions (iv) and (v) as consequences
of (5.2) and (5.7) respectively. Thus by Lemma 4.1 and Theorem 4.5, the convergence

(νn Ptn )(dv) → μ (5.22)

is in fact in distribution in H1(Rd) which is what we claimed.
Proof of (ii):We choose (sn, vn) ∈ [0, T ]× K . By the compactness of the two sets

there exist a subsequence of (sn, vn), still denoted (sn, vn), and (s, v) ∈ [0, 1]×K such
that (sn, vn) → (s, v). We claim that Psn (vn, ·) converges in distribution in H1(Rd)

to Ps(v, ·).
We denote by un and u the solutions of (3.2) with initial data vn and v respectively.

In order to show this convergence we prove that we have

sup
t∈[0,1]

(‖unt − ut‖H1 + ‖usn − us‖H1
) → 0, P-a.s. (5.23)

The convergence ‖usn −us‖H1 → 0 is a direct consequence of u ∈ C([0, 1], H1), P-
a.s. It is shown in [8] that

∫ ·

0
Sλ(· − r)�dWr ∈ C([0, 1]; H1(Rd)) ∩ L4(σ+1)/σd(0, 1,W 1,2σ+2(Rd)) P-a.s.

(5.24)

Thus, applying [8, Proposition 3.5], we also have P-a.s. ‖un − u‖C([0,1];H1(Rd )) → 0
as n → ∞.

We now show that (5.23) implies the convergence Psn (v
n, ·) → Ps(v, ·). We pick

ξ : H1(Rd) → R uniformly continuous and bounded. Then

|Psξ(v) − Psnξ(vn)| ≤ E[|ξ(us) − ξ(unsn )|]
≤ E[|ξ(us) − ξ(usn )|] + E[|ξ(usn ) − ξ(unsn )|]. (5.25)

Note that (5.23) and the uniform continuity of ξ imply that P-a.s. |ξ(us) − ξ(usn )| +
|ξ(usn )− ξ(unsn )| → 0 as n → ∞. By the dominated convergence theorem, we obtain
|Psξ(v) − Psnξ(vn)| → 0 as n → ∞. ��

6 Compactness of the set of invariant measures

In this section, we establish the existence of an ergodic measure.

Theorem 6.1 Under Assumptions 3.1, the set of H1(Rd)-valued invariant measures
is a convex and compact subset of the space of probability measures on H1(Rd).

Proof Note that the convexity is trivial, so we only need to show compactness. Let
μ be such a measure and u(t) the solution of (3.2) having distribution μ at all time.
For simplicity of notation, we denote Ms = M(u(s)) and Hs = H(u(s)). Our first
objective is to prove the integrability of these semi-martingales.
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We fix R, R0 > 0 and define τR := inf{s ≥ 0 : Ms ≥ R}. We apply (3.5) on the
event {M0 ≤ R0} and obtain

Mt∧τR =M0e
−2λt∧τR + ‖�‖2HS(L2;L2)

∫ t∧τR

0
e−2λ(t∧τR−s)ds (6.1)

+ 2
∫ t∧τR

0
e−2λ(t∧τR−s)Re(u(s),�ei )dB

i
s . (6.2)

Note that, by the localization, the expectation of the stochastic integral vanishes.
Therefore,

E
[
Mt∧τR1{M0≤R0}

] = E

[
M01{M0≤R0}e−2λt∧τR

]

+ ‖�‖2HS(L2;L2)
E

[∫ t∧τR

0
e−2λ(t∧τR−s)1{M0≤R0}ds

]

. (6.3)

For a fixed R0, the integrands on the right hand side are uniformly bounded and the
integrand on the left hand side is non-negative. We apply the dominated convergence
theorem for the right side and Fatou’s lemma for the left to obtain that

E
[
Mt1{M0≤R0}

] ≤ E
[
M01{M0≤R0}

]
e−2λt +

‖�‖2
HS(L2;L2)

2λ
. (6.4)

Therefore, we can choose tR0 > 0 such that for all R0 > 0, we have

E

[
MtR0

1{M0≤R0}
]

≤
‖�‖2

HS(L2;L2)

λ
. (6.5)

Noting also that the distribution of MtR0
isμwe obtain there exists fR0(v) → 1μ-a.s.

as R0 → ∞ and

E

[
MtR0

1{M0≤R0}
]

=
∫

‖v‖2L2 fR0(v)μ(dv) ≤
‖�‖2

HS(L2;L2)

λ
. (6.6)

Taking the limit R0 → ∞, we obtain

∫
‖v‖2L2μ(dv) ≤

‖�‖2
HS(L2;L2)

λ
. (6.7)

Similarly to the proof of Lemma 5.1, we apply Ito’s lemma to Mk+1(u(t)), localize
with stopping times and prove that there exists Ck(�, λ) which may a priori depend
on μ such that

∫
‖v‖2kL2μ(dv) ≤ Ck(�, λ) < ∞, k = 1, 2, . . . . (6.8)
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We also apply the same procedure to Ht to obtain that there exists C̃k(�, λ) that
may again depend on μ such that

∫
‖v‖2kH1μ(dv) ≤ C̃k(�, λ) < ∞. (6.9)

Given this integrability,we return to (3.5) and (3.6) to prove thatCk(�, λ) and C̃k(�, λ)

can be taken independent of μ. Since μ is an invariant measure, we get dE[Mt ] =
dE[Ht ] = 0 and

E[Mt ] =
‖�‖2

HS(L2;L2)

2λ
. (6.10)

Using the same invariance we obtain

2λE[Mk+1
t ] = ‖�‖2HS(L2,L2)

E[Mk
t ] + k

2
E[Mk−1

t

∑

i

Re(u(t),�ei )
2] (6.11)

≤
(

‖�‖2HS(L2,L2)
+ k

2

)

E[Mk
t ], (6.12)

which shows by induction that Ck(�, λ) may be taken independent of μ. Applying
the same procedure to the Eq. (3.6), we obtain that C̃k(�, λ) can be taken independent
of μ.

We now prove the sequential compactness of the set of H1(Rd)-valued invariant
measures. Let μn be a sequence of such invariant measures of the Eq. (3.2). Without
loss of generality, we assume that the σ -algebra F0 is rich enough so that there exists
a family of F0-measurable random variables un0 with distribution μn . The uniform
bounds we have proven give us

sup
n

∫
‖v‖2kL2μ

n(dv) ≤ Ck(�, λ) (6.13)

and

sup
n

∫
‖v‖2H1μ

n(dv) ≤ C̃k(�, λ), (6.14)

which imply

E

[
‖un0‖4∨�4dσ�

H1 + ‖un0‖�4σ(2−d)+8�
L2 + 1{α=1}‖un0‖4+8σ/(2−σd)

L2

]
≤ R. (6.15)

Therefore, Lemma 3.5 and the fact thatμn is an invariant measure show that the family

{
(μn Ptn )(·) : n ∈ N

} = {μn : n ∈ N} (6.16)
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is tight. Noting that the set of invariant measures is closed, we obtain the required
compactness. ��
Corollary 6.2 Under Assumptions 3.1, there exists an ergodic invariant measure.

Proof By theKrein–Milman theorem, the compactness of the set of invariantmeasures
implies that there exists at least one invariant measure that is an extremal point of this
set. Proposition 3.2.7 of [7] then implies that such a measure is ergodic. ��
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