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Abstract Convergence of a full discretization of a second order stochastic evolution
equation with nonlinear damping is shown and thus existence of a solution is estab-
lished. The discretization scheme combines an implicit time stepping scheme with an
internal approximation. Uniqueness is proved as well.
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1 Introduction

In this article, a second order evolution equation with additive and multiplicative
“noise” is considered. Such equations were first studied by Pardoux [24]. The corre-
sponding initial value problem may be written as
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ü + Au̇ + Bu = f + C(u, u̇)Ẇ in (0, T ), u̇(0) = v0, u(0) = u0, (1.1)

where Ẇ is the “noise” and T > 0 is given. A variety of phenomena in physical
sciences and engineering can be modelled using equations of the form (1.1). If K is
the integral operator with (Kw)(t) := ∫ t

0 w(s)ds for some function w then the above
problem is (with u̇ = v) formally equivalent to

v̇ + Av + B (u0 + Kv) = f + C (u0 + Kv, v) Ẇ in (0, T ), v(0) = v0.

(1.2)

To give a more precise meaning to the above problem, let (H, (·, ·), | · |) be a real
Hilbert space identified with its dual H∗ and let (VA, ‖ · ‖VA) and (VB, ‖ · ‖VB ) be
real, reflexive, separable Banach spaces that are densely and continuously embedded
in H . The main result will require, in addition, that VA is densely and continuously
embedded in VB and so

VA ↪→ VB ↪→ H = H∗ ↪→ V ∗
B ↪→ V ∗

A

with ↪→ denoting dense and continuous embeddings. We will use 〈·, ·〉 to denote the
duality pairing between elements of some Banach space and its dual. Moreover, let
(Ω,F , (Ft )t∈[0,T ],P) be a stochastic basis and let W = (W (t))t∈[0,T ] be an infinite
dimensional Wiener process adapted to the filtration (Ft )t∈[0,T ] and such that for any
t, h ≥ 0 the increment W (t + h) − W (t) is independent of Ft .

The exact assumptions will be stated in Sect. 2. For now it suffices to say that
B : VB ×Ω → V ∗

B is a linear, bounded, symmetric and strongly positive operator. The
operator A : VA×Ω → V ∗

A and, for j ∈ N, the operatorsC j : VB ×VA×Ω → H are
nonlinear, jointly satisfying appropriate coercivity and monotonicity-like conditions.
Furthermore, we assume that A is hemicontinuous and satisfies a growth condition.
WewriteC = (C j ) j∈N and assume thatC maps VB×VA×Ω into l2(H).We consider
the stochastic evolution equation

v(t) +
∫ t

0

[
Av(s) + B

(
u0 + (Kv)(s)

)]
ds

= v0 +
∫ t

0
f (s)ds +

∫ t

0
C
(
u0 + (Kv)(s), v(s)

)
dW (s)

(1.3)

for t ∈ [0, T ], where u0 and v0 are given F0-measurable random variables that are
VB and H -valued, respectively. The V ∗

A-valued process f is adapted to (Ft )t≥0 and
the stochastic integral is the Itô integral with

∫ t

0
C(u(s), v(s))dW (s) =

∞∑

j=1

∫ t

0
C j (u(s), v(s))dWj (s).

Stochastic partial differential equations of second order in time are an active area
of research. Broadly speaking, difficulties arise from nonlinear operators, lack of
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damping, multiplicative noise and noise terms that are not continuous martingales as
well as from regularity issues inherent to second order evolution equations. Nonlinear
operators are a particular issue if they are nonlinear in the “highest order” term rather
than a nonlinear perturbation of a linear principal part. We briefly point the reader to
various papers exploring some of the above issues.

Peszat and Zabczyk [25] give necessary and sufficient conditions for the existence
of solutions to a stochastic wave equation without damping, linear in the highest order
term with nonlinear zero order term and nonlinear multiplicative noise. Marinelli and
Quer-Sardanyons [21] prove existence of solutions for a class of semilinear stochastic
wave equations driven by an additive noise term given by a possibly discontinu-
ous square integrable martingale. Kim [17] proved existence and uniqueness of a
solution to a semilinear stochastic wave equation with damping and additive noise.
Carmona and Nualart [4] investigate the smoothness properties of the solutions of
one-dimensional wave equations with nonlinear random forcing. Further work has
been done regarding the smoothness of solutions, we refer the reader to Millet and
Morien [22] as well as Millet and Sanz-Solé [23] and the references therein.

In the deterministic case, second order evolution equations similar to (1.1) have been
investigated in the seminal paper of Lions and Strauss [20]. This has been extended
to the stochastic case by Pardoux [24]. Indeed, Pardoux [24] has shown existence of
solutions via a Galerkin approximation and uniqueness to (1.3) under the assumption
that the operators are deterministic and Lipschitz continuous on bounded subsets but
allowing time-dependent operators. Finally, we note that Pardoux [24] also covers
the case of first-order-in-time stochastic evolution equations. For first-order-in-time
stochastic evolution equations, we also refer the reader to Krylov and Rozovskii [19].

Our aim is twofold: We wish to prove convergence of a fully discrete approxima-
tion of (1.3) including a time discretization. As far as the authors are aware, this paper
is the first to prove convergence of a full discretization of stochastic evolution equa-
tions of second order with a damping that has nonlinear principal part and a rather
general multiplicative noise. Moreover, we wish to extend Pardoux’s result to ran-
dom operators removing the Lipschitz-type condition. See Example 2.1 for a situation
where the assumption of Lipschitz continuity on bounded subsets does not hold but
the assumptions of this paper are satisfied. We show existence of solutions to (1.3) by
proving appropriate convergence of solutions to a full discretization. Unfortunately,
the randomness of the operators finally requires the assumption that VA is continu-
ously embedded in VB (see also Remark 2.5), which is not the case with Pardoux [24].
The reason is the use of the standard Itô formula for the square of the norm, see, e.g.,
Krylov and Rozovskiı̆ [19], Gyöngy and Krylov [14] or Prévôt and Röckner [26]. It is
left for future work whether the Itô formula can be adapted to the general case where
neither is VA embedded into VB nor is VB embedded into VA. This is a rather delicate
problem already for the integration by parts in the deterministic case (see again Lions
and Strauss [20] as well as Emmrich and Thalhammer [11]). Finally, we will show
that two solutions are indistinguishable.

Let us now describe the full discretization. A Galerkin scheme (Vm)m∈N for VA

will provide the internal approximation. For the temporal discretization, we choose
an explicit scheme for approximating the stochastic integral but otherwise we use an
implicit scheme. Finally, we have to truncate the infinite dimensional noise term.
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Fix m, r, N ∈ N. Let τ := T/N . For n = 0, 1, . . . , N , let tn := nτ . Define
Cr := (Cr

j ) j∈N with Cr
j := C j for j = 1, . . . , r , Cr

j = 0 for j > r and let

ΔWn :=
{
W (tn) − W (tn−1) for n = 2, . . . , N ,

0, for n = 1.

For g ∈ l2(H), we define gW (t) := ∑
j∈N gkWk(t). Clearly, τ , tn and ΔWn all

depend on N . This dependence will always be omitted in our notation. The reason
for taking ΔW 1 = 0 will become clear during the proof of the a priori estimate for
the discrete problem. It allows one to assume that v0 is an H -valued F0-measurable
random variable (rather than a VA-valued one). This is consistent with the case of
deterministic second-order-in-time evolution equations, see Lions and Strauss [20],
and the stochastic second-order-in-time evolution equations, see Pardoux [24].

We now define (un)Nn=0 and (vn)Nn=0 which will be approximations of u and v,
respectively, such that u(tn) ≈ un and v(tn) ≈ vn . Assume that the F0-measurable
random variables u0 and v0 take values in Vm and are some given approximations of
the initial values u0 and v0, respectively. Let ( f n)Nn=1 be an approximation of f with
f n being an Ftn -measurable V ∗

A-valued random variable for n = 1, . . . , N .
Now we can fully discretize (1.3). We do this by approximating the integrands

in (1.3) by piecewise constant processes on the time grid (tn)Nn=0. Effectively, the
value on the right-hand side of each interval is taken when approximating the non-
stochastic integrals and the value on the left-hand side of each interval is taken when
approximating the Itô stochastic integral. We define (vn)Nn=1 with vn being Vm-valued
for n = 1, . . . , N as the solution of

(vn, ϕ) + τ

n∑

k=1

〈

Avk + B

⎛

⎝u0 + τ

k∑

j=1

v j

⎞

⎠ , ϕ

〉

= (v0, ϕ) + τ

n∑

k=1

〈 f k, ϕ〉 +
n∑

k=1

⎛

⎝Cr

⎛

⎝u0 + τ

k−1∑

j=1

v j , vk−1

⎞

⎠ΔWk, ϕ

⎞

⎠

(1.4)

for all ϕ ∈ Vm and n = 1, . . . , N . We can immediately see that (1.4) corresponds to

(
vn − vn−1

τ
, ϕ

)

+
〈

Avn + B

(

u0 + τ

n∑

k=1

vk

)

, ϕ

〉

= 〈 f n, ϕ〉 +
(

Cr

(

u0 + τ

n−1∑

k=1

vk, vn−1

)
ΔWn

τ
, ϕ

) (1.5)

for all ϕ ∈ Vm and for n = 1, . . . , N . This is exactly the numerical scheme one could
obtain directly from (1.2). In the case C = 0 (i.e., the non-stochastic case) this would
be an implicit Euler scheme in the “velocity”, with the integral operator replaced by
a simple quadrature. With un := u0 + τ

∑n
k=1 vk , we further see that (1.4) is also

equivalent to
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(
un − 2un−1 + un−2

τ 2
, ϕ

)

+
〈

A

(
un − un−1

τ

)

+ Bun, ϕ

〉

= 〈 f n, ϕ〉 +
(

Cr
(

un−1,
un−1 − un−2

τ

)
ΔWn

τ
, ϕ

)

for all ϕ ∈ Vm and for n = 1, . . . , N , where u0 and u−1 := u0 − τv0 are given. One
could obtain this scheme directly from (1.1).

Numerical schemes for deterministic evolution equations of the above type have
been investigatedmostly for the particular case that VA = VB . Emmrich and Thalham-
mer [10] have proved weak convergence of time discretizations under the assumption
that VA is continuously embedded in VB . In Emmrich and Thalhammer [11], weak
convergence of fully discrete approximations is proved in the case when strongly con-
tinuous perturbations are added to the nonlinear principal part A and the linear principal
part B even if VA is not embedded in VB . This also generalizes the existence result of
Lions and Strauss [20]. The convergence results have subsequently been extended in
Emmrich and Šiška [8]. The situation for linear principal part A but nonlinear, non-
monotone B requires a different analysis and is studied in Emmrich and Šiška [9].

Numerical solutions of second-order-in-time stochastic partial differential equa-
tions have also been studied but for semilinear problems. Kovács, Saedpanach and
Larsson [18] considered a finite element approximation of the linear stochastic wave
equation with additive noise using semigroup theory. Hausenblas [16] demonstrated
weak convergence (weak in the probabilistic sense) of numerical approximations to
semilinear stochastic wave equations with additive noise. De Naurois, Jentzen and
Welti prove weak convergence rates for spatial spectral approximations for an equa-
tion with multiplicative noise [5]. For results on full-discretization, see also Anton,
Cohen, Larsson andWang [2]. Semigroup theory is also used byTessitore andZabczyk
[28] to prove weak convergence of the laws for Wong–Zakai approximations to semi-
linear strongly damped evolution equations of second order with multiplicative noise
acting on the zero-order-in-time term. Error estimates and estimates of the rate of
convergence can be found, e.g., in Walsh [29] and Quer-Sardanyons and Sanz-Solé
[27] for particular examples governed by a linear principal part.

This paper is organized as follows. Section 2 contains all the assumptions and the
statement of the main results of the paper. In Sect. 3, we study the full discretization,
prove that the fully discrete problem has a unique solution and establish a priori
estimates.We use the a priori estimates and compactness arguments in Sect. 4 to obtain
a stochastic process that is the weak limit of piecewise-constant-in-time prolongations
of the solutions to the discrete problem. In Sect. 5, it is shown that the weak limits
satisfy the stochastic evolution equation. This finally proves convergence as well as
existence of a solution. Uniqueness is then proved in Sect. 6.

2 Statement of assumptions and results

In this section, we state the precise assumptions on the operators, we define what is
meant by a solution to (1.3) and we give the statement of the main result of this paper.
Let us start with explaining the notation.
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Throughout this paper, let c > 0 denote a generic constant that is independent of
the discretization parameters. We set

∑0
j=1 z j = 0 for arbitrary z j . Recall that T > 0

is given and that (Ω,F , (Ft )t∈[0,T ],P) is a stochastic basis. By this, we mean that the
probability space (Ω,F ,P) is complete, (Ft )t∈[0,T ] is a filtration such that any set of
probability zero that is in F also belongs to F0 and such that Fs = ⋂

t>s Ft for all
s ∈ [0, T ). Moreover, W = (W (t))t∈[0,T ] is an infinite dimensional Wiener process
adapted to (Ft )t∈[0,T ] and such that for any t, h ≥ 0 the increment W (t + h) − W (t)
is independent of Ft .

For a Banach space (X, ‖ · ‖X ), we denote its dual by (X∗, ‖ · ‖X∗) and we use
〈g, w〉 to denote the duality pairing between g ∈ X∗ and w ∈ X . We will use the
symbol ⇀ to denote weak convergence. Let p ∈ [2,∞) be given and let q = p

p−1
be the conjugate exponent of p. For a separable and reflexive Banach space X , we
denote by L p(Ω; X) and L p((0, T ) × Ω; X) the standard Bochner–Lebesgue spaces
(with respect to F) and refer to Diestel and Uhl [6] for more details. In particular, we
recall that the concepts of strong measurability, weak measurability and measurability
coincide since X is separable (see alsoAmann andEscher [1]). The norms are given by

‖w‖L p(Ω;X) := (
E‖w‖p

X

)1/p
and ‖w‖L p((0,T )×Ω;X) :=

(

E

∫ T

0
‖w(t)‖p

Xdt

)1/p

.

The duals of L p(Ω; X) and L p((0, T ) × Ω; X) are identified with Lq(Ω; X∗) and
Lq((0, T ) × Ω; X∗), respectively. Let Lp(X) be the linear subspace of L p((0, T ) ×
Ω; X) consisting of equivalence classes of X -valued stochastic processes that are
measurable with respect to the progressive σ -algebra. Note that Lp(X) is closed.

We say that an operator D : X × Ω → X∗ is weakly measurable with respect to
some σ -algebra G ⊆ F if the real-valued random variable 〈Dw, z〉 is G-measurable
for any w and z in X , i.e., Dw : Ω → X∗ is weakly* G-measurable for all w ∈ X .

Recall that (H, (·, ·), | · |) is a real, separable Hilbert space, identified with its dual.
By h ∈ l2(H), we mean that h = (h j ) j∈N with h j ∈ H for j ∈ N and

∑
j∈N |h j |2 <

∞. We define the inner product in l2(H) by (g, h)l2(H) := ∑
j∈N(g j , h j ), where

g, h ∈ l2(H). This induces a norm on l2(H) by |h|l2(H) = (h, h)
1/2
l2(H)

. Further recall
that (VA, ‖ ·‖VA ) and (VB, ‖ ·‖VB ) are real, reflexive and separable Banach spaces that
are densely and continuously embedded in H and that the main result will require, in
addition, that VA is densely and continuously embedded in VB and so

VA ↪→ VB ↪→ H = H∗ ↪→ V ∗
B ↪→ V ∗

A (2.1)

with ↪→ denoting dense and continuous embeddings. Our notation does not distinguish
whether the duality pairing 〈·, ·〉 is the duality pairing between VA and V ∗

A or VB and
V ∗
B since in situations when both would be well defined they coincide due to (2.1).
Finally, we need a Galerkin scheme for VA which we denote by (Vm)m∈N. That is,

we assume that for all m ∈ N we have Vm ⊆ Vm+1 ⊂ VA and that
⋃

m∈N Vm is dense
in VA. We assume further, without loss of generality, that the dimension of Vm is m.

Assumption B. Let B : VB × Ω → V ∗
B be weakly F0-measurable. Assume

moreover that B is, almost surely, linear, symmetric and let there be μB > 0 and
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cB > 0 such that, almost surely,

〈Bw,w〉 ≥ μB‖w‖2VB
and ‖Bw‖V ∗

B
≤ cB‖w‖VB ∀w ∈ VB .

This means that B is, almost surely, strongly positive and bounded.
Note that with this assumption we can define, for P-almost all ω ∈ Ω , an inner

product on VB by (w, z)B := 〈Bw, z〉 for any w, z ∈ VB . We will denote the norm
associated with the inner product by | · |B := (·, ·)1/2B . This norm is equivalent to
‖ · ‖VB .

Assumption AC. The operators A : VA × Ω → V ∗
A and C : VB × VA × Ω →

l2(H) are weakly F0-measurable. Moreover, we assume that A, is almost surely,
hemicontinuous, i.e., there is Ω0 ∈ F0 with P(Ω0) = 0 and for every ω ∈ Ω \Ω0 the
function ε �→ 〈A(w + εz, ω), v〉 : [0, 1] → R is continuous for any v,w, z ∈ VA.

There is cA > 0 such that, almost surely, the growth condition

‖Aw‖V ∗
A

≤ cA(1 + ‖w‖VA)
p−1 ∀w ∈ VA

is satisfied.
There are μA > 0, λA ≥ 0, λB ≥ 0 and κ ≥ 0 such that, almost surely, the

operators A and C satisfy the monotonicity-like condition

〈Aw − Az, w − z〉 + λA|w − z|2 ≥ 1

2
|C(u, w) − C(v, z)|2l2(H)

− λB |u − v|2B
(2.2)

for any w, z ∈ VA and u, v ∈ VB and the coercivity-like condition

〈Aw,w〉 + λA|w|2 ≥ μA‖w‖p
VA

+ 1

2
|C(u, w)|2l2(H)

− λB |u|2B − κ (2.3)

for any w ∈ VA and u ∈ VB .
The almost sure hemicontinuity of A : VA × Ω → V ∗

A together with the almost
sure monotonicity of A + λA I : VA × Ω → V ∗

A (see (2.2)) imply that A is in fact,
almost surely, demicontinuous (see also Krylov and Rozovskii [19]).

Thegrowth condition and coercivity fromAssumptionAC imply that for anyu ∈ VB

and w ∈ VA,

|C(u, w)|2l2(H)
≤ c(1 + |u|2B + |w|2 + ‖w‖p

VA
). (2.4)

The monotonicity-like condition implies that C is Lipschitz continuous in its first
argument uniformly with respect to its second argument. Indeed for all w ∈ VA and
all u, v ∈ VB we get

|C(u, w) − C(v,w)|l2(H) ≤ √
2λB |u − v|B .
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If the coercivity and monotonicity-like conditions are satisfied then we obtain with
λ := 2max(λA, λB, κ)

2〈Aw − Az, w − z〉 + λ|w − z|2 + λ|u − v|2B ≥ |C(u, w) − C(v, z)|2l2(H)
(2.5)

and

2〈Aw,w〉 + λ(|w|2 + |u|2B + 1) ≥ 2μA‖w‖p
VA

+ |C(u, w)|2l2(H)
. (2.6)

In many applications, the operators A and C would arise separately from various
modelling considerations. In such a situation, it may be useful to see under what
assumptions on A and C , stated independently, would (2.2) and (2.3) hold. To that
end, assume that there are μA > 0 and λ1, λ2 ≥ 0 such that, almost surely, for all
w, z ∈ VA

〈Aw − Az, w − z〉 + λ1|w − z|2 ≥ 0 and 〈Aw,w〉 + λ2|w|2 ≥ μA‖w‖p
VA

.

(2.7)

Assume further that there are λ3, λ4 ≥ 0 such that, almost surely, for all u, v ∈ VB

and w, z ∈ VA

|C(u, w) − C(v, z)|2l2(H)
≤ λ3|u − v|2B + λ4|w − z|2.

With v = z = 0 and κ = |C(0, 0)|2
l2(H)

, we obtain

|C(u, w)|2l2(H)
≤ 2

(
λ3|u|2B + λ4|w|2 + κ

)
.

Then (2.2) and (2.3) follow with a suitable choice of the constants.
Examples of operators satisfying the above assumptions and the corresponding

stochastic partial differential equations can be found in Pardoux [24, Part III, Ch. 3].
Let us present an example where the condition on Lipschitz continuity on bounded
sets as required by Pardoux is not satisfied but the assumptions of this paper hold.

Example 2.1 We consider a bounded domain D in R
d with smooth boundary and

take VA = VB = H1
0 (D), the standard Sobolev space, and H = L2(D). Following

Emmrich [7], we consider ρ : Rd → R
d given by

ρ(z) =
⎧
⎨

⎩

0 if |z| = 0,
|z|−1/2z if |z| ∈ (0, 1),
z otherwise.

It is then easy to check that A : VA → V ∗
A given by

〈Av,w〉 =
∫

D
ρ(∇v) · ∇w dx
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satisfies the hemicontinuity and growth condition of Assumption AC as well as the
monotonicity and coercivity condition (2.7). Moreover it is possible to show that this
operator A does not satisfy the assumption of Lipschitz continuity on bounded subsets
of Pardoux [24].

We say that z̃ is a modification of z ∈ Lγ (X) (γ ∈ [1,∞)) if z(t, ω) = z̃(t, ω) for
(dt × dP)-almost all (t, ω). If X ↪→ H then we say that z̃ is an H -valued continuous
modification of z ∈ Lγ (X) if t �→ z̃(t, ω) : [0, T ] → H is continuous for almost all
ω ∈ Ω and z̃ is a modification of z.

We will use the following notation for stochastic integrals: Given x ∈ L2(H) and
y ∈ L2(l2(H)), we write

∫ t

0
(x(s), y(s)dW (s)) :=

∑

j∈N

∫ t

0
(x(s), y j (s))dWj (s).

Definition 2.2 (Solution) Letu0 ∈ L2(Ω; VB) andv0 ∈ L2(Ω; H)beF0-measurable
and let f ∈ Lq

(
VA

∗). Let there be v ∈ Lp(VA) such that u0 + Kv ∈ L2(VB) and
moreover let there be an H -valued continuous modification ṽ of v. Then v is said to
be a solution to (1.3) if P-almost everywhere, for all t ∈ [0, T ] and for all z ∈ VA

(ṽ(t), z) +
∫ t

0
〈Av(s) + B (u0 + (Kv)(s)) , z〉 ds

= (v0, z) +
∫ t

0
〈 f (s), z〉ds +

∫ t

0

(
z,C(u0 + (Kv)(s), v(s))dW (s)

)
.

We will typically not distinguish between ṽ and v, denoting both by v, to simplify
notation. The following result on the uniqueness of solutions to (1.3) will be proved
in Sect. 6.

Theorem 2.3 (Uniqueness of solution) Let AssumptionsAC andB and let (2.1) hold.
Let v1 and v2 be two solutions to (1.3) in the sense of Definition 2.2. Then

P

(

max
t∈[0,T ] |v1(t) − v2(t)| = 0

)

= 1,

i.e., v1 and v2 are indistinguishable. Moreover, if we let

u1 = u0 + Kv1 and u2 = u0 + Kv2

then

P

(

max
t∈[0,T ] ‖u1(t) − u2(t)‖VB = 0

)

= 1,

i.e., u1 and u2 are also indistinguishable.
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Consider a sequence (m�, r�, N�)�∈N such that m� → ∞, r� → ∞ and N� → ∞
as � → ∞ and let τ� = T/N�. Let (u0�)�∈N be a sequence of F0-measurable random
variables with values in Vm�

such that u0� ∈ L2(Ω; VB) and u0� → u0 in L2(Ω; VB)

as � → ∞. Moreover, let (v0� )�∈N be a sequence of F0-measurable random variables
with values in Vm�

such that v0� ∈ L2(Ω; H) and v0� → v0 in L2(Ω; H) as � → ∞.
For f ∈ Lq

(
VA

∗), we use the approximation

f n := 1

τ�

∫ tn

tn−1

f (t) dt, n = 1, . . . , N� , (2.8)

where we recall that tn = nτ� for n = 0, . . . , N�. Note that for readability we drop
the dependence of tn and f n on N�.

For each (m�, r�, N�), we take ( f n)N�

n=1 and the solution to the scheme (1.4) and
use this to define stochastic processes f�, v� and u�, which will be approximations of
f , v and u, as follows: for n = 1, . . . , N�, let

f�(t) := f n, v�(t) := vn, u�(t) := un if t ∈ (tn−1, tn]. (2.9)

We may set f�(0) = f 1, v�(0) = v1, u�(0) = u1. Note that un and vn indeed
depend on m� and N�.

We see that even if vn and un are Ftn -measurable for each n = 0, 1, . . . , N� then
the processes v� and u� are not (Ft )t∈[0,T ] adapted. Thus wewill not be able to directly
use compactness-based arguments to get weak limits that are adapted. To overcome
this, we will also use the following approximations: for n = 2, . . . , N�, let

v−
� (t) := vn−1, u−

� (t) := un−1 if t ∈ [tn−1, tn) (2.10)

and let v−
� (t) = 0 and u−

� (t) = u0 if t ∈ [0, τ�). We may set v−
� (T ) = vN� , u−

� (T ) =
uN� .

We note that v�(tn) = v−
� (tn) = vn and u�(tn) = u−

� (tn) = un for n = 1, . . . , N�.
If vn and un are Ftn -measurable for each n = 0, 1, . . . , N then the processes v−

� and
u−

� are (Ft )t∈[0,T ] adapted. For v−
� (and u−

� ) we will then be able to obtain weak limits
that are themselves adapted processes. Later, we will show that the weak limits of v−

�

and v� as well as of u
−
� and u� coincide.

We now rewrite (1.4) in an integral form. To that end, define θ+
� (0) := 0 and

θ+
� (t) := tn if t ∈ (tn−1, tn] and n = 1, . . . , N�. Then saying (vn)Nn=1 satisfies (1.4)
with m = m� and τ = τ� is equivalent to

(v�(t), ϕ) +
〈∫ θ+

� (t)

0
(Av�(s) + Bu�(s) − f�(s))ds, ϕ

〉

= (v0� , ϕ) +
(∫ θ+

� (t)

τ�

Cr� (u−
� (s), v−

� (s))dW (s), ϕ

) (2.11)

for all ϕ ∈ Vm�
and for all t ∈ (0, T ].
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The following theorem is the main result of the paper. Recall that λ arises from
Assumptions AC as λ = 2max(λA, λB, κ).

Theorem 2.4 (Existence and convergence) Let Assumptions AC and B and let
(2.1) hold. Let u0 ∈ L2(Ω; VB) and v0 ∈ L2(Ω; H) be F0-measurable and let
f ∈ Lq

(
VA

∗). Then the stochastic evolution equation (1.3) possesses a solution
v ∈ Lp(VA) according to Definition 2.2 with u = u0 + Kv ∈ L2(VB).

Furthermore, consider (m�, N�)�∈N with m� → ∞ and N� → ∞ as � → ∞
such that sup�∈N λτ� < 1. Let (u0�)�∈N ⊂ L2(Ω; VB), (v0� )�∈N ⊂ L2(Ω; H) be
sequences of F0-measurable random variables with values in Vm�

such that u0� → u0
in L2(Ω; VB) and v0� → v0 in L2(Ω; H) as � → ∞. Let ( f�)� ∈ N be given by (2.8)
and (2.9). The numerical scheme (2.11) then admits a unique solution with

u� ⇀ u in L2((0, T ) × Ω; VB) and v� ⇀ v in L p((0, T ) × Ω; VA)

u�(T ) → u(T ) in L2(Ω; VB) and v�(T ) → v(T ) in L2(Ω; H) as � → ∞.

The proof can be briefly summarized as follows: We first need to show that the
fully discretized problem has a unique solution, which is covered by Theorem 3.3.
Then we obtain a priori estimates for the fully discrete problem (Theorem 3.4), so
that we can extract weakly convergent subsequences using compactness arguments
(Lemma 4.3). At this point, the only step left to do is to identify the weak limits from
the nonlinear terms. Convergence of the full sequence of approximations (and not just
of a subsequence) follows because of the uniqueness result.

Remark 2.5 Our results require the assumption that VA ↪→ VB . The need for this
assumption arises from the use of the standard Itô formula for the square of the norm,
which also provides existence of a continuous modification. However, if A, B and
C are deterministic then Pardoux [24, Part III, Chapter 2, Theorem 3.1] proves the
energy equality (4.6) and sufficient regularity without the need to assume VA ↪→ VB .
It remains open whether this approach can be extended to the situation of random and
time-dependent operators.

3 Full discretization: existence, uniqueness and a priori estimates

In this section, we show that the full discretization (1.4) has a unique solution, adapted
to the filtration given, and prove an a priori estimate. The a priori estimate is essential
for the proof of the main result of the paper as this allows us to use compactness argu-
ments to extract weakly convergent subsequences from the sequence of approximate
solutions.

Existence of solutions to the discrete problem will be proved by applying the fol-
lowing lemma.

Lemma 3.1 Let h : Rm → R
m be continuous. If there is R > 0 such that h(v) ·v ≥ 0

whenever ‖v‖Rm = R then there exists v̄ satisfying ‖v̄‖Rm ≤ R and h(v̄) = 0.

Proof The lemma is proved by contradiction fromBrouwer’s fixed point theorem (see,
e.g., [12, Ch. 3, Lemma 2.1]). ��
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To obtain the appropriate measurability of the solution to the discrete problem we
need the following lemma, which is a modification of Gyöngy [13, Lemma 3.8].

Lemma 3.2 Let (S, �) be a measure space. Let f : S × R
m → R

m be a function
that is �-measurable in its first argument for every x ∈ R

m, that is continuous in its
second argument for every α ∈ S and moreover such that for every α ∈ S the equation
f (α, x) = 0 has a unique solution x = g(α). Then g : S → R

m is �-measurable.

Proof Let F be a closed set in Rm . Then

g−1(F) := {α ∈ S : g(α) ∈ F} =
{

α ∈ S : min
x∈F ‖ f (α, x)‖Rm = 0

}

,

since F is closed. But since f = f (α, x) is continuous in the second argument for
every α ∈ S and �-measurable in the first argument for every x ∈ R

m , we see that
g−1(F) ∈ �. ��

Let Wr := (Wr
j ) j∈N and ΔWr,n := (ΔWr,n

j ) j∈N with

Wr
j :=

{
Wj for j = 1, . . . , r ,

0 for j > r
and ΔWr,n

j :=
{

ΔWn
j for j = 1, . . . , r ,

0 for j > r.

We are now ready to prove existence of solutions to the full discretization.

Theorem 3.3 (Existence and uniqueness for full discretization) Let m, N , r ∈ N be
fixed and let AssumptionsAC andB hold.Moreover, letλτ ≤ 1. Then, given Vm-valued
and F0-measurable random variables u0, v0 and right-hand side f ∈ Lq(V ∗

A), the
fully discrete problem (1.4) has a unique solution (vn)Nn=1 in the sense that if (v

n
1 )

N
n=1

and (vn2 )
N
n=1 both satisfy (1.4) then

P

(

max
n=1,...,N

|vn1 − vn2 | = 0

)

= 1.

Furthermore, for all n = 1, . . . , N, the Vm-valued random variables vn are Ftn -
measurable.

Proof We prove existence and uniqueness step by step. Assume that the Vm-valued
random variables v0, v1, . . . , vn−1 already satisfy (1.4) (for all superscripts up to
n − 1). Moreover, assume that vk is Ftk -measurable for k = 1, . . . , n − 1. We will
show that there is an Vm-valued and Ftn -measurable vn satisfying (1.4).

First recall that uk = u0 + τ
∑k

j=1 v j . So (uk)n−1
k=0 is also known. Recall that we

are assuming that the dimension of Vm is m. Let (ϕi )mi=1 be a basis for Vm . Then there
is a one-to-one correspondence between any w ∈ Vm and w = (w1, . . . , wm)T ∈ R

m

given by w = ∑m
i=1 wiϕi . We use this to define a norm on Rm by ‖w‖Rm := ‖w‖VA .

Let Ω ′ ∈ F0 be such that P(Ω ′) = 1 and such that, for all ω ∈ Ω ′, t �→ 〈A(w +
t z, ω), v〉 is continuous for any w, z ∈ VA, the joint monotonicity-like condition and
the coercivity condition on A and C are satisfied and B is linear, symmetric and
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strongly positive. This is possible due to Assumptions AC and B. For an arbitrary
ω ∈ Ω ′ and an arbitrary v ∈ Vm and hence for some v = (v1, . . . , vm)T ∈ R

m , define
h : Ω ′ × R

m → R
m , component-wise, for l = 1, . . . ,m, as

h(ω, v)l := 1

τ
(v − vn−1(ω), ϕl) + 〈A(v, ω), ϕl〉 + 〈B(un−1(ω) + τv, ω), ϕl〉

− 〈 f n(ω), ϕl〉 −
(

Cr (un−1(ω), vn−1(ω), ω))
ΔWn(ω)

τ
, ϕl

)

.

The first step in showing that (1.4) has a solution is to show that for each ω ∈ Ω ′ there
is some v such that h(ω, v) = 0. To that end, we would like to apply Lemma 3.1. We
see that

h(ω, v) · v = 1

τ
(v − vn−1(ω), v) + 〈A(v, ω), v〉 + 〈B(un−1(ω) + τv, ω), v〉

− 〈 f n(ω), v〉 −
(

C(un−1(ω), vn−1(ω), ω)
ΔWr,n(ω)

τ
, v

)

.

Now we wish to find large R(ω) > 0, which also depends on m, such that if ‖v‖VA =
R(ω) then h(ω, v) · v ≥ 0. Note that since VA ↪→ H , we get

(v − vn−1(ω), v) ≥ |v|2 − c|vn−1(ω)|‖v‖VA .

The coercivity in Assumption AC together with Assumption B imply

h(ω, v) · v ≥ 1

τ
(|v|2 − c|vn−1(ω)|‖v‖VA ) + μA‖v‖p

VA
+ 1

2
|C(0, v, ω)|2l2(H)

− λA|v|2 − κ − ‖B(un−1(ω), ω)‖V ∗
B
‖v‖VB + τ 〈B(v, ω), v〉

− ‖ f n(ω)‖V ∗
A
‖v‖VA−|C(un−1(ω), vn−1(ω), ω)|l2(H)|v|

∣
∣
∣
∣
ΔWr,n(ω)

τ

∣
∣
∣
∣.

Note that Vm is finite dimensional and so there is cm > 0 such that ‖ϕ‖VB ≤ cm‖ϕ‖VA

for all ϕ ∈ Vm . Thus, noting also that 2λAτ ≤ λτ ≤ 1, we find that

h(ω, v) · v ≥ ‖v‖VA

(

μA‖v‖p−1
VA

− c|vn−1(ω)| − cm‖B(un−1(ω), ω)‖V ∗
B

− ‖ f n(ω)‖V ∗
A

− c|C(un−1(ω), vn−1(ω), ω)|l2(H)

∣
∣
∣
∣
ΔWr,n(ω)

τ

∣
∣
∣
∣

)

− κ.

Now choose R(ω) large such that R(ω) ≥ κ and also

μAR(ω)p−1 − c|vn−1(ω)| − cm‖B(un−1(ω), ω)‖V ∗
B

− ‖ f n(ω)‖V ∗
A

− c|C(un−1(ω), vn−1(ω), ω)|l2(H)

∣
∣
∣
∣
ΔWr,n(ω)

τ

∣
∣
∣
∣ ≥ 1.
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Then, if ‖v‖VA = R(ω), we have h(ω, v) · v ≥ 0.
Note that ω ∈ Ω ′ and on this set we have linearity and boundedness of B and

demicontinuity of A (this follows from the monotonicity-like assumption on A and
the hemicontinuity assumption on A). Thus the function h(ω, ·) is continuous and
Lemma 3.1 guarantees existence of v such that h(ω, v) = 0.

Next we show that the zero of h(ω, ·) is unique. Assume that there are two distinct
v1 and v2 such that h(ω, v1) = 0 and h(ω, v2) = 0. Then

0 =τ (h(ω, v1) − h(ω, v2), v1 − v2) = |v1 − v2|2
+ τ 〈A(v1, ω) − A(v2, ω), v1 − v2〉 + τ 2〈B(v1, ω) − B(v2, ω), v1 − v2〉.

We recall that (2.2) implies themonotonicity of A+λA I and that B is strongly positive.
This yields

0 ≥ |v1 − v2|2 − λAτ |v1 − v2|2 + μBτ 2‖v1 − v2‖2VB
,

which shows that v1 and v2 cannot be distinct since λAτ ≤ 1/2. Hence the zero to
h(ω, ·) is unique. Let vn(ω) := v for ω ∈ Ω ′ and vn(ω) = 0 for ω ∈ Ω \ Ω ′. By
Lemma 3.2, we see that vn is Ftn -measurable. ��

Now we need to obtain the a priori estimate.

Theorem 3.4 (Discrete a priori estimates) Let m, N , r ∈ N be fixed and let Assump-
tions AC and B hold. Moreover, for f ∈ Lq(V ∗

A) let ( fn)Nn=1 be given by (2.8) and
let u0 and v0 be Vm-valued and F0-measurable and such that u0 ∈ L2(Ω; H) and
v0 ∈ L2(Ω; VB). Then for all n = 1, . . . , N

E

⎡

⎣|vn|2 + |un|2B +
n∑

j=1

|u j − u j−1|2B
⎤

⎦

≤ E

⎡

⎣|v0|2 + |u0|2B + 2τ
n∑

j=1

〈 f j − Av j , v j 〉 + τ

n∑

j=1

|Cr (u j , v j )|2l2(H)

⎤

⎦ .

(3.1)

Moreover, if λτ < 1 then

E

⎡

⎣|vn|2 + |un|2B + μAτ

n∑

j=1

‖v j‖p
VA

+
n∑

j=1

|u j − u j−1|2B
⎤

⎦

≤ ceλT (1−λτ)−1
(
E

[
|v0|2 + |u0|2B

]
+ ‖ f ‖qLq ((0,T )×Ω;V ∗

A)
+ T

)
.

(3.2)

Proof By taking ϕ = vn in (1.5) and using the relation

(a − b, a) = 1

2
(|a|2 − |b|2 + |a − b|2),
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we get, for j = 1, . . . , N ,

1

2τ

(|v j |2 − |v j−1|2 + |v j − v j−1|2)+ 〈Av j + Bu j , v j 〉

= 〈 f j , v j 〉 +
(

C(u j−1, v j−1)
ΔWr, j

τ
, v j

)

.

(3.3)

We note that 〈Bu j , v j 〉 = (u j , v j )B and so

2τ
n∑

j=1

(u j , v j )B = 2
n∑

j=1

(u j , u j − u j−1)B = |un|2B − |u0|2B +
n∑

j=1

|u j − u j−1|2B .

Thus, after multiplying by 2τ and summing up from j = 1 to n in (3.3), we find

|vn|2 +
n∑

j=1

|v j − v j−1|2 + |un|2B +
n∑

j=1

|u j − u j−1|2B + 2τ
n∑

j=1

〈Av j , v j 〉

= |v0|2 + |u0|2B + 2τ
n∑

j=1

〈 f j , v j 〉 + 2
n∑

j=1

(C(u j−1, v j−1)ΔWr, j , v j ).

(3.4)

Using Cauchy–Schwarz’s and Young’s inequalities, we obtain that

(C(u j−1, v j−1)ΔWr, j , v j )

= (C(u j−1, v j−1)ΔWr, j , v j−1) + (C(u j−1, v j−1)ΔWr, j , v j − v j−1)

≤ (C(u j−1, v j−1)ΔWr, j , v j−1) + 1

2
|C(u j−1, v j−1)ΔWr, j |2 + 1

2
|v j − v j−1|2.

By the assumption on (Ft ) and W , ΔWr, j is independent of Ft j−1 and hence

E(C(u j−1, v j−1)ΔWr, j , v j−1) = 0.

Furthermore, a straightforward calculation shows that

E|C(u j−1, v j−1)ΔWr, j |2 =
{
0 if j = 1,
τE|Cr (u j−1, v j−1)|2

l2(H)
if j = 2, . . . , N .

Using this and taking expectation in (3.4) leads to

E

⎡

⎣|vn|2 + |un|2B +
n∑

j=1

|u j − u j−1|B2
⎤

⎦

≤ E

⎡

⎣|v0|2 + |u0|2B + 2τ
n∑

j=1

〈 f j − Av j , v j 〉 + τ

n∑

j=2

|Cr (u j−1, v j−1)|2l2(H)

⎤

⎦
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At this point, we only have to observe that

n∑

j=2

|Cr (u j−1, v j−1)|2l2(H)
≤

n∑

j=1

|Cr (u j , v j )|2l2(H)

to obtain the first claim of the theorem.
Now we apply the coercivity condition in Assumption AC and (2.6) to get, for any

j = 1, . . . , N ,

−2〈Av j , v j 〉 ≤ −2μA‖v j‖p
VA

− |C(u j , v j )|2l2(H)
+ λ|v j |2 + λ|u j |2B + λ.

Thus, again with Young’s inequality, we find

E

⎡

⎣|vn|2 + |un|2B +
n∑

j=1

|u j − u j−1|2B + μAτ

n∑

j=1

‖v j‖p
VA

⎤

⎦

≤ E

⎡

⎣|v0|2 + |u0|2B + cτ
n∑

j=1

‖ f j‖qV ∗
A

+ λτ

n∑

j=1

(1 + |v j |2 + |u j |2B)

⎤

⎦ .

Then, since λτ < 1,

E

⎡

⎣|vn|2 + |un|2B +
n∑

j=1

|u j − u j−1|2B + μAτ

n∑

j=1

‖v j‖p
VA

⎤

⎦

≤ 1

1 − λτ
E

⎡

⎣|v0|2 + |u0|2B + cτ
n∑

j=1

‖ f j‖qV ∗
A

+ λτ

n−1∑

j=1

(|v j |2 + |u j |2B) + λT

⎤

⎦ .

Since f ∈ Lq(VA), we have

E

⎡

⎣τ

N∑

j=1

‖ f j‖qV ∗
A

⎤

⎦ ≤ E

∫ T

0
‖ f (t)‖qV ∗

A
dt = ‖ f ‖qLq ((0,T )×Ω;V ∗

A)
.

Finally, we can apply a discrete Gronwall lemma to obtain the second claim of the
theorem and thus conclude the proof. ��

4 Weak limits from compactness

In this section, we consider a sequence of approximate problems (2.11) and use com-
pactness arguments and the a priori estimate of Theorem 3.4 to show that weak limits
of the piecewise-constant-in-time prolongations of the fully discrete approximate solu-
tions exist and that they satisfy an equation closely resembling (1.3).
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Recall that we have constructed v−
� , v� and u

−
� , u� in (2.9) and (2.10) by interpolat-

ing the solution of the fully discrete problem (1.4). The following corollary is a direct
consequence of the a priori estimates of Theorem 3.4.

Corollary 4.1 Let the assumptions of Theorem 2.4 be fulfilled. Then

sup
t∈[0,T ]

E|v−
� (t)|2 ≤ c, sup

t∈[0,T ]
E|u−

� (t)|2B ≤ c and E

∫ T

0
‖v−

� (t)‖p
VA
dt ≤ c,

sup
t∈[0,T ]

E|v�(t)|2 ≤ c, sup
t∈[0,T ]

E|u�(t)|2B ≤ c and E

∫ T

0
‖v�(t)‖p

VA
dt ≤ c.

(4.1)

Furthermore,

E

∫ T

0
‖Av−

� (t)‖qV ∗
A
dt ≤ c, E

∫ T

0
‖Av�(t)‖qV ∗

A
dt ≤ c,

E

∫ T

0
‖Bu�(t)‖2V ∗

B
dt ≤ c,

E

∫ T

0
|C(u−

� (t)), v−
� (t)|2l2(H)

dt ≤ c, E

∫ T

0
|C(u�(t)), v�(t)|2l2(H)

dt ≤ c.

(4.2)

Finally,

E

∫ T

0
|u�(t) − u−

� (t)|2B dt ≤ cτ�. (4.3)

Proof In view of the assumptions, the right-hand side of (3.2) is uniformly bounded
with respect to �. This immediately implies (4.1). The assumptions on the growth of A
and B together with (2.4) and the first part of the corollary imply (4.2). Finally, (4.3)
is a consequence of (3.2) and the observation that

E

∫ T

0
|u�(t) − u−

� (t)|2B dt = τ�E

N�∑

k=1

|uk − uk−1|2B .

��
Wewill need the following lemma to match the limits of the approximations v� of v

with their “delayed” and progressively measurable counterparts v−
� , see also Gyöngy

and Millet [15].

Lemma 4.2 Let X be a separable and reflexive Banach space and let p̄ ∈ (1,∞).

Consider
(
(xn� )

N�

n=0

)

�∈N with xn� ∈ L p̄(Ω; X) for all n = 0, 1, . . . , N� and � ∈ N.

Consider the piecewise-constant-in-time processes x� and x
−
� with x�(tn) = x−

� (tn) =
xn� and

x�(t) = xn if t ∈ (tn−1, tn) and x−
� (t) = xn−1 if t ∈ (tn−1, tn)
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for n = 1, . . . , N�, � ∈ N. Assume that (x�)�∈N and (x−
� )�∈N are bounded in

L p̄((0, T ) × Ω; X). Then there is a subsequence denoted by �′ and x, x− ∈
L p̄((0, T ) × Ω; X) such that x�′ ⇀ x and x−

�′ ⇀ x− in L p̄((0, T ) × Ω; X) as
�′ → ∞ with x = x−.

Proof The existence of a subsequence and of x, x− ∈ L p̄((0, T ) × Ω; X) such that
x�′ ⇀ x and x−

�′ ⇀ x− in L p̄((0, T ) × Ω; X) as �′ → ∞ follows from standard
compactness arguments since L p̄((0, T ) × Ω; X) is reflexive. It remains to show that
x = x−.

To that end, we will employ the averaging operator S� : Lq̄((0, T ) × Ω; X∗) →
Lq̄((0, T ) × Ω; X∗) (1/ p̄ + 1/q̄ = 1) defined by

(S�y)(t) :=

⎧
⎪⎨

⎪⎩

1

τ�

∫ θ+
� (t+τ�)

θ+
� (t)

y(s)ds if t ∈ [0, T − τ�],
0 otherwise.

It can be shown for all y ∈ Lq̄((0, T ) × Ω; X∗), using standard arguments, that
S�y → y in Lq̄((0, T ) × Ω; X∗) as � → ∞.

Let y ∈ Lq̄((0, T ) × Ω; X∗). A short calculation then reveals that

∫ T

0
〈(S�y)(t), x�(t)〉dt =

∫ T

τ�

〈y(t), x−
� (t)〉dt (4.4)

and hence

E

∫ T

0
〈y(t), x(t) − x−(t)〉 dt = E

∫ T

0
〈y(t), x(t) − x−

�′ (t)〉 dt

+ E

∫ T

0
〈y(t), x−

�′ (t) − x�′(t)〉 dt + E

∫ T

0
〈y(t), x�′(t) − x−(t)〉 dt.

The first and last integral on the right-hand side converge to 0 as �′ → ∞. We observe
that due to (4.4)

E

∫ T

0
〈y(t), x−

�′ (t) − x�′(t)〉 dt = E

∫ τ�

0
〈y(t), x−

�′ (t)〉 dt

+ E

∫ T

0
〈(S�′ y)(t) − y(t), x�′(t)〉 dt.

The first integral on the right-hand side converges to 0 since τ� → 0 and since (x−
�′ )�∈N

is bounded in L p̄((0, T )×Ω; X). The second integral on the right-hand side converges
to 0 since S�′ y → y in Lq̄((0, T )×Ω; X∗) as �′ → ∞ and since (x�′)�∈N is bounded
in L p̄((0, T ) × Ω; X). This finally shows that x = x− in L p̄((0, T ) × Ω; X). ��
Lemma 4.3 Let the assumptions of Theorem 2.4 be fulfilled. Then there is a subse-
quence denoted by �′ such that:
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(i) There is v ∈ Lp(VA) such that v−
�′ ⇀ v and v�′ ⇀ v in L p((0, T ) × Ω; VA).

There is ξ ∈ L2(Ω; H) such that v−
�′ (T ) = v�′(T ) ⇀ ξ in L2(Ω; H) as �′ → ∞.

(ii) There is u ∈ L2(VB) such that u−
�′ ⇀ u and u�′ ⇀ u in L2((0, T ) × Ω; VB)

as �′ → ∞. Furthermore, u − u0 = Kv in Lp(VA) and the paths of u − u0
are absolutely continuous. Finally, u−

�′ (T ) = u�′(T ) ⇀ u(T ) in L2(Ω; VB) and
u(0) = u0.

(iii) There is a ∈ Lq(V ∗
A) such that Av�′ ⇀ a in Lq((0, T ) × Ω; V ∗

A). There is
c̄ ∈ L2(l2(H)) such that Cr�′ (u−

�′ , v
−
�′ ), C(u�′ , v�′) and Cr�′ (u�′ , v�′) all converge

weakly to c̄ in L2((0, T ) × Ω; l2(H)) as �′ → ∞.

Proof We begin by observing that L p((0, T ) × Ω; VA), L(VA) and L2(Ω; H) are
reflexive. Then, due to Corollary 4.1 and due to e.g. Brézis [3, Theorem 3.18], there
are v ∈ L p((0, T ) × Ω; VA) v− ∈ L(VA) and ξ ∈ L2(Ω; H) and a subsequence
denoted by �′ such that v−

�′ ⇀ v− and v�′ ⇀ v in L p((0, T ) × Ω; VA) as well as
v�′(T ) ⇀ ξ in L2(Ω; H) as �′ → ∞. To complete the proof of the first statement,
we simply need to apply Lemma 4.2 to see that v = v−.

Using the same argument as in the first part of the proof, we obtain u−
�′ ⇀ u and

u�′ ⇀ u in L2((0, T ) × Ω; VB) with u ∈ L2(VB) as well as u�′(T ) ⇀ η with
η ∈ L2(Ω, VB) as �′ → ∞. By the way, (4.3) implies that

‖u� − u−
� ‖L2((0,T )×Ω;VB ) → 0 as � → ∞,

which also shows that the weak limits of u� and u−
� coincide.

Nowwewould like to show that u−u0 = Kv. A straightforward calculation shows
that

u� − u0� = Kv� + e�, where e�(t) :=
∫ θ+

� (t)

t
v�(s)ds.

Another straightforward calculation also shows that Kv�′ ⇀ Kv in L p((0, T ) ×
Ω; VA) since v�′ ⇀ v in L p((0, T ) × Ω; VA) as �′ → ∞. Due to Theorem 3.4, we
have

‖e�‖p
L p((0,T )×Ω;VA)

= E

∫ T

0

∥
∥
∥
∥

∫ θ+
� (t)

t
v�(s)ds

∥
∥
∥
∥

p

VA

dt

= E

N�∑

j=1

∫ t j

t j−1

(t j − t)p‖v j‖p
VA
dt

≤ τ
p
� Eτ�

N�∑

j=1

‖v j‖p
VA

≤ cτ p
� → 0 as � → ∞.

It follows that
u�′ − u0�′ = Kv�′ + e�′ ⇀ Kv

in L p((0, T )×Ω; VA) as �′ → ∞, which shows that u−u0 = Kv in view of u�′ ⇀ u
in L2((0, T ) × Ω; VB) as �′ → ∞ and u0� → u0 in L2(Ω; VB) as � → ∞.
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Hence almost all paths of u − u0 are absolutely continuous as functions mapping
[0, T ] into VA. Moreover, u(0) = u0 since (Kv)(0) = 0.

To complete the proof of the second statement of the lemma, we have to show that
η = u(T ). Again, a straightforward calculation shows that (Kv�′)(T ) ⇀ (Kv)(T ) in
L p(Ω; VA) as �′ → ∞ since for all g ∈ Lq(Ω; V ∗

A)

E 〈g, (Kv�′)(T ) − (Kv)(T )〉 = E

∫ T

0
〈g, v�′(t) − v(t)〉dt

and since v�′ ⇀ v in L p((0, T ) × Ω; VA) as �′ → ∞. Therefore, we find that
η − u0 = (Kv)(T ) = u(T ) − u0.

The second part of Corollary 4.1 (see (4.2)) implies (iii) with the same arguments
as before. In particular, the weak limits of Av−

�′ and of Cr�′ (u−
�′ , v

−
�′ ) are progressively

measurable and thus a ∈ Lq(V ∗
A) as well as c̄ ∈ L2(l2(H)). Indeed, (4.2) implies that

∞∑

j=r�′
E

∫ T

0
|C j (u�′, v�′)|2dt → 0

as �′ → ∞. This in turn implies that

‖Cr�′ (u�′ , v�′) − C(u�′ , v�′)‖L2((0,T )×Ω;l2(H)) → 0.

Using this observation allows us to show that the weak limits of Cr�′ (u�′ , v�′) and
C(u�′ , v�′) coincide in L2((0, T ) × Ω; l2(H)). Moreover, due to Lemma 4.2, the
weak limits of Cr�′ (u�′ , v�′) and Cr�′ (u−

�′ , v
−
�′ ) also coincide. ��

At this point, we are ready to take the limit in (2.11) along �′ → ∞.

Lemma 4.4 Let the assumptions of Theorem2.4be fulfilled. Then for (dt×dP)-almost
all (t, ω) ∈ (0, T ) × Ω

v(t) +
∫ t

0
a(s)ds +

∫ t

0
Bu(s)ds = v0 +

∫ t

0
f (s)ds +

∫ t

0
c̄(s)dW (s) in V ∗

A,(4.5)

and there is an H-valued continuous modification of v (which we denote by v again)
such that for all t ∈ [0, T ]

|v(t)|2 + |u(t)|2B = |v0|2 + |u0|2B +
∫ t

0

[
2〈 f (s) − a(s), v(s)〉 + |c̄(s)|2]ds

+ 2
∫ t

0
(v(s), c̄(s)dW (s)).

(4.6)

Finally, ξ = v(T ) and thus v�′(T ) ⇀ v(T ) in L2(Ω; H) as �′ → ∞.
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Proof In what follows, we only write � instead of �′. Let us fix m ≤ m� and take
ϕ = ψ(t)ϕ̄ in (2.11) with ϕ̄ ∈ Vm and ψ ∈ L p((0, T ) × Ω;R). Integrating from 0 to
T and taking the expectation then leads to

E

∫ T

0

[

(v�(t), ϕ(t)) +
〈∫ θ+

� (t)

0
(Av�(s) + Bu�(s))ds, ϕ(t)

〉]

dt

= E

∫ T

0

[

(v0� , ϕ(t)) +
〈∫ θ+

� (t)

0
f�(s)ds, ϕ(t)

〉

+
(∫ θ+

� (t)

τ�

Cr� (u−
� (s), v−

� (s))dW (s), ϕ(t)

)]

dt.

We subsequently see that

E

∫ T

0
[(v�(t), ϕ(t)) + 〈(K Av�)(t), ϕ(t)〉 + 〈(K Bu�)(t), ϕ(t)〉] dt

= E

∫ T

0

[
(v0� , ϕ(t)) + 〈(K f�)(t), ϕ(t)〉

+
(∫ t

0
Cr� (u−

� (s), v−
� (s))dW (s), ϕ(t)

)]

dt + R1
� + R2

� + R3
� ,

(4.7)

where

R1
� := E

∫ T

0

〈∫ θ+
� (t)

t
( f�(s) − Av�(s) − Bu�(s))ds, ϕ(t)

〉

dt,

R2
� := E

∫ T

0

(∫ τ�

0
C(u−

� (s), v−
� (s))dWr� (s), ϕ(t)

)

dt,

R3
� := E

∫ T

0

(∫ θ+
� (t)

t
C(u−

� (s), v−
� (s))dWr� (s), ϕ(t)

)

dt.

We will now show that R1
� , R2

� , R3
� → 0 as � → ∞.

Because of

R1
� = E

N�∑

j=1

∫ t j

t j−1

〈∫ t j

t
( f j − Av j − Bu j )ds, ϕ(t)

〉

dt

= E

∫ T

0
(θ+

� (t) − t) 〈 f�(t) − Av�(t) − Bu�(t), ϕ(t)〉 dt,

we obtain, using Hölder’s inequality and Corollary 4.1,

|R1
� | ≤ τ�E

∫ T

0
|〈 f�(t) − Av�(t) − Bu�(t), ϕ(t)〉| dt
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≤ τ�

((‖ f�‖Lq ((0,T )×Ω;V ∗
A) + ‖Av�‖Lq ((0,T )×Ω;V ∗

A)

)‖ϕ‖L p((0,T )×Ω;VA)

+ ‖Bu�‖L2((0,T )×Ω;V ∗
B )‖ϕ‖L2((0,T )×Ω;VB )

) → 0

as � → ∞. UsingHölder’s inequality and Itô’s isometry (see, e.g., Prévôt and Röckner
[26, Section 2.3]), we find with u−

� (t) = u0� and v−
� (t) = 0 if t ∈ [0, τ�) that

|R2
� | ≤ E

∫ T

0

∣
∣
∣
∣

∫ τ�

0
C(u−

� (s), v−
� (s))dWr� (s)

∣
∣
∣
∣|ϕ(t)|dt

≤
(

E

∫ T

0

∣
∣
∣
∣

∫ τ�

0
C(u0�, 0)dW

r� (s)

∣
∣
∣
∣

2

dt

)1/2

‖ϕ‖L2((0,T )×Ω;H)

=
(

E

∫ T

0

∫ τ�

0
|C(u0�, 0)|2l2(H)

dsdt

)1/2

‖ϕ‖L2((0,T )×Ω;H)

= (τ�T )1/2
(
E|C(u0�, 0)|2l2(H)

)1/2 ‖ϕ‖L2((0,T )×Ω;H) → 0

as � → ∞. Similarly, using also Corollary 4.1, we see that

|R3
� | ≤

(

E

∫ T

0

∣
∣
∣
∣

∫ θ+
� (t)

t
C(u−

� (s), v−
� (s))dWr� (s)

∣
∣
∣
∣

2

dt

)1/2

‖ϕ‖L2((0,T )×Ω;H)

=
(

E

∫ T

0

∫ θ+
� (t)

t

∣
∣
∣
∣C(u−

� (s), v−
� (s))

∣
∣
∣
∣

2

l2(H)

dsdt

)1/2

‖ϕ‖L2((0,T )×Ω;H)

=
(

E

∫ T

0
(θ+

� (t) − t)

∣
∣
∣
∣C(u−

� (t), v−
� (t))

∣
∣
∣
∣

2

l2(H)

dt

)1/2

‖ϕ‖L2((0,T )×Ω;H)

≤ τ
1/2
�

(

E

∫ T

0

∣
∣
∣
∣C(u−

� (t), v−
� (t))

∣
∣
∣
∣

2

l2(H)

dt

)1/2

‖ϕ‖L2((0,T )×Ω;H) → 0

as � → ∞.
Wewould now like to let � → ∞ in (4.7). A simple calculation shows that K Av� ⇀

Ka in Lq((0, T )×Ω; V ∗
A) as � → ∞ since Av� ⇀ a in Lq((0, T )×Ω; V ∗

A) as � →
∞. Analogously, we observe that K Bu� ⇀ K Bu in L2((0, T ) × Ω; V ∗

B) as � → ∞
since u� ⇀ u in L2((0, T ) × Ω; VB) and thus Bu� ⇀ Bu in L2((0, T ) × Ω; V ∗

B) as
� → ∞ (note that B is linear bounded and thus weakly-weakly continuous).

The stochastic integral is a linear bounded operatormappingL2(l2(H)) intoL2(H).
Indeed, by Itô’s isometry (see again Prévôt and Röckner [26, Section 2.3]), we have
for any g ∈ L2(l2(H))

∥
∥
∥
∥

∫ ·

0
g(s)dW (s)

∥
∥
∥
∥

2

L2((0,T )×Ω;H)

= E

∫ T

0

∫ t

0
|g(s)|2l2(H)

dsdt

≤ T ‖g‖2L2((0,T )×Ω;l2(H))
.
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Hence the stochastic integral maps weakly convergent sequences in L2(l2(H)) into
weakly convergent sequences in L2(H). With Lemma 4.3, we thus obtain

E

∫ T

0

(∫ t

0
Cr� (u−

� (s), v−
� (s))dW (s), ϕ(t)

)

dt → E

∫ T

0

(∫ t

0
c̄(s)dW (s), ϕ(t)

)

dt

as � → ∞.
So, taking the limit in (4.7) as � → ∞ and using also v� ⇀ v in L2((0, T )×Ω; H),

v0� → v0 in L2(Ω; H) and f� → f in Lq((0, T ) × Ω; V ∗
A) as � → ∞ (the latter can

be shown by standard arguments), we arrive at

E

∫ T

0

[

(v(t), ϕ(t)) +
〈∫ t

0
a(s)ds, ϕ(t)

〉

+
〈∫ t

0
Bu(s)ds, ϕ(t)

〉]

dt

= E

∫ T

0

[

(v0, ϕ(t)) +
〈∫ t

0
f (s)ds, ϕ(t)

〉

+
(∫ t

0
c̄(s)dW (s), ϕ(t)

)]

dt,

which holds for all ϕ = ψϕ̄ with ψ ∈ L p((0, T ) × Ω;R) and ϕ̄ ∈ Vm . As (Vm)m∈N
is a Galerkin scheme for VA, the above equation indeed holds for ϕ = ψϕ̄ with any
ϕ̄ ∈ VA ↪→ VB . This proves (4.5).

Now we need to use VA ↪→ VB . With this assumption, we can apply the Itô
formula for the square of the norm (see, e.g., Krylov and Rozovskii [19, Theorem 3.1
and Section 2] or Prévôt and Röckner [26, Theorem 4.2.5]). Thus we conclude that
v has an H -valued continuous modification (which we label v again) such that (4.5)
holds for all t ∈ [0, T ] and

|v(t)|2 − |v0|2 =
∫ t

0

[
2〈 f (s) − a(s) − Bu(s), v(s)〉 + |c(s)|2]ds

+ 2
∫ t

0
(v(s), c(s)dW (s)).

With

∫ t

0
〈Bu(s), v(s)〉ds =

∫ t

0
〈B(u0 + (Kv)(s)), v(s)〉ds

= 〈Bu0, (Kv)(t)〉 +
∫ t

0

∫ s

0
〈Bv(σ ), v(s)〉dσds

= 〈Bu0, (Kv)(t)〉 +
∫ t

0

∫ t

σ

〈Bv(σ ), v(s)〉dsdσ

= 〈Bu0, (Kv)(t)〉 + 〈B(Kv)(t), (Kv)(t)〉
−
∫ t

0
〈Bv(σ ), (Kv)(σ )〉dσ

= 〈B(u(t) + u0), (u(t) − u0)〉 −
∫ t

0
〈Bu(s), v(s)〉ds
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and thus

2
∫ t

0
〈Bu(s), v(s)〉ds = |u(t)|2B − |u0|2B, (4.8)

we arrive at (4.6).
Recall that ξ is the weak limit of v�(T ) in L2(Ω; H). Using a similar limiting

argument as above, we obtain that

ξ +
∫ T

0
a(s) ds +

∫ T

0
Bu(s) ds = v0 +

∫ T

0
f (s) ds +

∫ T

0
c̄(s) dW (s)

with the equality holding almost surely in H . This, together with the knowledge that
v has an H -valued continuous modification and with (4.5), implies that ξ = v(T ). ��

5 Identifying the limits in the nonlinear terms: proof of convergence and
existence

In this section, we continue the considerations of the previous section and we will use
a variant of a well known monotonicity argument to identify a with Av and c with
C(u, v). This will conclude the proof of the main theorem of the paper. We will need
the following observation.

Lemma 5.1 Let a and b be real-valued integrable functions such that for all t ∈ [0, T ]

a(t) ≤ a(0) +
∫ t

0
b(s)ds. (5.1)

Then for all κ ≥ 0 and for all t ∈ [0, T ]

e−κt a(t) + κ

∫ t

0
e−κsa(s)ds ≤ a(0) +

∫ t

0
e−κsb(s)ds. (5.2)

Moreover, if equality holds in (5.1) then equality also holds in (5.2).

Proof Using the assumption and integrating by parts, we find

e−κt a(t) +
∫ t

0
κe−κsa(s)ds ≤ e−κt a(0) + e−κt

∫ t

0
b(s)ds

+
∫ t

0
κe−κs

[

a(0) +
∫ s

0
b(u)du

]

ds = a(0) +
∫ t

0
e−κsb(s)ds.

This proves the assertion. ��
Proof of Theorem 2.4 Let

ϕ�(t) :=
{
E(|v�(t)|2 + |u�(t)|2B) if t ∈ (0, T ],
E(|v0� |2 + |u0�|2B) if t = 0.
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Then from Theorem 3.4, in particular (3.1), we find for all t ∈ [0, T ]

ϕ�(t) ≤ ϕ�(0) + E

∫ t

0

[
2〈 f�(s) − Av�(s), v�(s)〉

+ |Cr� (u�(s), v�(s))|2l2(H)

]
ds + R�(t),

where

R�(t) := E

∫ θ+
� (t)

t

[
2〈 f�(s) − Av�(s), v�(s)〉 + |Cr� (u�(s), v�(s))|2l2(H)

]
ds.

Note that R�(0) = R�(T ) = 0. From Lemma 5.1, we see that

e−λTϕ�(T ) ≤ ϕ�(0) − λ

∫ T

0
e−λsϕ�(s)ds

+ E

∫ T

0
e−λs[2〈 f�(s) − Av�(s), v�(s)〉 + |Cr� (u�(s), v�(s))|2l2(H)

]
ds + R̄�,

(5.3)

where R̄� := λ
∫ T
0 e−λs |R�(s)|ds. We will show that R̄� → 0 as � → ∞. Indeed,

R̄� ≤ λE

∫ T

0

∫ θ+
� (t)

t

∣
∣2〈 f�(s) − Av�(s), v�(s)〉 + |C(u�(s), v�(s))|2l2(H)

∣
∣dsdt

≤ cτ�E

∫ T

0

[
2
(
‖ f�(t)‖V ∗

A
+ ‖Av�(t)‖V ∗

A

)
‖v�(t)‖VA + |C(u�(t), v�(t))|2l2(H)

]
dt

≤ cτ�,

since the integrand is piecewise constant in time and since we can apply Young’s
inequality and Corollary 4.1.

Nowweare ready to apply themonotonicity-like assumption (2.5). Letw ∈ Lp(VA)

and let z ∈ L2(VB). We see that

E

∫ T

0
e−λs〈Av�(s), v�(s)〉ds

= E

∫ T

0
e−λs〈Av�(s) − Aw(s), v�(s) − w(s)〉ds

+E

∫ T

0
e−λs[〈Aw(s), v�(s) − w(s)〉 + 〈Av�(s), w(s)〉]ds

≥ 1

2
E

∫ T

0
e−λs[|C(u�(s), v�(s)) − C(z(s), w(s))|2l2(H)

− λ|v�(s) − w(s)|2 − λ|u�(s) − z(s)|2B
]
ds

+ E

∫ T

0
e−λs[〈Aw(s), v�(s) − w(s)〉 + 〈Av�(s), w(s)〉]ds.
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Then from (5.3), we can deduce that

e−λT
E
(|v�(T )|2 + |u�(T )|2B

)

≤ E
(|v0� |2 + |u0�|2B

)− λ

∫ T

0
e−λs

E
(|v�(s)|2 + |u�(s)|2B

)
ds

+E

∫ T

0
e−λs[2〈 f�(s) − Av�(s), v�(s)〉 + |C(u�(s), v�(s))|2l2(H)

]
ds + R̄�

≤ E
(|v0� |2 + |u0�|2B

)+ 2E
∫ T

0
e−λs〈 f�(s), v�(s)〉ds

+E

∫ T

0
e−λs[2

(
C(u�(s), v�(s)),C(z(s), w(s))

)
l2(H)

− |C(z(s), w(s))|2l2(H)
− 2λ(v�(s), w(s)) + λ|w(s)|2

− 2λ(u�(s), z(s))B + λ|z(s)|2B
]
ds

−E

∫ T

0
2e−λs[〈Aw(s), v�(s) − w(s)〉 + 〈Av�(s), w(s)〉]ds + R̄�. (5.4)

We can now take the limit inferior along the subsequence �′. Due to Lemma 4.3 and
due to the weak sequential lower-semicontinuity of the norm, we see that

e−λT
E
(|v(T )|2 + |u(T )|2B

) ≤ lim inf
�′→∞

e−λT
E
(|v�′(T )|2 + |u�′(T )|2B

)

≤ E
(|v0|2 + |u0|2B

)+ 2E
∫ T

0
e−λs〈 f (s), v(s)〉ds

+ E

∫ T

0
e−λs[2

(
c̄(s),C(z(s), w(s))

)
l2(H)

− |C(z(s), w(s))|2l2(H)

− 2λ(v(s), w(s)) + λ|w(s)|2 − 2λ(u(s), z(s))B + λ|z(s)|2B
]
ds

− E

∫ T

0
2e−λs[〈Aw(s), v(s) − w(s)〉 + 〈a(s), w(s)〉]ds. (5.5)

We now need the limit equation obtained in Lemma 4.4 to proceed. Taking expectation
in (4.6) and using Lemma 5.1, we get

e−λT
E
(|v(T )|2 + |u(T )|2B

) = E
(|v0|2 + |u0|2B

)

− λE

∫ T

0
e−λs[|v(s)|2 + |u(s)|2B

]
ds

+ E

∫ T

0
e−λs[2〈 f (s) − a(s), v(s)〉 + |c̄(s)|2l2(H)

]
ds.

(5.6)
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Subtracting (5.6) from (5.5) leads to

0 ≤ lim inf
�′→∞

e−λT
E
(|v�′(T )|2 + |u�′(T )|2B

)− e−λT
E
(|v(T )|2 + |u(T )|2B

)

≤ E

∫ T

0
e−λs[− |c̄(s) − C(z(s), w(s))|2l2(H)

+ λ|v(s) − w(s)|2 + λ|u(s) − z(s)|2B + 2〈a(s), v(s) − w(s)〉]ds

− 2E
∫ T

0
e−λs〈Aw(s), v(s) − w(s)〉ds.

(5.7)

This implies

2E
∫ T

0
e−λs〈Aw(s), v(s) − w(s)〉ds

≤ E

∫ T

0
e−λs[− |c̄(s) − C(z(s), w(s))|2l2(H)

+ λ|v(s) − w(s)|2 + λ|u(s) − z(s)|2B + 2〈a(s), v(s) − w(s)〉]ds

≤ E

∫ T

0
e−λs[λ|v(s) − w(s)|2 + λ|u(s) − z(s)|2B + 2〈a(s), v(s) − w(s)〉]ds

(5.8)

Now we are ready to identify the limits. First we take w = v and z = u. The first
inequality in (5.8) leads to

0 ≤ −E

∫ T

0
e−λs |c̄(s) − C(u(s), v(s))|2l2(H)

ds

which can only be true if c̄ = C(u, v). Next we take an arbitrary w̄ ∈ Lp(V ), set
z̄ = u0 + K w̄ and let ε ∈ (0, 1). Then with w = v − εw̄ and z = u − ε z̄, the second
inequality in (5.8) leads to

2E
∫ T

0
e−λs〈A(v(s) − εw̄(s)), εw̄(s)〉ds

≤ E

∫ T

0
e−λs[λε2(|w̄(s)|2 + |z̄(s)|2B) + 2〈a(s), εw̄(s)〉]ds.

We divide by ε > 0. Due to the hemicontinuity and growth assumptions on A and
since ε < 1, we can apply Lebesgue’s theorem on dominated convergence and let
ε → 0. Hence, we arrive at

E

∫ T

0
e−λs〈Av(s), w̄(s)〉ds ≤ E

∫ T

0
e−λs〈a(s), w̄(s)〉ds,
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which can only hold true for all w̄ ∈ Lp(V ) if a = Av. Finally, we note that the
uniqueness of the solution to equation (1.3) implies that the whole sequence converges
to the limit and not only the subsequence.

We will now show that v�(T ) → v(T ) in L2(Ω; H) and u�(T ) → u(T ) in
L2(Ω; VB) as � → ∞. We first take the limit superior in (5.4) with w = v and
z = u to obtain

lim sup
�→∞

e−λT
E
(|v�(T )|2 + |u�(T )|2B

)

≤ E
(|v0|2 + |u0|2B

)+ E

∫ T

0
e−λs

[
2〈 f (s) − a(s), v(s)〉

+ 2
(
c̄(s),C(u(s), v(s))

)
l2(H)

− |C(u(s), v(s))|2l2(H)

− 2λ(v(s), v(s)) + λ|v(s)|2 − 2λ(u(s), u(s))B + λ|u(s)|2B
]
ds.

Since a = Av and c̄ = C(u, v) and due to (5.6), we get

lim sup
�→∞

e−λT
E
(|v�(T )|2 + |u�(T )|2B

)

≤ E
(|v0|2 + |u0|2B

)+ E

∫ T

0
e−λs

[
2〈 f (s) − Av(s), v(s)〉

+ |C(u(s), v(s))|2l2(H)
− λ|v(s)|2 − λ|u(s)|2B

]
ds

= e−λT
E
(|v(T )|2 + |u(T )|2B

)
.

(5.9)

Finally, due to weak sequential lower-semicontinuity of the norm and with (5.9), we
see that

e−λT
E
(|v(T )|2 + |u(T )|2B

) ≤ lim inf
�→∞ e−λT

E
(|v�(T )|2 + |u�(T )|2B

)

≤ lim sup
�→∞

e−λT
E
(|v�(T )|2 + |u�(T )|2B

)

≤ e−λT
E
(|v(T )|2 + |u(T )|2B

)
.

Hence E
(|v�(T )|2 + |u�(T )|2B

) → E
(|v(T )|2 + |u(T )|2B

)
as � → ∞. The space

L2(Ω; (H, VB)) with the natural inner product is a Hilbert space. This is because the
space VB , under the conditions imposed on B, is a Hilbert space. We can now use this
together with the weak convergence v�(T ) ⇀ v(T ) in L2(Ω; H) and u�(T ) ⇀ u(T )

in L2(Ω; VB) to complete the proof. ��

Remark 5.2 It is possible to show that if A and C jointly satisfy some appropriate
stronger monotonicity assumption then v� → v in L p((0, T ) × Ω; VA) as � → ∞.
For example, if there is μ > 0 such that, almost surely, for any w, z ∈ VA and
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u, v ∈ VB

〈Aw − Az, w − z〉 + λA|w − z|2

≥ μ‖w − z‖p
VA

+ 1

2
|C(u, w) − C(v, z)|2l2(H)

− λB |u − v|2B
(5.10)

then v� → v in L p((0, T ) × Ω; VA) as � → ∞.

Indeed with (5.10), we obtain, instead of (5.4), the following (we have takenw = v

and z = u):

μE

∫ T

0
e−λs‖v�(s) − v(s)‖p

VA
ds + e−λT

E
(|v�(T )|2 + |u�(T )|2B

)

≤ E
(|v0� |2 + |u0�|2B

)+ E

∫ T

0
e−λs[2〈 f�(s), v�(s)〉ds

+E

∫ T

0
e−λs[2

(
Cr� (u�(s), v�(s)),C

r� (u(s), v(s))
)
l2(H)

− |Cr� (u(s), v(s))|2l2(H)
− 2λ(v�(s), v(s)) + λ|v(s)|2 − 2λ(u�(s), u(s))B

+ λ|u(s)|2B
]
ds − E

∫ T

0
2e−λs[〈Av(s), v�(s) − v(s)〉 + 〈Av�(s), v(s)〉]ds + R̄�.

Taking the limit as � → ∞ and using Lemma 4.3 together with the fact, established
earlier, that a = Av and c = C(u, v), we obtain

μ lim
�→∞E

∫ T

0
e−λs‖v�(s) − v(s)‖p

VA
ds + e−λT

E
(|v(T )|2 + |u(T )|2B

)

≤ E
(|v0|2 + |u0|2B

)− λE

∫ T

0
e−λs[|v(s)|2 + |u(s)|2B

]
ds

+ E

∫ T

0
e−λs[2〈 f (s) − Av(s), v(s)〉 + |C(u(s), v(s))|2l2(H)

]
ds.

If we subtract (5.6) then we obtain

μ lim
�→∞E

∫ T

0
e−λs‖v�(s) − v(s)‖p

VA
ds ≤ 0.

From this, we conclude that v� → v in L p((0, T ) × Ω; VA) and thus also u� → u in
L2((0, T ) × Ω; VB) as � → ∞.

6 Proof of uniqueness

In this short section, we will prove that the solution to (1.3) is unique in the sense
specified in Theorem 2.3.
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Proof of Theorem 2.3 Let v := v1 −v2 and u := u1 −u2. Then P-almost everywhere
and for all t ∈ [0, T ]

v(t) = −
∫ t

0

[
Av1(s) − Av2(s) + Bu(s)

]
ds

+
∫ t

0
[C(u1(s), v1(s)) − C(u2(s), v2(s))] dW (s)

holds in V ∗
A . With the assumption VA ↪→ VB , we may apply Itô’s formula for the

square of the norm (see, e.g., Prévôt and Röckner [26, Theorem 4.2.5]) and obtain

|v(t)|2 = −2
∫ t

0
〈Av1(s) − Av2(s) + Bu(s), v(s)〉ds

+ 2
∫ t

0
(v(s),C(u1(s), v1(s)) − C(u2(s), v2(s))dW (s))

+
∫ t

0
|C(u1(s), v1(s)) − C(u2(s), v2(s))|2l2(H)

ds.

Since u(0) = 0, we obtain with (4.8)

|v(t)|2 + |u(t)|2B = − 2
∫ t

0
〈Av1(s) − Av2(s), v(s)〉ds

+ 2
∫ t

0

(
v(s), [C(u1(s), v1(s)) − C(u2(s), v2(s))]dW (s)

)

+
∫ t

0
|C(u1(s), v1(s)) − C(u2(s), v2(s))|2l2(H)

ds.

Nowwe apply Itô’s formula for real-valued processes (similar to Lemma 5.1) to obtain

e−λt(|v(t)|2 + |u(t)|2B
) = −λ

∫ t

0
e−λs(|v(s)|2 + |u(s)|2B

)
ds

− 2
∫ t

0
e−λs〈Av1(s) − Av2(s), v(s)〉ds

+
∫ t

0
e−λs |C(u1(s), v1(s)) −

C(u2(s), v2(s))|2l2(H)
ds + m(t),

where

m(t) = 2
∫ t

0
e−λs(v(s), [C(u1(s), v1(s)) − C(u2(s), v2(s))]dW (s)

)
.
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This together with (2.5) yields

0 ≤ e−λt(|v(t)|2 + |u(t)|2B
) ≤ m(t).

Hence the process m(t) is non-negative for all t ∈ [0, T ]. We also can see that it is
a continuous local martingale starting from 0. Thus, almost surely, m(t) = 0 for all
t ∈ [0, T ]. But this in turn means that, almost surely, |v1(t) − v2(t)|2 = |v(t)|2 = 0
as well as |u1(t) − u2(t)|2B = |u(t)|2B = 0 for all t ∈ [0, T ]. Thus solutions to (1.3)
must be indistinguishable. ��
Acknowledgements The authors would like to thank Raphael Kruse (Berlin) for helpful discussions and
comments and to the referees for their careful reading and helpful suggestions.
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