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1 Introduction

Stochastic differential equations of various types are very useful to investigate nonlin-
ear Partial Differential Equations (PDEs) at the theoretical and numerical level. From a
theoretical point of view, they constitute probabilistic tools to study the analytic prop-
erties of the equation. Moreover they provide a microscopic interpretation of physical
phenomena macroscopically drawn by a nonlinear PDE. From a numerical point of
view, such representations allow for extended Monte Carlo type methods, which are
potentially less sensitive to the dimension of the state space.
Let us consider d, p ∈ N

�. Let� : [0, T ]×R
d ×R → R

d×p, g : [0, T ]×R
d ×R →

R
d ,� : [0, T ]×R

d ×R → R, be Borel bounded functions, K : Rd → R be a smooth
mollifier inRd and ζ0 be a probability onRd . When it is absolutely continuous v0 will
denote its density so that ζ0(dx) = v0(x)dx . The main motivation of this work is the
simulation of solutions to PDEs of the form

{
∂tv =∑d

i, j=1 ∂2i j

(
(��t )i, j (t, x, v)v

)− div
(
g(t, x, v)v

)+ �(t, x, v)v

v(0, dx) = v0(dx),
(1.1)

through probabilistic numerical methods. Examples of nonlinear and nonconservative
PDEs that are of that form arise in hydrodynamics and biological modeling. For
instance one model related to underground water flows is known in the literature as
the Richards equation

{
∂tv = �(β(v)) + div

(
α(v)
)+ φ(x)

v(0, ·) = v0 ,
(1.2)

where β : R −→ R, α : R −→ R
d and φ : Rd −→ R. Another example concerns

biological mechanisms as migration of biologial species or the evolution of a tumor
growth. Such equations can be schematically written as

{
∂tv = �β(v) + f (v)

v(0, ·) = v0 ,
(1.3)

where β : R −→ R is bounded, monotone and f : R → R. This family of PDEs is
sometimes calledPorousMedia typeEquationwith proliferation, due to the presence of
the term f that characterizes a proliferation phenomena and the term�β(v) delineates
a porous media effect. In particular, for β(v) = v2 and f (v) = v(1 − v), this type of
equation appears in the modeling of tumors.
The present paper focuses on numerical aspects of a specific forward probabilistic rep-
resentation initiated in [20], relying on nonlinear SDEs in the sense of McKean [21].
In [20], we have introduced and studied a generalized regularized McKean type
NonLinear Stochastic Differential Equation (NLSDE) of the form

{
Yt = Y0 + ∫ t0 �(s,Ys, u(s,Ys))dWs + ∫ t0 g(s,Ys, u(s,Ys))ds , with Y0 ∼ ζ0 ,

u(t, y) = E[K (y − Yt ) exp
{∫ t

0 �
(
s,Ys, u(s,Ys)

)
ds
}
] , for any t ∈ [0, T ] ,

(1.4)
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where the solution is the couple process-function (Y, u). The novelty with respect to
classicalMcKean type equations consists in the formof the second equation,where, for
each t > 0, in the classical case (� = 0) u(t, ·) was explicitely given by the marginal
law of Yt . The present paper aims at proposing and implementing a stochastic particle
algorithm to approximate (1.4) and investigating carefully its convergence properties.

(1.4) is the probabilistic representation of the partial integro-differential equation
(PIDE)

⎧⎪⎨
⎪⎩

∂t v̄ = 1
2

d∑
i, j=1

∂2i j
(
(��t )i, j (t, x, K ∗ v̄)v̄

)− div (g(t, x, K ∗ v̄)v̄) + �(t, x, K ∗ v̄)v̄,

v̄(0, x) = v0 ,

(1.5)
in the sense that, given a solution (Y, u) of (1.4), there is a solution v̄ of (1.5) in the
sense of distributions, such that u = K ∗ v̄ := ∫

Rd K (· − y)v̄(y)dy. This follows, for
instance, by a simple application of Itô’s formula, as explained in Theorems 6.1 and
6.2, Sect. 6 in [20]. Ideally our interest is devoted to (1.4) when the smoothing kernel
K reduces to a Dirac measure at zero. To reach that scope, one would need to replace
in previous equation K into Kε, where Kε converges to the Dirac measure and to
analyze the convergence of the corresponding solutions. However, such a theoretical
analysis is out of the scope of this paper, but it will be investigated numerically via
simulations reported at the end.

In fact, in the literature appear several probabilistic representations, with the objec-
tive of simulating numerically the corresponding PDE. One method which has been
largely investigated for approximating solutions of time evolutionary PDEs is the
method of forward-backward SDEs (FBSDEs). FBSDEs were initially developed
in [23], see also [22] for a survey and [24] for a recent monograph on the subject.
The idea is to express the PDE solution v(t, ·) at time t as the expectation of a func-
tional of a so called forward diffusion process X , starting at time t . Based on that
idea, many judicious numerical schemes have been proposed by [9,14]. However,
all those rely on computing recursively conditional expectation functions which is
known to be a difficult task in high dimension. Besides, the FBSDE approach is blind
in the sense that the forward process X is not ensured to explore the most relevant
space regions to approximate efficiently the solution of the FBSDE of interest. On
the theoretical side, the FBSDE representation of fully nonlinear PDEs still requires
complex developments and is the subject of active research (see for instance [10]).
Branching diffusion processes provide alternative probabilistic representation of semi-
linear PDEs, involving a specific form of non-linearity on the zero order term. This
type of approach has been recently extended in [15,16] to a more general class of
non-linearities on the zero order term, with the so-called marked branching process.
One of the main advantages of this approach compared to FBSDEs is that it does
not involve any regression computation to calculate conditional expectations. A third
class of numerical approximation schemes relies on McKean type representations.
In the time continuous framework, classical McKean representations are restricted to
the conservative case (� = 0). Relevant contributions at the algorithmic level are
[4,6–8], and the survey paper [28]. In the case � = 0 with g = 0, but with � pos-
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sibly discontinuous, some empirical implementations were conducted in [2,3] in the
one-dimensional and multi-dimensional case respectively, in order to predict the large
time qualitative behavior of the solution of the corresponding PDE.

In the present paper we extend this type of McKean based numerical schemes to
the case of non-conservative PDEs (� �= 0). An interesting aspect of this approach
is that it is potentially able to represent fully nonlinear PDEs, by considering a more
general class of functions � which may depend non-linearly not only on u but on its
space derivatives up to the second order. This more general setting will be focused
in a future work. In the discrete-time framework, Feynman-Kac formula and various
types of related particle approximation schemes were extensively analyzed in the
reference books of Del Moral [12] and [13] but without considering the specific case
of a time continuous system (1.4) coupled with a weighting function�which depends
nonlinearly on u.

By (3.3) we introduce an interacting particle system associated to (1.4). Indeed we
replace one singleMcKean type stochastic differential equationwith unknown process
Y , with a system of N ordinary stochastic differential equations, whose solution con-
sists in a system of particles ξ = (ξ j,N ), replacing the law of the process Y by the

empirical mean law SN (ξ) := 1

N

N∑
j=1

δξ j,N .

In Theorem 4.2 we prove the convergence of the time-discretized particle system
under Lipschitz type assumptions on the coefficients�, g and�, obtaining an explicit
rate. The mentioned rate is based on the contribution of two effects. First, the particle
approximation error between the solution u of (1.4) and the approximation uS

N (ξ),
solution of

uS
N (ξ)

t (y) = 1

N

N∑
j=1

K
(
y − ξ

j,N
t
)
exp

{∫ t

0
�
(
s, ξ j,N

s , uS
N (ξ)
(
s, ξ j,N

s

))
ds

}
,

(1.6)

which is evaluated in Theorem 3.1. The second effect is the time discretization error,
established in Proposition 4.1. The errors are evaluated in the L p, p = 2,+∞ mean
distance, in terms of the number N of particles and the time discretization step. One
significant consequence of Theorem 3.1 is Corollary 3.2 which states the chaos prop-
agation of the interacting particle system.
We emphasize that the proof of Theorem 3.1 relies on Proposition 3.3, whose formula
(3.12) allows to control the particle approximation errorwithout use of exchangeability
assumptions on the particle system, see Remark 3.4.

The paper is organized as follows. After this introduction, we formulate the basic
assumptions valid along the paper and recall important results proved in [20] and
used in the sequel. The evaluation of the particle approximation error is discussed in
Sect.3. Section 4 focuses on the convergence of the time-discretized particle system.
Finally in Sect .5we provide numerical simulations illustrating the performances of the
interacting particle system in approximating the limit PDE (i.e. when the smoothing
kernel K reduces to a Dirac measure at zero), in a specific case where the solution is
explicitely known.
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2 Notations and assumptions

Let us consider Cd := C([0, T ],Rd)metrized by the supremum norm ‖·‖∞, equipped
with its Borel σ− field B(Cd) = σ(Xt , t ≥ 0) (and Bt (Cd) := σ(Xu, 0 ≤ u ≤ t)
the canonical filtration) and endowed with the topology of uniform convergence. X
will be the canonical process on Cd and Pr (Cd) the set of Borel probability measures
on Cd admitting a moment of order r ≥ 0. For r = 0, P(Cd) := P0(Cd) is naturally
the Polish space (with respect to the weak convergence topology) of Borel probability
measures on Cd naturally equipped with its Borel σ -field B(P(Cd)). When d = 1, we
often omit it and we simply set C := C1.
We recall that theWasserstein distance of order r and respectively themodifiedWasser-
stein distance of order r for r ≥ 1, betweenm andm′ inPr (Cd), denoted byWr

T (m,m′)
(and resp. W̃ r

T (m,m′)) are such that

(Wr
t (m,m′))r := inf

μ∈�(m,m′)

{∫
Cd×Cd

sup
0≤s≤t

|Xs(ω) − Xs(ω
′)|r dμ(ω,ω′)

}
,

t ∈ [0, T ] , (2.1)

(W̃ r
t (m,m′))r := inf

μ∈�̃(m,m′)

{∫
Cd×Cd

sup
0≤s≤t

|Xs(ω) − Xs(ω
′)|r ∧ 1 dμ(ω,ω′)

}
,

t ∈ [0, T ], (2.2)

where �(m,m′) (resp. �̃(m,m′)) denotes the set of Borel probability measures in
P(Cd × Cd) with fixed marginals m and m′ belonging to Pr (Cd) (resp. P(Cd) ). In
this paper we will use very frequently the Wasserstein distances of order 2. For that
reason, we will simply set Wt := W 2

t (resp. W̃t := W̃ 2
t ).

Given N ∈ N
�, l ∈ Cd , l1, . . . , l N ∈ Cd , a significant role in this paper will be played

by the Borel measures on Cd given by δl and
1

N

N∑
j=1

δl j .

Remark 2.1 Given l1, . . . , l N , l̃1, . . . , l̃ N ∈ Cd , by definition of the Wasserstein dis-
tance we have, for all t ∈ [0, T ]

Wt

⎛
⎝ 1

N

N∑
j=1

δl j ,
1

N

N∑
j=1

δl̃ j

⎞
⎠ ≤ 1

N

N∑
j=1

sup
0≤s≤t

|l js − l̃ js |2.

In this paper Cb(Cd) denotes the space of bounded, continuous real-valued functions
onCd , forwhich the supremumnorm is denotedby‖·‖∞.Rd is equippedwith the scalar
product · and |x | stands for the induced Euclidean norm for x ∈ R

d . Given two reals
a, b (d = 1) we will denote in the sequel a ∧ b := min(a, b) and a ∨ b := max(a, b).
M f (R

d) is the space of finite, Borel measures onRd . S(Rd) is the space of Schwartz
fast decreasing test functions and S ′(Rd) is its dual. Cb(Rd) is the space of bounded,
continuous functions on R

d , C∞
0 (Rd) is the space of smooth functions with compact

support. C∞
b (Rd) is the space of bounded and smooth functions. C0(Rd) represents the
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space of continuous functions with compact support in R
d . Wr,p(Rd) is the Sobolev

space of order r ∈ N in (L p(Rd), || · ||p), with 1 ≤ p ≤ ∞.
F(·) : f ∈ S(Rd) �→ F( f ) ∈ S(Rd) will denote the Fourier transform on the
classical Schwartz space S(Rd) such that for all ξ ∈ R

d ,

F( f )(ξ) = 1√
2π

∫
Rd

f (x)e−iξ ·xdx .

Wewill designate in the samemanner the corresponding Fourier transform on S ′(Rd).
For anyPolish space E , wewill designate byB(E) its Borelσ -field. It iswell-known

thatP(E) is also a Polish space with respect to the weak convergence topology, whose
Borel σ -field will be denoted by B(P(E)) (see Proposition 7.20 and Proposition 7.23,
Sect. 7.4 Chapter 7 in [5]).
Let (�,F) be a measured space. A map η : (�,F) −→ (P(E),B(P(E))) will be
called random probability (or random probability kernel) if it is measurable. We
will indicate by P�(E) the space of random probabilities.

Remark 2.2 Let η : (�,F) −→ (P(E),B(P(E))). η is a random probability if and
only if the two following conditions hold:

• for each ω̄ ∈ �, ηω̄ ∈ P(E),
• for all Borel set A ∈ B(P(E)), ω̄ �→ ηω̄(A) is F-measurable.

This was highlighted in Remark 3.20 in [11] (see also Proposition 7.25 in [5]).

Remark 2.3 Given R
d -valued continuous processes Y 1, . . . ,Yn , the application

1

N

N∑
j=1

δY j is a random probability on P(Cd). In fact δY j , 1 ≤ j ≤ N is a random

probability by Remark 2.2.

In this article, the following assumptions will be used.

Assumption 1 1. � and g are Borel functions defined on [0, T ] × R
d × R taking

values respectively in R
d×p (space of d × p matrices) and R

d that are Lipschitz
w.r.t. space variables: there exist finite positive reals L� and Lg such that for any
(t, y, y′, z, z′) ∈ [0, T ] × R

d × R
d × R × R, we have

|�(t, y′, z′) − �(t, y, z)| ≤ L�(|z′ − z| + |y′ − y|) and

|g(t, y′, z′) − g(t, y, z)| ≤ Lg(|z′ − z| + |y′ − y|) .

2. � is a Borel real valued function defined on [0, T ] × R
d × R Lipschitz w.r.t. the

space variables: there exists a finite positive real, L� such that for any
(t, y, y′, z, z′) ∈ [0, T ] × R

d × R
d × R × R, we have

|�(t, y, z) − �(t, y′, z′)| ≤ L�(|y′ − y| + |z′ − z|) .
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3. � is supposed to be uniformly bounded: there exist a finite positive real M� such
that, for any (t, y, z) ∈ [0, T ] × R

d × R

|�(t, y, z)| ≤ M� .

4. K : Rd → R+ is integrable, Lipschitz, bounded and with integral equal to 1: there
exist finite positive reals MK and LK such that for any (y, y′) ∈ R

d × R
d

|K (y)| ≤ MK , |K (y′) − K (y)| ≤ LK |y′ − y| and
∫
Rd

K (x)dx = 1 .

5. ζ0 is a fixed Borel probability measure on R
d admitting a second order moment.

6. The functions s ∈ [0, T ] �→ �(s, 0, 0) and s ∈ [0, T ] �→ g(s, 0, 0) are
bounded. m� (resp. mg) will denote the supremum sups∈[0,T ] |�(s, 0, 0)| (resp.
sups∈[0,T ] |g(s, 0, 0)|).
Given a finite signed Borel measure γ on R

d , K ∗ γ will denote the convolution
function x �→ γ (K (x −·)). In particular if γ is absolutely continuous with density γ̇ ,
then (K ∗ γ )(x) = ∫

Rd K (x − y)γ̇ (y)dy.
To simplify we introduce the following notations.

• V : [0, T ] × Cd × C → R defined for any pair of functions y ∈ Cd and z ∈ C, by

Vt (y, z) := exp

(∫ t

0
�(s, ys, zs)ds

)
for any t ∈ [0, T ] . (2.3)

• The real valued process Z such that Zs = u(s,Ys), for any s ∈ [0, T ], will often
be denoted by u(Y ).

With these new notations, the second equation in (1.4) can be rewritten as

νt (ϕ) = E[(Ǩ ∗ ϕ)(Yt )Vt (Y, u(Y ))] , for any ϕ ∈ Cb(Rd ,R) , (2.4)

where u(t, ·) = dνt
dx and Ǩ (x) := K (−x).

Remark 2.4 Under Assumption 1. 3(b), � is bounded. Consequently

0 ≤ Vt (y, z) ≤ etM� , for any (t, y, z) ∈ [0, T ] × R
d × R . (2.5)

Under Assumption 1. 2. � is Lipschitz. Then V inherits in some sense this property.
Indeed, observe that for any (a, b) ∈ R

2,

eb − ea = (b − a)

∫ 1

0
eαb+(1−α)adα ≤ esup(a,b)|b − a| . (2.6)

Then for any continuous functions y, y′ ∈ Cd = C([0, T ],Rd), and z, z′ ∈
C([0, T ],R), taking a = ∫ t0 �(s, ys, zs)ds and b = ∫ t0 �(s, y′

s, z
′
s)ds in the above

equality yields
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|Vt (y′, z′) − Vt (y, z)| ≤ etM�

∫ t

0

∣∣�(s, y′
s, z

′
s) − �(s, ys, zs)

∣∣ ds
≤ etM�L�

∫ t

0

(|y′
s − ys | + |z′s − zs |

)
ds . (2.7)

In Sect.4, Assumption 1. will be replaced by what follows.

Assumption 2 All items of Assumption 1. are in force excepted 1 and 2 which are
replaced by the following.

1. There exist positive reals L�, Lg such that, for any (t, t ′, y, y′, z, z′) ∈ [0, T ]2 ×
(Rd)2 × R

2,

|�(t, y, z) − �(t ′, y′, z′)| ≤ L� (|t − t ′| 12 + |y − y′| + |z − z′|),
|g(t, y, z) − g(t ′, y′, z′)| ≤ Lg (|t − t ′| 12 + |y − y′| + |z − z′|).

2. There exists a positive real L� such that, for any (t, t ′, y, y′, z, z′) ∈ [0, T ]2 ×
(Rd)2 × R

2,

|�(t, y, z) − �(t ′, y′, z′)| ≤ L� (|t − t ′| 12 + |y − y′| + |z − z′|).

We end this section by recalling important results established in our companion
paper [20], for which Assumption 1. is supposed to be satisfied. Let us first remark
that the second equation of (1.4) can be rewritten as

um(t, y)=
∫
Cd

K (y−ωt ) exp

{∫ t

0
�(s, ωs, u

m(s, ωs))

}
dm(ω), (t, x) ∈ [0, T ]×R

d ,

(2.8)

with m = mY being the law of the process Y on the canonical space Cd .
Indeed for every m ∈ P(Cd), Theorem 3.1 of [20] shows that Eq. (2.8) is well-posed
and so it properly defines a function um . The lemma below, established in Proposition
3.3 of [20], states stability results on the function (m, t, y) �→ um(t, y).

Proposition 2.5 We assume the validity of items 2, 3 and 4 of Assumption 1.
The following assertions hold.

1. For any couple of probabilities (m,m′) ∈ P2(Cd) × P2(Cd), for all (t, y, y′) ∈
[0, T ] × Cd × Cd , we have

|um(t, y)− um
′(
t, y′)|2 ≤ CK ,�(t)

[
|y − y′|2 + |Wt (m,m′)|2

]
, (2.9)

where CK ,�(t) := 2C ′
K ,�(t)(t+2)(1+e2tC

′
K ,�(t)

)with C ′
K ,�(t) = 2e2tM�(L2

K +
2M2

K L
2
�t). In particular the function CK ,� only depends on MK , LK , M�, L�

and t and is increasing with t .
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2. For any (m,m′) ∈ P(Cd)×P(Cd), for all (t, y, y′) ∈ [0, T ]×Cd ×Cd , we have

|um(t, y)− um
′(
t, y′)|2 ≤ CK ,�(t)

[
|y − y′|2 + |W̃t (m,m′)|2

]
, (2.10)

where CK ,�(t) := 2e2tM�(max(LK , 2MK )2 + 2M2
K max(L�, 2M�)2t).

3. The function (m, t, x) �→ um(t, x) is continuous on P(Cd) × [0, T ] ×R
d , where

P(Cd) is endowed with the topology of weak convergence.
4. Suppose that K ∈ W 1,2(Rd). Then for any (m,m′) ∈ P2(Cd)×P2(Cd), t ∈ [0, T ]

‖um(t, ·) − um
′
(t, ·)‖22 ≤ C̃K ,�(t)(1 + 2tCK ,�(t))|Wt (m,m′)|2 , (2.11)

where CK ,�(t) := 2C ′
K ,�(t)(t+2)(1+e2tC

′
K ,�(t)

)with C ′
K ,�(t) = 2e2tM�(L2

K +
2M2

K L
2
�t) and C̃K ,�(t) := 2e2tM�(2MK L2

�t (t + 1) + ‖∇K‖22), ‖ · ‖2 being the
standard L2(Rd) or L2(Rd ,Rd)-norms.
In particular the functions t �→ C ′

K ,�(t) and t �→ CK ,�(t) only depend on
MK , LK , M�, L� and are increasing with respect to t .

5. Suppose that F(K ) ∈ L1(Rd). Then there exists a constant C̄K ,�(t) > 0
(depending only on t, M�, L�, ‖F(K )‖1) such that for any random probability
η : (�,F) −→ (P2(Cd),B(P(Cd))), for all (t,m) ∈ [0, T ] × P(Cd)

E[‖uη(t, ·) − um(t, ·)‖2∞] ≤ C̄K ,�(t) sup
ϕ∈Cb(Cd )

‖ϕ‖∞≤1

E[|〈η − m, ϕ〉|2] , (2.12)

where we recall thatP(Cd) is endowed with the topology of weak convergence. We
remark that the expectation in both sides of (2.12) is taken w.r.t. the randomness
of the random probability η.

Remark 2.6 The map d�
2 : (ν, μ) �→

√√√√ sup
ϕ∈Cb(Cd )

‖ϕ‖∞≤1

E[|〈ν − μ, ϕ〉|2] defines a (homoge-

neous) distance on P�(Cd).
The lemma below was proved in Lemma 7.1 in [20].

Lemma 2.7 Let r : [0, T ] �→ [0, T ] be a non-decreasing function such that r(s) ≤ s
for any s ∈ [0, T ] and Y0 be a random variable admitting ζ0 as law.
Let U : (t, y) ∈ [0, T ] × Cd → R (respectively U ′ : (t, y) ∈ [0, T ] × Cd → R),
be a given Borel function such that for all t ∈ [0, T ], there is a Borel map Ut :
C([0, t],Rd) → R (resp. U ′

t : C([0, t],Rd) → R) such that U(t, ·) = Ut (·) (resp.
U ′(t, ·) = U ′

t (·)).
Then the following two assertions hold.

1. Consider Y (resp. Y ′) a solution of the following SDE for v = U (resp. v = U ′):

Yt = Y0 +
∫ t

0
�(r(s), Yr(s), v(r(s), Y·∧r(s)))dWs +

∫ t

0
g(r(s), Yr(s), v(r(s), Y·∧r(s)))ds ,

for any t ∈ [0, T ] , (2.13)

123



10 Stoch PDE: Anal Comp (2017) 5:1–37

where, we emphasize that for all θ ∈ [0, T ], Z ·∧θ := {Zu, 0 ≤ u ≤ θ} ∈
C([0, θ ],Rd) for any continuous process Z. For any a ∈ [0, T ], we have

E[sup
t≤a

|Y ′
t − Yt |2] ≤ C�,g(T )E

[∫ a

0
|U(r(t),Y·∧r(t)) − U ′(r(t),Y ′

·∧r(t))|2dt
]

,

(2.14)

where C�,g(T ) = 12(4L2
� + T L2

g)e
12T (4L2

�+T L2
g).

2. Suppose moreover that � and g are 1
2 -Hölder w.r.t. the time and Lipschitz w.r.t.

the space variables i.e. there exist some positive constants L� and Lg such that
for any (t, t ′, y,′ y′, z, z′) ∈ [0, T ]2 × R

2d × R
2

{
|�(t, y, z) − �(t ′, y′, z′)| ≤ L�(|t − t ′| 12 + |y − y′| + |z − z′|)
|g(t, y, z) − g(t ′, y′, z′)| ≤ Lg(|t − t ′| 12 + |y − y′| + |z − z′|) .

(2.15)

Let r1, r2 : [0, T ] �→ [0, T ] being two non-decreasing functions verifying r1(s) ≤
s and r2(s) ≤ s for any s ∈ [0, T ]. Let Y (resp. Y ′) be a solution of (2.13) for
v = U and r = r1 (resp. v = U ′ and r = r2). Then for any a ∈ [0, T ], the
following inequality holds:

E[sup
t≤a

|Y ′
t − Yt |2] ≤ C�,g(T )

(
‖r1 − r2‖L1([0,T ]) +

∫ a

0
E[|Y ′

r1(t) − Y ′
r2(t)|2]dt

+E

[∫ a

0
|U(r1(t),Y·∧r1(t)) − U ′(r2(t),Y ′

·∧r2(t))|2dt
])

,

(2.16)

The theorem below was the object of Theorem 3.9 in [20].

Theorem 2.8 Under Assumption 1, the McKean type SDE (1.4) admits strong exis-
tence and pathwise uniqueness.

For a precise formulation of the notion of existence and uniqueness for the McKean
type equation (1.4) we refer to Definition 2.6 of [20].
We finally recall an important non-anticipating property of the map (m, t, x) �→
um(t, x), stated in [20].

Definition 2.9 Let us fix t ∈ [0, T ]. Given a non-negative Borel measure m
on (Cd ,B(Cd)). From now on, mt will denote the (unique) induced measure on
(Cdt ,B(Cdt )) (with Cdt := C([0, t],Rd)) defined by

∫
Cd
t

F(φ)mt (dφ) =
∫
Cd

F(φ|[0,t])m(dφ),

where F : Cdt −→ R is bounded and continuous.

Remark 2.10 Let t ∈ [0, T ],m = δξ , ξ ∈ Cd . The induced measure mt , on Cdt , is
δ(ξr |0≤r≤t).
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For each t ∈ [0, T ], the same construction as the one carried on in Theorem 3.1 in
[20] allows us to define the unique solution to

umt (s, y) =
∫
Cd
t

K (y−Xs(ω)) exp

(∫ s

0
�(r, Xr (ω), umt (r, Xr (ω)))dr

)
mt (dω) ∀s ∈ [0, t] .

(2.17)
The proposition and corollary below were the object of Proposition 3.7 and Corollary
3.8 in [20].

Proposition 2.11 Under Assumption 1, we have

∀(s, y) ∈ [0, t] × R
d , um(s, y) = umt (s, y).

Corollary 2.12 Let N ∈ N, ξ1, . . . , ξ i , . . . , ξ N be (Gt )-adapted continuous proces-
ses, where G is a filtration (defined on some probability space) fulfilling the usual
conditions. Letm(dω) = 1

N

∑N
i=1 δξ i (dω). Then, (um(t, y)) is a (Gt )-adapted random

field, i.e. for any (t, y) ∈ [0, T ] × R
d , the process is (Gt )-adapted.

3 Particle systems approximation and propagation of chaos

In this section, we introduce an interacting particle system ξ = (ξ i,N )i=1,...,N whose
empirical law will be shown to converge to the law of the solution Y of the McKean
type equation (1.4). This is a consequence of the so called propagation of chaoswhich
describes the asymptotic independence of the components of ξ when the size N of the
particle system goes to ∞. That property was introduced in [21] and further devel-
oped and popularized by [27]. The convergence of (ξ i,N )i=1,...,N induces a natural
approximation of u, solution of (1.4).
We suppose here the validity of Assumption 1. Let (�,F ,P) be a fixed probability
space, and (Wi )i=1,...,N be a sequence of independent Rp-valued Brownian motions.
Let (Y i

0)i=1,...,N be i.i.d. r.v. according to ζ0. We consider Y := (Y i )i=1,...,N the

sequence of processes such that (Y i , um
i
) are solutions to

⎧⎨
⎩
Y i
t = Y i

0 + ∫ t0 �(s,Y i
s , u

mi

s (Y i
s ))dW

i
s + ∫ t0 g(s,Y i

s , u
mi

s (Y i
s ))ds

um
i

t (y) = E

[
K (y − Y i

t )Vt
(
Y i , um

i
(Y i )
)]

, with mi := L(Y i ) ,
(3.1)

recalling that Vt
(
Y i , um

i
(Y i )
) = exp

( ∫ t
0 �s(Y i

s , u
mi

s (Y i
s ))ds

)
. The existence and

uniqueness of the solution of each equation is ensured by Theorem 2.8. We recall
that the map (m, t, y) �→ um(t, y) fulfills the regularity properties given at the second
and third item of Proposition 2.5 .

Obviously the processes (Y i )i=1,...,N are independent. They are also identically
distributed since Theorem 2.8 also states uniqueness in law.
So we can define m0 := mi the common distribution of the processes Y i , i =
1, . . . , N , which is of course the law of the process Y , such that (Y, u) is a solu-
tion of (1.4).
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From now on, CdN will denote (Cd)N , which is obviously isomorphic to C([0, T ],
R
dN ). For every ξ̄ ∈ CdN we will denote

SN (ξ̄ ) := 1

N

N∑
i=1

δξ̄ i,N . (3.2)

The function (t, x) �→ uS
N (ξ̄ )

t (x) is obtained by composition of m �→ umt (x) (defined
in (2.8)) with m = SN (ξ̄ ).

Now let us introduce the system of equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξ
i,N
t = ξ

i,N
0 +∫ t0 �

(
s, ξ i,Ns , uS

N (ξ)
s

(
ξ
i,N
s

))
dWi

s + ∫ t0 g
(
s, ξ i,Ns , uS

N (ξ)
s

(
ξ
i,N
s

))
ds

ξ
i,N
0 = Y i

0

uS
N (ξ)

t (y) = 1

N

N∑
j=1

K
(
y − ξ

j,N
t

)
Vt
(
ξ j,N , uS

N (ξ)
(
ξ j,N
))

.

(3.3)
Conformally with (3.2), we consider the empirical (random) measure

SN (Y) = 1

N

N∑
i=1

δY i related to Y := (Y i )i=1,...,N , where we recall that for each

i ∈ {1, . . . , N }, Y i is solution of (3.1). We observe that by Remark 2.3, SN (ξ)

and SN (Y) are measurable maps from (�,F) to (P(Cd),B(P(Cd))); moreover
SN (ξ), SN (Y) ∈ P2(Cd) P-a.s. A solution ξ := (ξ i,N )i=1,...,N of (3.3) is called
interacting particle system.

The first line of (3.3) is in fact a path-dependent stochastic differential equation.We
claim that its coefficients are measurable. Indeed, the map (t, ξ̄ ) �→ (SN (ξ̄ ), t, ξ̄ it , )
being continuous from ([0, T ] × CdN ,B([0, T ]) ⊗ B(CdN )) to (P(Cd) × [0, T ] ×
R
d ,B(P(Cd)) ⊗ B([0, T ]) ⊗ B(Rd)) for all i ∈ {1, . . . , N }, by composition with

the continuous map (m, t, y) �→ um(t, y) (see Proposition 2.5 3.) we deduce the

continuity of (t, ξ̄ ) �→ (uS
N (ξ̄ )

t (ξ̄ it ))i=1,...,N , and so the measurability from ([0, T ] ×
CdN ,B([0, T ]) ⊗ B(CdN )) to (R,B(R)).
In the sequel, for simplicity we set ξ̄r≤s := (ξ̄ ir≤s)1≤i≤N . We remark that, by Propo-
sition 2.11 and Remark 2.10, we have

(
uS

N (ξ̄ )
s (ξ̄ is )

)
i=1,...N

=
(
u
SN (ξ̄r≤s )
s (ξ̄ is )

)
i=1,...N

, (3.4)

for any s ∈ [0, T ], ξ̄ ∈ CdN and so stochastic integrands of (3.3) are adapted
(so progressively measurable being continuous in time) and so the corresponding Itô
integral makes sense. We discuss below the well-posedness of (3.3).

The fact that (3.3) has a unique (strong) solution (ξ i,N )i=1,...N holds true because
of the following arguments.

1. � and g are Lipschitz. Moreover the map ξ̄r≤s �→
(
u
SN (ξ̄r≤s )
s (ξ̄ is )

)
i=1,...,N

is

Lipschitz.
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Indeed, for given (ξr≤s, ηr≤s) ∈ CdN × CdN , s ∈ [0, T ], by using successively
inequality (2.9) of Proposition 2.5 and Remark 2.1, for all i ∈ {1, . . . , N }we have

|uSN (ξr≤s )
s (ξ it ) − u

SN (ηr≤s )
s (ηit )| ≤

√
CK ,�(T )

⎛
⎝|ξ is − ηis | + 1

N

N∑
j=1

sup
0≤r≤s

|ξ j
r − η

j
r |
⎞
⎠

≤ 2
√
CK ,�(T ) max

j=1,...,N
sup

0≤r≤s
|ξ j
r − η

j
r | . (3.5)

Finally the functions

ξ̄r≤s �→
(
�(s, ξ̄ is , u

SN (ξ̄r ,r≤s)
s (ξ̄ is ))

)
i=1,...N

ξ̄r≤s �→
(
g(s, ξ̄ is , u

SN (ξ̄r ,r≤s)
s (ξ̄ is ))

)
i=1,...N

are uniformly Lipschitz and bounded.
2. A classical argument of well-posedness for systems of path-dependent stochastic

differential equations with Lipschitz dependence on the sup-norm of the path, see
Chapter V, Sect. 2.11, Theorem 11.2 page 128 in [25].

After the preceding introductory considerations, we can state and prove the main
theorem of the section.

Theorem 3.1 Let us suppose the validity of Assumption 1. Let N be a fixed positive
integer. Let (Y i )i=1,...,N (resp. ((ξ i,N )i=1,...,N ) be the solution of (3.1) (resp. (3.3)),
let m0 as defined after (3.1). The following assertions hold.

1. If F(K ) ∈ L1(Rd), there is a positive constant C only depending on
L�, Lg, MK , M�, LK , L�, T, ‖F(K )‖1, such that, for all i = 1, . . . , N and
t ∈ [0, T ],

E

[∥∥∥uSN (ξ)
t − um

0

t

∥∥∥2∞
]

≤ C

N
(3.6)

E

[
sup

0≤s≤t
|ξ i,Ns − Y i

s |2
]

≤ C

N
. (3.7)

2. If K belongs to W 1,2(Rd), there is a positive constant C only depending on
L�, Lg, MK , M�, LK , L�, T and ‖∇K‖2, such that, for all t ∈ [0, T ],

E

[∥∥∥uSN (ξ)
t − um

0

t

∥∥∥2
2

]
≤ C

N
. (3.8)

Before proving Theorem 3.1, we remark that the propagation of chaos follows easily.

Corollary 3.2 Under Assumption 1, the propagation of chaos holds for the interacting
particle system (ξ i,N )i∈N.
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Proof We prove here that Theorem 3.1 implies the propagation of chaos.
Indeed, for all k ∈ N

�, (3.7) implies

(
ξ1,N − Y 1, ξ2,N − Y 2, . . . , ξ k,N − Y k) L2(�,F ,P)−−−−−−−→

N −→+∞ 0 ,

which implies in particular the convergence in lawof the vector (ξ1,N , ξ2,N , . . . , ξ k,N )

to (Y 1,Y 2, . . . ,Y k). Consequently, since (Y i )i=1,...,k are i.i.d. according to m0

(ξ1,N , ξ2,N , . . . , ξ k,N ) converges in law to (m0)⊗k when N → +∞ . (3.9)

��

The validity of (3.6) and (3.7) will be the consequence of the significant more
general proposition below.

Proposition 3.3 Let us suppose the validity of Assumption 1. Let N be a fixed positive
integer. Let (Wi,N )i=1,...,N be a family of p-dimensional standard Brownian motions
(not necessarily independent). Let (Y i

0)i=1,...,N be the family of i.i.d. r.v. initializing
the system (3.1). We consider the processes (Ȳ i,N )i=1,...,N , such that for each i ∈
{1, . . . , N }, Ȳ i,N is the unique strong solution of

⎧⎪⎪⎨
⎪⎪⎩
Ȳ i,N
t = Y i

0 + ∫ t0 �(s, Ȳ i,N
s , um

i,N

s (Ȳ i,N
s ))dWi,N

s + ∫ t0 g(s, Ȳ i,N
s , um

i,N

s (Ȳ i,N
s ))ds,

for all t ∈ [0, T ]
um

i,N

t (y) = E

[
K (y − Ȳ i,N

t )Vt
(
Ȳ i,N , um

i,N
(Ȳ i,N )

)]
, with mi,N := L(Ȳ i,N ) ,

(3.10)
recalling that Vt

(
Y i,N , um

i,N
(Y i,N )

) = exp
( ∫ t

0 �(s,Y i,N
s , um

i,N

s (Y i,N
s ))ds

)
.

Let us consider now the system of equations (3.3), where the processes Wi are replaced
by Wi,N , i.e.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ
i,N
t = ξ

i,N
0 + ∫ t0 �(s, ξ i,Ns , uS

N (ξ)
s (ξ

i,N
s ))dWi,N

s + ∫ t0 g(s, ξ i,Ns , uS
N (ξ)

s (ξ
i,N
s ))ds

ξ
i,N
0 = Y i

0

uS
N (ξ)

t (y) = 1

N

N∑
j=1

K (y − ξ
j,N
t )Vt

(
ξ j,N , uS

N (ξ)(ξ j,N )
)
.

(3.11)
Then the following assertions hold.

1. For any i = 1, . . . N, (Ȳ i,N
t )t∈[0,T ] have the same law mi,N = m0, where m0 is

the common law of processes (Y i )i=1,...,N defined by the system (3.1).
2. Equation (3.11) admits a unique strong solution.
3. Suppose moreover that F(K ) is in L1(Rd). Then there is a positive constant C

only depending on L�, Lg, MK , M�, LK , L�, T and ‖F(K )‖1 such that, for all
t ∈ [0, T ],
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sup
i=1,...,N

E

[
sup

0≤s≤t

∣∣ξ i,Ns − Ȳ i,N
s

∣∣2
]

+ E

[∥∥uSN (ξ)
t − um

0

t

∥∥2∞
]

≤ C sup
ϕ∈Cb(Cd )

‖ϕ‖∞≤1

E

[∣∣〈SN (Ȳ) − m0, ϕ
〉|2], (3.12)

with again SN (Ȳ) := 1
N

N∑
j=1

δȲ j,N .

Remark 3.4 The convergence of the numerical approximation uS
N (ξ)

t to um
0

t only
requires the convergence of d�

2 (SN (Ȳ),m0) to 0, where the distance d�
2 has been

defined at Remark 2.6. This holds if, for each N , Ȳ i,N , i = 1, . . . N are independent;
however, this is only a sufficient condition.
This gives the opportunity to define new numerical schemes for which the convergence
of the empirical measure SN (Ȳ) is verified without i.i.d. particles. Let us consider
(Ȳ i,N )i=1,...N (resp. (ξ i,N )i=1,...N ) solutions of (3.10) (resp. (3.11)). Observe that for
any real valued test function in Cb(Cd)

E
[〈
SN (Ȳ) − m0, ϕ

〉2] = σ 2
ϕ

N

⎛
⎝1 + 2

N

∑
i< j

ρi, j
ϕ

⎞
⎠ ,

where σϕ :=
√
Var(ϕ(Ȳ 1,N )) and ρ

i, j
ϕ := E[ϕ(Y i,N )ϕ(Y j,N )]−E[ϕ(Y i,N )]E[ϕ(Y j,N )]

σ 2
ϕ

.

In the specific case where (Wi,N )i=1,...N are independent Brownian motions then
ρ
i, j
ϕ = 0 for any bounded ϕ ∈ Cb(Cd) and

sup
ϕ∈Cb(Cd )

‖ϕ‖∞≤1

E[|〈SN (Ȳ) − m0, ϕ〉|2] ≤ 1

N
. (3.13)

With our error bound one can naturally investigate antithetic variables approaches to
improve the interacting particle system convergence. Let us consider N = 2N ′ and
take (Wi,N )i=1,...N ′ as N ′ iid Brownian motions, then for the rest of the particles, for
any j = N ′ +1, N ′ +2, . . . 2N ′, setW j,N = −W j−N ′,N . In this situation, we obtain

E
[〈
SN (Ȳ) − m0, ϕ

〉2] = σ 2
ϕ

N

(
1 + ρ1,1+N ′

ϕ

)
.

So, even in this case, the rate of convergence of uS
N (ξ)

t to um
0

t is still of order 1/
√
N .

If moreover one has sup
ϕ∈Cb(Cd )

‖ϕ‖∞≤1

ρ1,1+N ′
ϕ ≤ 0, the variance will also be reduced with

respect to the case of independent Brownian motions, see (3.13).
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Proof of Proposition 3.3 Let us fix t ∈ [0, T ]. In this proof, C := C(�, g,�, K , T )

is a real positive constant, which may change from line to line.
Equation (3.10) has N blocks, numbered by 1 ≤ i ≤ N . Theorem2.8 gives uniqueness
in law for each block equation, which implies that for any i = 1, . . . N , mi,N = m0

and proves the first item.
Concerning item 2., i.e. the strong existence and pathwise uniqueness of (3.11), the
same argument as for thewell-statement of (3.3) operates. The only difference consists
in the fact that the Brownian motions may be correlated. A very close proof to the one
of Theorem 11.2 page 128 in [25] works: the main argument is the multidimensional
BDG inequality, see e.g. Problem 3.29 of [18].
We discuss now item 3. proving inequality (3.12). On the one hand, since the map

(t, ξ̄ ) ∈ [0, T ] × CdN �→ (uS
N (ξ̄ )

t (ξ̄ it ))i=1,...,N is measurable and satisfies the non-
anticipative property (3.4), the first assertion of Lemma 2.7 gives for all i ∈ {1, . . . , N }

E

[
sup

0≤s≤t

∣∣ξ i,Ns − Ȳ i,N
s

∣∣2
]

≤ CE

[∫ t

0

∣∣∣uSN (ξ)
s

(
ξ i,Ns

)
− um

0

s

(
Ȳ i,N
s

)∣∣∣2ds
]

≤ C
∫ t

0
E

[∣∣∣uSN (ξ)
s

(
ξ i,Ns

)
− um

0

s

(
ξ i,Ns

)∣∣∣2]ds
+
∫ t

0
E

[∣∣∣um0

s

(
ξ i,Ns

)
− um

0

s

(
Ȳ i,N
s

)∣∣∣2]ds

≤ C
∫ t

0

(
E

[∥∥∥uSN (ξ)
s − um

0

s

∥∥∥2∞
]
+E

[
sup

0≤r≤s

∣∣∣ξ i,Nr −Ȳ i,N
r

∣∣∣2]
)
ds, by (2.9) ,

(3.14)

which implies

sup
i=1,...,N

E

[
sup

0≤s≤t

∣∣∣ξ i,Ns − Ȳ i,N
s

∣∣∣2] ≤ C
∫ t

0

(
E

[∥∥∥uSN (ξ)
s − um

0

s

∥∥∥2∞
]

+ sup
i=1,...,N

E

[
sup

0≤r≤s

∣∣∣ξ i,Nr − Ȳ i,N
r

∣∣∣2]
)
ds.

(3.15)

We use inequalities (2.9) for m = SN (ξ)(ω̄) and m′ = SN (Ȳ)(ω̄)), where ω̄ is a
random realization in � and (2.12) (with the random probability η = SN (Ȳ) and
m = m0) in item 5. of Proposition 2.5. This yields

E

[∥∥∥uSN (ξ)
t − um

0

t

∥∥∥2∞
]

≤ 2E

[∥∥∥uSN (ξ)
t − uS

N (Ȳ)
t

∥∥∥2∞
]

+ 2E
[∥∥∥uSN (Ȳ)

t − um
0

t

∥∥∥2∞
]

≤ 2CE
[∣∣∣Wt (S

N (ξ), SN (Ȳ))

∣∣∣2]+ 2C sup
ϕ∈Cb(Cd )

‖ϕ‖∞≤1

E
[∣∣〈SN (Ȳ) − m0, ϕ

〉∣∣2]

≤ 2C

N

N∑
i=1

E

[
sup

0≤s≤t

∣∣∣ξ i,Ns − Ȳ i,N
s

∣∣∣2]+ C sup
ϕ∈Cb(Cd )

‖ϕ‖∞≤1

E
[∣∣〈SN (Ȳ) − m0, ϕ

〉∣∣2]
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≤ 2C sup
i=1,...,N

E

[
sup

0≤s≤t

∣∣∣ξ i,Ns − Ȳ i,N
s

∣∣∣2]

+ C sup
ϕ∈Cb(Cd )

‖ϕ‖∞≤1

E
[∣∣〈SN (Ȳ) − m0, ϕ

〉∣∣2], (3.16)

where the third inequality follows from Remark 2.1.
Let us introduce the non-negative function G defined on [0, T ] by

G(t) := E

[∥∥∥uSN (ξ)
t − um

0

t

∥∥∥2∞
]

+ sup
i=1,...,N

E

[
sup

0≤s≤t

∣∣∣ξ i,Ns − Ȳ i,N
s

∣∣∣2] .

From inequalities (3.15) and (3.16) that are valid for all t ∈ [0, T ], we obtain

G(t) ≤ (2C+1) sup
i=1,...,N

E

[
sup

0≤s≤t

∣∣∣ξ i,Ns −Ȳ i,N
s

∣∣∣2]+C sup
ϕ∈Cb(Cd )

‖ϕ‖∞≤1

E
[∣∣〈SN (Ȳ)−m0, ϕ

〉∣∣2]

≤ C
∫ t

0

(
E

[∥∥∥uSN (ξ)
s − um

0

s

∥∥∥2∞
]

+ sup
i=1,...,N

E

[
sup

0≤r≤s

∣∣∣ξ i,Nr − Ȳ i,N
r

∣∣∣2]
)
ds

+ C sup
ϕ∈Cb(Cd )

‖ϕ‖∞≤1

E
[∣∣〈SN (Ȳ) − m0, ϕ

〉∣∣2]

≤ C
∫ t

0
G(s)ds + C sup

ϕ∈Cb(Cd )
‖ϕ‖∞≤1

E
[∣∣〈SN (Ȳ) − m0, ϕ

〉∣∣2] . (3.17)

By Gronwall’s lemma, for all t ∈ [0, T ], we obtain

E

[∥∥∥uSN (ξ)
t − um

0

t

∥∥∥2∞
]

+ sup
i=1,...,N

E

[
sup

0≤s≤t

∣∣∣ξ i,Ns − Ȳ i,N
s

∣∣∣2]

≤ CeCt sup
ϕ∈Cb(Cd )

‖ϕ‖∞≤1

E
[∣∣〈SN (Ȳ) − m0, ϕ

〉∣∣2] . (3.18)

This concludes the proof of Proposition 3.3. ��
From now on, we prove Theorem 3.1,

Proof of Theorem 3.1 As we have mentioned above we will apply Proposition 3.3
setting for all i ∈ {1, . . . , N }, Wi,N := Wi . Pathwise uniqueness of systems (3.1)
and (3.10) implies Ȳ i,N = Y i for all i ∈ {1, . . . , N }. Taking into account (3.12) in
Proposition 3.3, in order to establish inequalities (3.6) and (3.7), we need to bound the
quantity sup

ϕ∈Cb(Cd )
‖ϕ‖∞≤1

E[|〈SN (Y) − m0, ϕ〉|2] . This is possible via (3.13) in Remark 3.4,

since (Y i )i=1,...,N are i.i.d. according to m0. This concludes the proof of item 1.
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It remains now to prove (3.8) in item 2. First, the inequality

E

[∥∥∥uSN (ξ)
t − um

0

t

∥∥∥2
2

]
≤ 2E

[∥∥∥uSN (ξ)
t − uS

N (Y)
t

∥∥∥2
2

]
+ 2E

[∥∥∥uSN (Y)
t − um

0

t

∥∥∥2
2

]
,

(3.19)

holds for all t ∈ [0, T ]. Using inequality (2.11) of Proposition 2.5, for all t ∈ [0, T ],
for m = SN (ξ),m′ = SN (Y), we get

E

[∥∥∥uSN (ξ)
t − uS

N (Y)
t

∥∥∥2
2

]
≤ CE

[
Wt
(
SN (ξ), SN (Y)

)2]

≤ C
1

N

N∑
j=1

E

[
sup

0≤r≤t

∣∣∣ξ j,N
r − Y j

r

∣∣∣2]

≤ C

N
, (3.20)

where the latter inequality is obtained through (3.7). The second term of the r.h.s. in
(3.19) needs more computations. Let us fix i ∈ {1, . . . , N }. First,

E

[∥∥∥uSN (Y)
t − um

0

t

∥∥∥2
2

]
≤ 2
(
E
[‖At‖22

]+ E
[‖Bt‖22

])
, (3.21)

where, for all t ∈ [0, T ]
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

At (x) := 1

N

N∑
j=1

K
(
x − Y j

t
)[
Vt
(
Y j , uS

N (Y)(Y j )
)− Vt

(
Y j , um

0
(Y j )
)]

Bt (x) := 1

N

N∑
j=1

K
(
x − Y j

t
)
Vt
(
Y j , um

0
(Y j )
)− E

[
K
(
x − Y 1

t

)
Vt
(
Y 1, um

0
(Y 1)
)]

,

(3.22)
where we recall that m0 is the common law of all the processes Y i , 1 ≤ i ≤ N .

To simplify notations, we set Pj (t, x) := K (x −Y j
t )Vt
(
Y j , um

0
(Y j )
)−E

[
K (x −

Y 1
t )Vt
(
Y 1, um

0
(Y 1)
)]

for all j ∈ {1, . . . , N }, x ∈ R
d and t ∈ [0, T ].

We observe that for all x ∈ R
d , t ∈ [0, T ], (Pj (t, x)) j=1,...,N are i.i.d. centered r.v.

Hence,

E
[
Bt (x)

2] = 1

N
E
[
P2
1 (t, x)

] = 1

N
Var
(
P1(t, x)

)

≤ 1

N
E
[
K 2(x − Y 1

t

)
V 2
t

(
Y 1, um

0
(Y 1)
)]

≤ MKe2tM�

N
E
[
K
(
x − Y 1

t

)]
.
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By integrating each side of the inequality above w.r.t. x ∈ R
d , we obtain

E

[∫
Rd

|Bt (x)|2dx
]

=
∫
Rd

E
[|Bt (x)|2

]
dx ≤ MKe2tM�

N
, (3.23)

where we have used that ‖K‖1 = 1.
Concerning At (x), we write

|At (x)|2 ≤ 1

N

N∑
j=1

K
(
x − Y j

t
)2[

Vt
(
Y j , uS

N (Y)(Y j )
)− Vt

(
Y j , um

0
(Y j )
)]2

= 1

N

N∑
j=1

K
(
x−Y j

t
)
K
(
x−Y j

t
)[
Vt
(
Y j , uS

N (Y)(Y j )
)− Vt

(
Y j , um

0
(Y j )
)]2

≤ MKT

N
e2tM�L2

�

N∑
j=1

K
(
x − Y j

t
) ∫ t

0

∣∣∣uSN (Y)
r

(
Y j
r
)− um

0

r

(
Y j
r
)∣∣∣2dr

≤ MKT

N
e2tM�L2

�

N∑
j=1

K
(
x − Y j

t
) ∫ t

0

∥∥∥uSN (Y)
r − um

0

r

∥∥∥2∞dr, (3.24)

where the third inequality comes from (2.7). Integrating w.r.t. x ∈ R
d and taking

expectation on each side of the above inequality gives us, for all t ∈ [0, T ],

E

[∫
Rd

|At (x)|2dx
]

≤ MKTe
2tM�L2

�

∫ t

0
E

[∥∥∥uSN (Y)
r − um

0

r

∥∥∥2∞
]
dr

≤ MKT
2e2tM�L2

�C sup
ϕ∈Cb(Cd )

‖ϕ‖∞≤1

E
[∣∣〈SN (Y) − m0, ϕ

〉∣∣2]

≤ MKT 2e2tM�L2
�C

N
, (3.25)

where we have used (2.12) of Proposition 2.5 for the second inequality above and
(3.13) for the latter one. To conclude, it is enough to replace (3.23), (3.25) in (3.21),
and inject (3.20), (3.21) into (3.19). ��

4 Particle algorithm

4.1 Time discretization of the particle system

In this section Assumption 2. is in force. Let (Y i
0)i=1,...,N be i.i.d. r.v. distributed

according to ζ0. In the sequel, we are interested in discretizing the interacting particle
system (3.3). (ξ i,N , 1 ≤ i ≤ N ) will denote again the corresponding solution. Let
us consider a regular time grid 0 = t0 ≤ · · · ≤ tk = kδt ≤ · · · ≤ tn = T , with
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δt = T/n. We introduce the continuousRdN -valued process (ξ̃t )t∈[0,T ] and the family
of nonnegative functions (ũt )t∈[0,T ] defined on Rd constructively such that
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ̃
i,N
t = ξ̃

i,N
0 + ∫ t0 �

(
r(s), ξ̃ i,Nr(s), ũr(s)

(
ξ̃
i,N
r(s)

))
dWi

s + ∫ t0 g(r(s), ξ̃ i,Nr(s), ũr(s)
(
ξ̃
i,N
r(s)

))
ds

ξ̃
i,N
0 = Y i

0

ũt (y) = 1
N

∑N
j=1 K

(
y − ξ̃

j,N
t
)
exp
{ ∫ t

0 �(r(s), ξ̃ j,N
r(s) , ũr(s)

(
ξ̃
j,N
r(s)

))
ds
}

, for any t ∈]0, T ],
ũ0 = K ∗ ζ0,

(4.1)
where r : s ∈ [0, T ] �→ r(s) ∈ {t0, . . . tn} is the piecewise constant function such that
r(s) = tk when s ∈ [tk, tk+1[. We can observe that (ξ̃ i,N )i=1,...,N is an adapted and
continuous process. The interacting particle system (ξ̃ i,N )i=1,...N can be simulated
perfectly at the discrete instants (tk)k=0,...,n via independent standard and centered
Gaussian random variables.Wewill show that this interacting particle system provides
an approximation to the solution (ξ i,N )i=1,...N , of system (3.3), which converges at a
rate bounded by

√
δt , up to a multiplicative constant.

Proposition 4.1 Let us suppose the validity of Assumption 2. The time discretized
particle system (4.1) converges to the original particle system (3.3). More precisely,
for all t ∈ [0, T ], the following estimates hold:

E

[∥∥∥ũt − uS
N (ξ)

t

∥∥∥2∞
]

+ sup
i=1,...,N

E

[
sup
s≤t

∣∣ξ̃ i,Ns − ξ i,Ns

∣∣2] ≤ Cδt , (4.2)

whereC is a finite positive constant only depending on MK , M�, LK , L�,m�,mg, T .
If we assume moreover that K ∈ W 1,2(Rd), then

E

[∥∥∥ũt − uS
N (ξ)

t

∥∥∥2
2

]
≤ Cδt , t ∈ [0, T ], (4.3)

where C is a finite positive constant only depending on MK , M�,m�,mg, LK , L�, T
and ‖∇K‖2.

The left-hand side of (4.3) is generally known, as Mean Integrated Squared Error
(MISE).

The result below states the convergence of ũt to um
0

t when δt → 0 and N → +∞,
with an explicit rate of convergence.

Theorem 4.2 We suppose Assumption 2. We indicate by m0 the law of Y , where (Y, u)

is the solution of (1.4). The time discretized particle system (4.1) converges to the
solution of (1.4). More precisely, we have the following.We supposeF(K ) ∈ L1(resp.
K ∈ W 1,2(Rd)). There exists a real constant C > 0 such that for all t ∈ [0, T ],

E
[∥∥um0

t − ũt
∥∥2∞] ≤ C

(
δt + 1

N

)
, (4.4)

(
respectively

E
[∥∥um0

t − ũt
∥∥2
2

] ≤ C

(
δt + 1

N

))
. (4.5)
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Remark 4.3 When� = 0 and� and g are infinitely differentiable with all derivatives
being bounded, Corollary 1.1 of [19] states that, for fixed smooth test function with
polynomial growth ϕ, one has

E
(∣∣〈SN (ξ̃t ) − m0

t , ϕ
〉∣∣) ≤ Cϕ

(
1√
N

+ δt

)
, where again SN (ξ̃t) := 1

N

N∑
i=1

δ
ξ̃
i,N
t

.

(4.6)
This leads reasonnably to the conjecture that the rate in (4.4) is not optimal and it could
be replaced by (δt)2 + 1

N . This intuition will be confirmed by numerical simulations
in Sect. 5.

Proof We first observe that for all t ∈ [0, T ], for p = ∞, 2

E
[∥∥um0

t − ũt
∥∥2
p

] ≤ 2E
[∥∥um0

t − uS
N (ξ)

t

∥∥2
p

]+ 2E
[∥∥uSN (ξ)

t − ũt
∥∥2
p

]
. (4.7)

The first term in the r.h.s. of (4.7) is bounded by C
N using Theorem 3.1, inequality

(3.6) (respectively (3.8)).
The second term of the same inequality is controlled by Cδt , through Proposition 4.1,
inequality (4.2) (resp. (4.3)). ��

The proof of Proposition 4.1 relies on similar techniques used to prove Theorem
3.1. The idea is first to estimate through Lemma 4.4 the perturbation error due to the
time discretization scheme of the SDE and of the integral appearing in the exponential
weight in system (4.1). Later the propagation of this error through the dynamical
system (3.3) will be controlled via Gronwall’s lemma. Lemma 4.4 below will be
proved in the Appendix.

Lemma 4.4 Let us suppose the validity of Assumption 2. There exists a finite constant
C > 0 only depending on T, MK ,m�,mg, LK , L�, Lg and M�, L� such that for
any t ∈ [0, T ],

E
[∣∣ξ̃ i,Nr(t) − ξ̃

i,N
t

∣∣2] ≤ Cδt (4.8)

E
[∥∥ũr(t) − ũt

∥∥2∞] ≤ Cδt (4.9)

E

[∥∥∥ũr(t) − uS
N (ξ̃ )

t

∥∥∥2∞
]

≤ Cδt . (4.10)

Proof of Proposition 4.1. All along this proof, C will denote a positive constant that
only depends on
T, MK ,m�,mg, LK , L�, Lg and M�,L� and that can change from line to line. Let
us fix t ∈ [0, T ].
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• We begin by considering inequality (4.2). We first fix 1 ≤ i ≤ N . By (4.9) and
(4.10) in Lemma 4.4 and (2.9) in Proposition 2.5, we obtain

E

[∥∥∥ũt − uS
N (ξ)

t

∥∥∥2∞
]

≤ E

[(
‖ũt − ũr(t)‖∞ +

∥∥∥ũr(t) − uS
N (ξ̃ )

t

∥∥∥∞
+
∥∥∥uSN (ξ̃ )

t − uS
N (ξ)

t

∥∥∥∞
)2]

≤ 3(E[‖ũt − ũr(t)‖2∞] + E

[∥∥∥ũr(t) − uS
N (ξ̃ )

t

∥∥∥2∞
]

+E

[∥∥∥uSN (ξ̃ )
t − uS

N (ξ)
t

∥∥∥2∞
]
)

≤ Cδt + CE
[∣∣Wt
(
SN (ξ̃ ), SN (ξ)

)∣∣2]
≤ Cδt + C sup

i=1,...,N
E

[
sup
s≤t

∣∣ξ̃ i,Ns − ξ i,Ns

∣∣2] , (4.11)

where the function uS
N (ξ̃ ) makes sense since ξ̃ has almost surely continuous tra-

jectories and so SN (ξ̃ ) is a random probability in P(Cd).
Besides, by the second assertion of Lemma 2.7, setting Y ′ := ξ̃ i,N , r1(s) = r(s)
and Y := ξ i,N , r2(s) = s, we get

E

[
sup
s≤t

∣∣ξ̃ i,Ns − ξ i,Ns

∣∣2] ≤ CE

[∫ t

0

∣∣ũr(s)(ξ̃ i,Nr(s)

)− uS
N (ξ)

s

(
ξ i,Ns

)∣∣2 ds
]

+C
∫ t

0
E

[∣∣ξ̃ i,Nr(s) − ξ̃ i,Ns

∣∣2] ds + Cδt . (4.12)

Concerning the first term in the r.h.s. of (4.12), we have for all s ∈ [0, T ]
∣∣ũr(s)(ξ̃ i,Nr(s)

)− uS
N (ξ)

s

(
ξ i,Ns

)∣∣2 ≤ 2
∣∣ũr(s)(ξ̃ i,Nr(s)

)− uS
N (ξ)

s

(
ξ̃
i,N
r(s)

)∣∣2
+ 2
∣∣uSN (ξ)

s

(
ξ̃
i,N
r(s)

)− uS
N (ξ)

s

(
ξ i,Ns

)∣∣2
≤ 2
∥∥∥ũr(s) − uS

N (ξ)
s

∥∥∥2∞ + 2C
∣∣∣ξ̃ i,Nr(s) − ξ i,Ns

∣∣∣2 ,

(4.13)

where the second inequality above follows by (2.9) in Proposition 2.5, setting
m = m′ = SN (ξ). Consequently, by (4.12)

E
[
sup
s≤t

∣∣ξ̃ i,Ns − ξ i,Ns

∣∣2] ≤ C

{
E

[∫ t

0

∥∥ũr(s) − uS
N (ξ)

s

∥∥2∞ ds

]
+
∫ t

0
E

[∣∣ξ̃ i,Nr(s) − ξ i,Ns

∣∣2] ds+δt

}

≤ C

{
E

[∫ t

0
‖ũr(s) − ũs‖2∞ ds

]
+ E

[∫ t

0

∥∥ũs − uS
N (ξ)

s

∥∥2∞ ds

]

+E

[∫ t

0

∣∣ξ̃ i,Nr(s) − ξ̃ i,Ns

∣∣2 ds
]

+ E

[∫ t

0

∣∣ξ̃ i,Ns − ξ i,Ns

∣∣2 ds
]

+ δt

}
.

(4.14)
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Using inequalities (4.8) and (4.9) in Lemma 4.4, for all t ∈ [0, T ], we obtain

sup
i=1,...,N

E
[
sup
s≤t

∣∣ξ̃ i,Ns − ξ i,Ns

∣∣2] ≤ Cδt + C
∫ t

0

[
E
[∥∥ũs − uS

N (ξ)
s

∥∥2∞]

+ sup
i=1,...,N

E
[
sup
θ≤s

∣∣ξ̃ i,Nθ − ξ
i,N
θ

∣∣2]
]
ds.

(4.15)

Gathering the latter inequality together with (4.11) yields

E
[∥∥ũt − uS

N (ξ)
t

∥∥2∞]+ sup
i=1,...,N

E
[
sup
s≤t

∣∣ξ̃ i,Ns − ξ i,Ns

∣∣2]

≤ Cδt + 2C sup
i=1,...,N

E
[
sup
s≤t

|ξ̃ i,Ns − ξ i,Ns |2] ≤ Cδt

+ C
∫ t

0

[
E
[∥∥ũs − uS

N (ξ)
s

∥∥2∞]

+ sup
i=1,...,N

E
[
sup
θ≤s

∣∣ξ̃ i,Nθ − ξ
i,N
θ

∣∣2]]ds . (4.16)

Applying Gronwall’s lemma to the function

t �→ sup
i=1,...,N

E
[
sup
s≤t

∣∣ξ̃ i,Ns − ξ i,Ns

∣∣2]+ E

[∥∥∥ũt − uS
N (ξ)

t

∥∥∥2∞
]

ends the proof of (4.2).
• We focus now on (4.3). First we observe that

E

[∥∥∥ũt − uS
N (ξ)

t

∥∥∥2
2

]
≤ 2E

[∥∥∥ũt − uS
N (ξ̃ )

t

∥∥∥2
2

]
+ 2E

[∥∥∥uSN (ξ̃ )
t − uS

N (ξ)
t

∥∥∥2
2

]
. (4.17)

Using successively item 4. of Proposition 2.5, Remark 2.1 and inequality (4.2),
we can bound the second term on the r.h.s. of (4.17) as follows:

E

[∥∥∥uSN (ξ̃ )
t − uS

N (ξ)
t

∥∥∥2
2

]
≤ CE

[∣∣∣Wt
(
SN (ξ̃ ), SN (ξ)

)∣∣∣2]

≤ C sup
i=1,...,N

E

[
sup
s≤t

∣∣ξ̃ i,Ns − ξ i,Ns

∣∣2]

≤ Cδt . (4.18)

To simplify the notations, we introduce the real valued random variables

V i
t := e

∫ t
0 �
(
s,ξ̃ i,Ns ,uS

N (ξ̃ )
s (ξ̃

i,N
s )
)
ds and Ṽ i

t := e
∫ t
0 �
(
r(s),ξ̃ i,Nr(s),ũr(s)(ξ̃

i,N
r(s))
)
ds

,

(4.19)
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defined for any i = 1, . . . N and t ∈ [0, T ].
Concerning the first term on the r.h.s. of (4.17), inequality (6.2) of Lemma 5.1 in
the Appendix gives for all y ∈ R

d

∣∣∣ũt (y) − uS
N (ξ̃ )

t (y)
∣∣∣2 ≤ MK

N

N∑
i=1

K (y − ξ̃
i,N
t )
∣∣Ṽ i

t − V i
t

∣∣2 . (4.20)

Integrating the inequality (4.20) with respect to y, yields

∥∥∥ũt − uS
N (ξ̃ )

t

∥∥∥2
2

=
∫
Rd

∣∣∣ũt (y) − uS
N (ξ̃ )

t (y)
∣∣∣2 dy ≤ MK

N

N∑
i=1

∣∣Ṽ i
t − V i

t

∣∣2 ,

which, in turn, implies

E

[∥∥∥ũt − uS
N (ξ̃ )

t

∥∥∥2
2

]
≤ MK

N

N∑
i=1

E

[∣∣Ṽ i
t − V i

t

∣∣2] . (4.21)

Using successively item 1. of Lemma 5.1 and inequality (4.8) of Lemma 4.4, for
all i ∈ {1, . . . , N }, we obtain

E
[∣∣Ṽ i

t − V i
t

∣∣2] ≤ Cδt + CE

[∫ t

0

∣∣∣ξ̃ i,Nr(s) − ξ̃ i,Ns

∣∣∣2 ds
]

+CE

[∫ t

0

∣∣∣ũr(s)
(
ξ̃
i,N
r(s)) − uS

N (ξ̃ )
s

(
ξ̃ i,Ns

)∣∣∣2ds
]

≤ Cδt + CE

[∫ t

0

∣∣∣ũr(s)
(
ξ̃
i,N
r(s)

)
− uS

N (ξ̃ )
s

(
ξ̃ i,Ns

)∣∣∣2ds
]

≤ Cδt + CE

[∫ t

0

∣∣∣ũr(s)
(
ξ̃
i,N
r(s)

)
− uS

N (ξ̃ )
s

(
ξ̃
i,N
r(s)

)∣∣∣2ds
]

+ CE

[∫ t

0

∣∣∣uSN (ξ̃ )
s

(
ξ̃
i,N
r(s)

)
− uS

N (ξ̃ )
s

(
ξ̃ i,Ns

)∣∣∣2ds
]

≤ Cδt + C
∫ t

0

[
E

[∥∥∥ũr(s) − uS
N (ξ̃ )

s

∥∥∥2∞
]
+E

[∣∣∣ξ̃ i,Nr(s)−ξ̃ i,Ns

∣∣∣2]
]
ds

≤ Cδt + C
∫ t

0
E

[∥∥∥ũr(s) − uS
N (ξ̃ )

s

∥∥∥2∞
]
ds , (4.22)

where the fourth inequality above follows from Proposition 2.5, see (2.9). Conse-
quently using (4.22) and inequality (4.10) of Lemma 4.4, (4.21) becomes
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E

[∥∥∥ũt − uS
N (ξ̃ )

t

∥∥∥2
2

]
≤ C

N

N∑
i=1

E
[∣∣Ṽ i

t − V i
t

∣∣2] ≤︸︷︷︸
(4.22)

Cδt

+C
∫ t

0
E

[∥∥∥ũr(s) − uS
N (ξ̃ )

s

∥∥∥2∞
]

≤︸︷︷︸
(4.10)

Cδt. (4.23)

Finally, injecting (4.23) and (4.18) in (4.17) yields

E

[∥∥∥ũt − uS
N (ξ)

t

∥∥∥2
2

]
≤ Cδt ,

which ends the proof of Proposition 4.1. ��

4.2 Algorithm description

In this section, we describe precisely the algorithm relying on the time-discretization
(4.1) of the interacting particle system (3.3). Let v0 be the law density of Y0 where Y
is the solution of (1.4). In the sequel, we will make use of the same notations as in
previous section. In particular, 0 = t0 ≤ · · · ≤ tk = kδt ≤ · · · ≤ tn = T is a regular
time grid with δt = T/n. We consider a real-valued function K : Rd → R being a
mollifier depending on some bandwith parameter ε.

Initialization for k = 0.
1. Generate

(
ξ̃
i,N
t0

)
i=1,...,N

i.i.d.∼ v0(x)dx ;

2. set Gi
0 := 1, i = 1, . . . , N ;

3. set ũt0(·) := (K ∗ v0)(·);
Iterations for k = 0, . . . , n − 1.
• Independently for each particle ξ̃

j,N
tk for j = 1, . . . N ,

ξ̃
j,N
tk+1

= ξ̃
j,N
tk + �

(
tk, ξ̃

j,N
tk , ũtk

(
ξ̃
j,N
tk

))√
δtε j

k+1+g
(
tk, ξ̃

j,N
tk , ũtk

(
ξ̃
j,N
tk

))
δt ,

where (ε
j
k ) j=1,...,N ,k=1,...n is a sequence of i.i.d centered and standardGaussian

variables;
• set for j = 1, . . . N ,

G j
k+1 := G j

k × exp
(
�
(
tk, ξ̃

j,N
k , ũtk

(
ξ̃
j,N
tk

))
δt
)

;

• set

ũtk+1(·) = 1

N

N∑
j=1

G j
k+1 × K

(
· − ξ̃

j,N
tk+1

)
.
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Remark 4.5 For a fixed k ∈ {0, . . . , n− 1}, we observe that the simulation of the j-th
particle ξ̃

j,N
tk+1

at time tk+1 involves the whole particle system through the evaluation of

ũtk (ξ̃
j,N
tk ), which implies a complexity of the algorithm of order nN 2.

5 Numerical results

5.1 Preliminary considerations

Onemotivating issue of this section is how the interacting particle system ξ := (ξ i,N ,ε)

defined in (3.3) with K = K ε, K ε(x) := 1
εd

φd( x
ε
) for some mollifier φd , can be used

to approach the solution v of the PDE

⎧⎪⎨
⎪⎩

∂tv = 1
2

d∑
i, j=1

∂2i j
(
(��t )i, j (t, x, v)v

)− div (g(t, x, v)v) + �(t, x, v)v

v(0, x) = v0 ,

(5.1)

to which we can reasonably expect that (1.5) converges when K ε −−→
ε→0

δ.

Two significant parameters, i.e. ε → 0, N → +∞, intervene. We expect to approx-
imate v by uε,N , which is the solution of the Eq. (1.6), associated with the empirical
measure m = SN (ξ). To this purpose, we want to control empirically the Mean
Integrated Squared Error (MISE) between the solution v of (5.1) and the particle
approximation uε,N , i.e. for t ∈ [0, T ],

E

[∥∥∥uε,N
t − vt

∥∥∥2
2

]
≤ 2E

[∥∥∥uε,N
t − uε

t

∥∥∥2
2

]
+ 2‖uε

t − vt‖22, (5.2)

where uε = um
0
with K = K ε,m0 being the common lawof processesY i , 1 ≤ i ≤ N

in (3.1). Even though the second term in the r.h.s. of (5.2) does not explicitely involve
the number of particles N , the first term crucially depends on both parameters ε, N .
The behavior of the first term relies on the propagation of chaos. This phenomenon
has been observed in Corollary 3.2, which is a consequence of Theorem 3.1, for a
fixed ε > 0, when N → +∞. According to Theorem 3.1, the first error term on the
r.h.s. of the above inequality can be bounded by C(ε)

N .
Concerning the second error term, no result is available but we expect that it converges
to zerowhen ε → 0.Tocontrol theMISE, it remains to determine a relation N �→ ε(N )

such that

ε(N ) −−−−−→
N→+∞ 0 and

C(ε(N ))

N
−−−−−→
N→+∞ 0 . (5.3)

When the coefficients�, g and the initial condition are smooth with� non-degenerate
and � ≡ 0 (i.e. in the conservative case), Theorem 2.7 of [17] gives a description of
such a relation.
In our empirical analysis, we have concentrated on a test case, for which we have an
explicit solution.
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We first illustrate the chaos propagation for fixed ε > 0, i.e. the result of Theorem 3.1.
On the other hand, we give an empirical insight concerning the following:

• the asymptotic behavior of the second error term in inequality (5.2) for ε → 0;
• the tradeoff N �→ ε(N ) verifying (5.3).

Moreover, the simulations reveal two behaviors regarding the chaos propagation inten-
sity.

5.2 The target PDE

We describe now the test case. For a given triple (m, μ, A) ∈]1,∞[×R
d × R

d×d we
consider the following nonlinear PDE of the form (5.1):

⎧⎪⎨
⎪⎩

∂tv = 1

2

d∑
i, j=1

∂2i, j
(
v(��t )i, j (t, x, v)

)− div
(
vg(t, x, v)

)+ v�(t, x, v) ,

v(0, x) = Bm(2, x) fμ,A(x) for all x ∈ R
d ,

(5.4)
where the functions �, g , � defined on [0, T ] × R

d × R are such that

�(t, x, z) = f
1−m
2

μ,A (x)z
m−1
2 Id , (5.5)

Id denoting the identity matrix in R
d×d ,

g(t, x, z) = f 1−m
μ,A (x)zm−1 A + At

2
(x − μ) , and

�(t, x, z) = f 1−m
μ,A (x)zm−1Tr

(
A + At

2

)
. (5.6)

Here fμ,A : Rd → R is given by

fμ,A(x) = Ce− 1
2 〈x−μ,A(x−μ)〉 , normalized by

C =
[∫

Rd
Bm(2, x)e− 1

2 (x−μ)·A(x−μ)

]−1

(5.7)

and Bm is the d-dimensional Barenblatt-Pattle density associated to m > 1, i.e.

Bm(t, x) = 1

2

(
D − κt−2β |x |) 1

m−1+ t−α, (5.8)

with α = d
(m−1)d+2 , β = α

d , κ = m−1
m β and D = [2κ− d

2
π

d
2 �( m

m−1 )

�( d2 + m
m−1 )

] 2(1−m)
2+d(m−1) .

In the specific case where A is the zero matrix of Rd×d , then fμ,A ≡ 1; g ≡ 0 and
� ≡ 0. Hence, we recover the conservative porous media equation, whose explicit
solution is
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v(t, x) = Bm(t + 2, x) , for all (t, x) ∈ [0, T ] × R
d ,

see [1]. For general values of A ∈ R
d×d , extended calculations produce the following

explicit solution

v(0, ·) = v0(·) and v(t, x) = Bm(t +2, x) fμ,A(x) , for all (t, x) ∈ [0, T ]×R
d ,

(5.9)
of (5.4), which is non conservative.

5.3 Details of the implementation

Once fixed the number N of particles, we have run M = 100 i.i.d. particle systems
producing (uε,N ,i )i=1,...M , which are M i.i.d. realizations of uε,N introduced just after
(5.1). The MISE is then approximated by the Monte Carlo approximation

E

[∥∥∥uε,N
t − vt

∥∥∥2
2

]
≈ 1

MQ

M∑
i=1

Q∑
j=1

∣∣∣uε,N ,i
t

(
X j )− vt

(
X j )∣∣∣2v−1(0, X j ) , for all t ∈ [0, T ] ,

(5.10)
where (X j ) j=1,...,Q=1000 are i.i.d R

d -valued random variables with common density
v(0, ·). In our simulation, we have chosen T = 1, m = 3/2, μ = 0 and A = 2

3 Id .
K ε = 1

εd
φd( ·

ε
) with φd being the standard and centered Gaussian density.

In this subsection, we fix the dimension to d = 5.We have run a discretized version
of the interacting particle system with Euler scheme mesh kT/n with n = 10. Notice
that this discretization error is neglected in the present analysis.

Our simulations show that the approximation error presents two types of behavior
depending on the number N of particles with respect to the regularization parameter
ε.

1. For large values of N , we visualize a chaos propagation behavior for which the
error estimates are similar to theones providedby thedensity estimation theory [26]
corresponding to the classical framework of independent samples.

2. For small values of N appears a transient behavior for which the bias and variance
errors cannot be easily described.

Observe that the Mean Integrated Squared Error MISEt (ε, N ) := E[‖uε,N
t − vt‖22]

can be decomposed as the sum of the variance Vt (ε, N ) and squared bias B2
t (ε, N ) as

follows:

MISEt (ε, N ) = Vt (ε, N ) + B2
t (ε, N )

= E

[∥∥∥uε,N
t − E

[
uε,N
t

]∥∥∥2
2

]
+
∥∥∥E[uε,N

t

]
− vt

∥∥∥2
2

. (5.11)

For N large enough, according to Corollary 3.2, one expects that the propagation of
chaos holds. Then the particle system (ξ i,N )i=1,...,N (solution of (3.3)) is close to an
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i.i.d. system with common law m0. We observe that, in the specific case where the
weighting function � does not depend on the density u, for t ∈ [0, T ], we have

E

[
uε,N
t

]
= 1

N
E

⎡
⎣ N∑

j=1

K ε
(

· −ξ
j,N
t

)
exp

{∫ t

0
�
(
r(s), ξ j,N

r(s)

)
ds

}⎤⎦ ,

= E

[
K ε
( · −Y 1

t

)
Vt
(
Y 1)]

= uε
t . (5.12)

Therefore, under the chaos propagation behavior, the approximations below hold for
the variance and the squared bias:

Vt (ε, N ) ≈ E

[∥∥∥uε,N
t − uε

t

∥∥∥2
2

]
and B2

t (ε, N ) ≈ ∥∥uε
t − vt

∥∥2
2 . (5.13)

We recall that the relation uε = K ε ∗ vε comes from Theorem 6.1 of [20], where vε

is solution of (1.5) with K = K ε.
On Fig. 1, we have reported the estimated variance error Vt (ε, N ) as a function

of the particle number N , (on the left graph) and as a function of the regularization
parameter ε, (on the right graph), for t = T = 1 and d = 5. We have used for this a
similar Monte Carlo approximation as (5.10).
That figure shows that, when the number of particles is large enough, the variance error
behaves precisely as in the classical case of density estimation encountered in [26],
i.e., vanishing at a rate 1

Nεd
, see relation (4.10), Chapter 4., Sect. 4.3.1. This is in

particular illustrated by the log-log graphs, showing almost linear curve, when N is
sufficiently large. In particular we observe the following.

• On the left graph, log(Vt (ε, N )) ≈ a − α log N with slope α = 1;
• On the right graph, log Vt (ε, N ) ≈ b − β log ε with slope β = 5 = d.
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Fig. 1 Variance error as a function of the number of particles, N , and the mollifier window width, ε, for
dimension d = 5 at the final time step T = 1
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It seems that the threshold N after which appears the linear behavior (compatible
with the propagation of chaos situation corresponding to asymptotic-i.i.d. particles)
decreases when ε grows. In other words, when ε is large, less particles N are needed
to give evidence to the chaotic behavior.

This phenomenon can be probably explained by analyzing the particle system
dynamics. Indeed, at each time step, the interaction between the particles is due to
the empirical estimation of uε = K ε ∗ vε based on the particle system. Intuitively,
the more accurate the approximation uε,N of uε is, the less strong the interaction
between particles will be. In the limiting case when uε,N = uε, the interaction disap-
pears.

Now observe that at time step 0, the particle system (ξ
i,N
0 ) is i.i.d. according to

v0(·), so that the estimation of (K ε ∗vε)(0, ·) provided by (4.1) reduces to the classical
density estimation approach, see [26] as mentioned above. In that classical framework,
we emphasize that, for larger values of ε, the number of particles, needed to achieve a
given density estimation accuracy, is smaller. Hence, one can imagine that for larger
values of ε less particles will be needed to obtain a quasi-i.i.d particle system at time
step 1, (ξ i,Nt1 ). We can then reasonably presume that this initial error propagates along
the time steps.

On Fig. 2, we have reported the estimated squared bias error, B2
t (ε, N ), as a function

of the regularization parameter, ε, for different values of the particle number N , for
t = T = 1 and d = 5.
One can observe that, similarly to the classical i.i.d. case, (see relation (4.9) in Chapter
4, Sect. 4.3.1 in [26]), for N large enough, the bias error does not depend on N and
can be approximated by aε4, for some constant a > 0. This is in fact coherent with
the bias approximation (5.13), developed in the specific case where the weighting
function � does not depend on the density. Assuming the validity of approxima-
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Fig. 2 Bias error as a function of the mollifier window width, ε, for dimension d = 5 at the final time step
T = 1
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tion (5.13) and of the previous empirical observation implies that one can bound the
error between the solution, vε, of the regularized PDE of the form (1.5) (with K = K ε)
associated to (5.4), and the solution, v, of the limit (non regularized) PDE (5.4) as fol-
lows

∥∥vε
t − vt

∥∥2
2 ≤ 2

∥∥vε
t − uε

t

∥∥2
2 + 2

∥∥uε
t − vt

∥∥2
2

≤ 2
∥∥vε

t − K ε ∗ vε
t

∥∥2
2 + 2

∥∥uε
t − vt

∥∥2
2

≤ 2(a′ + a)ε4. (5.14)

Indeed, at least, the first term in the second line can be easily bounded, supposing that
vε
t has a bounded second derivative. This constitutes an empirical proof of the fact that

vε converges to v.
As observed in the variance error graphs, the threshold N , abovewhich the propagation
of chaos behavior is observed decreases with ε. Indeed, for ε > 0.6 we observe a
chaotic behavior of the bias error, starting from N ≥ 500, whereas for ε ∈ [0.4, 0.6],
this chaotic behavior appears only for N ≥ 5000.
For small values of ε ≤ 0.6, the bias highly depends on N for any N ≤ 104; more-
over that dependence becomes less relevant when N increases. This is probably due
to the combination of two effects: the lack of chaos propagation phenomenon and
the fact that the coefficient � depends on u, so that (5.12) does not hold in that
context.

Taking into account both the bias and the variance error in the MISE (5.11), the
choice of ε has to be carefully optimized w.r.t. the number of particles: ε going to
zero together with N going to infinity at a judicious relative rate seem to ensure
the convergence of the estimated MISE to zero. This kind of tradeoff is standard in
density estimation theory and was already investigated theoretically in the context of
forward interacting particle systems related to conservative regularized nonlinear PDE
in [17]. Extending this type of theoretical analysis to our non conservative framework
is beyond the scope of the present paper.

5.3.1 Time discretization error

In this subsection, we are interested in analysing via numerical simulations the time
discretization error w.r.t. to δt = T/n. As announced in Remark 4.3, we suspect that
the rate in (4.4) is not optimal and that theMISEerror induced by the timediscretization
is of order 1/n2 instead of 1/n.

Let ũε,N ,n
T denote the particle approximation obtained by scheme (4.1) with a num-

ber of particles, N , a regularization parameter, ε, and a number of time steps, n. In
order to focus on the time discretization error apart from the particle approximation
and the regularization error (related to N and ε), we have considered errors of the
type E[‖ũε,N ,n

T − ũε,N ,n0
T ‖22] for different numbers of time steps n < n0 where n0 is

supposed to be a large number of time steps. More precisely, we have decomposed
this error into a variance and a squared bias term as
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Fig. 3 Variance and squared bias error (5.15) as a function of the number of time steps, n =
5, 10, 20, 40, 80, 160, 320, at the final time step T = 1 (with dimension d = 1, N = 5000 particles
and ε = 0.3 or 0.9)

E
[∥∥ũε,N ,n

T −ũε,N ,n0
T

∥∥2
2

] = E
[∥∥ũε,N ,n

T −E
[
ũε,N ,n
T

]∥∥2
2

]+ E
[∥∥ũε,N ,n0

T − E
[
ũε,N ,n0
T

]∥∥2
2

]
︸ ︷︷ ︸

Variance

+ ∥∥E[ũε,N ,n
T

]− E
[
ũε,N ,n0
T

]∥∥2
2︸ ︷︷ ︸

Bias2

, (5.15)

if uε,N ,n
T and uε,N ,n0

T are independent.
On Fig. 3, we have reported the Monte Carlo estimation (according to (5.10), with

Q = 1000 runs) of the above variance and squared bias terms in a log–log scale in
order to diagnose the expected rate of convergence 1/n2 via a straight line with slope
−2. All the parameters are similar to the simulations performed in previous subsection
excepted for the dimension d = 1, N = 5000 and n0 is set to 1000 time steps. One can
observe that the variance term (in dashed lines) seems not to depend on the number
of time steps n whereas the squared bias term decreases as expected at a rate close to
1/n2.
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Appendix

In this appendix, we present the proof of Lemma 4.4. We first proceed with the proof
of some intermediary inequalities.
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Lemma 5.1 We suppose Assumption 1. Let N ∈ N
�. Let (ξ i,N )i=1,...,N be (a solution

of) the interacting particle system (3.3); let (ξ̃ i,N )i=1,...,N and ũ as defined as in the
discretized interacting particle system (4.1).

The random variables V i
t := e

∫ t
0 �
(
s,ξ̃ i,Ns ,uS

N (ξ̃ )
s (ξ̃

i,N
s )
)
ds and Ṽ i

t :=
e
∫ t
0 �
(
r(s),ξ̃ i,Nr(s),ũr(s)(ξ̃

i,N
r(s))
)
ds , for all t ∈ [0, T ], i ∈ {1, . . . , N } fulfill the following.

1. For all t ∈ [0, T ], i ∈ {1, . . . , N }

E
[∣∣Ṽ i

t − V i
t

∣∣2] ≤ Cδt + CE

[∫ t

0

∣∣ξ̃ i,Nr(s) − ξ̃ i,Ns

∣∣2 ds
]

+CE

[∫ t

0

∣∣ũr(s)(ξ̃ i,Nr(s)

)− uS
N (ξ̃ )

s

(
ξ̃ i,Ns

)∣∣2ds
]

, (6.1)

where C is a real positive constant depending only on M�, L� and T .
2. For all (t, y) ∈ [0, T ] × R

d , i ∈ {1, . . . , N }
∣∣ũt (y) − uS

N (ξ̃ )
t (y)

∣∣2 ≤ MK

N

N∑
i=1

K
(
y − ξ̃

i,N
t
) ∣∣Ṽ i

t − V i
t

∣∣2 . (6.2)

Proof of Lemma 5.1 Let us fix t ∈ [0, T ], i ∈ {1, . . . , N }. To prove (6.1), it is enough
to recall that � being Lipschitz w.r.t. the space variables and 1

2 -Holder continuous
w.r.t. the time variable, the inequality (2.6) yields

∣∣Ṽ i
t − V i

t

∣∣2 ≤ 3e2tM�L2
�

∫ t

0

[
|r(s) − s| +

∣∣∣ξ̃ i,Nr(s) − ξ̃ i,Ns

∣∣∣2

+
∣∣∣ũr(s)

(
ξ̃
i,N
r(s)

)
− uS

N (ξ̃ )
s

(
ξ̃ i,Ns

)∣∣∣2] ds , (6.3)

and taking the expectation in both sides of (6.3) implies (6.1) with C := 3e2T M�L2
�.

Let us fix y ∈ R
d . Concerning (6.2), by recalling the third line equation of (4.1) and

the equation (1.6) (with m = SN (ξ̃ )), we have

∣∣∣ũt (y) − uS
N (ξ̃ )

t (y)
∣∣∣2 =

∣∣∣∣∣
1

N

N∑
i=1

K
(
y − ξ̃

i,N
t

)
Ṽ i
t − 1

N

N∑
i=1

K
(
y − ξ̃

i,N
t

)
V i
t

∣∣∣∣∣
2

=
∣∣∣∣∣
1

N

N∑
i=1

K
(
y − ξ̃

i,N
t

)(
Ṽ i
t − V i

t

)∣∣∣∣∣
2

≤ 1

N

N∑
i=1

K 2
(
y − ξ̃

i,N
t

)∣∣Ṽ i
t − V i

t

∣∣2

≤ MK

N

N∑
i=1

K
(
y − ξ̃

i,N
t

) ∣∣Ṽ i
t − V i

t

∣∣2 , (6.4)

which concludes the proof of (6.2) and therefore of Lemma 5.1. ��

123



34 Stoch PDE: Anal Comp (2017) 5:1–37

Proof of Lemma 4.4. All along this proof, C will denote a positive constant that only
depends
T, MK ,m�,mg, LK , L�, Lg and M�, L� and that can change from line to line.
Let us fix t ∈ [0, T ].
• Inequality (4.8) of Lemma 4.4 is simply a consequence of the following compu-
tation:

E

[∣∣∣ξ̃ i,Nr(t) − ξ̃
i,N
t

∣∣∣2] = E

[∣∣∣∣
∫ t

r(t)
�
(
r(s), ξ̃ i,Nr(s), ũr(s)

(
ξ̃
i,N
r(s)

))
dWs

+
∫ t

r(t)
g
(
r(s), ξ̃ i,Nr(s), ũr(s)

(
ξ̃
i,N
r(s)

))
ds

∣∣∣∣
2
]

≤ 4E

[∫ t

r(t)

∣∣∣�(r(s), ξ̃ i,Nr(s), ũr(s)(ξ̃
i,N
r(s)

))
− �(r(s), 0, 0)

∣∣∣2 ds
]

+ 4E

[∫ t

r(t)
|�(r(s), 0, 0)|2 ds

]

+ 4(t − r(t))E

[∫ t

r(t)

∣∣∣g(r(s), ξ̃ i,Nr(s), ũr(s)
(
ξ̃
i,N
r(s)

))

− g(r(s), 0, 0)|2 ds
]

+ 4(t − r(t))E

[∫ t

r(t)
|g(r(s), 0, 0)|2 ds

]

≤ 8
(
L2

� + (t − r(t))L2
g

) ∫ t

r(t)
E

[∣∣∣ξ̃ i,Nr(s)

∣∣∣2]+ E

[∣∣∣ũr(s)
(
ξ̃
i,N
r(s)

)∣∣∣2]ds
+ 4(t − r(t))

(
sup

s∈[0,T ]
|�(s, 0, 0)|2 + (t − r(t)) sup

s∈[0,T ]
|g(s, 0, 0)|2

)

≤ Cδt , as soon as δt ∈ ]0, 1[ ,

where we have used the fact, under items 1. and 6. of Assumption 2, that the second
order moment of ξ̃

i,N
s is uniformly bounded. � being uniformly bounded (item

3. of Assumption 2), the function ũ as well. We have finally invoked item 6. of
Assumption 2.

• Now, let us focus on the second inequality (4.9) of Lemma 4.4. Note that for any
y ∈ R

d , the following inequality holds:

|ũr(t)(y) − ũt (y)|

≤ 1

N

N∑
i=1

[∣∣∣K(y − ξ̃
i,N
r(t)

)
− K
(
y − ξ̃

i,N
t

)∣∣∣ e
∫ r(t)
0 �

(
r(s),ξ̃ i,Nr(s),ũr(s)(ξ̃

i,N
r(s))
)
ds

+ K
(
y − ξ̃

i,N
t

) ∣∣∣∣e
∫ r(t)
0 �

(
r(s),ξ̃ i,Nr(s),ũr(s)(ξ̃

i,N
r(s))
)
ds − e

∫ t
0 �
(
r(s),ξ̃ i,Nr(s),ũr(s)(ξ̃

i,N
r(s))
)
ds
∣∣∣∣
]

.

(6.5)

Using the fact that K and � are bounded, one can apply (2.6) to bound the second
term of the sum on the r.h.s. of the above inequality as follows:

123



Stoch PDE: Anal Comp (2017) 5:1–37 35

K
(
y − ξ̃

i,N
t

) ∣∣∣∣∣e
∫ r(t)
0 �
(
r(s),ξ̃ i,Nr(s),ũr(s)

(
ξ̃
i,N
r(s)

))
ds − e

∫ t
0 �
(
r(s),ξ̃ i,Nr(s),ũr(s)(ξ̃

i,N
r(s))
)
ds

∣∣∣∣∣
≤ MKe

tM�(t − r(t))M� ≤ Cδt . (6.6)

The first term of the sum on the r.h.s. of (6.5) is bounded using the Lipschitz
property of K and the fact that � is bounded.

∣∣∣K(y − ξ̃
i,N
r(t)

)
− K
(
y − ξ̃

i,N
t

)∣∣∣ e∫ r(t)0 �
(
r(s),ξ̃ i,Nr(s),ũr(s)

(
ξ̃
i,N
r(s)

))
ds

≤ LK e
tM�

∣∣∣ξ̃ i,Nr(t) − ξ̃
i,N
t | . (6.7)

Injecting (6.6) and (6.7) in (6.5), for all y ∈ R
d , we obtain

|ũr(t)(y) − ũt (y)| ≤ Cδt + LK etM�

N

N∑
i=1

∣∣∣ξ̃ i,Nr(t) − ξ̃
i,N
t

∣∣∣,

which finally implies that

‖ũr(t) − ũt‖2∞ ≤ Cδt2 + C

N

N∑
i=1

∣∣∣ξ̃ i,Nr(t) − ξ̃
i,N
t

∣∣∣2 .

We conclude by using inequality (4.8) of Lemma 4.4 after taking the expectation
of the r.h.s. of the above inequality.

• Finally, we deal with inequality (4.10) of Lemma 4.4. Observe that the error on
the left-hand side can be decomposed as

E

[∥∥∥ũr(t) − uS
N (ξ̃ )

t

∥∥∥2∞
]

≤ 2E
[∥∥ũr(t) − ũt

∥∥2∞]+ 2E
[∥∥∥ũt − uS

N (ξ̃ )
t

∥∥∥2∞
]

≤ Cδt + 2E
[∥∥∥ũt − uS

N (ξ̃ )
t

∥∥∥2∞
]

, (6.8)

where we have used inequality (4.9) of Lemma 4.4.
Let us consider the second term on the r.h.s. of the above inequality. To simplify
the notations, we introduce the real valued random variables

V i
t := e

∫ t
0 �
(
s,ξ̃ i,Ns ,uS

N (ξ̃ )
s

(
ξ̃
i,N
s

))
ds and Ṽ i

t := e
∫ t
0 �
(
r(s),ξ̃ i,Nr(s),ũr(s)

(
ξ̃
i,N
r(s)

))
ds

,

(6.9)

defined for any i = 1, . . . N and t ∈ [0, T ].
Using successively inequalities (6.1) of Lemma 5.1, (4.8) of Lemma 4.4 and (2.9)
of Proposition 2.5, we have for all i ∈ {1, . . . , N },
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E
[∣∣Ṽ i

t − V i
t

∣∣2] ≤ Cδt + CE

[∫ t

0
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i,N
r(s)

)
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s
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)∣∣∣2ds
]

≤ Cδt + CE

[∫ t

0
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(
ξ̃
i,N
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)
− uS

N (ξ̃ )
s

(
ξ̃
i,N
r(s)

)∣∣∣2ds
]

+ CE

[∫ t

0

∣∣∣uSN (ξ̃ )
s

(
ξ̃
i,N
r(s)

)
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N (ξ̃ )
s

(
ξ̃ i,Ns

)∣∣∣2ds
]

≤ Cδt+C
∫ t

0

[
E

[∥∥∥ũr(s) − uS
N (ξ̃ )

s

∥∥∥2∞
]

+ E

[∣∣∣ξ̃ i,Nr(s) − ξ̃ i,Ns

∣∣∣2]
]
ds

≤ Cδt + C
∫ t

0
E

[∥∥∥ũr(s) − uS
N (ξ̃ )

s

∥∥∥2∞
]
ds . (6.10)

On the other hand, inequality (6.2) of Lemma 5.1 implies

∥∥∥ũt − uS
N (ξ̃ )

t

∥∥∥2∞ ≤ M2
K

N

N∑
i=1

∣∣Ṽ i
t − V i

t

∣∣2 . (6.11)

Taking the expectation in both sides of (6.11) and using (6.10) give

E

[∥∥∥ũt − uS
N (ξ̃ )

t

∥∥∥2∞
]

≤ M2
K

N

N∑
i=1

E

[∣∣Ṽ i
t − V i

t

∣∣2] ≤ Cδt

+C
∫ t

0
E

[∥∥∥ũr(s) − uS
N (ξ̃ )

s

∥∥∥2∞
]
ds . (6.12)

We end the proof by injecting this last inequality in (6.8) and by applying Gron-
wall’s lemma. ��
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