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Abstract A stochastic forcing of a non-linear singular/degenerated parabolic problem
with random growth conditions is proposed in the framework of Orlicz Lebesgue and
Sobolev spaces with variable random exponents. We give a result of existence and
uniqueness of the solution, for additive and multiplicative problems.
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1 Introduction

Problems in variable exponent Lebesgue and Sobolev spaces (i.e. when the classical
Lebesgue exponent p depends on the time—space arguments) have been intensively
studied since the years 2000. One can find now in the literature, since the founding
work of Zhikov [24], many references concerning the theoretical mathematical point
of view, but also many applications in physics and image restoration.
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In addition to the important scientific contribution of Zhikov let us mention the
monograph [11] and we invite the reader to consult the references of this book for
more information on general Orlicz-type spaces.

The main physical motivation for the study of Lebesgue and Sobolev spaces with
variable exponent was induced by the modelling of electrorheological fluids and we
refer to [21] and the monograph [20].

Another classical application concerns image restoration, as in [18] for example.

Following the general remarks in [1-3,24] for the elliptic case with p(x) and [4, 12]
in the parabolic one with p(#, x) (and the important literature of these authors), each
model is subject to certain variation of the nonlinear terms: parameters that determine
a model, that are constant in certain ranges, have to change when some threshold
values are reached. This can be done for example by varying the exponents which are
describing the growth conditions of the nonlinear terms.

This is e.g. the case in transformations of thermo-rheological fluids, since these
fluids strongly depend on the temperature and the temperature can be given by another
equation. In this way, one has to consider models given by systems of type u; +
A(u,v) = f, v + Bv = g where A and B are nonlinear operators and the growth of
A depends on p(v); for example when A (u, v) = —div [|Vu [PV 2Vu].

Since reality is complex, one always considers flawed models and/or data. This is
why it is of interest to consider random or stochastic problems.

In the case of random variable exponents, let us mention extensions of [15] and
of the properties of the maximal function to the case of a random exponent p(w) in
[5,17] for martingales and to p(x, w) in [22]. This corresponds for example to the
case of a system of type u; + A(u, v) = f, vy + B(w, v) = g(w) where v gives A a
random behavior.

In the case of a stochastic forcing, if the system is of type du + A(u,v)dt =
fdw, v; 4+ B(v) = g where w denotes a Wiener process, one can find in the literature
the existence of a solution with values in general Orlicz-spaces [19] that corresponds
to the —A (y) case, and [7] for — A x) stochastic problems.

Thinking about a system, it seems then more natural to consider a stochastic pertur-
bation acting on both equations, i.e., considering systems of type du + A(u, v)dt =
fdw, dv+ B(v)dt = gdw. Hence our interest in this paper is the study of problems
with growth conditions described by a variable exponent p which may depend on ¢,
x and o with suitable measurability assumptions with respect to a given filtration.
Let us remark that the properties of It’s integral will be formally compatible with the
technical assumptions on p and on the operator used in the sequel: the predictability
of the solution to It’s problem with Holder-continuous paths. This last property is of
importance since one needs, for technical reasons, to consider log-Holder continuous!
exponents p with respect to the variables ¢ and x.

I A function f is Log-Holder continuous if, for a constant ¢ > 0, | f(x) — f(y)| < c¢/In[e + 1/]x — y|].
If f is Holder continuous with Holder exponent «, then it is also log-Holder continuous since | f(x) —
fO|Inle +1/]x —y|] < clx — y|9 In[e + 1/|x — y|] and since @ > of In[e + 1/«] is continuous on
[0, M] for any positive M.
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In this paper, our aim is to study existence and uniqueness of the solution to

du —divdj(w,t,x,Vu) =h(-,u)dw in2 x0,T) x D,
(P,h)Ju=0 on 2 x (0,T)xdD, (1)
u(0, ) = uo in L>(D).

where

— T >0, D c R is a bounded Lipschitz domain, Q := (0, T) x D,

- w = {wy, %;0 <t < T} is a Wiener process on the classical Wiener space
(2, 7, P).

—h:(w,t,x,A) € 2 x QxR+ h(w, t,x,1) € Ris a Carathéodory function,
uniformly Lipschitz continuous with respect to A, such that the mapping (w, t, x)
h(w,t,x,\)isin N%V(O, T; L*(D)) for any A € R.

—ji(w,t,x,E) e 2 x Q0 x RY jw,t,x,&) e R is a Carathéodory function
(continuous with respect to £, measurable with respect to (w, ¢, x)) which is convex
and Gateaux differentiable with respect to &, for a.e. (w, t, x). 9 denotes this G-
differentiation.

— p: 82 x Q — (1, 00) is a variable exponent such that

1l <p =ess inf plw,t,x) < p+ :=ess sup p(w,t,x) < oo.
(w,1,x) (@,1,x)

For the precise assumptions on j and p we refer to Sects. 2 and 4.

2 Function spaces
Let us define
N0, T; L*(D)) := L*(2 x (0, T); L*(D))
endowed with df ® dP and the predictable o-field &7 generated by
Is,t]x A, 0<s<t<T, Ae.,

which is the natural space of It6 integrable stochastic processes. Let SZW O, T; Hé‘ (D))
be the subset of simple, predictible processes with values in H(’)‘ (D) for suffi-
ciently large values of k. Note that S%V o, T, Hé‘ (D)) is densely imbedded into
NZ,(0, T; L2(D)).

If (X, <7, ) is a o -finite measure space and p : X — R is a measurable function with
values in [p~, p™] C (1, +00), one denotes by LPO (X, dp) the variable exponent
Lebesgue space of measurable functions f such that fX | f)PPdu(x) < +oo.
This space is endowed with the Luxemburg norm defined by

£ =inf[x >0 ’/ AT FO1PPdp(x) < 1]
X
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and we refer to [11] for the basic definitions and properties of variable exponent
Lebesgue and Sobolev spaces.

In this paper X is £2 x Q,dpn = d(t,x) @ d P and we are interested in measurable
variable exponents p : 2 x Q — R such that

1 <ess inf p(w,t,x)=:p < p(w,t,x) <pt:=ess sup p(w,t,x) < 0.
(w,t,x) (w,t,x)

Moreover we assume that w a.s. in £2, (¢, x) — p(w, t, x) is log-Holder continuous
[11, Definition 4.1.1, p. 100] and that for all ¢ > 0, (w, 5, x) — p(w, s, x) is F# x

HB(0, 1) x AB(D)-measurable. For this kind of variable exponents we introduce the
spaces

i = L2(D) N Wy P (D)
endowed with the norm [u|| = [lull 2py + VUl pw.t.)-
The following function space serves as the variable exponent version of the classical

Bochner space setting:

Xo(Q) = {u € LX(Q) N L' (0. T: Wy (D)) | Vu € (L7 (Q))")
which is a reflexive Banach space with respect to the norm

el x,c0) = llull 20y + 1Vull Lo 0y-

X, (Q) is a generalization of the space

X(Q):={ue L*(Q)NL'©O,T; Wy (D) | Vu & (LP"V(Q))")
which has been introduced in [12] for the case of a variable exponent that is not
depending on w. For the basic properties of X (Q), we refer to [12]. For u € X, (0Q),
it follows directly from the definition that u(¢) € LZ(D) N WO1 o1 (D) for almost every
t € (0, T). Moreover, from Vu € (L@ (Q))? and the theorem of Fubini it follows

that Vu(z, -) is in (LP@)(D))? a.e.in 2 x (0, T).
Let us introduce the space

E:={uel*(2x0)NLP (2 x(0,T); Wé’pi(D)) | Vu e (LPO(2 x 0))7%}
which is a reflexive Banach space with respect to the norm

lulle = Nullr2@x ) + IVullp), ueé.
Thanks to Fubini’s theorem and since the inequality of Poincaré is available with

respect to (¢, x), u € & implies that u(w) € X,(Q) a.s.in 2 and u(w, t) € L*(D)N
W, """ (D) for almost all (w, 1) € 2 x (0, T).
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3 Main result
Definition 1 A solution to (P, &) is a function u € & N L2(§2; C([0, T]; L*(D))) N
N3,(0, T; L?(D)) such that

t t
u(t)—uo—/ diij(w,s,x,Vu)ds:/ h(-, u)dw
0

0

holds a.e. in 2 x D and forall ¢ € [0, T].
Or, equivalently, such that u (0, -) = ug and

t
3, [u(t) —/ A, u)dw] —divaj (.1, x, Vi) = 0
0

holds a.e. in X/, (Q).
Remark 3.1 The equivalence pointed out in the definition is argued in Sect. 6.2.

Our main result is the following:

Theorem 1 Under assumptions (J1) to (J3), there exists a unique solution to (P, h).
Moreover, if uy, us are solutions to (P, h1) and (P, hy) respectively, then:

E( sup || (us —uz)(f)“%zw)) ”

te[0,7T]

+E (/ dj(w, s, x,Vuy) — dj (w, s, x, Vuz) - V(u; — uz)d(s, x))
0

< CE/Q 1 Gy ttr) = ha ey ua) 2 d (s, ).

Remark 3.2 Of course, our result can be immediately extended to the case of a multi
dimensional noise given by a linear combination of independent real-valued Brownian
motions.

4 Assumptions

Let
j 12 x%x0,T)xD xR > R, (w,1,x,8) — j(w,1,x,8)

be a Carathéodory function (continuous with respect to &, measurable with respect
to (w, t, x)) which is convex and Gateaux differentiable with respect to &, for a.e.
(w, t, x). We will denote its Gateaux derivative by dj. Moreover, we assume
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(J1) There exist C; > 0, C» > 0 and g1, g2 € LY(2 x Q) such that
J(o,t,x,&) > CIEP@T) — gy (o, 1, x), A3)
J(@,1,x,&) < CUEIP@Y) + gy (w, 1, x) “)

a.e.in (w, 1, x) forall £ € RY.
(J2) Forallt € [0, T]

jiR2x0,0)xDxRI SR, (0,5,x,8) = j(@, s x,E)

is % x B0, 1) x B(D) x £ -measurable.
(J3) Almost surely, there exist two continuous functions d,, : [0, o0) — (0, co) and
Wy, : [0, 00) — [0, o0) with w,, (r) = 0 if and only if » = 0 satisfying

de (”V””Lp(w,-)(Q) + ||Vv||Lp(w.A)(Q)) Wa (”VM - Vv”Lp(ruu)(Q)) — Vo (u, v)

©)
T
< / / 0j(w,t,x,Vu) — dj(w, t,x, Vv)) - V(u — v) dx dt
0 D

for all u, v € X,(Q) a.s. in 2 where v, (u, v) — 0 if

T
/ / 0j(w,t,x,Vu) —dj(w,t,x,Vv)) - V(u —v)dx dt — 0.
0 D

Some additional information and examples are detailed in the Appendix of the
paper concerning such operators we have called (weak) w-operators.

Remark 4.1 Thanks to (J2), the mapping (w, s, x,&) — 9j(w,s,x,&) is F x
A0, 1) x B(D) x ZLy-measurable for every t € [0, T].

Lemma 1 The convex functional

J:&—->R, ur—

jlw,t,x,Vu)d(t,x) @ dP
2xQ0

is continuous and Gdteaux differentiable with

(G J (u), v) :/

dj(w, t,x,Vu)-Vod(t,x) ®dP
2xQ0

forallu,v € &. In particular, 3J is maximal monotone
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Proof J is continuous because of (J1) and since it is a Nemytskii operator induced
by j. For u, v € & we have

J W+ hv) — J(u)
h—0t h

l. j(wat’x9vu+hvv)_j(a)ata-xavu)
= um
h—0% J2x0 h

dt,x)®dP (6)

Thanks to the properties of j we have a.e. in £2 x Q

. j(w,t,x,Vu+ hVv) — j(w,t, x, Vu)
im
h—0t h

=dj(w, t,x,Vu) - Vv (7)

moreover, since

j(w,t,x,Vu+ hVv) — j(w,t, x, Vu)
H
h

h

is nondecreasing, it follows from the Beppo—Levi theorem that

. Jw+hv)y—Jw)
lim =
h—0+ h

/ dj(w,t,x,Vu) - Vod(t,x) dP. (8)
2xQ0

It is left to prove that the integral on the right hand side of (8) is finite. Since

—jw,t,x,V(u —v)) + j(w, t,x, Vu) )
< 0Gj(w,t,x,Vu) -V
S j(a)’tv'x’v(u_'_v)) _j(wata-x5vu)a

a.e.in (w, t, x), it follows from (J 1) that

10j (w, 1, x, Vu) - Vvl (10
< max{j(w,t,x,V(u+v)) — j(w,t,x,Vu), j(w, t,x, V(u —v))
—j(w,t,x,Vu)}
< ljlw,t,x, Vu + )|+ |j(w,1,x, Vu —v)| +2|j(o, 1, x, Vu)]
< CPTH(Vu Pt | POI0) 4 2(Co|Vu PO 4 2g)).

Using (10) and writing du := d(¢t, x) @ d P we arrive at

(0 (u), v)|

= / |0j (w, t, x, Vu) - Vv| du
2x0

< / Cy2r ! (|Vu|f’<w”vx> + |Vv|1’<w"”‘)) + 2(Co|VulP@ 1Y) 4 2g5) dp
2xQ0
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and from (11) it follows that 3J (1) € &”. Since J is a convex, continuous and Giteaux-
differentiable functional, its Gateaux derivative is a maximal monotone operator (see
[6, Theorem 2.8., p. 47]). O

Remark 4.2 With similar arguments as in the proof of Lemma 1 one shows that

(i) Fora.e. (w,t) € £2 x (0, T) the convex functional
Ip  WyP@t (D) - R, u .—>/ j(w,t,x, Vu) dx
D

is continuous and Gateaux differentiable with respect to u: for all v in
Wy " (D),

(0Jp(u), v) =/ 0j(w,t,x,Vu) - Vv dx.
D

(i) Fora.e. w € £2, the convex functional

T T
Jo 1 X0w(Q) = R, ut—> / / j(w,t,x,Vu) dx dt:/ Jp(u) dx dt
0 D 0

is continuous, convex and Gateaux differentiable with

T
<8JQ(M), U)XL,(Q),Xw(Q) = / / dj(w, t, x, Vu) - Vv dx dt (1)
0 JD

T
:/0 (0GJp(u), U)W—l,p’«)(D),Wol"’(')(D) di

forall u,v € X,(Q).

In particular, as an immediate consequence of Lemma 1 we have

(0J(u), v)er & = / dj(w, t,x,Vu)-Vodu (12)
2xQ0

= /Q<3]Q(u), V) X!, (0),X,(0) dP

T
= | ] @00 00y 0 P

5 The additive case for h € S%,(0, T; H¥ (D))

Assume, in this section, that 7 € S ‘2,[, O, T; H(')‘ (D)) for a big enough value of k. Since

w-L4'(D)is a separable Banach space, the notion of weak-measurability and Pettis
measurability theorem yield the following proposition.
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Proposition 1 For g > max(2, p™) and ¢ > 0, the operator

A:2x(0,T)x Wed(D) —» w4 (D),
(w,t,u) > Alw, t,u) = —eAy(u) + dJp(w, t, u),

satisfies the following properties:

— A is monotone for a.e. (w,t) € 2 x (0, T).
— A is progressively measurable, i.e. for every t € [0, T'] the mapping

A2 x(0,1) x W(;’q(D) — W_l’q,(D), (w,s,u) = Alw, s, u)

is Py x B(0,1) x %’(Wé’q(D))-measurable.

It is then a consequence of [16, Theorem 2.1, p. 1253]2 that:

Proposition 2 Let h € S%V O, T; Hé‘ (D)) for k > 0 large enough. The operator —A
satisfies the hypotheses of [16, Theorem 2.1, p. 1253], therefore for any ¢ > 0 there
exists a unique

u® € L2(2; C([0, T]; L*(D))) N N30, T; L*(D)) N LY(2; L0, T; W, (D))

that solves . .
ub(t) — uo +/ aJpu®) — sAq(us) dt = / hdw (13)
0 0

in W_l’q/(D)for allt > 0 a.s. in $2.

Remark 5.1 In particular, it follows that u® such that u®(0) = ug satisfies (13) if and

only if
v i=uf —/ hdw
0

satisfies the random equation

V" —eAy (ve +/ h dw) +dJo (v€ +/ h dw) =0 (14)
0 0

in Lq/(O, T; W_l'q/(D)) a.s. in £2. Using the regularity of u® and that the function &
is in S%V O, T;/ Hé‘(D)) we f/ind v e L9(§2; L9(0, T; Wg’q(D)). Now, from (14) we
get 3;v° € L4 (0, T; W14 (D)) as. in £2. Therefore we can use v° as a test function
in (14).

2 Rmk: [9, Proposition 3.17, p. 84] and [16, Theorem 2.3, p. 1254] yield u® € L2(2, C([0, T]; L%(D))).
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Lemma 2 There exists G € L1(2) such that for allt € [0, T
2 e [
||v8(t)||L2(D) + Jat(aJQt(uS)) +2Jp, (u®) + 6_]/0 /D [Vuf|? dx ds (15)

< G(@) + uol}2p,

a.s. in 2, where Q; := (0,1) x D.

Proof We fix t € [0, T] and write Q; := (0, 1) x D. Using v® as a test function in
(14) and integration by parts, we obtain

1 1
5””8(0”22@) - §||M0||%2(D) +e(=Aqu’, uf) + (3Jg, ), u®) (16)
= s<—Aqu8,/O hdw) + (8]Qt(u€),/0 h dw>

Note that — A u = 0J1(u) in Q, where

! 1
J1(w) :/ / —|Vul|? dx.
0 Jpd4

Using the Fenchel inequality we get from (16)

1 1
SV O3y = S0l 72p) + 81w + ()" (01w5) + Jo, ()
+75, (09, ()

— g<ajl ), / h dw> + <aJQ, W), / h dw>
0 0

For all « > 0 we have

<8]Qt(u6), / h dw> = <a8]Qt(u8), l/ h dw>
0 o Jo

= a<8JQt(u8), é/()h dw>

< aJét(BJQ,(us)) +alJy, (

Q| =

/OIhdw).
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Plugging (17) in (17) and using the Fenchel-Young inequality for J; we get

1 e 2 1 2
E”U (t)||L2(D) - EHMOHLZ(D) (17)

t
1
+I3, (g, %)) + Jg, (u) —i—s/ / —|Vut (1)) dx ds

ol 55 b e
+adg, (a/o hdw)

For o = % and forall r € [0, T']

q
dx ds) + oc.la (0J g, u®))

t
1 1132y + I5, 0, @) + 20, ) + 28/0 / IVuf|? dx ds  (18)
D

t Ky .
2
52/0 /DIV/O hdw|?dx ds + Jg, (2/0 hdw) ds—i—lluolle(D).

Since 0y, is a continuous linear operator from Hé‘(D) to L2(D), we have

t t
V/hdw:/Vhdw
0 0

forallt € [0, T] and a.s. in £2. From & € S%V(O, T; Hé‘ (D)) for k > 0 large enough
it follows that Vi € L®(£2 x Q)¢ and

t
t > / Vhdw e C([0, T]; L°(22 x D)%).
0

Therefore, using (J1), we get

Jo, (2/ hdw) ds (19)
0
t
SCz/ / Vhdw
o lJo

Thanks to the regularity of V# in particular it follows that

/Vhdw
0

pl@,)
d(t,x)/ o(w, t,x)d(t, x)
0

€L’ (2 x0)
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for any 1 < r < oo and therefore by Fubini’s Theorem

t t
/ Vh dw / Vh dw
0 0

p@,-)
+

q
o> Gi(w) :=/ d(t, x)
0

isin L' (§2). Moreover,

o Ga(w) :=/ g (w, t,x)d(t, x)
0
isin L'(£2). Writing G = G + G», plugging (19) into (18) and rearranging the terms
we arrive at (15). O

Lemma 3 There exists a full measure set 2 C 2 such that for any w € $2,

(i) eVu® is bounded in L9(0, T; (L9(D))%),

(i) v® is bounded in C([0, T1; L*(D)) and in LP (0, T: Wg”’ (D)), in particular;
vé (1) in bounded in L*(D) for all t € (0, T].

(iii) Vut (w) is bounded in L?®)(Q) and therefore v¢ (w) is bounded in the space
Xow(Q).

Proof By (J1) we have a.s. in £2

Jé(an(ug)) + 2]Q(u€) = (3.]Q(Lt6), ut) + ]Q(us) (20)
>2Jou®) — Jp(0)

:/ j(w,s,x,Vu®) — j(w,s, x,0)d(s, x)
0o

> cl/ VPO — g1(@. 5. x) — g2(@, 5. x) d(s. x)
o
Combining (20) with (15) we arrive at
I (1172 + Ci /Q VU [P d(t, x) < G(@) + lluoll7a ) @21)

where G = G + fQ g1(®,s,x)+ g2(w, s, x)d(s, x) € L'(2). m]

Lemma 4 For w € 2 fixed, 3Jo(u®) is bounded in X' (Q) .

Proof Using (J1) and (15) it follows that
Jp o)) < G(w) + ||MO||i2(D) + /Q g1 d(t, x) = K(w, up). (22)
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From (22), the Fenchel-Young inequality and (J 1) for any v € X, (Q) it follows that

(8o @®), v)| < J5(o W) + Jo(v) (23)

< K (0, uo) + Cz/ IVolP@) 4 g5 dt, x).
0

The following Lemma is a direct consequence of Lemma 3 and Lemma 4:

Lemma 5 For any o € 2 there exists a (not relabeled) subsequence of v (w) and
v e X,(0Q)NL®0, T; L2(D)) such that, for e | 0,

(i) v° = vin L®(0, T; L>(D)),
(i) Vv& — Vv in (LP@)(Q)),
(iii) v¥ =~ vin X,(Q)
(iv) There exists a(T) € L*(D) such that v¢(T) — «(T) in L*(D).
(V) Moreover, there exists B € X, (Q), B = b —divG withb € LZ(Q) and G €
(LP" @) () such that
o) = b—divG in X, (Q),

we recall that u® = v® + f(; h dw.

We take ¢ = p¢ such that p € 2([0, T]) and ¢ € Z(D) as a test function and we
have

T
/ / —v° 8@ dxds — e(A;(u®), ) + (8Jo (), ¢) (24)
0 D
=/ uop(0, x) — v°(T, x)p(T, x) dx
D
Since e Vu® is bounded in L7 (0, T; (L7(D))%), it follows that
(—eA, ), 9) > 0

for ¢ | 0. We can pass to the limit in all the other terms in (24) and arrive at

T
—/ / v, dx ds +/ S(@(T)p(T) —upp(0)) dx + (B,¢) =0 (25)
0o Jp D

and therefore
vw+B=0 (26)

in 2'(Q). From (26) we get v, € X/ (Q) and therefore v is in

Wau(Q) = {v € Xu(Q) | v/ € X,(Q)} = C([0, T]; L*(D)).
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In particular, since 2(Q) is dense in X,,(Q), (26) holds also in X/ (Q). Now, using
the integration by parts formula in W,,(Q) (see [12]) it follows that

T
(v, @) = —/ / Ve + / (T)p(T) —uop(0)) dx 27)
0 Jp D
Now, we can identify «(7") with v(T) : indeed, plugging (27) in (25) we can apply
(26) to get
/D ¢p(T)((T) —v(T)) dx = 0. (28)

Moreover, we find that the whole sequence v®(7T) converges weakly to v(T'). As the
argumentation also holds true for any ¢ € [0, T'], we get that v®(r) — v(¢) in L*(D)
forallt € [0, T].

Lemma 6 Inadditionto Lemma5, B=23Jgu)in X, (Q), (dJou®), u®) — (3J (u), u)
fore |, O where u = v + foth dw, Vut — Vu in LP®)(Q) and Vv¢ — Vv in
L/’(‘“")(Q) as well.

Proof Using v as a test function in (26), from integration by parts in W,,(Q) we obtain
1 2 | 2
EIIU(T)H - EHMO” + (B, v) =0. (29)

On the other hand, using v as a test function in (24) and applying integration by parts
we obtain

1
v (T[> - §||u0||2 — e(Aquf, uf) + (3o (), uf)

=—¢ <Aqu€, / h dw> + <8JQ(14€), /h dw> (30)
0 0

discarding nonnegative terms for ¢ | 0 in the limit of (30) we get

1
2

1 2 1 2 : e e .
SIv(MI* = S lluoll” + lim sup(dJo (u”), u”) < (B, [ hdw). (31)

Now, from (26) and (27) we obtain

lim sup(8Jo (u®), u®) < (B, u). (32)
el0

Since X, (Q) is reflexive and dJ¢ is the Gateaux derivative of the convex and
lower semicontinuous functional Jo, from [21, Theorem 3.32] it follows that 9/ is
maximal monotone and therefore it follows from [6, Lemma 2.3, p. 38] and (32) that
B =03Jg(u) in X,,(Q) and (3Jo (u®), u®) — (3J (u), u).

As a consequence, lim, (97 (u®) — dJg (1), u® —u) = 0 and Assumption (J3) with
Appendix 1 yield the strong convergence claimed at the end of the Lemma. O
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From Lemma 5 and (25) it follows that
v+ 3dJou) =0 (33)

and 9;v isin X/ (Q) a.s.in 2. If v| = u; — fé h dw and vy = us — [ h dw are both
satisfying (33), then subtracting the equations we arrive at

0r(uy —uz) + (dJg(u1) — dJouz)) =0 (34)

and from (34) it follows that (u; — uy) € W,(Q) a.s. in §2. Therefore we can use
(u1 — up) as a test function in (34) and from integration by parts in W,,(Q) it follows
that u; = up a.e. in Q for a.e. w € §2. Therefore, one may conclude by the following
proposition:

Proposition 3 The convergences pointed out in Lemmata 5 and 6 hold for the whole
sequences v¢ and u®.

Lemma 7 We have: v € L?(£2; C([0, T1; L*(D)), v (w, t,-) — v(w, t, ) in L*(D),
w a.s. and for any t, and Vv® — Vv in LP (22 x Q).

Proof We know already that v¥(w, 1) — v(w, t) in L?(D) for almost every w € §2
and all r € [0, T] as ¢ | 0. As mentioned above, since T can be replaced by any ¢,
using (29) and (30) with T = ¢ and that B = dJp(u) we get

. 1 e 2 1 2
hmsupznv (t)”Lz(D) S §||U(t)”L2(D) (35)

el0

and from (35) it follows that

181% 0 Dl 20y = WOl L2y (36)

and (36) together with the weak convergence in L%(D) yields v¥(w, t) — v(w, t) in
LZ(D) for almost every w € §2, forall r € [0, T'].
From Lemma 2 and (20) it follows that for all r € [0, T'], a.s. in £2

I D172 + / Va7 dx ds < Gy + Ga + [luoll7» 37)
o

with G, G, € L1 (£2).

From Lebesgue’s dominated convergence theorem and the uniform convexity of
L%(22 x Q) and LPV) (2 x Q) with similar arguments as in [14], it now follows that
v® — vin L?*(2 x (0, T); L*(D)) and Vu® — Vu in LPV) (2 x Q). In particular,
we get that u® — u = v + foth dw in L2(£2 x (0, T); L3(D)) as well. Now we
need to prove that v € L2(£2: C([0, T1; L*(D))). We already know that v : £ X
(0,T) — L?(D) is a (predictible) stochastic process. Since v(w, -) € W, (Q) —
Cc(0,T]; L2(D)) for a.e. w € §2 the measurability follows from [9, Proposition 3.17,
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p. 84] with arguments as in [13, Corollary 1.1.2, p. 8]. From (37) it now follows that
visin L2(82; C([0, T1; L2(D))). o

Summarizing all previous results we are able to pass to the limit with ¢ | 0in (14).
For the limit function u we have shown the following result:

Proposition 4 For h € S‘Z,V O, T; Hé‘ (D)) there exists a full-measure set Qandu €
&N L2(2; C([0, T1; LX(D))) N N0, T; L*(D)) such that for all w € 2

t

t
u(t)—uo—/ oJp(u(s)) ds=/ hdw (38)
0 0

a.e.in D forallt € [0, T].

6 The additive case for general &
6.1 Uniform estimates

Now we want to derive existence for arbitrary 7 € N ‘%, 0, T; H(])C (D)) from the previ-
ous results. From the density of S%V o, T; Hg (D)) in N%V O, T; H(])‘ (D)) it follows that
there exists (h,) C S%,(0, T; HY(D)) such that h, — h in N3,(0, T; Hf (D)). Let
us remark that since N 3‘, O, T; Hé‘ (D)) is a separable set there exists a countable set
A C 83,0, T; HE(D)) such that (h,) C A (irrespective of h € N, (0, T; HY(D))).
Thus, the full-measure set §2 introduced in the above proposition can be shared by all
the elements of A.

Lemma 8 For h,, h,, € A, let u,, u,, be solutions to (38) with right-hand side h,,,
and hy, respectively. There exists a constant K1 > 0 not depending onm,n € N, such
that

E( sup ||un(r)||izw))+J*(aJ(un>)+ Ty = Ky (2200 ) + 10132 )

t€[0,T]
(39
foralln € N,

E( sup. 11 —um>(r>||izw))+<aJQ<un>—aJQ<um>,un —upn)  (40)
telo,

=< Kl ”hn - hm”iz(QXQ)

foralln,m € N.

Proof Let u, be a solution to (38) with right-hand side %, and u,, be a solution to
(38) with right-hand side %,,. Denoting u?, and u;, the corresponding approximate
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solutions to (13), using the [td6 formula and discarding the nonnegative term it follows
that for all € [0, T'] a.s. in §£2 we have

I . e &
§||Mn(l‘) u (t)||L2(D)+(8JQ,( &) —aJo, (ug, )un—um) (41)

5 5 1 2
< (hn —hy) (un — um) dwdx + = (hy — hy)* dx ds.
pJo 2 Jo Jp

Using the convergence results of Lemmata 5 to 7 (see Proposition 3), it follows that, for
ae.w € R2,u’ — u,in L2(Q), ué(t) — u,(t) in L>(D) forall ¢ € [0, T1, u® — uy
in Xo(Q). 8Jg, (u5) — dJg, (un) in X,,(Q) and (g, (us). us) — (8Jg, (un). un)
for ¢ | 0 (and resp. with m):

Efg(aJQ, (1) = 0Jg, (u,) - uy — wp,) = (g, (un) — 0J g, (m). tn — ttm) . (42)

Moreover, by It6 isometry we have that
t t
[ = =) dw = [y =)~y dw @)
0 0

in L2(£2; C([0, T1; L3(D))) fore | 0, hence passing to a (not relabeled) subsequence
if necessary, it follows that (43) holds a.s. in §2 and for all ¢+ € [0, T']. Taking the
supremum over [0, 7] and then taking expectation, we arrive at

(S[gPTIHMn(I) um(t)||L2(D))+2E(<3JQ(un) o (um), un —um)) (44)
te

< E (o = toml3apy) + tn =l 220 )

—|—2E( sup / /(h — hy) (U — upy) dx du))
1€[0,T]

For the last term on the right-hand side of (44), for any y > 0 we use Burkholder,
Holder and Young inequality to estimate

E( sup / / (hy — hp) Uy — uy) dx dw) 45)
tel0,T]
T 2 1/2
= 3E(/ (/ (hn — hp) Uy — upm) dx) ds)
0 D

T 12
<3E ( /O tn = Bl 22 it = 12, dr)
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12,
<3E sup up — um > (/ 7y — Bl )
(ze[O,T] n — Umlip2(p) , hllz2p)

3
<3yE( sup lluy — unl? + Zlhy — b2
([E[O’T] n m LZ(D) ]/ n m LZ(QXQ)

1/2

Plugging (45) into (44), and choosing y > 0 small enough and ug , = ug , we find
K1 > 0 such that (40) holds.

Again, using the It6 formula and discarding the nonnegative term it follows that for
allt € [0, T] a.s.in £2,

||u Ol 2y + {870, (uf) . up)

Szluonlle(D) //hu dwdx + = //|h| dx ds.

Passing to the limit as above, yields

1
SNun O ) + (070, (W), n)

1
= EHMOHHLZ(D)—i_/ / h nln dwdx+ / / |h | dx ds.

And then, as above, we arrive at (39) since by Fenchel-Young inequality it follows
that E((0Jg (un), un)) = (9J (un), un) = J*(0J (up)) + J (un). o

Let us fix an arbitrary h € N2 w0, T; L?(D)) and let (h,) C Abea sequence of
simple functions such that 4, — h in N2 O, T; LZ(D)). Let u,, be the solution to (38)
with right-hand side h,, forn € N. From Lemma 8, (40) it follows that for m, n — oo

E (Itn = um) O g0, 11.120) = O (46)

In particular, (46) implies that (u,) is a Cauchy sequence in L2(£2; C([0, T1; L3(D)))
and in N}, (0, T; L*(D)), hence u, — u € L*(22; C([0, T1; L*(D))) N N3,(0, T;
L%(D)) for n — oo.

Moreover, we have the following

Lemma 9 0J (u,) — 9J(u) in & and (3J (uy,), u,) — (8J (u), u) forn — oo for a
non-relabeled subsequence.

Proof Since (h;,) is bounded in N%V 0, T; L*(D)), for any v € & by Fenchel-Young

inequality and thanks to Lemma 8, (39) and (J 1) it follows that there exists a constant
K3 > 0 such that
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(DT (un), V)| < J (V) + J (0] (up)) (47)
=J+K

< Cz/ VolPOdu + Ks.
2x0

From (47) it follows that there exists a constant K4 > 0 not depending on n € N such
that
10 (un)llgr = sup [(3J (un), v)| < Kg. (43)

lvlle<1

Since &” is reflexive, from (48) it follows that there exists a subsequence, still denoted
(0J (1)), and B € &' such that aJ (u,,) = Bin &’.
From Lemma 8-(39) and (J1) it follows that there exists a constant K5 > 0 not
depending on n € N such that

Vunllpey < Ks 49)

and since (u,) is bounded in N%V(O, T; L2(D)) (see (39)), it follows that (u,) is
bounded in the reflexive space &. Therefore, passing again to a (not relabeled) sub-
sequence if necessary, there exists # € & such that u, — u in & for n — oo. Since
aJ : & — &' is maximal monotone (see Lemma 1), the assertion follows from [6,
Lemma 2.3, p. 38] and (40). O

6.2 Passage to the limit

Proposition 5 Theorem 1 holds in the additive case: for any h € N %V (0, T; L*(D)),
there exists a unique u € & N L*(2; C([0, T1; L*(D))) N N§,(0, T; L*(D)) and a
full measure set 2 € .F such that for every w € §2 and for all t € [0, T

t t
u(t)—u0+/ oJp(u) ds:/ hdw
0 0

holds a.e. in D. Moreover, (2) holds for two given hy, hy € N%V 0, T; L*(D)).

Proof Letus fix an arbitrary h € N%V(O, T: L*(D)) and let (h,) C S%V(O, T; Hg(D))
be a sequence of simple functions such that 4, — h in N%, (0, T; L%(D)). Let u, be
the solution to (38) with right-hand side &, for n € N. According to the results of
the previous subsections, there exists a (not relabeled) subsequence of (u,) with the
following convergence results for n — oco:

(@ u, — u in L*(2;C(0,T]; L*(D))), in N§(0,T; L*(D)) and as. in
C(0, T, L2(D)) for a subsequence if needed. In particular, u(0, -) = ug dP ® dx-
ae.in 2 x D

(b) Vi, — Vuin LPO(2 x Q)

(¢) 3J (up) — 8J (u) in &',
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Wefix A e Z,p € 2(0,T) x D) and ¢ = x4p. Note that thanks to the regularity
of h, we have

t
U ::un—/ h,dw € &.
0
Therefore, using Lemma 1 it follows that for alln € N
—(/ vﬁ@du+/ MM%QMWPMJ+@KML@=O(W)
2x0 2xD
where (-, -) denotes the duality bracket for &”, & . Thanks to the 1td isometry

1 !
/ / hndwdu—>/ / hdwdp,
AxQ Jo AxQ Jo

for n — oo. Therefore , we can pass to the limit with n — oo and obtain

13
—/ (u—/ hdw) 0t p d,u—/ uop (0, x) dP dx + (0Jg(u), xap) = 0.
AxQ 0 AxD
(51)

Thanks to the monotonicity of dJ, by an argument similar to the one pointed out after
(34), from (51) we get that u is unique, hence the whole sequence u, has the conver-
gence properties a.)-c.). With a separability argument from (51) and from Lemma 1
it follows that there exists a full-measure set $2 C £2 not depending on p, such that

1
/ 3 (u—/ hdw),odu+(8JQ(u),p) =0 (52)
Q 0

for all w € 2 and for all p € 2(Q). Moreover, a.s. in £2
t
u —/ hdw € C([0, T1; L*(D))
0
and from (52) it follows that
t ’ !
X (u —/ h dw) € X, (Q) = LY(0, T; W14 (Dy)
0
for ¢ > p* + 2. Thus we can integrate (52) and use Lemma 1 to obtain a.s.
t t
u(t)—uo+/ aJp(u) ds=/ hdw. (53)
0 0

@ Springer



266 Stoch PDE: Anal Comp (2016) 4:246-273

To conclude the proof, let us mention that the uniqueness of the solution is based on
the argument following (34) and that Lemma 8, (40) and Lemma 9 yield the stability
result. O

7 The multiplicative case: the main result

We consider now the general case where & : (w,f,x,A) € 2 X O xR
h(w,t,x, ) € R is a Carathéodory function, uniformly Lipschitz continuous with
respect to A, such that the mapping (w, t, x) — h(w, t, x, A) is in N%V(O, T; L2(D))
for any A € R. Thus, by classical arguments based on Nemytskii operators, one has
that i (-, v) € N3,(0, T; L*(D)) when v € N3, (0, T; L*(D)).

Thus, the proof of the main result is based on the remark that « is a solution of

3 [u(t) - /Ot A, u)dw] —divaj (. 1, x, Vi) = 0
and initial condition uq if and only if u is a fixed-point of the application
T 1 N%(0,T, L*(D)) = N0, T, L*(D)), S — us
where u g is the solution, for the same initial condition, to
t
3 [u(t) —/0 h(., S)dw] — divdj(w, 1, x, Vi) = 0.

From Proposition 5, Application .7 is well-defined.
Moreover, if S| and §; are given in N %v (0, T, L*(D)) and u s;» Us, are the correspond-
ing solutions, then for all r € (0, T')

t
Ell(us, — us,) (0|25, < CE /0 IAC S1) = h(. )12, ds

t
< L [ EISi = Salip s (54)

where L is the Lipschitz constant of 4. We fix @ > 0. Multiplying (54) by e~ and
integrating over (0, 7') we find

T
/ Ell(us, — us) (O] )¢ dt
0

’ d 1 —at ! 2
< CL/O E (—ae )/0 E|S| — SZHLz(D) ds dt (55)
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Using integration by parts on the right-hand side of (55) we obtain

T 2 CL T r 2
/ Elus, —usy) 12 e dt = == (1 = e=T) / E|IS1 — Sl e~ d
0 0

(56)
Choosing o > 0 such that % < 1 the Banach fixed point theorem and the equivalence
of the weighted norm with the L?-norm yields the proof of Theorem 1.
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Appendix 1: w-Operators

Definition 2 Let X be a Banach space and A : X — X’ an operator. A is
a w-operator if there exist continuous functions d : [0, +o00) — (0, +o00) and
w : [0, +00) — [0, +00) with w(r) = 0 if and only if r = 0 such that

Vu,v e X, d(llull + lviDw(llu —vl) = (Aw) — A(v), u — v).
A is a weak-w operator if
Vu,v e X, d(llull + lviDw(llu —vl) — v(u, v) < (A(w) — A(v), u — v).

where v(u, v) — 0if (A(u) — A(v), u —v) — 0.

Let us remark that, of course, a w-operator is a strictly monotone operator and that
for a given weak w-operator A, if (u,) is a bounded sequence such that (A(u,) —
A(u), u, —u) — 0thenu, converges to u (strongly). Indeed, v(u,, u) — 0 and since
d is uniformly strictly positive on bounded sets of [0, +-o0[, the above assumption
yields the convergence of w(||u;, — u||) to O when n goes to infinity. Denote by a,, =
|lue,, —ul|. It is a bounded sequence and there exists a subsequence (ay,, ) that converges
to a = limsup,, a,. Since w is a continuous function, w(a,, ) — w(a). But w(ay,,)
has to converge to 0, so w(a) = 0 and a = lim sup,, ||u, — u||. This yields the result.

An example of a w-operator is given by Au = —div [a(z, x)|Vu|?©Y) =2V u] for a
measurable functiona : Q — R suchthat 0 < o < a(z, x) < B < +o0o for almost
every (t,x) € Q and where | < p~ < p(¢,x) < pT < 400 on the space

X ={uelL0,T, W, (D), Vu e LP“I(Q)).

The presence of the function d is mainly due to possible values of p(¢, x) less than 2
(see Appendix 2).

Then, an example of a weak w-operator is given in Appendix 3 by the operator
0J : X — X’ where 0/ is the Giteaux derivative of the convex function

JiueXr [Vu|PU9) — §cos(|Vul) d(t, x) € R

o p(t,x)
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for2 < p(t,x) < pT < +ooand§ € (0, 1).

Let us remark that Assumption (J3) means that, a.s. A, = 3Jg : X (Q) — X, (Q)
is an operator of type weak w-operator. Indeed, the coefficients a, p and the set X can
be w-dependent.

Appendix 2

An example of a w-operator is given by
Au = —div[a(t, x)|Vu|?EI72vy]

for a measurable function a : Q — R suchthat 0 < a < a(t,x) < B < 400 for
almost every (f, x) € Q and where 1 < p~ < p(t,x) < pT < 400 on the space

X ={uelLl'0, T, Wy (D)), Vu e L9 (Q)).
Indeed, note first that for any u, v € X,

(A(w) — A(v), u —v)
= / a(, x)[(quI”(”x)_2Vu — VP ED29) L V(e — v)] d(t, x)
0

— / alt, x)[(|Vu|p("x)_2Vu — [Vu|PO2) L V(- v)] d(t, x)
Q+
+/ at, x)[(|Vu|p(l’x)_2Vu — VPO 2y L V(- v)]d(t, X)
o
where

0" ={t,x) € Q| pt,x) =2}, O ={(t,x) € Q| p(t,x) <2}.

We recall that [10, Lemma 4.4, p. 13] yields
(|W|I’<’1X>—2w _ |Vv|p(t’x)_2Vv) V(= v) = 22 PED |y — ) PO
a.e.in Q7 and therefore,
/Q+ (|Vu|1’("x)*2w - |Vv|p(”x)’2Vv) V(u —v)d(t, x)

> 2 / V(= )P0 d(r, ),
Q+

and,

pt-2

/ |V(u—v)|1’<f~)"al(r,x)s2 (A(w) — A(v), u — v)
Q+

@ Springer



Stoch PDE: Anal Comp (2016) 4:246-273
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For almost every (¢, x) € Q, [8, Proposition 17.3, p. 235] yields
(|W|P<M>—2w — |Vv|P<”x)—2vU) SV —v)
pt,x)=2
2 2 2) 2
> (p(t,2) = DIV = ) (14 Vul? +VoP?)
Thanks to the generalized Young inequality, for any 0 < & < 1, it follows
/ |Vu — VolPY d(t, x)

0-

Vu — Vy|PE0) 2-pitx)
- / = | e (L [Val? + [Vo)PD 5 d(r, x)

0" (1+ |Vul? + |[Vu]2)PE0 =5
p(t,x)—2 - 2

< / o4 L d(t, x)

(14 [Vul? + [Vo[2) =5

+s/ (A + |Vu? + Vo) 252 d@t, x)
o

1
< —/ a(t, x)([Vu[PED 72wy — V| PEO290) - V(u—) d(t, x)
e(p™ — Da Jo-
+e/ (14 |VulPO) 4 vPC9D) d(1, x)
o

1
<

< ————— (AW —A(), u—v>+e/ (1+ [VulPCD 4 | voPCD) dt, x).
ag(p——1) 0-

ot
By denoting M = max(ﬁ, 21(}—2), one gets that, for any ¢ € (0, 1),

/ [Vu — Vo|PY d(t, x)
0
M
< ;(A(u) —AW),u—v)+ s/ (1 4 |[VulPOY 4+ Vo PO d (1, x).
0

Now consider the two possible cases:

If, on the one hand, fQ(l+|Vu|1’(”x)+|Vv|1’(t’x)) d(t,x) < M{(A(u)—A@), u—v),
then

/ IVu — VolPO d(t, x) < 2M{(Au) — A(v), u — v)
0

< 1o (A0 — A@).u =) / (14 VP 4 Vol P09 d(r, x);
0
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if, on the other hand, fQ(l+|Vu|1’("")+|Vv|1’(t'x))d(t,x) > M{(A(u)—A®), u—v),

then, for 2 = T M{A@W)—A@).u—v)

S Va0 Vol i) a0 has

/ |Vu — Vo|PO d(t, x)
0

< 2\/M(A(u) — A(), u — v)(1 + |Vu|Pt0) 4 |V |P0) d(z, x).

Thus, denoting by ¥ (x) = min(x, x2) for nonnegative x, there exists a constant K
such that

v (/ |Vu — V[P0 d(t,x))
0

< K(A) — A(), u —v>/ (14 19uP®0 1 90P¢) da, ).
0

Since, for any U, by definition of the Luxemburg norm,
min[[VU ", [VU|I”'] < [, IVUIPO d(t,x) < max[[VU P, [VU|1P"],
one has that
(V] + Vo Dw(IV @ = ) < (A@) = AQ@), u —v)

where, for nonnegative x,
1 . - 2pt —1 + -
w(x):Emln(xp ,x”)andd (x):IQI—i—Zmax(x” ,x”).

The conclusion is then a consequence of Poincaré’s inequality.

Appendix 3

Let us also give an example of a weak w-operator:
denote by X = {u € L'(0, T, Wy''(D)), Vu € LPO(Q)}, where 2 < p(1,x) <
pT < 400, and for any § € (0, 1), consider

JiueXr [Vu|P49) — §cos(|Vul) d(z, x) € R.

o p(t, x)
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sPx)
If we define j : Q x [0, 4+00) — Rby j(t,x,5) =

o) — §cos(s), then J(u) =

/ j(, x,|Vul) d(t, x). Moreover, for fixed (t, x) € Q,and s > 0
0
) (r,x,5) = sPCYI1 L §sin(s) and 82 (1, x,5) = (p(t, x) — 1)sP072
+48 cos(s).
Fors € [0, 1], 3S2j(t,x, s) > 8cos(l) and fors > 1, Bszj(t,x, s) > 1 — 4. Therefore
32j(t,x,s) > min(Scos 1,1 —8) :=a >0

for all (z, x) € Q and j is a convex function of the variable s for any fixed (¢, x) € Q,
thus J is a convex function and 9J : X — X', u — 9J (1) where

3 j (£, x, |V
(8](u),v):/ I VUD G Gy dvde

is a maximal monotone operator. For (¢, x) € Q fixed let us set

00 x[0.00) > R, (tx.s) i 22 4 5D (57)
s
then,
1 S2 N
5/0 a(t,x,o0)do =/0 oot(t,x,az)da =j(t, x,s) (58)

and for any (¢, x) € Q, a(t, x, -) is a continuous function. Thus, [23] Lemma 25.26
b), p. 524 yields for all u, v € X, a.e. in Q

(a(t, x, [Vul?)Vu — a(t, x, |[Vv[)Vv) - V(u — v) > @|Vu — Vo|?, (59)

and from (58) and (59) it follows that

8 i t7 ’ v 8 j ts 9 V —
s (X VUl G BT IVOD G N G ) s a1V — Vo, (60)
|Vu| |Vl
for all u, v € X a.e. in Q. By integration over Q, we obtain
Yu,ve X, (J(u) —aJ(v),u —v) > &/ IV(u —v)|?d(t, x). (61)
Q
Note that for every u € X

J(u) = /Q Jo(IVul) + ji(z, x, [Vul)
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§PX)

with j; : O x [0, 00) — R defined by j; (¢, x,s) = Fae)] and jp : [0, 400) - R
defined by jo(s) = —& cos(s). If we define

@ (0,00) > R, ag(s) := 35"\1/_;/5,

then 2
! / wo(o)do = / oao(e?)do = jo(s) 62)
2 Jo 0

Thus, j(/) (s) = §sin(s) is a -Lipschitz function and with the same arguments as in
[23], proof of Lemma 25.26 d), p. 550 we get

loto (| Vul*) Ve — a(IVV|*) V| < 38|V (u — v)|. (63)
From (63) it follows that for all u, v € X, a.e. in Q,

Jo(UVub o jp(IVol)

Vol < 38|V — v)]. 64
vl u Vol v| < 38|V(u —v)| (64)

Thus, for p(z, x) > 2 we arrive at
(0J (u) — oJ (v), u — v)
— / (|Vu|P(”x)_2Vu — |Vy|PD=2yy
0]

Jo(Vul) . Jo(IVuD
|Vu| IVl

> 22—1’*/ IV —v)|P"Ydxdr — 33/ IV(u —v)|? d(t, x)
0 0

Vv) -V —v)d(, x)

and dJ is a weak w-operator thanks to (61).

Remark 7.1 The previous example holds also true for

1
N xs) = (I )P0 = e (1 )P

p(t, x) p(t,x)

with2 < p(t,x) < pT < +oo.
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