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Abstract Astochastic forcing of a non-linear singular/degenerated parabolic problem
with random growth conditions is proposed in the framework of Orlicz Lebesgue and
Sobolev spaces with variable random exponents. We give a result of existence and
uniqueness of the solution, for additive and multiplicative problems.
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1 Introduction

Problems in variable exponent Lebesgue and Sobolev spaces (i.e. when the classical
Lebesgue exponent p depends on the time–space arguments) have been intensively
studied since the years 2000. One can find now in the literature, since the founding
work of Zhikov [24], many references concerning the theoretical mathematical point
of view, but also many applications in physics and image restoration.
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In addition to the important scientific contribution of Zhikov let us mention the
monograph [11] and we invite the reader to consult the references of this book for
more information on general Orlicz-type spaces.

The main physical motivation for the study of Lebesgue and Sobolev spaces with
variable exponent was induced by the modelling of electrorheological fluids and we
refer to [21] and the monograph [20].

Another classical application concerns image restoration, as in [18] for example.
Following the general remarks in [1–3,24] for the elliptic case with p(x) and [4,12]

in the parabolic one with p(t, x) (and the important literature of these authors), each
model is subject to certain variation of the nonlinear terms: parameters that determine
a model, that are constant in certain ranges, have to change when some threshold
values are reached. This can be done for example by varying the exponents which are
describing the growth conditions of the nonlinear terms.

This is e.g. the case in transformations of thermo-rheological fluids, since these
fluids strongly depend on the temperature and the temperature can be given by another
equation. In this way, one has to consider models given by systems of type ut +
A(u, v) = f, vt + Bv = g where A and B are nonlinear operators and the growth of
A depends on p(v); for example when A(u, v) = −div [|∇u|p(v)−2∇u].

Since reality is complex, one always considers flawed models and/or data. This is
why it is of interest to consider random or stochastic problems.

In the case of random variable exponents, let us mention extensions of [15] and
of the properties of the maximal function to the case of a random exponent p(ω) in
[5,17] for martingales and to p(x, ω) in [22]. This corresponds for example to the
case of a system of type ut + A(u, v) = f, vt + B(ω, v) = g(ω) where v gives A a
random behavior.

In the case of a stochastic forcing, if the system is of type du + A(u, v)dt =
f dw, vt + B(v) = g where w denotes a Wiener process, one can find in the literature
the existence of a solution with values in general Orlicz-spaces [19] that corresponds
to the −Δp(x) case, and [7] for −Δp(t,x) stochastic problems.

Thinking about a system, it seems then more natural to consider a stochastic pertur-
bation acting on both equations, i.e., considering systems of type du + A(u, v)dt =
f dw, dv + B(v)dt = gdw. Hence our interest in this paper is the study of problems
with growth conditions described by a variable exponent p which may depend on t ,
x and ω with suitable measurability assumptions with respect to a given filtration.
Let us remark that the properties of It’s integral will be formally compatible with the
technical assumptions on p and on the operator used in the sequel: the predictability
of the solution to It’s problem with Hölder-continuous paths. This last property is of
importance since one needs, for technical reasons, to consider log-Hölder continuous1

exponents p with respect to the variables t and x .

1 A function f is Log-Hölder continuous if, for a constant c ≥ 0, | f (x) − f (y)| ≤ c/ ln[e + 1/|x − y|].
If f is Hölder continuous with Hölder exponent α, then it is also log-Hölder continuous since | f (x) −
f (y)| ln[e + 1/|x − y|] ≤ c|x − y|θ ln[e + 1/|x − y|] and since α �→ αθ ln[e + 1/α] is continuous on
[0, M] for any positive M .
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In this paper, our aim is to study existence and uniqueness of the solution to

(P, h)

⎧
⎪⎨

⎪⎩

du − div ∂ j (ω, t, x,∇u) = h(·, u) dw in Ω × (0, T ) × D,

u = 0 on Ω × (0, T ) × ∂ D,

u(0, ·) = u0 in L2(D).

(1)

where

– T > 0, D ⊂ R
d is a bounded Lipschitz domain, Q := (0, T ) × D,

– w = {wt ,Ft ; 0 ≤ t ≤ T } is a Wiener process on the classical Wiener space
(Ω,F , P).

– h : (ω, t, x, λ) ∈ Ω × Q × R �→ h(ω, t, x, λ) ∈ R is a Carathéodory function,
uniformlyLipschitz continuouswith respect toλ, such that themapping (ω, t, x) �→
h(ω, t, x, λ) is in N 2

W (0, T ; L2(D)) for any λ ∈ R.
– j : (ω, t, x, ξ) ∈ Ω × Q × R

d �→ j (ω, t, x, ξ) ∈ R
+ is a Carathéodory function

(continuous with respect to ξ , measurable with respect to (ω, t, x)) which is convex
and Gâteaux differentiable with respect to ξ , for a.e. (ω, t, x). ∂ denotes this G-
differentiation.

– p : Ω × Q → (1,∞) is a variable exponent such that

1 < p− := ess inf
(ω,t,x)

p(ω, t, x) ≤ p+ := ess sup
(ω,t,x)

p(ω, t, x) < ∞.

For the precise assumptions on j and p we refer to Sects. 2 and 4.

2 Function spaces

Let us define

N 2
W (0, T ; L2(D)) := L2(Ω × (0, T ); L2(D))

endowed with dt ⊗ dP and the predictable σ -fieldPT generated by

]s, t] × A, 0 ≤ s < t ≤ T, A ∈ Fs,

which is the natural space of Itô integrable stochastic processes. Let S2
W (0, T ; Hk

0 (D))

be the subset of simple, predictible processes with values in Hk
0 (D) for suffi-

ciently large values of k. Note that S2
W (0, T ; Hk

0 (D)) is densely imbedded into
N 2

W (0, T ; L2(D)).
If (X,A , μ) is a σ -finite measure space and p : X → R is a measurable function with
values in [p−, p+] ⊂ (1,+∞), one denotes by L p(·)(X, dμ) the variable exponent
Lebesgue space of measurable functions f such that

∫

X | f (x)|p(x)dμ(x) < +∞.
This space is endowed with the Luxemburg norm defined by

‖ f ‖ = inf

{

λ > 0

∣
∣
∣
∣

∫

X
|λ−1 f (x)|p(x)dμ(x) ≤ 1

}
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and we refer to [11] for the basic definitions and properties of variable exponent
Lebesgue and Sobolev spaces.
In this paper X is Ω × Q, dμ = d(t, x) ⊗ d P and we are interested in measurable
variable exponents p : Ω × Q → R such that

1 < ess inf
(ω,t,x)

p(ω, t, x) =: p− ≤ p(ω, t, x) ≤ p+ := ess sup
(ω,t,x)

p(ω, t, x) < ∞.

Moreover we assume that ω a.s. in Ω , (t, x) �→ p(ω, t, x) is log-Hölder continuous
[11, Definition 4.1.1, p. 100] and that for all t ≥ 0, (ω, s, x) �→ p(ω, s, x) is Ft ×
B(0, t) × B(D)-measurable. For this kind of variable exponents we introduce the
spaces

Eω,t := L2(D) ∩ W 1,p(ω,t,·)
0 (D)

endowed with the norm ‖u‖ = ‖u‖L2(D) + ‖∇u‖p(ω,t,·).
The following function space serves as the variable exponent version of the classical

Bochner space setting:

Xω(Q) := {u ∈ L2(Q) ∩ L1(0, T ; W 1,1
0 (D)) | ∇u ∈ (L p(ω,·)(Q))d}

which is a reflexive Banach space with respect to the norm

‖u‖Xω(Q) = ‖u‖L2(Q) + ‖∇u‖L p(ω,·)(Q).

Xω(Q) is a generalization of the space

X (Q) := {u ∈ L2(Q) ∩ L1(0, T ; W 1,1
0 (D)) | ∇u ∈ (L p(t,x)(Q))d}

which has been introduced in [12] for the case of a variable exponent that is not
depending on ω. For the basic properties of X (Q), we refer to [12]. For u ∈ Xω(Q),
it follows directly from the definition that u(t) ∈ L2(D) ∩ W 1,1

0 (D) for almost every
t ∈ (0, T ). Moreover, from ∇u ∈ (L p(ω,·)(Q))d and the theorem of Fubini it follows
that ∇u(t, ·) is in (L p(ω,t,·)(D))d a.e. in Ω × (0, T ).

Let us introduce the space

E := {u ∈ L2(Ω × Q) ∩ L p−
(Ω × (0, T ); W 1,p−

0 (D)) | ∇u ∈ (L p(·)(Ω × Q))d}

which is a reflexive Banach space with respect to the norm

‖u‖E = ‖u‖L2(Ω×Q) + ‖∇u‖p(·), u ∈ E .

Thanks to Fubini’s theorem and since the inequality of Poincaré is available with
respect to (t, x), u ∈ E implies that u(ω) ∈ Xω(Q) a.s. in Ω and u(ω, t) ∈ L2(D) ∩
W 1,p(ω,t,·)

0 (D) for almost all (ω, t) ∈ Ω × (0, T ).
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3 Main result

Definition 1 A solution to (P, h) is a function u ∈ E ∩ L2(Ω; C([0, T ]; L2(D))) ∩
N 2

W (0, T ; L2(D)) such that

u(t) − u0 −
∫ t

0
div ∂ j (ω, s, x,∇u)ds =

∫ t

0
h(·, u)dw

holds a.e. in Ω × D and for all t ∈ [0, T ].
Or, equivalently, such that u(0, ·) = u0 and

∂t

[
u(t) −

∫ t

0
h(·, u)dw

]
− div ∂ j (ω, t, x,∇u) = 0

holds a.e. in X ′
ω(Q).

Remark 3.1 The equivalence pointed out in the definition is argued in Sect. 6.2.

Our main result is the following:

Theorem 1 Under assumptions (J1) to (J3), there exists a unique solution to (P, h).
Moreover, if u1, u2 are solutions to (P, h1) and (P, h2) respectively, then:

E

(

sup
t∈[0,T ]

‖(u1 − u2)(t)‖2L2(D)

)

(2)

+ E

(∫

Q
∂ j (ω, s, x,∇u1) − ∂ j (ω, s, x,∇u2) · ∇(u1 − u2)d(s, x)

)

≤ C E
∫

Q
|h1(·, u1) − h2(·, u2)|2 d(s, x).

Remark 3.2 Of course, our result can be immediately extended to the case of a multi
dimensional noise given by a linear combination of independent real-valued Brownian
motions.

4 Assumptions

Let

j : Ω × (0, T ) × D × R
d → R

+, (ω, t, x, ξ) �→ j (ω, t, x, ξ)

be a Carathéodory function (continuous with respect to ξ , measurable with respect
to (ω, t, x)) which is convex and Gâteaux differentiable with respect to ξ , for a.e.
(ω, t, x). We will denote its Gâteaux derivative by ∂ j . Moreover, we assume
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(J1) There exist C1 > 0, C2 ≥ 0 and g1, g2 ∈ L1(Ω × Q) such that

j (ω, t, x, ξ) ≥ C1|ξ |p(ω,t,x) − g1(ω, t, x), (3)

j (ω, t, x, ξ) ≤ C2|ξ |p(ω,t,x) + g2(ω, t, x) (4)

a.e. in (ω, t, x) for all ξ ∈ R
d .

(J2) For all t ∈ [0, T ]

j : Ω × (0, t) × D × R
d → R, (ω, s, x, ξ) �→ j (ω, s, x, ξ)

isFt × B(0, t) × B(D) × L d -measurable.
(J3) Almost surely, there exist two continuous functions dω : [0,∞) → (0,∞) and

wω : [0,∞) → [0,∞) with wω(r) = 0 if and only if r = 0 satisfying

dω

(‖∇u‖L p(ω,·)(Q) + ‖∇v‖L p(ω,·)(Q)

)
wω

(‖∇u − ∇v‖L p(ω,·)(Q)

) − νω(u, v)

(5)

≤
∫ T

0

∫

D
(∂ j (ω, t, x,∇u) − ∂ j (ω, t, x,∇v)) · ∇(u − v) dx dt

for all u, v ∈ Xω(Q) a.s. in Ω where νω(u, v) → 0 if

∫ T

0

∫

D
(∂ j (ω, t, x,∇u) − ∂ j (ω, t, x,∇v)) · ∇(u − v) dx dt → 0.

Some additional information and examples are detailed in the Appendix of the
paper concerning such operators we have called (weak) w-operators.

Remark 4.1 Thanks to (J2), the mapping (ω, s, x, ξ) �→ ∂ j (ω, s, x, ξ) is Ft ×
B(0, t) × B(D) × Ld -measurable for every t ∈ [0, T ].

Lemma 1 The convex functional

J : E → R, u �→
∫

Ω×Q
j (ω, t, x,∇u) d(t, x) ⊗ d P

is continuous and Gâteaux differentiable with

〈∂G J (u), v〉 =
∫

Ω×Q
∂ j (ω, t, x,∇u) · ∇v d(t, x) ⊗ d P

for all u, v ∈ E . In particular, ∂J is maximal monotone
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Proof J is continuous because of (J1) and since it is a Nemytskii operator induced
by j . For u, v ∈ E we have

lim
h→0+

J (u + hv) − J (u)

h

= lim
h→0+

∫

Ω×Q

j (ω, t, x,∇u + h∇v) − j (ω, t, x,∇u)

h
d(t, x) ⊗ d P (6)

Thanks to the properties of j we have a.e. in Ω × Q

lim
h→0+

j (ω, t, x,∇u + h∇v) − j (ω, t, x,∇u)

h
= ∂ j (ω, t, x,∇u) · ∇v (7)

moreover, since

h �→ j (ω, t, x,∇u + h∇v) − j (ω, t, x,∇u)

h

is nondecreasing, it follows from the Beppo–Levi theorem that

lim
h→0+

J (u + hv) − J (u)

h
=

∫

Ω×Q
∂ j (ω, t, x,∇u) · ∇v d(t, x) ⊗ d P. (8)

It is left to prove that the integral on the right hand side of (8) is finite. Since

− j (ω, t, x,∇(u − v)) + j (ω, t, x,∇u) (9)

≤ ∂G j (ω, t, x,∇u) · ∇v

≤ j (ω, t, x,∇(u + v)) − j (ω, t, x,∇u),

a.e. in (ω, t, x), it follows from (J1) that

|∂ j (ω, t, x,∇u) · ∇v| (10)

≤ max{ j (ω, t, x,∇(u + v)) − j (ω, t, x,∇u), j (ω, t, x,∇(u − v))

− j (ω, t, x,∇u)}
≤ | j (ω, t, x,∇(u + v))| + | j (ω, t, x,∇(u − v))| + 2| j (ω, t, x,∇u)|
≤ C22

p++1(|∇u|p(ω,t,x) + |∇v|p(ω,t,x)) + 2(C2|∇u|p(ω,t,x) + 2g2).

Using (10) and writing dμ := d(t, x) ⊗ d P we arrive at

|〈∂J (u), v〉|
≤

∫

Ω×Q
|∂ j (ω, t, x,∇u) · ∇v| dμ

≤
∫

Ω×Q
C22

p++1
(
|∇u|p(ω,t,x) + |∇v|p(ω,t,x)

)
+ 2(C2|∇u|p(ω,t,x) + 2g2) dμ
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and from (11) it follows that ∂J (u) ∈ E ′. Since J is a convex, continuous andGâteaux-
differentiable functional, its Gâteaux derivative is a maximal monotone operator (see
[6, Theorem 2.8., p. 47]). ��
Remark 4.2 With similar arguments as in the proof of Lemma 1 one shows that

(i) For a.e. (ω, t) ∈ Ω × (0, T ) the convex functional

JD : W 1,p(ω,t,·)
0 (D) → R, u �→

∫

D
j (ω, t, x,∇u) dx

is continuous and Gâteaux differentiable with respect to u: for all v in
W 1,p(ω,t,·)

0 (D),

〈∂JD(u), v〉 =
∫

D
∂ j (ω, t, x,∇u) · ∇v dx .

(ii) For a.e. ω ∈ Ω , the convex functional

JQ : Xω(Q) → R, u �→
∫ T

0

∫

D
j (ω, t, x,∇u) dx dt =

∫ T

0
JD(u) dx dt

is continuous, convex and Gâteaux differentiable with

〈∂JQ(u), v〉X ′
ω(Q),Xω(Q) =

∫ T

0

∫

D
∂ j (ω, t, x,∇u) · ∇v dx dt (11)

=
∫ T

0
〈∂G JD(u), v〉

W−1,p′(·)(D),W 1,p(·)
0 (D)

dt

for all u, v ∈ Xω(Q).

In particular, as an immediate consequence of Lemma 1 we have

〈∂J (u), v〉E ′,E =
∫

Ω×Q
∂ j (ω, t, x,∇u) · ∇v dμ (12)

=
∫

Ω

〈∂JQ(u), v〉X ′
ω(Q),Xω(Q) d P

=
∫

Ω

∫ T

0
〈∂JD(u), v〉

W−1,p′(·)(D),W 1,p(·)
0 (D)

dt d P.

5 The additive case for h ∈ S2W (0, T; Hk
0 (D))

Assume, in this section, that h ∈ S2
W (0, T ; Hk

0 (D)) for a big enough value of k. Since

W −1,q ′
(D) is a separable Banach space, the notion of weak-measurability and Pettis

measurability theorem yield the following proposition.
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Proposition 1 For q ≥ max(2, p+) and ε > 0, the operator

A : Ω × (0, T ) × W 1,q
0 (D) → W −1,q ′

(D),

(ω, t, u) �→ A(ω, t, u) = −εΔq(u) + ∂JD(ω, t, u),

satisfies the following properties:

– A is monotone for a.e. (ω, t) ∈ Ω × (0, T ).
– A is progressively measurable, i.e. for every t ∈ [0, T ] the mapping

A : Ω × (0, t) × W 1,q
0 (D) → W −1,q ′

(D), (ω, s, u) �→ A(ω, s, u)

is Ft × B(0, t) × B(W 1,q
0 (D))-measurable.

It is then a consequence of [16, Theorem 2.1, p. 1253]2 that:

Proposition 2 Let h ∈ S2
W (0, T ; Hk

0 (D)) for k > 0 large enough. The operator −A
satisfies the hypotheses of [16, Theorem 2.1, p. 1253], therefore for any ε > 0 there
exists a unique

uε ∈ L2(Ω; C([0, T ]; L2(D))) ∩ N 2
W (0, T ; L2(D)) ∩ Lq(Ω; Lq(0, T ; W 1,q

0 (D)))

that solves

uε(t) − u0 +
∫ t

0
∂JD(uε) − εΔq(uε) dt =

∫ t

0
h dw (13)

in W −1,q ′
(D) for all t > 0 a.s. in Ω .

Remark 5.1 In particular, it follows that uε such that uε(0) = u0 satisfies (13) if and
only if

vε := uε −
∫ ·

0
h dw

satisfies the random equation

∂tv
ε − εΔq

(

vε +
∫ ·

0
h dw

)

+ ∂JQ

(

vε +
∫ ·

0
h dw

)

= 0 (14)

in Lq ′
(0, T ; W −1,q ′

(D)) a.s. in Ω . Using the regularity of uε and that the function h
is in S2

W (0, T ; Hk
0 (D)) we find vε ∈ Lq(Ω; Lq(0, T ; W 1,q

0 (D)). Now, from (14) we

get ∂tv
ε ∈ Lq ′

(0, T ; W −1,q ′
(D)) a.s. in Ω . Therefore we can use vε as a test function

in (14).

2 Rmk: [9, Proposition 3.17, p. 84] and [16, Theorem 2.3, p. 1254] yield uε ∈ L2(Ω, C([0, T ]; L2(D))).
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Lemma 2 There exists G ∈ L1(Ω) such that for all t ∈ [0, T ]

‖vε(t)‖2L2(D)
+ J ∗

Qt
(∂JQt (u

ε)) + 2JQt (u
ε) + ε

q

∫ t

0

∫

D
|∇uε|q dx ds (15)

≤ G(ω) + ‖u0‖2L2(D)

a.s. in Ω , where Qt := (0, t) × D.

Proof We fix t ∈ [0, T ] and write Qt := (0, t) × D. Using vε as a test function in
(14) and integration by parts, we obtain

1

2
‖vε(t)‖2L2(D)

− 1

2
‖u0‖2L2(D)

+ ε〈−Δquε, uε〉 + 〈∂JQt (u
ε), uε〉 (16)

= ε

〈

−Δquε,

∫ ·

0
h dw〉 + 〈∂JQt (u

ε),

∫ ·

0
h dw

〉

Note that −Δqu = ∂J1(u) in Qt where

J1(u) =
∫ t

0

∫

D

1

q
|∇u|q dx .

Using the Fenchel inequality we get from (16)

1

2
‖vε(t)‖2L2(D)

− 1

2
‖u0‖2L2(D)

+ εJ1(u
ε) + ε(J1)

∗ (
∂J1(u

ε)
) + JQt (u

ε)

+J ∗
Qt

(
∂JQt (u

ε)
)

= ε

〈

∂J1(u
ε),

∫ ·

0
h dw

〉

+
〈

∂JQt (u
ε),

∫ ·

0
h dw

〉

For all α > 0 we have

〈

∂JQt (u
ε),

∫ ·

0
h dw

〉

=
〈

α∂JQt (u
ε),

1

α

∫ ·

0
h dw

〉

= α

〈

∂JQt (u
ε),

1

α

∫ ·

0
h dw

〉

≤ α J ∗
Qt

(∂JQt (u
ε)) + α JQt

(
1

α

∫ ·

0
h dw

)

.
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Plugging (17) in (17) and using the Fenchel–Young inequality for J1 we get

1

2
‖vε(t)‖2L2(D)

− 1

2
‖u0‖2L2(D)

(17)

+J ∗
Qt

(∂JQt (u
ε)) + JQt (u

ε) + ε

∫ t

0

∫

D

1

q
|∇uε(t)|q dx ds

≤ ε

(∫ t

0

∫

D

q − 1

q
|∇uε|q + 1

q

∣
∣
∣
∣∇

∫ s

0
h dw

∣
∣
∣
∣

q

dx ds

)

+ α J ∗
Qt

(∂JQt (u
ε))

+α JQt

(
1

α

∫ ·

0
h dw

)

.

For α = 1
2 and for all t ∈ [0, T ]

‖vε(t)‖2L2(D)
+ J ∗

Qt
(∂JQt (u

ε)) + 2JQt (u
ε) + 2ε

∫ t

0

∫

D
|∇uε|q dx ds (18)

≤ 2
∫ t

0

∫

D
|∇

∫ s

0
h dw|q dx ds + JQt

(

2
∫ ·

0
h dw

)

ds + ‖u0‖2L2(D)
.

Since ∂xi is a continuous linear operator from Hk
0 (D) to L2(D), we have

∇
∫ t

0
h dw =

∫ t

0
∇h dw

for all t ∈ [0, T ] and a.s. in Ω . From h ∈ S2
W (0, T ; Hk

0 (D)) for k > 0 large enough
it follows that ∇h ∈ L∞(Ω × Q)d and

t �→
∫ t

0
∇h dw ∈ C([0, T ]; L∞(Ω × D)d).

Therefore, using (J1), we get

JQt

(

2
∫ ·

0
h dw

)

ds (19)

≤ C2

∫

Q

∣
∣
∣
∣

∫ t

0
∇h dw

∣
∣
∣
∣

p(ω,·)
d(t, x)

∫

Q
g2(ω, t, x) d(t, x)

Thanks to the regularity of ∇h in particular it follows that

∣
∣
∣
∣

∫ ·

0
∇h dw

∣
∣
∣
∣ ∈ Lr (Ω × Q)
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for any 1 ≤ r < ∞ and therefore by Fubini’s Theorem

ω �→ G1(ω) :=
∫

Q

∣
∣
∣
∣

∫ t

0
∇h dw

∣
∣
∣
∣

p(ω,·)
+

∣
∣
∣
∣

∫ t

0
∇h dw

∣
∣
∣
∣

q

d(t, x)

is in L1(Ω). Moreover,

ω �→ G2(ω) :=
∫

Q
g2(ω, t, x) d(t, x)

is in L1(Ω). Writing G = G1+ G2, plugging (19) into (18) and rearranging the terms
we arrive at (15). ��

Lemma 3 There exists a full measure set Ω̃ ⊂ Ω such that for any ω ∈ Ω̃ ,

(i) ε∇uε is bounded in Lq(0, T ; (Lq(D))d),

(ii) vε is bounded in C([0, T ]; L2(D)) and in L p−
(0, T ; W 1,p−

0 (D)), in particular,
vε(t) in bounded in L2(D) for all t ∈ (0, T ].
(iii) ∇uε(ω) is bounded in L p(ω,·)(Q) and therefore vε(ω) is bounded in the space
Xω(Q).

Proof By (J1) we have a.s. in Ω

J ∗
Q(∂JQ(uε)) + 2JQ(uε) = 〈∂JQ(uε), uε〉 + JQ(uε) (20)

≥ 2JQ(uε) − JQ(0)

=
∫

Q
j (ω, s, x,∇uε) − j (ω, s, x, 0) d(s, x)

≥ C1

∫

Q
|∇uε|p(·) − g1(ω, s, x) − g2(ω, s, x) d(s, x)

Combining (20) with (15) we arrive at

‖vε(t)‖2L2(D)
+ C1

∫

Q
|∇uε|p(·) d(t, x) ≤ G̃(ω) + ‖u0‖2L2(D)

, (21)

where G̃ = G + ∫

Q g1(ω, s, x) + g2(ω, s, x) d(s, x) ∈ L1(Ω). ��

Lemma 4 For ω ∈ Ω̃ fixed, ∂JQ(uε) is bounded in X ′
ω(Q) .

Proof Using (J1) and (15) it follows that

J ∗
Q(∂JQ(uε)) ≤ G(ω) + ‖u0‖2L2(D)

+
∫

Q
g1 d(t, x) =: K (ω, u0). (22)
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From (22), the Fenchel–Young inequality and (J1) for any v ∈ Xω(Q) it follows that

|〈∂JQ(uε), v〉| ≤ J ∗
Q(∂JQ(uε)) + JQ(v) (23)

≤ K (ω, u0) + C2

∫

Q
|∇v|p(ω,·) + g2 d(t, x).

��
The following Lemma is a direct consequence of Lemma 3 and Lemma 4:

Lemma 5 For any ω ∈ Ω̃ there exists a (not relabeled) subsequence of vε(ω) and
v ∈ Xω(Q) ∩ L∞(0, T ; L2(D)) such that, for ε ↓ 0,

(i) vε ∗
⇀ v in L∞(0, T ; L2(D)),

(ii) ∇vε ⇀ ∇v in (L p(ω,·)(Q))d ,
(iii) vε ⇀ v in Xω(Q)

(iv) There exists α(T ) ∈ L2(D) such that vε(T ) ⇀ α(T ) in L2(D).
(v) Moreover, there exists B ∈ X ′

ω(Q), B = b − div G with b ∈ L2(Q) and G ∈
(L p′(ω,·)(Q))d such that

∂JQ(uε) ⇀ b − div G in X ′
ω(Q),

we recall that uε = vε + ∫ t
0 h dw.

We take ϕ = ρζ such that ρ ∈ D([0, T ]) and ζ ∈ D(D) as a test function and we
have

∫ T

0

∫

D
−vε∂tϕ dxds − ε〈Δq(uε), ϕ〉 + 〈∂JQ(uε), ϕ〉 (24)

=
∫

D
u0ϕ(0, x) − vε(T, x)ϕ(T, x) dx

Since ε∇uε is bounded in Lq(0, T ; (Lq(D))d), it follows that

〈−εΔq(uε), ϕ〉 → 0

for ε ↓ 0. We can pass to the limit in all the other terms in (24) and arrive at

−
∫ T

0

∫

D
v∂tϕ dx ds +

∫

D
ζ(α(T )ρ(T ) − u0ρ(0)) dx + 〈B, ϕ〉 = 0 (25)

and therefore
vt + B = 0 (26)

in D ′(Q). From (26) we get vt ∈ X ′
ω(Q) and therefore v is in

Wω(Q) := {v ∈ Xω(Q) | vt ∈ X ′
ω(Q)} ↪→ C([0, T ]; L2(D)).
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In particular, since D(Q) is dense in Xω(Q), (26) holds also in X ′
ω(Q). Now, using

the integration by parts formula in Wω(Q) (see [12]) it follows that

〈vt , ϕ〉 = −
∫ T

0

∫

D
v∂tϕ +

∫

D
ζ(v(T )ρ(T ) − u0ρ(0)) dx (27)

Now, we can identify α(T ) with v(T ) : indeed, plugging (27) in (25) we can apply
(26) to get ∫

D
ζρ(T )(α(T ) − v(T )) dx = 0. (28)

Moreover, we find that the whole sequence vε(T ) converges weakly to v(T ). As the
argumentation also holds true for any t ∈ [0, T ], we get that vε(t) ⇀ v(t) in L2(D)

for all t ∈ [0, T ].
Lemma 6 In addition to Lemma 5, B = ∂JQ(u) in X ′

ω(Q), 〈∂JQ(uε), uε〉 → 〈∂J (u), u〉
for ε ↓ 0 where u = v + ∫ t

0 h dw , ∇uε → ∇u in L p(ω,·)(Q) and ∇vε → ∇v in
L p(ω,·)(Q) as well.

Proof Using v as a test function in (26), from integration by parts in Wω(Q)we obtain

1

2
‖v(T )‖2 − 1

2
‖u0‖2 + 〈B, v〉 = 0. (29)

On the other hand, using vε as a test function in (24) and applying integration by parts
we obtain

1

2
‖vε(T )‖2 − 1

2
‖u0‖2 − ε〈Δquε, uε〉 + 〈∂JQ(uε), uε〉

= −ε

〈

Δquε,

∫ ·

0
h dw

〉

+
〈

∂JQ(uε),

∫ ·

0
h dw

〉

(30)

discarding nonnegative terms for ε ↓ 0 in the limit of (30) we get

1

2
‖v(T )‖2 − 1

2
‖u0‖2 + lim sup

ε↓0
〈∂JQ(uε), uε〉 ≤

〈

B,

∫ ·

0
h dw

〉

. (31)

Now, from (26) and (27) we obtain

lim sup
ε↓0

〈∂JQ(uε), uε〉 ≤ 〈B, u〉. (32)

Since Xω(Q) is reflexive and ∂JQ is the Gâteaux derivative of the convex and
lower semicontinuous functional JQ , from [21, Theorem 3.32] it follows that ∂JQ is
maximal monotone and therefore it follows from [6, Lemma 2.3, p. 38] and (32) that
B = ∂JQ(u) in X ′

ω(Q) and 〈∂JQ(uε), uε〉 → 〈∂J (u), u〉.
As a consequence, limε↓0〈∂JQ(uε) − ∂JQ(u), uε − u〉 = 0 and Assumption (J3) with
Appendix 1 yield the strong convergence claimed at the end of the Lemma. ��
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From Lemma 5 and (25) it follows that

∂tv + ∂JQ(u) = 0 (33)

and ∂tv is in X ′
ω(Q) a.s. in Ω . If v1 = u1 − ∫ t

0 h dw and v2 = u2 − ∫
h dw are both

satisfying (33), then subtracting the equations we arrive at

∂t (u1 − u2) + (∂JQ(u1) − ∂JQ(u2)) = 0 (34)

and from (34) it follows that (u1 − u2) ∈ Wω(Q) a.s. in Ω . Therefore we can use
(u1 − u2) as a test function in (34) and from integration by parts in Wω(Q) it follows
that u1 = u2 a.e. in Q for a.e. ω ∈ Ω . Therefore, one may conclude by the following
proposition:

Proposition 3 The convergences pointed out in Lemmata 5 and 6 hold for the whole
sequences vε and uε.

Lemma 7 We have: v ∈ L2(Ω; C([0, T ]; L2(D)), vε(ω, t, ·) → v(ω, t, ·) in L2(D),
ω a.s. and for any t, and ∇vε → ∇v in L p(·)(Ω × Q).

Proof We know already that vε(ω, t) ⇀ v(ω, t) in L2(D) for almost every ω ∈ Ω

and all t ∈ [0, T ] as ε ↓ 0. As mentioned above, since T can be replaced by any t ,
using (29) and (30) with T = t and that B = ∂JQ(u) we get

lim sup
ε↓0

1

2
‖vε(t)‖2L2(D)

≤ 1

2
‖v(t)‖2L2(D)

(35)

and from (35) it follows that

lim
ε↓0 ‖vε(t)‖L2(D) = ‖v(t)‖L2(D), (36)

and (36) together with the weak convergence in L2(D) yields vε(ω, t) → v(ω, t) in
L2(D) for almost every ω ∈ Ω , for all t ∈ [0, T ].

From Lemma 2 and (20) it follows that for all t ∈ [0, T ], a.s. in Ω

‖vε(t)‖2L2(D)
+

∫

Q
|∇uε|p(ω,·) dx ds ≤ G1 + G2 + ‖u0‖2L2(D)

(37)

with G1, G2 ∈ L1(Ω).
From Lebesgue’s dominated convergence theorem and the uniform convexity of

L2(Ω × Q) and L p(·)(Ω × Q) with similar arguments as in [14], it now follows that
vε → v in L2(Ω × (0, T ); L2(D)) and ∇uε → ∇u in L p(·)(Ω × Q). In particular,
we get that uε → u = v + ∫ t

0 h dw in L2(Ω × (0, T ); L2(D)) as well. Now we
need to prove that v ∈ L2(Ω; C([0, T ]; L2(D))). We already know that v : Ω ×
(0, T ) → L2(D) is a (predictible) stochastic process. Since v(ω, ·) ∈ Wω(Q) ↪→
C([0, T ]; L2(D)) for a.e. ω ∈ Ω the measurability follows from [9, Proposition 3.17,
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p. 84] with arguments as in [13, Corollary 1.1.2, p. 8]. From (37) it now follows that
v is in L2(Ω; C([0, T ]; L2(D))). ��

Summarizing all previous results we are able to pass to the limit with ε ↓ 0 in (14).
For the limit function u we have shown the following result:

Proposition 4 For h ∈ S2
W (0, T ; Hk

0 (D)) there exists a full-measure set Ω̃ and u ∈
E ∩ L2(Ω; C([0, T ]; L2(D))) ∩ N 2

W (0, T ; L2(D)) such that for all ω ∈ Ω̃

u(t) − u0 −
∫ t

0
∂JD(u(s)) ds =

∫ t

0
h dw (38)

a.e. in D for all t ∈ [0, T ].

6 The additive case for general h

6.1 Uniform estimates

Now we want to derive existence for arbitrary h ∈ N 2
W (0, T ; Hk

0 (D)) from the previ-
ous results. From the density of S2

W (0, T ; Hk
0 (D)) in N 2

W (0, T ; Hk
0 (D)) it follows that

there exists (hn) ⊂ S2
W (0, T ; Hk

0 (D)) such that hn → h in N 2
W (0, T ; Hk

0 (D)). Let
us remark that since N 2

W (0, T ; Hk
0 (D)) is a separable set there exists a countable set

Λ ⊂ S2
W (0, T ; Hk

0 (D)) such that (hn) ⊂ Λ (irrespective of h ∈ N 2
W (0, T ; Hk

0 (D))).
Thus, the full-measure set Ω̃ introduced in the above proposition can be shared by all
the elements of Λ.

Lemma 8 For hn, hm ∈ Λ, let un, um be solutions to (38) with right-hand side hn,
and hm respectively. There exists a constant K1 ≥ 0 not depending on m, n ∈ N, such
that

E

(

sup
t∈[0,T ]

‖un(t)‖2L2(D)

)

+ J ∗(∂J (un))+ J (un) ≤ K1

(
‖hn‖2L2(Ω×Q)

+ ‖u0‖2L2(D)

)

(39)
for all n ∈ N,

E

(

sup
t∈[0,T ]

‖(un − um)(t)‖2L2(D)

)

+ 〈∂JQ(un) − ∂JQ(um), un − um〉 (40)

≤ K1‖hn − hm‖2L2(Ω×Q)

for all n, m ∈ N.

Proof Let un be a solution to (38) with right-hand side hn and um be a solution to
(38) with right-hand side hm . Denoting uε

n and uε
m the corresponding approximate
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solutions to (13), using the Itô formula and discarding the nonnegative term it follows
that for all t ∈ [0, T ] a.s. in Ω we have

1

2
‖uε

n(t) − uε
m(t)‖2L2(D)

+ 〈∂JQt

(
uε

n

) − ∂JQt

(
uε

m

)
, uε

n − uε
m〉 (41)

≤
∫

D

∫ t

0
(hn − hm)

(
uε

n − uε
m

)
dw dx + 1

2

∫ t

0

∫

D
(hn − hm)2 dx ds.

Using the convergence results of Lemmata 5 to 7 (see Proposition 3), it follows that, for
a.e. ω ∈ Ω , uε

n → un in L2(Q), uε
n(t) → un(t) in L2(D) for all t ∈ [0, T ], uε

n → un

in Xω(Q), ∂JQt (u
ε
n) ⇀ ∂JQt (un) in X ′

ω(Q) and 〈∂JQt (u
ε
n), uε

n〉 → 〈∂JQt (un), un〉
for ε ↓ 0 (and resp. with m):

lim
ε↓0

〈
∂JQt

(
uε

n

) − ∂JQt

(
uε

m

)
, uε

n − uε
m

〉 = 〈
∂JQt (un) − ∂JQt (um), un − um

〉
. (42)

Moreover, by Itô isometry we have that

∫ t

0
(hn − hm)(uε

n − uε
m) dw →

∫ t

0
(hn − hm)(un − um) dw (43)

in L2(Ω; C([0, T ]; L2(D))) for ε ↓ 0, hence passing to a (not relabeled) subsequence
if necessary, it follows that (43) holds a.s. in Ω and for all t ∈ [0, T ]. Taking the
supremum over [0, T ] and then taking expectation, we arrive at

E

(

sup
t∈[0,T ]

‖un(t)−um(t)‖2L2(D)

)

+2E(〈∂JQ(un)−∂JQ(um), un −um〉) (44)

≤ E
(
‖u0,n − u0,m‖2L2(D)

)
+ ‖hn − hm‖2L2(Ω×Q)

+2E

(

sup
t∈[0,T ]

∫ t

0

∫

D
(hn − hm)(un − um) dx dw

)

.

For the last term on the right-hand side of (44), for any γ > 0 we use Burkholder,
Hölder and Young inequality to estimate

E

(

sup
t∈[0,T ]

∫ t

0

∫

D
(hn − hm)(un − um) dx dw

)

(45)

≤ 3E

(∫ T

0

(∫

D
(hn − hm)(un − um) dx

)2

ds

)1/2

≤ 3E

(∫ T

0
‖hn − hm‖2L2(D)

‖un − um‖2L2(D)
dt

)1/2
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≤ 3E

⎡

⎣

(

sup
t∈[0,T ]

‖un − um‖2L2(D)

)1/2 (∫ T

0
‖hn − hm‖2L2(D)

)1/2
⎤

⎦

≤ 3γ E

(

sup
t∈[0,T ]

‖un − um‖2L2(D)

)

+ 3

γ
‖hn − hm‖2L2(Ω×Q)

Plugging (45) into (44), and choosing γ > 0 small enough and u0,n = u0,m we find
K1 ≥ 0 such that (40) holds.

Again, using the Itô formula and discarding the nonnegative term it follows that for
all t ∈ [0, T ] a.s. in Ω ,

1

2
‖uε

n(t)‖2L2(D)
+ 〈

∂JQt

(
uε

n

)
, uε

n

〉

≤ 1

2
‖u0,n‖2L2(D)

+
∫

D

∫ t

0
hnuε

n dw dx + 1

2

∫ t

0

∫

D
|hn|2 dx ds.

Passing to the limit as above, yields

1

2
‖un(t)‖2L2(D)

+ 〈∂JQt (un), un〉

≤ 1

2
‖u0,n‖2L2(D)

+
∫

D

∫ t

0
hnun dw dx + 1

2

∫ t

0

∫

D
|hn|2 dx ds.

And then, as above, we arrive at (39) since by Fenchel–Young inequality it follows
that E(〈∂JQ(un), un〉) = 〈∂J (un), un〉 = J ∗(∂J (un)) + J (un). ��

Let us fix an arbitrary h ∈ N 2
W (0, T ; L2(D)) and let (hn) ⊂ Λ be a sequence of

simple functions such that hn → h in N 2
W (0, T ; L2(D)). Let un be the solution to (38)

with right-hand side hn for n ∈ N. From Lemma 8, (40) it follows that for m, n → ∞

E
(
‖(un − um)(t)‖2C([0,T ];L2(D))

)
→ 0. (46)

In particular, (46) implies that (un) is a Cauchy sequence in L2(Ω; C([0, T ]; L2(D)))

and in N 2
W (0, T ; L2(D)), hence un → u ∈ L2(Ω; C([0, T ]; L2(D))) ∩ N 2

W (0, T ;
L2(D)) for n → ∞.
Moreover, we have the following

Lemma 9 ∂J (un) ⇀ ∂J (u) in E ′ and 〈∂J (un), un〉 → 〈∂J (u), u〉 for n → ∞ for a
non-relabeled subsequence.

Proof Since (hn) is bounded in N 2
W (0, T ; L2(D)), for any v ∈ E by Fenchel–Young

inequality and thanks to Lemma 8, (39) and (J1) it follows that there exists a constant
K3 ≥ 0 such that
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|〈∂J (un), v〉| ≤ J (v) + J ∗(∂J (un)) (47)

≤ J (v) + K

≤ C2

∫

Ω×Q
|∇v|p(·)dμ + K3.

From (47) it follows that there exists a constant K4 > 0 not depending on n ∈ N such
that

‖∂J (un)‖E ′ = sup
‖v‖E ≤1

|〈∂J (un), v〉| ≤ K4. (48)

Since E ′ is reflexive, from (48) it follows that there exists a subsequence, still denoted
(∂J (un)), and B ∈ E ′ such that ∂J (un) ⇀ B in E ′.
From Lemma 8-(39) and (J1) it follows that there exists a constant K5 ≥ 0 not
depending on n ∈ N such that

‖∇un‖p(·) ≤ K5 (49)

and since (un) is bounded in N 2
W (0, T ; L2(D)) (see (39)), it follows that (un) is

bounded in the reflexive space E . Therefore, passing again to a (not relabeled) sub-
sequence if necessary, there exists u ∈ E such that un ⇀ u in E for n → ∞. Since
∂J : E → E ′ is maximal monotone (see Lemma 1), the assertion follows from [6,
Lemma 2.3, p. 38] and (40). ��

6.2 Passage to the limit

Proposition 5 Theorem 1 holds in the additive case: for any h ∈ N 2
W (0, T ; L2(D)),

there exists a unique u ∈ E ∩ L2(Ω; C([0, T ]; L2(D))) ∩ N 2
W (0, T ; L2(D)) and a

full measure set Ω̃ ∈ F such that for every ω ∈ Ω̃ and for all t ∈ [0, T ]

u(t) − u0 +
∫ t

0
∂JD(u) ds =

∫ t

0
h dw

holds a.e. in D. Moreover, (2) holds for two given h1, h2 ∈ N 2
W (0, T ; L2(D)).

Proof Let us fix an arbitrary h ∈ N 2
W (0, T ; L2(D)) and let (hn) ⊂ S2

W (0, T ; Hk
0 (D))

be a sequence of simple functions such that hn → h in N 2
W (0, T ; L2(D)). Let un be

the solution to (38) with right-hand side hn for n ∈ N. According to the results of
the previous subsections, there exists a (not relabeled) subsequence of (un) with the
following convergence results for n → ∞:

(a) un → u in L2(Ω; C([0, T ]; L2(D))), in N 2
W (0, T ; L2(D)) and a.s. in

C([0, T ]; L2(D)) for a subsequence if needed. In particular, u(0, ·) = u0 d P ⊗ dx-
a.e. in Ω × D
(b) ∇un ⇀ ∇u in L p(·)(Ω × Q)

(c) ∂J (un) ⇀ ∂J (u) in E ′.
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We fix A ∈ F , ρ ∈ D([0, T ) × D) and φ = χAρ. Note that thanks to the regularity
of hn we have

vn := un −
∫ t

0
hn dw ∈ E .

Therefore, using Lemma 1 it follows that for all n ∈ N

−
(∫

Ω×Q
vn∂tφ dμ +

∫

Ω×D
u0φ(ω, 0, x) d P dx

)

+ 〈∂J (un), φ〉 = 0 (50)

where 〈·, ·〉 denotes the duality bracket for E ′,E . Thanks to the Itô isometry

∫

A×Q

∫ t

0
hn dw dμ →

∫

A×Q

∫ t

0
h dw dμ,

for n → ∞. Therefore , we can pass to the limit with n → ∞ and obtain

−
∫

A×Q

(

u −
∫ t

0
h dw

)

∂tρ dμ −
∫

A×D
u0ρ(0, x) d P dx + 〈∂JQ(u), χAρ〉 = 0.

(51)

Thanks to the monotonicity of ∂J , by an argument similar to the one pointed out after
(34), from (51) we get that u is unique, hence the whole sequence un has the conver-
gence properties a.)-c.). With a separability argument from (51) and from Lemma 1
it follows that there exists a full-measure set Ω̃ ⊂ Ω not depending on ρ, such that

∫

Q
∂t

(

u −
∫ t

0
h dw

)

ρ dμ + 〈∂JQ(u), ρ〉 = 0 (52)

for all ω ∈ Ω̃ and for all ρ ∈ D(Q). Moreover, a.s. in Ω

u −
∫ t

0
h dw ∈ C([0, T ]; L2(D))

and from (52) it follows that

∂t

(

u −
∫ t

0
h dw

)

∈ X ′
ω(Q) ↪→ Lq ′

(0, T ; W −1,q ′
(D))

for q ≥ p+ + 2. Thus we can integrate (52) and use Lemma 1 to obtain a.s.

u(t) − u0 +
∫ t

0
∂JD(u) ds =

∫ t

0
h dw. (53)
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To conclude the proof, let us mention that the uniqueness of the solution is based on
the argument following (34) and that Lemma 8, (40) and Lemma 9 yield the stability
result. ��

7 The multiplicative case: the main result

We consider now the general case where h : (ω, t, x, λ) ∈ Ω × Q × R �→
h(ω, t, x, λ) ∈ R is a Carathéodory function, uniformly Lipschitz continuous with
respect to λ, such that the mapping (ω, t, x) �→ h(ω, t, x, λ) is in N 2

W (0, T ; L2(D))

for any λ ∈ R. Thus, by classical arguments based on Nemytskii operators, one has
that h(·, v) ∈ N 2

W (0, T ; L2(D)) when v ∈ N 2
W (0, T ; L2(D)).

Thus, the proof of the main result is based on the remark that u is a solution of

∂t

[
u(t) −

∫ t

0
h(·, u)dw

]
− div ∂ j (ω, t, x,∇u) = 0

and initial condition u0 if and only if u is a fixed-point of the application

T : N 2
W (0, T, L2(D)) → N 2

W (0, T, L2(D)), S �→ uS

where uS is the solution, for the same initial condition, to

∂t

[
u(t) −

∫ t

0
h(·, S)dw

]
− div ∂ j (ω, t, x,∇u) = 0.

From Proposition 5, Application T is well-defined.
Moreover, if S1 and S2 are given in N 2

W (0, T, L2(D)) and uS1 , uS2 are the correspond-
ing solutions, then for all t ∈ (0, T )

E‖(uS1 − uS2)(t)‖2L2(D)
≤ C E

∫ t

0
‖h(·, S1) − h(·, S2)‖2L2(D)

ds

≤ C L
∫ t

0
E‖S1 − S2‖2L2(D)

ds, (54)

where L is the Lipschitz constant of h. We fix α > 0. Multiplying (54) by e−αt and
integrating over (0, T ) we find

∫ T

0
E‖(uS1 − uS2)(t)‖2L2(D)

e−αt dt

≤ C L
∫ T

0

d

dt

(

− 1

α
e−αt

) ∫ t

0
E‖S1 − S2‖2L2(D)

ds dt (55)
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Using integration by parts on the right-hand side of (55) we obtain

∫ T

0
E‖(uS1 − uS2)(t)‖2L2(D)

e−αt dt ≤ C L

α
(1− e−αT )

∫ T

0
E‖S1 − S2‖2L2(D)

e−αt dt

(56)
Choosing α > 0 such that C L

α
< 1 the Banach fixed point theorem and the equivalence

of the weighted norm with the L2-norm yields the proof of Theorem 1.
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Appendix 1: w-Operators

Definition 2 Let X be a Banach space and A : X → X ′ an operator. A is
a w-operator if there exist continuous functions d : [0,+∞) → (0,+∞) and
w : [0,+∞) → [0,+∞) with w(r) = 0 if and only if r = 0 such that

∀u, v ∈ X, d(‖u‖ + ‖v‖)w(‖u − v‖) ≤ 〈A(u) − A(v), u − v〉.

A is a weak-w operator if

∀u, v ∈ X, d(‖u‖ + ‖v‖)w(‖u − v‖) − ν(u, v) ≤ 〈A(u) − A(v), u − v〉.

where ν(u, v) → 0 if 〈A(u) − A(v), u − v〉 → 0.

Let us remark that, of course, a w-operator is a strictly monotone operator and that
for a given weak w-operator A, if (un) is a bounded sequence such that 〈A(un) −
A(u), un −u〉 → 0 then un converges to u (strongly). Indeed, ν(un, u) → 0 and since
d is uniformly strictly positive on bounded sets of [0,+∞[, the above assumption
yields the convergence of w(‖un − u‖) to 0 when n goes to infinity. Denote by an =
‖un −u‖. It is a bounded sequence and there exists a subsequence (ank ) that converges
to a = lim supn an . Since w is a continuous function, w(ank ) → w(a). But w(ank )

has to converge to 0, so w(a) = 0 and a = lim supn ‖un − u‖. This yields the result.
An example of a w-operator is given by Au = −div [a(t, x)|∇u|p(t,x)−2∇u] for a

measurable function a : Q → R such that 0 < α ≤ a(t, x) ≤ β < +∞ for almost
every (t, x) ∈ Q and where 1 ≤ p− ≤ p(t, x) ≤ p+ < +∞ on the space

X = {u ∈ L1(0, T, W 1,1
0 (D)), ∇u ∈ L p(t,x)(Q)}.

The presence of the function d is mainly due to possible values of p(t, x) less than 2
(see Appendix 2).

Then, an example of a weak w-operator is given in Appendix 3 by the operator
∂J : X → X ′ where ∂J is the Gâteaux derivative of the convex function

J : u ∈ X �→
∫

Q

1

p(t, x)
|∇u|p(t,x) − δ cos(|∇u|) d(t, x) ∈ R
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for 2 ≤ p(t, x) ≤ p+ < +∞ and δ ∈ (0, 1).
Let us remark that Assumption (J3) means that, a.s. Aω = ∂JQ : Xω(Q) → X ′

ω(Q)

is an operator of type weak w-operator. Indeed, the coefficients a, p and the set X can
be ω-dependent.

Appendix 2

An example of a w-operator is given by

Au = −div [a(t, x)|∇u|p(t,x)−2∇u]
for a measurable function a : Q → R such that 0 < α ≤ a(t, x) ≤ β < +∞ for
almost every (t, x) ∈ Q and where 1 ≤ p− ≤ p(t, x) ≤ p+ < +∞ on the space

X = {u ∈ L1(0, T, W 1,1
0 (D)), ∇u ∈ L p(t,x)(Q)}.

Indeed, note first that for any u, v ∈ X ,

〈A(u) − A(v), u − v〉
=

∫

Q
a(t, x)

[
(|∇u|p(t,x)−2∇u − |∇v|p(t,x)−2∇v) · ∇(u − v)

]
d(t, x)

=
∫

Q+
a(t, x)

[
(|∇u|p(t,x)−2∇u − |∇v|p(t,x)−2∇v) · ∇(u − v)

]
d(t, x)

+
∫

Q−
a(t, x)

[
(|∇u|p(t,x)−2∇u − |∇v|p(t,x)−2∇v) · ∇(u − v)

]
d(t, x)

where

Q+ = {(t, x) ∈ Q | p(t, x) ≥ 2}, Q− = {(t, x) ∈ Q | p(t, x) < 2}.
We recall that [10, Lemma 4.4, p. 13] yields

(
|∇u|p(t,x)−2∇u − |∇v|p(t,x)−2∇v

)
· ∇(u − v) ≥ 22−p(t,x)|∇(u − v)|p(t,x)

a.e. in Q+ and therefore,
∫

Q+

(
|∇u|p(t,x)−2∇u − |∇v|p(t,x)−2∇v

)
· ∇(u − v) d(t, x)

≥ 22−p+
∫

Q+
|∇(u − v)|p(t,x) d(t, x),

and,

∫

Q+
|∇(u − v)|p(t,x) d(t, x) ≤ 2p+−2

α
〈A(u) − A(v), u − v〉
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For almost every (t, x) ∈ Q−, [8, Proposition 17.3, p. 235] yields

(
|∇u|p(t,x)−2∇u − |∇v|p(t,x)−2∇v

)
· ∇(u − v)

≥ (p(t, x) − 1)|∇(u − v)|2
(
1 + |∇u|2 + |∇v|2

) p(t,x)−2
2

.

Thanks to the generalized Young inequality, for any 0 < ε ≤ 1, it follows

∫

Q−
|∇u − ∇v|p(·) d(t, x)

=
∫

Q−
|∇u − ∇v|p(t,x)

(1 + |∇u|2 + |∇v|2)p(t,x)
2−p(t,x)

4

(1 + |∇u|2 + |∇v|2)p(t,x)
2−p(t,x)

4 d(t, x)

≤
∫

Q−
ε

p(t,x)−2
p(t,x)

|∇u − ∇v|2
(1 + |∇u|2 + |∇v|2) 2−p(t,x)

2

d(t, x)

+ε

∫

Q−
(1 + |∇u|2 + |∇v|2) p(t,x)

2 d(t, x)

≤ 1

ε(p− − 1)α

∫

Q−
a(t, x)(|∇u|p(t,x)−2∇u−|∇v|p(t,x)−2∇v) · ∇(u−v) d(t, x)

+ε

∫

Q−
(1 + |∇u|p(t,x) + |∇v|p(t,x)) d(t, x)

≤ 1

αε(p− − 1)
〈A(u)− A(v), u−v〉+ε

∫

Q−
(1 + |∇u|p(t,x) + |∇v|p(t,x)) d(t, x).

By denoting M = max( 1
α(p−−1) ,

2p+−2

α
), one gets that, for any ε ∈ (0, 1),

∫

Q
|∇u − ∇v|p(·) d(t, x)

≤ M

ε
〈A(u) − A(v), u − v〉 + ε

∫

Q
(1 + |∇u|p(t,x) + |∇v|p(t,x)) d(t, x).

Now consider the two possible cases:
If, on the one hand,

∫

Q(1+|∇u|p(t,x) +|∇v|p(t,x)) d(t, x) ≤ M〈A(u)− A(v), u −v〉,
then

∫

Q
|∇u − ∇v|p(·) d(t, x) ≤ 2M〈A(u) − A(v), u − v〉

≤ 2M

|Q| 〈A(u) − A(v), u − v〉
∫

Q
(1 + |∇u|p(t,x) + |∇v|p(t,x)) d(t, x);
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if, on the other hand,
∫

Q(1+|∇u|p(t,x)+|∇v|p(t,x)) d(t, x) > M〈A(u)− A(v), u−v〉,
then, for ε2 = M〈A(u)−A(v),u−v〉∫

Q(1+|∇u|p(t,x)+|∇v|p(t,x)) d(t,x)
, one has

∫

Q
|∇u − ∇v|p(·) d(t, x)

≤ 2
√

M〈A(u) − A(v), u − v〉(1 + |∇u|p(t,x) + |∇v|p(t,x)) d(t, x).

Thus, denoting by ψ(x) = min(x, x2) for nonnegative x , there exists a constant K
such that

ψ

(∫

Q
|∇u − ∇v|p(·) d(t, x)

)

≤ K 〈A(u) − A(v), u − v〉
∫

Q

(
1 + |∇u|p(t,x) + |∇v|p(t,x)

)
d(t, x).

Since, for any U , by definition of the Luxemburg norm,

min[‖∇U‖p−
, ‖∇U‖p+] ≤ ∫

Q |∇U |p(·) d(t, x) ≤ max[‖∇U‖p−
, ‖∇U‖p+],

one has that

d(‖∇u‖ + ‖∇v‖)w(‖∇(u − v)‖) ≤ 〈A(u) − A(v), u − v〉

where, for nonnegative x ,

w(x) = 1

K
min

(
x p−

, x2p+)
and d−1(x) = |Q| + 2max

(
x p+

, x p−)
.

The conclusion is then a consequence of Poincaré’s inequality.

Appendix 3

Let us also give an example of a weak w-operator:
denote by X = {u ∈ L1(0, T, W 1,1

0 (D)), ∇u ∈ L p(·)(Q)}, where 2 ≤ p(t, x) ≤
p+ < +∞, and for any δ ∈ (0, 1), consider

J : u ∈ X �→
∫

Q

1

p(t, x)
|∇u|p(t,x) − δ cos(|∇u|) d(t, x) ∈ R.
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If we define j : Q × [0,+∞) → R by j (t, x, s) = s p(t,x)

p(t, x)
− δ cos(s), then J (u) =

∫

Q
j (t, x, |∇u|) d(t, x). Moreover, for fixed (t, x) ∈ Q, and s ≥ 0

∂s j (t, x, s) = s p(t,x)−1 + δ sin(s) and ∂2s j (t, x, s) = (p(t, x) − 1)s p(t,x)−2

+δ cos(s).

For s ∈ [0, 1], ∂2s j (t, x, s) ≥ δ cos(1) and for s > 1, ∂2s j (t, x, s) ≥ 1− δ. Therefore

∂2s j (t, x, s) ≥ min(δ cos 1, 1 − δ) := ᾱ > 0

for all (t, x) ∈ Q and j is a convex function of the variable s for any fixed (t, x) ∈ Q,
thus J is a convex function and ∂J : X → X ′, u �→ ∂J (u) where

〈∂J (u), v〉 =
∫

Q

∂s j (t, x, |∇u|)
|∇u| ∇u · ∇v dxdt

is a maximal monotone operator. For (t, x) ∈ Q fixed let us set

α : Q × [0,∞) → R, (t, x, s) �→ s
p(t,x)−2

2 + δ
sin(

√
s)√

s
, (57)

then,
1

2

∫ s2

0
α(t, x, σ )dσ =

∫ s

0
σα(t, x, σ 2)dσ = j (t, x, s) (58)

and for any (t, x) ∈ Q, α(t, x, ·) is a continuous function. Thus, [23] Lemma 25.26
b), p. 524 yields for all u, v ∈ X , a.e. in Q

(α(t, x, |∇u|2)∇u − α(t, x, |∇v|2)∇v) · ∇(u − v) ≥ ᾱ|∇u − ∇v|2, (59)

and from (58) and (59) it follows that

(
∂s j (t, x, |∇u|)

|∇u| ∇u − ∂s j (t, x, |∇v|)
|∇u| ∇v

)

· ∇(u − v) ≥ ᾱ|∇u − ∇v|2. (60)

for all u, v ∈ X a.e. in Q. By integration over Q, we obtain

∀u, v ∈ X, 〈∂J (u) − ∂J (v), u − v〉 ≥ ᾱ

∫

Q
|∇(u − v)|2 d(t, x). (61)

Note that for every u ∈ X

J (u) =
∫

Q
j0(|∇u|) + j1(t, x, |∇u|)
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with j1 : Q × [0,∞) → R defined by j1(t, x, s) = s p(t,x)

p(t,x)
and j0 : [0,+∞) → R

defined by j0(s) = −δ cos(s). If we define

α0 : (0,∞) → R, α0(s) := δ
sin

√
s√

s
,

then
1

2

∫ s2

0
α0(σ )dσ =

∫ s

0
σα0(σ

2)dσ = j0(s) (62)

Thus, j ′0(s) = δ sin(s) is a δ-Lipschitz function and with the same arguments as in
[23], proof of Lemma 25.26 d), p. 550 we get

|α0(|∇u|2)∇u − α0(|∇v|2)∇v| ≤ 3δ|∇(u − v)|. (63)

From (63) it follows that for all u, v ∈ X , a.e. in Q,

∣
∣
∣
∣

j ′0(|∇u|)
|∇u| ∇u − j ′0(|∇v|)

|∇v| ∇v

∣
∣
∣
∣ ≤ 3δ|∇(u − v)|. (64)

Thus, for p(t, x) ≥ 2 we arrive at

〈∂J (u) − ∂J (v), u − v〉
=

∫

Q

(
|∇u|p(t,x)−2∇u − |∇v|p(t,x)−2∇v

+ j ′0(|∇u|)
|∇u| ∇u − j ′0(|∇v|)

|∇v| ∇v

)

· ∇(u − v) d(t, x)

≥ 22−p+
∫

Q
|∇(u − v)|p(t,x)dxdt − 3δ

∫

Q
|∇(u − v)|2 d(t, x)

and ∂J is a weak w-operator thanks to (61).

Remark 7.1 The previous example holds also true for

j1(t, x, s) = 1

p(t, x)
(1 + s)p(t,x) − 1

p(t, x) − 1
(1 + s)p(t,x)−1

with 2 ≤ p(t, x) ≤ p+ < +∞.
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