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Abstract To solve a stochastic linear evolution equation numerically, finite dimen-
sional approximations are commonly used. If one uses the well-known Galerkin
scheme, one might end up with a sequence of ordinary stochastic linear equations
of high order. To reduce the high dimension for practical computations we consider
balanced truncation as amodel order reduction technique. This approach iswell-known
from deterministic control theory and successfully employed in practice for decades.
So, we generalize balanced truncation for controlled linear systems with Levy noise,
discuss properties of the reduced order model, provide an error bound, and give some
examples.
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1 Introduction

Model order reduction is of major importance, for example, in the field of system
and control theory. A commonly used method is balanced truncation, which was first
introducedbyMoore [19] for linear deterministic systems.Agoodoverviewcontaining
all results of this scheme is stated in Antoulas [1]. Balanced truncation also works for
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deterministic bilinear equations (see Benner and Damm [5] and Zhang et al. [26]).
Benner and Damm additionally pointed out the relation between balanced truncation
for deterministic bilinear control systems and linear stochastic systems with Wiener
noise. So, in both cases the reachability and observability Gramians are solutions
of generalized Lyapunov equations under certain conditions. We resume working on
balanced truncation for stochastic systems andwant to generalize the results known for
the Wiener case. The main idea is to allow the states to have jumps. Furthermore, we
want to ensure that the Gramians we define are still solutions of generalized Lyapunov
equations. So, a convenient noise process is given by a square integrable Levy process.

In Sect. 2, we provide the necessary background on semimartingales, square
integrable Levy processes, and stochastic calculus in order to render this paper as
self-contained as possible. Detailed information regarding general Levy processes
one can find in Bertoin [8] and Sato [24], and we refer to Applebaum [2] and Kuo [17]
for an extended version of stochastic integration theory. In Sect. 3, we focus on a linear
controlled state equation driven by uncorrelated Levy processes, which is asymptot-
ically mean square stable and equipped with an output equation. We introduce the
fundamental solution Φ of the state equation and point out the differences compared
to fundamental solutions of deterministic systems. Using Φ we introduce reachability
and observability Gramians the same way like Benner and Damm [5]. We prove that
the observable states and the corresponding energies are characterized by the observ-
abilty Gramian and that the reachability Gramian provides partial information about
the degree of reachability of a state. In Sect. 4, we describe the procedure of balanced
truncation for the linear system with Levy noise, which is similar to the procedure
known from the deterministic case (see Antoulas [1] and Obinata and Anderson [20]).
We discuss properties of the resulting reduced order model (ROM). We will show
that it is mean square stable, not balanced, that the Hankel singular values (HV) of the
ROMare not a subset of the HVs of the original system, and that one can lose complete
observability and reachability. Finally, we provide an error bound for balanced trun-
cation of the Levy driven system. This error bound has the same structure as the H2
error bound of linear deterministic systems. In Sect. 5, we deal with a linear controlled
stochastic evolution equation with Levy noise (compare Da Prato and Zabczyk [10],
Peszat and Zabczyk [21], Prévôt and Röckner [22]). To solve such a problem numer-
ically, finite dimensional approximations are commonly used. The scheme we state
here is the well-known Galerkin method (see Grecksch and Kloeden [12]), leading to
a sequence of ordinary stochastic differential equations of the kind we considered in
Sect. 4. For a particular case, we apply balanced truncation to that Galerkin solution
and compute the error bounds and the exact errors of the approximation.

2 Basics from stochastics

Let all stochastic processes appearing in this section be defined on a filtered probability
space

(
Ω,F , (Ft )t≥0,P

)
1. We denote the set of all cadlag2 square integrable R-

valued martingales with respect to (Ft )t≥0 by M 2(R).

1 (Ft )t≥0 shall be right continuous and complete.
2 Cadlag means that P-almost all paths are right continuous and the left limits exist.
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2.1 Semimartingales and Ito’s formula

Below, we introduce the class of semimartingales.

Definition 2.1 (i) An (Ft )t≥0-adapted cadlag process X with values in R is called
semimartingale if it has the representation X = X0 + M + A. Here, X0 is anF0-
measurable random variable, M ∈ M 2(R) and A is a cadlag process of bounded
variation.3

(ii) AnRd -valued processX is called semimartingale if all components are real-valued
semimartingales.

The following is based on Proposition 17.2 in [18].

Proposition 2.2 Let M, N ∈ M 2(R), then there exists a unique predictable4 process
〈M, N 〉 of bounded variation such that MN −〈M, N 〉 is a martingale with respect to
(Ft )t≥0.

Next, we consider a decomposition of square integrable martingales (see Theorem
4.18 in [15]).

Theorem 2.3 A process M ∈ M 2(R) has the following representation:

M(t) = M0 + Mc(t) + Md(t), t ≥ 0,

where Mc(0) = Md(0) = 0, M0 is an F0-measurable random variable, Mc is a
continuous process in M 2(R) and Md ∈ M 2(R).

We need the quadratic covariation [Z1, Z2] of two real-valued semimartingales Z1
and Z2, which can be introduced by

[Z1, Z2]t := Z1(t)Z2(t) − Z1(0)Z2(0) −
∫ t

0
Z1(s−)dZ2(s) −

∫ t

0
Z2(s−)dZ1(s)

(1)

for t ≥ 0. By the linearity of the integrals in (1) we obtain the property

[Z1, Z2]t = 1

2
([Z1 + Z2, Z1 + Z2]t − [Z1, Z1]t − [Z2, Z2]t ) , t ≥ 0.

From Theorem 4.52 in [15], we know that [Z1, Z2] is also given by

[Z1, Z2]t = 〈
Mc

1 , M
c
2

〉
t +

∑

0≤s≤t

ΔZ1(s)ΔZ2(s) (2)

for t ≥ 0, where Mc
1 and Mc

2 are the continuous martingale parts of Z1 and Z2.
Furthermore, we set ΔZ(s) := Z(s) − Z(s−) with Z(s−) := limt↑s Z(t) for a

3 This means that P-almost all paths are of bounded variation.
4 The process 〈M, N 〉 is measurable with respect to P , which we characterize below Definition 2.10.
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real-valued semimartingale Z . If we rearrange Eq. (1), we obtain the Ito product
formula

Z1(t)Z2(t) = Z1(0)Z2(0) +
∫ t

0
Z1(s−)dZ2(s) +

∫ t

0
Z2(s−)dZ1(s) + [Z1, Z2]t

(3)

for t ≥ 0, which we use for the following corollaries:

Corollary 2.4 Let Y and Z be two R
d-valued semimartingales, then

Y T (t)Z(t) = Y T (0)Z(0) +
∫ t

0
ZT (s−)dY (s) +

∫ t

0
Y T (s−)dZ(s) +

d∑

i=1

[Yi , Zi ]t

for all t ≥ 0.

Proof We have

Y T (t)Z(t)=
d∑

i=1

Yi (t)Zi (t)

=
d∑

i=1

(
Yi (0)Zi (0)+

∫ t

0
Zi (s−)dYi (s)+

∫ t

0
Yi (s−)dZi (s)+[Yi , Zi ]t

)

=Y T (0)Z(0) +
∫ t

0
ZT (s−)dY (s) +

∫ t

0
Y T (s−)dZ(s) +

d∑

i=1

[Yi , Zi ]t

by applying the product formula in (3). �	

Corollary 2.5 Let Y be an R
d-valued and Z be an R

n-valued semimartingale, then

Y (t)ZT (t)=Y (0)ZT (0)+
∫ t

0
dY (s)ZT (s−)+

∫ t

0
Y (s−)dZT (s)+([Yi , Z j ]t

)
i=1,...,d
j=1,...,n

for all t ≥ 0.

Proof We consider the stochastic differential of the i j-th component of the matrix-
valued process Y (t)ZT (t), t ≥ 0, and obtain the following via the product formula in
(3):
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eTi Y (t)ZT (t)e j = eTi Y (0)ZT (0)e j +
∫ t

0
ZT (s−)e j d(eTi Y (s))

+
∫ t

0
eTi Y (s−)d(ZT (s)e j ) + [eTi Y, ZT e j ]t

= eTi Y (0)ZT (0)e j + eTi

∫ t

0
d(Y (s))ZT (s−)e j

+ eTi

∫ t

0
Y (s−)d(ZT (s))e j + [Yi , Z j ]t

for all t ≥ 0, i ∈ {1, . . . , d}, and j ∈ {1, . . . , n}, where ei is the i-th unit vector in Rd

or in Rn , respectively. Hence, in compact form we have

Y (t)ZT (t)=Y (0)ZT (0)+
∫ t

0
dY (s)ZT (s−)+

∫ t

0
Y (s−)dZT (s)+([Yi , Z j ]t

)
i=1,...,d
j=1,...,n

for all t ≥ 0. �	

2.2 Levy processes

Definition 2.6 Let L = (L (t))t≥0 be a cadlag stochastic process with values in R

having independent andhomogeneous increments. If, furthermore, L (0) = 0P-almost
surely, and L is continuous in probability, then L is called (real-valued) Levy process.

Below, we focus on Levy processes L being square integrable. The following theorem
is proven analogously to Theorem 4.44 in [21].

Theorem 2.7 We set m̃ = E [L(1)]. For square integrable Levy processes L and
t, s ≥ 0 it holds

E [L(t)] = tE [L(1)] and

Cov(L(s), L(t)) = E
[
(L(t) − m̃t)(L(s) − m̃s)

] = min{t, s} Var(L(1)).

Proposition 2.8 Let L be a square integrable Levy process adapted to a filtration
(Ft )t≥0, such that the increments L(t + h) − L(t) are independent ofFt (t, h ≥ 0),
then L is a martingale with respect to (Ft )t≥0 if and only if L has mean zero.

Proof First, we assume that L has mean zero, then the conditional expectation
E {L(t)|Fs} fulfills

E {L(t)|Fs} = E {L(t) − L(s) + L(s)|Fs} = E {L(t) − L(s)|Fs} + L(s)

= E [L(t) − L(s)] + L(s) = L(s)

for 0 ≤ s < t . If we know that L is a martingale, then it easily follows that it has a
constant mean function, since

E [L(t)] = E [E {L(t)|Fs}] = E [L(s)]
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for 0 ≤ s < t . But by Theorem 2.7, we know that the mean function is linear. Thus,
E [L(t)] = 0 for all t ≥ 0. �	

We set M(t) := L(t) − tE[L(1)], t ≥ 0, where L is square integrable. By Propo-
sition 2.8, M is a square integrable martingale with respect to (Ft )t≥0 and a Levy
process as well. So, we have the following representation for square integrable Levy
processes L:

L(t) = M(t) + E[L(1)]t, t ≥ 0.

The compensator 〈M, M〉 of M is deterministic and continuous and given by

〈M, M〉t = E

[
M2(t)

]
= E

[
M2(1)

]
t,

because M2(t) − E
[
M2(1)

]
t , t ≥ 0, is a martingale with respect to (Ft )t≥0.

2.3 Stochastic integration

We assume thatM ∈ M 2(R). The definition of an integral with respect toM is similar
to thatwith respect to aWiener processW . Thismakes things comfortable. A definition
for an integral based onW can for example be found in Applebaum [2], Arnold [3] and
Kloeden and Platen [16]. Furthermore, Applebaum [2] gives a definition of an integral
with respect to the so-called “martingale-valued measures”, which is a generalization
of the integral introduced here. We take the definition of the integral with respect to
M from Chap. 6.5 in the book of Kuo [17].

Fist of all, we characterize the class of simple processes.

Definition 2.9 A process Ψ = (Ψ (t))t∈[0,T ] is called simple if it has the following
representation:

Ψ (s) =
m∑

i=0

χ(ti ,ti+1](s)Ψi , s ∈ [0, T ], (4)

for 0 = t0 < t1 < · · · < tm+1 = T . Here, the random variablesΨi areFti -measurable
and bounded, i ∈ {0, 1, . . . ,m}.
For simple processes Ψ , we define

I MT (Ψ ) :=
∫ T

0
Ψ (s)dM(s) :=

m∑

i=0

Ψi (M(ti+1) − M(ti ))

and for 0 ≤ t0 ≤ t ≤ T , we set

I Mt0,t (Ψ ) :=
∫ t

t0
Ψ (s)dM(s) :=

∫ T

0
χ[t0,t](s)Ψ (s)dM(s).
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Definition 2.10 Let (F(t))t∈[0,T ] be adapted to the filtration (Ft )t∈[0,T ] with left
continuous trajectories.We definePT as the smallest sub σ -algebra ofB([0, T ])⊗F
with respect to which all mappings F : [0, T ]×Ω → R are measurable. We callPT

predictable σ -algebra.

Remark PT is generated as follows:

PT = σ ({(s, t] × A : 0 ≤ s ≤ t ≤ T, A ∈ Fs} ∪ {{0} × A : A ∈ F0}) . (5)

In Definition 2.10, we can replace the time interval [0, T ] byR+. Then the predictable
σ -algebra is denoted by P . PT - or P-measurable processes we call predictable.

We want to extend the set of all integrable processes with respect to M . Therefore,
we introduce L 2

T as the space of all predictable mappings Ψ on [0, T ] × Ω with
‖Ψ ‖T < ∞, where

‖Ψ ‖2T := E

∫ T

0
|Ψ (s)|2 d 〈M, M〉s (6)

and 〈M, M〉 is the compensator of M introduced in Proposition 2.2.

By Chap. 6.5 in Kuo [17], we can choose a sequence (Ψn)n∈N ⊂ L 2
T of simple

processes, such that

‖Ψn − Ψ ‖T → 0

for Ψ ∈ L 2
T and n → ∞. Hence, we obtain that

(
I MT (Ψn)

)
n∈N is a Cauchy sequence

in L2 (Ω,F ,P). Therefore, we can define

∫ T

0
Ψ (s)dM(s) := L2 − lim

n→∞

∫ T

0
Ψn(s)dM(s)

and for 0 ≤ t0 ≤ t ≤ T we set

∫ t

t0
Ψ (s)dM(s) := L2 − lim

n→∞

∫ t

t0
Ψn(s)dM(s).

Here, “L2 − limn→∞” denotes the limit in L2 (Ω,F ,P).
By Theorem 6.5.8 in Kuo [17], the integral with respect to M has the following

properties:

Theorem 2.11 If Ψ ∈ L 2
T for T > 0, then

(i) the integral with respect to M has mean zero:

E

[∫ T

0
Ψ (s)dM(s)

]
= 0,
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(ii) the second moment of I MT (Ψ ) is given by

E

∣∣∣
∣

∫ T

0
Ψ (s)dM(s)

∣∣∣
∣

2

= E

∫ T

0
|Ψ (s)|2 d 〈M, M〉s ,

(iii) and the process

(∫ t

0
Ψ (s)dM(s)

)

t∈[0,T ]

is a martingale with respect to (Ft )t∈[0,T ].

2.4 Levy type integrals

Below, we want to determine the mean of the quadratic covariation of the following
Levy type integrals:

Z̃1(t) = Z̃1(0) +
∫ t

0
A1(s)ds +

q∑

i=1

∫ t

0
Bi
1(s)dM

i (s), t ≥ 0,

Z̃2(t) = Z̃2(0) +
∫ t

0
A2(s)ds +

q∑

i=1

∫ t

0
Bi
2(s)dM

i (s), t ≥ 0,

where the processes Mi (i = 1, . . . , q) are uncorrelated scalar square integrable Levy
processes withmean zero. In addition, the processes Bi

1, B
i
2 are integrable with respect

to Mi (i = 1, . . . , q), which by Sect. 2.3 means that they are predictable with

E

∫ t

0

∣∣∣Bi (s)
∣∣∣
2
ds < ∞, t ≥ 0,

considering (6) with 〈M, M〉t = E
[
M2(1)

]
t . Furthermore, A1, A2 are P-almost

surely Lebesgue integrable and (Ft )t≥0-adapted.
We set b1(t) := ∑q

i=1

∫ t
0 Bi

1(s)dM
i (s) and b2(t) := ∑q

i=1

∫ t
0 Bi

2(s)dM
i (s) and

obtain

[
Z̃1, Z̃2

]

t
= [b1, b2]t

for t ≥ 0 considering Eq. (2), because Z̃i has the same jumps and the same martingale
part as bi (i = 1, 2). We know that

[b1, b2]t = 1

2
([b1 + b2, b1 + b2]t − [b1, b1]t − [b2, b2]t ) (7)
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for t ≥ 0. Using the definition in (1) yields

[b1, b1]t = (b1(t))
2 − 2

∫ t

0
b1(s−)db1(s)

= (b1(t))
2 − 2

q∑

i=1

∫ t

0
b1(s−)Bi

1(s)dM
i (s).

Thus,

E [b1, b1]t = E

[
(b1(t))

2
]
.

Since Mi and M j are uncorrelated processes for i �= j , we get

E

[
(b1(t))

2
]

=
q∑

i=1

E

[(∫ t

0
Bi
1(s)dM

i (s)

)2
]

=
q∑

i=1

∫ t

0
E

[(
Bi
1(s)

)2]
ds · ci

by applying Theorem 2.11 (ii), where ci := E

[(
Mi (1)

)2]
. Hence,

E [b1, b1]t =
q∑

i=1

∫ t

0
E

[(
Bi
1(s)

)2]
ds · ci .

Analogously, we can show that

E [b2, b2]t =
q∑

i=1

∫ t

0
E

[(
Bi
2(s)

)2]
ds · ci and

E [b1 + b2, b1 + b2]t =
q∑

i=1

∫ t

0
E

[(
Bi
1 + Bi

2(s)
)2]

ds · ci

hold for t ≥ 0. Considering Eq. (7), we obtain

E

[
Z̃1, Z̃2

]

t
= E [b1, b2]t =

q∑

i=1

∫ t

0
E

[
Bi
1B

i
2(s)

]
ds · ci . (8)

At the end of this section, we refer to Sect. 4.4.3 in Applebaum [2]. There, one can find
some remarks regarding the quadratic covariation of the Levy type integrals defined
in that book.

3 Linear control with levy noise

Before describing balanced truncation for the stochastic case, we define observability
and reachability. We introduce observability and reachability Gramians for our Levy
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driven system like Benner and Damm [5] do (Sect. 2.2). We additionally show that
the sets of observable and reachable states are characterized by these Gramians. This
is analogous to deterministic systems, where observability and reachability concepts
are described in Sects. 4.2.1 and 4.2.2 in Antoulas [1]. This section extends [7] by
providing more details and by considering a more general framework.

3.1 Reachability concept

Let M1, . . . , Mq be real-valued uncorrelated and square integrable Levy processes
with mean zero defined on a filtered probability space

(
Ω,F , (Ft )t≥0,P

)
.5 In addi-

tion, we assume Mk (k = 1, . . . , q) to be (Ft )t≥0-adapted and the increments
Mk(t + h) − Mk(t) to be independent of Ft for t, h ≥ 0. We consider the following
equations:

dX (t) = [AX (t) + Bu(t)]dt +
q∑

k=1

Ψ k X (t−)dMk(t), t ≥ 0,

X (0) = x0 ∈ R
n, (9)

where A, Ψ k ∈ R
n×n and B ∈ R

n×m . With L2
T we denote the space of all adapted

stochastic processes v with values in Rm , which are square integrable with respect to
P ⊗ dt . The norm in L2

T we call energy norm. It is given by

‖v‖2
L2
T

:= E

∫ T

0
vT (t)v(t)dt = E

∫ T

0
‖v(t)‖22 dt,

where we define the processes v1 and v2 to be equal in L2
T if they coincide almost

surely with respect to P⊗dt . For the case T = ∞, we denote the space by L2. Further,
we assume controls u ∈ L2

T for every T > 0. We start with the definition of a solution
of (9).

Definition 3.1 AnRn-valued and (Ft )t≥0-adapted cadlag process (X (t))t≥0 is called
solution of (9) if

X (t) = x0 +
∫ t

0
[AX (s) + Bu(s)]ds +

q∑

k=1

∫ t

0
Ψ k X (s−)dMk(s) (10)

P-almost surely holds for all t ≥ 0.

Below, the solution of (9) at time t ≥ 0 with initial condition x0 ∈ R
n and given

control u is always denoted by X (t, x0, u). For the solution of (9) in the uncontrolled
case (u ≡ 0), we briefly write Yx0 := X (t, x0, 0). Yx0 is called homogeneous solution.

5 We assume that (Ft )t≥0 is right continuous and that F0 contains all P null sets.
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Furthermore, by ‖·‖2 we denote the Euclidean norm. We assume the homogeneous
solution to be asymptotically mean square stable, which means that

E
∥∥Yy0(t)

∥∥2
2 → 0

for t → ∞ and y0 ∈ R
n . This concept of stability is also used in Benner and Damm

[5] and is necessary for defining (infinite) Gramians, which are introduced later.

Proposition 3.2 Let Yy0 be the solution of (9) in the uncontrolled case with any initial

value y0 ∈ R
n, then E

[
Yy0(t)Y

T
y0(t)

]
is the solution of the matrix integral equation

Y(t) = y0y
T
0 +

∫ t

0
Y(s)ds AT + A

∫ t

0
Y(s)ds

+
q∑

k=1

Ψ k
∫ t

0
Y(s)ds

(
Ψ k

)T
E

[
Mk(1)

2
]

(11)

for t ≥ 0.

Proof We determine the stochastic differential of the matrix-valued process Yy0Y
T
y0

via using the Ito formula in Corollary 2.5. This yields

Yy0(t)Y
T
y0(t) = y0y

T
0 +

∫ t

0
Yy0(s−)dY T

y0(s) +
∫ t

0
dYy0(s)Y

T
y0(s−)

+
(
[eTi Yy0 ,Y

T
y0e j ]t

)

i, j=1,...,n
,

where ei is the i-th unit vector. We obtain

∫ t

0
Yy0(s−)dY T

y0(s) =
∫ t

0
Yy0(s−)Y T

y0(s)A
T ds

+
q∑

k=1

∫ t

0
Yy0(s−)Y T

y0(s−)(Ψ k)T dMk(s) and

∫ t

0
dYy0(s)Y

T
y0(s−) =

∫ t

0
AYy0(s)Y

T
y0(s−)ds

+
q∑

k=1

∫ t

0
Ψ kYy0(s−)Y T

y0(s−)dMk(s)

by inserting the stochastic differential of Yy0 . Thus, by taking the expectation, we
obtain
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E

[
Yy0(t)Y

T
y0(t)

]
= y0y

T
0 +

∫ t

0
E

[
Yy0(s−)Y T

y0(s)
]
AT ds

+
∫ t

0
AE

[
Yy0(s)Y

T
y0(s−)

]
ds +

(
E[eTi Yy0 ,Y

T
y0e j ]t

)

i, j=1,...,n

applying Theorem 2.11 (i). Considering Eq. (8), we have

E[eTi Yy0 ,Y
T
y0e j ]t = eTi

q∑

k=1

∫ t

0
E

[
Ψ kYy0(s)Y

T
y0(s)

(
Ψ k

)T
]
ds · cke j ,

where ck := E
[
Mk(1)2

]
. In addition, we use the property that a cadlag process has at

most countably many jumps on a finite time interval (see Theorem 2.7.1 in Applebaum
[2]), such that we can replace the left limit by the function value itself. Thus,

E

[
Yy0(t)Y

T
y0(t)

]
= y0y

T
0 +

∫ t

0
E

[
Yy0(s)Y

T
y0(s)

]
ds AT + A

∫ t

0
E

[
Yy0(s)Y

T
y0(s)

]
ds

+
q∑

k=1

Ψ k
∫ t

0
E

[
Yy0(s)Y

T
y0(s)

]
ds

(
Ψ k

)T · ck . (12)

�	
We introduce an additional concept of stability for the homogeneous system (u ≡ 0)
corresponding to Eq. (9). We call Yy0 exponentially mean square stable if there exist
c, β > 0 such that

E
∥
∥Yy0(t)

∥
∥2
2 ≤ ‖y0‖22 c e−βt

for t ≥ 0. This stability turns out to be equivalent to asymptotic mean square stability,
which is stated in the next theorem.

Theorem 3.3 The following are equivalent:

(i) The uncontrolled Eq. (9) is asymptotically mean square stable.
(ii) The uncontrolled Eq. (9) is exponentially mean square stable.
(iii) The eigenvalues of

(
In ⊗ A + A ⊗ In + ∑q

k=1 Ψ k ⊗ Ψ k · E [
Mk(1)2

])
have

negative real parts.

Proof Due to the similarity of the proofs we refer to Theorem 1.5.3 in Damm [11],
where these results are proven for the Wiener case. �	

As in the deterministic case, there exists a fundamental solution, which we define
by

Φ(t) := [
Ye1(t),Ye2(t), . . . , Yen (t)

]

123



Stoch PDE: Anal Comp (2015) 3:291–338 303

for t ≥ 0, where ei is the i-th unit vector (i = 1, . . . , n). Thus,Φ fulfills the following
integral equation:

Φ(t) = In +
∫ t

0
AΦ(s)ds +

q∑

k=1

∫ t

0
Ψ kΦ(s−)dMk(s).

The columns of Φ represent a minimal generating set such that we have Yy0(t) =
Φ(t)y0. With B = [b1, b2, . . . , bm] one can see that

Φ(t)B = [Φ(t)b1, Φ(t)b2, . . . , Φ(t)bm] = [
Yb1(t),Yb2(t) . . . ,Ybm (t)

]
.

Hence, we have

Φ(t)BBTΦT (t) = Yb1(t)Y
T
b1(t) + Yb2(t)Y

T
b2(t) + . . . + Ybm (t)Y T

bm (t),

such that

E

[
Φ(t)BBTΦT (t)

]
= BBT +

∫ t

0
E

[
Φ(s)BBTΦT (s)

]
ds AT

+ A
∫ t

0
E

[
Φ(s)BBTΦT (s)

]
ds

+
q∑

k=1

Ψ k
∫ t

0
E

[
Φ(s)BBTΦT (s)

]
ds (Ψ k)T E

[
Mk(1)

2
]

(13)

holds for every t ≥ 0. Due to the assumption that the homogeneous solution
Yy0 is asymptotically mean square stable for an arbitrary initial value y0, yielding

E

[
Y T
y0(t)Yy0(t)

]
→ 0 for t → ∞, we obtain

0 = BBT +
∫ ∞

0
E

[
Φ(s)BBTΦT (s)

]
ds AT + A

∫ ∞

0
E

[
Φ(s)BBTΦT (s)

]
ds

+
q∑

k=1

Ψ k
∫ ∞

0
E

[
Φ(s)BBTΦT (s)

]
ds (Ψ k)T E

[
Mk(1)

2
]

by taking the limit t → ∞ in Eq. (13). Therefore, we can conclude that P :=∫ ∞
0 E

[
Φ(s)BBTΦT (s)

]
ds, which exists by the asymptotic mean square stability

assumption, is the solution of a generalized Lyapunov equation

AP + PAT +
q∑

k=1

Ψ k P
(
Ψ k

)T
E

[
Mk(1)

2
]

= −BBT .
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P is the reachability Gramian of system (9), where this definition of the Gramian is
also used in Benner and Damm [5] for stochastic systems driven by Wiener noise.
Note that in this case E

[
Mk(1)2

] = 1.

Remark The solution of the matrix equation

0 = BBT + AP + PAT +
q∑

k=1

Ψ k P(Ψ k)T · E
[
Mk(1)

2
]

(14)

is unique if and only if the solution of

− vec(BBT ) =
(

In ⊗ A + A ⊗ In +
q∑

k=1

Ψ k ⊗ Ψ k · E
[
Mk(1)

2
]
)

vec(P)

is unique. By the assumption of mean square asymptotic stability the eigenvalues of
the matrix I ⊗ A + A ⊗ I + ∑q

k=1 Ψ k ⊗ Ψ k · E [
Mk(1)2

]
are non zero, hence the

matrix Eq. (14) is uniquely solvable.

More general, we consider stochastic processes (Φ(t, τ ))t≥τ with starting time τ ≥ 0
and initial condition Φ(τ, τ ) = In satisfying

Φ(t, τ ) = In +
∫ t

τ

AΦ(s, τ )ds +
q∑

k=1

∫ t

τ

Ψ kΦ(s−, τ )dMk(s) (15)

for t ≥ τ ≥ 0. Of course, we have Φ(t, 0) = Φ(t). Analogous to Eq. (13), we can
show that

E

[
Φ(t, τ )BBTΦT (t, τ )

]
= BBT +

∫ t

τ

E

[
Φ(s, τ )BBTΦT (s, τ )

]
ds AT

+ A
∫ t

τ

E

[
Φ(s, τ )BBTΦT (s, τ )

]
ds

+
q∑

k=1

Ψ k
∫ t

τ

E

[
Φ(s, τ )BBTΦT (s, τ )

]
ds (Ψ k)T

× E

[
Mk(1)

2
]
. (16)

This yields that E
[
Φ(t, τ )BBTΦT (t, τ )

]
is the solution of the differential equation

Ẏ(t) = AY(t) + Y(t)AT +
q∑

k=1

Ψ k
Y(t)(Ψ k)T E

[
Mk(1)

2
]

(17)

for t ≥ τ with initial condition Y(τ ) = BBT .
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Remark For t ≥ τ ≥ 0, we have Φ(t, τ ) = Φ(t)Φ−1(τ ), since Φ(t)Φ−1(τ ) fulfills
Eq. (15).

Compared to the deterministic case (Ψ k = 0) we do not have the semigroup prop-
erty for the fundamental solution. So, it is not true that Φ(t, τ ) = Φ(t − τ) P-almost
surely holds, because the trajectories of the noise processes on [0, t − τ ] and [τ, t]
are different in general. We can however conclude that E

[
Φ(t, τ )BBTΦT (t, τ )

] =
E

[
Φ(t − τ)BBTΦT (t − τ)

]
, since both terms solve Eq. (17) as can be seen employ-

ing (13).

Now, we derive the solution representation of the system (9) via using the stochastic
variation of constants method. For the Wiener case, this result is stated in Theorem
1.4.1 in Damm [11].

Proposition 3.4 (Φ(t)z(t))t≥0 is a solution of Eq. (9), where z is given by

dz(t) = Φ−1(t)Bu(t)dt, z(0) = x0.

Proof We want to determine the stochastic differential of Φ(t)z(t), t ≥ 0, where
its i-th component is given by eTi Φ(t)z(t). Applying the Ito product formula from
Corollary 2.4 yields

eTi Φ(t)z(t) = eTi x0 +
∫ t

0
eTi Φ(s−)d(z(s)) +

∫ t

0
zT (s)d(ΦT (s)ei ).

Above, the quadratic covariation terms are zero, since z is a continuous semimartingale
with a martingale part of zero (see Eq. (2)). Applying that s �→ Φ(ω, s) and s �→
Φ(ω, s−) coincide ds-almost everywhere for P-almost all fixed ω ∈ Ω , we have

eTi Φ(t)z(t) = eTi x0 +
∫ t

0
eTi Φ(s)Φ−1(s)Bu(s)ds +

∫ t

0
zT (s)ΦT (s)AT eids

+
q∑

k=1

∫ t

0
zT (s)ΦT (s−)(Ψ k)T ei dMk(s)

= eTi x0 + eTi

∫ t

0
Bu(s)ds + eTi

∫ t

0
AΦ(s)z(s)ds

+ eTi

q∑

k=1

∫ t

0
Ψ kΦ(s−)z(s)dMk(s).

This yields

Φ(t)z(t) = x0 +
∫ t

0
AΦ(s)z(s)ds +

q∑

k=1

∫ t

0
Ψ kΦ(s−)z(s)dMk(s) +

∫ t

0
Bu(s)ds.

�	
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Below, we set Pt := ∫ t
0 E

[
Φ(s)BBTΦT (s)

]
ds and call Pt finite reachability

Gramian at time t ≥ 0. Furthermore, we define the so-called finite deterministic
Gramian PD,t := ∫ t

0 e
As BBT eA

T s ds. Pt and PD,t , t ≥ 0, coincide in the case
Ψ k = 0. By X (T, 0, u) we denote the solution of the inhomogeneous system (9) at
time T with initial condition zero for a given input u. From Proposition 3.4, we already
know that

X (T, 0, u) =
∫ T

0
Φ(T )Φ−1(t)Bu(t)dt =

∫ T

0
Φ(T, t)Bu(t)dt.

Now, we have the goal to steer the average state of the system (9) from zero to any
given x ∈ R

n via the control u with minimal energy. First of all we need the following
definition, which is motivated by the remarks above Theorem 2.3 in [5].

Definition 3.5 A state x ∈ R
n is called reachable on average (from zero) if there is a

time T > 0 and a control function u ∈ L2
T , such that we have

E [X (T, 0, u)] = x .

We say that the stochastic system is completely reachable if every average vector x ∈
R
n is reachable.Next,we characterize the set of all reachable average states. First of all,

we need the following proposition,wherewe define P := ∫ ∞
0 E

[
Φ(s)BBTΦT (s)

]
ds

in analogy to the deterministic case.

Proposition 3.6 The finite reachability Gramians Pt , t > 0, have the same image as
the infinite reachability Gramian P, i.e.,

im Pt = im P

for all t > 0.

Proof Since P and Pt are positive semidefinite and symmetric by definition it is
sufficient to show that their kernels are equal. First, we assume v ∈ ker P . Thus,

0 ≤ vT Ptv ≤ vT Pv = 0,

since t �→ vT Ptv is increasing such that v ∈ ker Pt follows. On the other hand, if
v ∈ ker Pt we have

0 = vT Ptv =
∫ t

0
vTE

[
Φ(s)BBTΦT (s)

]
vds.

Hence, we can conclude that vTE
[
Φ(s)BBTΦT (s)

]
v = 0 for almost all s ∈ [0, t].

Additionally, we know that t �→ E
[
Φ(t)BBTΦT (t)

]
is the solution of the linear

matrix differential equation
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Ẏ(t) = AY(t) + Y(t)AT +
q∑

k=1

Ψ k
Y(t)(Ψ k)T E

[
Mk(1)

2
]

with initial condition Y(0) = BBT for t ≥ 0. The vectorized form vec(Y) satisfies

vec(Ẏ(t)) =
(

In ⊗ A + A ⊗ In +
q∑

k=1

Ψ k ⊗ Ψ k · E
[
Mk(1)

2
])

vec(Y(t)),

vec(Y(0)) = vec(BBT ).

Thus, the entries of E
[
Φ(t)BBTΦT (t)

]
are analytic functions. This implies that the

function f (t) := vTE
[
Φ(t)BBTΦT (t)

]
v is analytic, such that f ≡ 0 on [0,∞).

Thus,

0 =
∫ ∞

0
vTE

[
Φ(s)BBTΦT (s)

]
vds = vT Pv.

�	
The next proposition shows that the reachable average states are characterized by the
deterministic Gramian PD := ∫ ∞

0 eAs BBT eA
T s ds, which exists due to the asymp-

totic stability of the matrix A, which is a necessary condition for asymptotic mean
square stability of system (9).

Proposition 3.7 An average state x ∈ R
n is reachable (from zero) if and only if

x ∈ im PD, where PD := ∫ ∞
0 eAs BBT eA

T s ds.

Proof Provided x ∈ im PD , we will show that this average state can be reached with
the following input function:

[0, T ] � t �→ u(t) = BT eA
T (T−t) P#

D,T x, (18)

where P#
D,T denotes the Moore-Penrose pseudoinverse of PD,T . Thus,

E [X (T, 0, u)] = E

[∫ T

0
Φ(T, t)BBT eA

T (T−t) P#
D,T xdt

]

by inserting the function u. Applying the expectation to both sides of Eq. (15) yields

E [Φ(t, τ )] = eA(t−τ) .

Using this fact, we obtain

E [X (T, 0, u)] =
∫ T

0
eA(T−t) BBT eA

T (T−t) P#
D,T xdt.
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We substitute s = T − t and since x ∈ im PD,T by Proposition 3.6, we get

E [X (T, 0, u)] =
∫ T

0
eAs BBT eA

T s dsP#
D,T x = PD,T P

#
D,T x = x .

The energy of the input function u(t) = BT eA
T (T−t) P#

D,T x is

‖u‖2
L2
T

= xT P#
D,T x < ∞.

On the other hand, if x ∈ R
n is reachable, then there exists an input function u and a

time t > 0 such that

x = E [X (t, 0, u)] = E

[∫ t

0
Φ(t, s)Bu(s)ds

]
=

∫ t

0
eA(t−s) BE [u(s)] ds

by definition. The last equation we get by applying the expectation to both sides of
Eq. (9). We assume that v ∈ ker PD . Hence,

|〈x, v〉2| =
∣∣∣∣

∫ t

0

〈
eA(t−s) BE [u(s)] , v

〉

2
ds

∣∣∣∣ =
∣∣∣∣

∫ t

0

〈
E [u(s)] , BT eA

T (t−s) v
〉

2
ds

∣∣∣∣ .

Employing the Cauchy-Schwarz inequality, we obtain

|〈x, v〉2| ≤
∫ t

0
‖E [u(s)]‖2

∥∥∥BT eA
T (t−s) v

∥∥∥
2
ds

≤
∫ t

0

(
E ‖u(s)‖22

) 1
2
∥∥∥BT eA

T (t−s) v

∥∥∥
2
ds.

By the Hölder inequality, we have

|〈x, v〉2| ≤ ‖u‖L2
t

(∫ t

0

∥∥∥BT eA
T (t−s) v

∥∥∥
2

2
ds

) 1
2

= ‖u‖L2
t

(
vT

∫ t

0
eA(t−s) BBT eA

T (t−s) ds v

) 1
2 = ‖u‖L2

t

(
vT PD,tv

) 1
2
.

Since t �→ vT PD,tv is increasing, we obtain

|〈x, v〉2| ≤ ‖u‖L2
t

(
vT PDv

) 1
2 = 0.

Thus, 〈x, v〉2 = 0, such that we can conclude that x ∈ im PD due to im PD =
(ker PD)⊥. �	
Below, we point out the relation between the reachable set and the Gramian P :=∫ ∞
0 E

[
Φ(s)BBTΦT (s)

]
ds.
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Proposition 3.8 If an average state x ∈ R
n is reachable (from zero), then x ∈ im P.

Consequently, im PD ⊆ im P by Proposition 3.7.

Proof By definition, there exists an input function u and a time t > 0 such that

x = E [X (t, 0, u)] = E

[∫ t

0
Φ(t, s)Bu(s)ds

]

for reachable x ∈ R
n . We assume that v ∈ ker P . So, we have

|〈x, v〉2| =
∣∣∣
∣E

[∫ t

0
〈Φ(t, s)Bu(s), v〉2 ds

]∣∣∣
∣ =

∣∣∣
∣E

[∫ t

0

〈
u(s), BTΦT (t, s)v

〉

2
ds

]∣∣∣
∣ .

Employing the Cauchy-Schwarz inequality, we obtain

|〈x, v〉2| ≤ E

[∫ t

0
‖u(s)‖2

∥∥∥BTΦT (t, s)v
∥∥∥
2
ds

]
.

By the Hölder inequality, we have

|〈x, v〉2| ≤ ‖u‖L2
t

(
E

[∫ t

0

∥∥∥BTΦT (t, s)v
∥∥∥
2

2
ds

]) 1
2

= ‖u‖L2
t

(
vTE

[∫ t

0
Φ(t, s)BBTΦT (t, s)ds

]
v

) 1
2

.

With the remarks above Proposition 3.4, we obtain

E

[
Φ(t − s)BBTΦT (t − s)

]
= E

[
Φ(t, s)BBTΦT (t, s)

]
,

such that

|〈x, v〉2| ≤ ‖u‖L2
t

(
vT Ptv

) 1
2
.

Since t �→ vT Ptv is increasing, it follows

|〈x, v〉2| ≤ ‖u‖L2
t

(
vT Pv

) 1
2 = 0.

Thus, 〈x, v〉2 = 0, such that we can conclude that x ∈ im P due to im P = (ker P)⊥.
�	

Now, we state the minimal energy to steer the system to a desired average state.

Proposition 3.9 Let x ∈ R
n be reachable, then the input function given by (18) is the

one with the minimal energy to reach x at any time T > 0. This minimal energy is
given by xT P#

D,T x.
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Proof We use the following representation from the proof of Proposition 3.7:

E [X (T, 0, u)] =
∫ T

0
eA(T−t) BE [u(t)] dt.

Let u(t) be like in (18) and ũ(t), t ∈ [0, T ], an additional function for which we can
reach the average state x at time T , then

∫ T

0
eA(T−t) B

(
E

[
ũ(t)

] − u(t)
)
dt = 0

such that

E

[∫ T

0
u(t)T (ũ(t) − u(t)) dt

]
=

∫ T

0
u(t)T

(
E

[
ũ(t)

] − u(t)
)
dt = 0

follows. Hence, we have

‖ũ‖2
L2
T

= ‖u + (ũ − u)‖2
L2
T

= ‖u‖2
L2
T

+ ‖ũ − u‖2
L2
T

≥ ‖u‖2
L2
T

.

From the proof of Proposition 3.7, we know that the energy of u is given by xT P#
D,T x .�	

The following result shows that the finite reachability Gramian PT provides informa-
tion about the degree of reachability of an average state as well.

Proposition 3.10 Let x ∈ R
n be reachable, then

xT P#
T x ≤ xT P#

D,T x

for every time T > 0.

Proof Since x is reachable, x ∈ im PT by Proposition 3.6 and Proposition 3.8.
Hence, we can write x = PT P#

T x , where P#
T denotes the Moore-Penrose pseudoin-

verse of PT . From its definition, the finite reachability Gramian is represented by

PT = E

[∫ T
0 Φ(T − t)BBTΦT (T − t)dt

]
and since

E

[
Φ(T − t)BBTΦT (T − t)

]
= E

[
Φ(T, t)BBTΦT (T, t)

]
,

we have

x = E

[∫ T

0
Φ(T, t)BBTΦT (T, t)P#

T xdt

]
.

Now,we choose the control u(t) = BT eA
T (T−t) P#

D,T x, t ∈ [0, T ], ofminimal energy
to reach x , then
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E

[∫ T

0
Φ(T, t)B

(
BTΦT (T, t)P#

T x − u(t)
)
dt

]
= 0.

Setting v(t) = BTΦT (T, t)P#
T x for t ∈ [0, T ] yields

E

[∫ T

0
vT (t) (v(t) − u(t)) dt

]
= 0.

We obtain

xT P#
D,T x = ‖u‖2

L2
T

= ‖v + (u − v)‖2
L2
T

= ‖v‖2
L2
T

+ ‖u − v‖2
L2
T

≥ ‖v‖2
L2
T

= xT P#
T x .

�	
Consequently, the expression xT P#

T x yields a lower bound for the energy to reach
x and is the L2

T -norm squared of the function v(t) = BTΦT (T, t)P#
T x, t ∈ [0, T ].

With v we would also be able to steer the system to x in case it would be a valid
control. Unfortunately, unavailable future information enters in v which means that it

is not (Ft )t∈[0,T ]- adapted. So, one can interpret the energy xT
(
P#
T,D − P#

T

)
x as the

benefit of knowing the future until time T .
ByProposition 3.9, theminimal energy that is needed to steer the system to x is given

by infT>0 xT P#
D,T x . By definition of PD,T we know that it is increasing in time such

that the pseudoinverse P#
D,T is decreasing. Hence, it is clear that the minimal energy

is given by xT P#
Dx , where P#

D is the pseudoinverse of the deterministic Gramian PD .
Using the result in Proposition 3.10 provides a lower bound for the minimal energy to
reach x :

xT P#x ≤ xT P#
Dx (19)

with P# being the pseudoinverse of the reachability Gramian P . Using inequality (19),
we get only partial information about the degree of reachability of an average state x
from P#. So, it remains an open question whether an alternative reachability concept
would be more suitable to motivate the Gramian P .

Similar results are obtained by Benner and Damm [5] in Theorem 2.3 for stochastic
differential equations driven by Wiener processes. For the deterministic case we refer
to Sect. 4.3.1 in Antoulas [1].

3.2 Observability concept

Below, we introduce the concept of observability for the output equation

Y (t) = CX (t) (20)
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corresponding to the stochastic linear system (9), where C ∈ R
p×n . Therefore, we

need the following proposition.

Proposition 3.11 Let Q̂ be a symmetric positive semidefinite matrix and Ya :=
X (·, a, 0), Yb := X (·, b, 0) the homogeneous solutions to (9) with initial conditions
a, b ∈ R

n, then

E

[
Ya(t)

T Q̂Yb(t)
]

= aT Q̂b + E

[∫ t

0
Y T
a (s)Q̂ AYb(s)ds

]

+E

[∫ t

0
Y T
a (s)AT Q̂Yb(s)ds

]

+E

[∫ t

0
Ya(s)

T
q∑

k=1

(Ψ k)T Q̂Ψ k
E

[
Mk(1)

2
]
Yb(s)ds

]

. (21)

Proof By applying the Ito product formula from Corollary 2.4, we have

Y T
a (t)Q̂Yb(t) = aT Q̂b +

∫ t

0
Y T
a (s−)d(Q̂Yb(s)) +

∫ t

0
Y T
b (s−)Q̂d(Ya(s))

+
n∑

i=1

[eTi Ya(t), eTi Q̂Yb(t)]t ,

where ei is the i-th unit vector (i = 1, . . . , n). We get

∫ t

0
Y T
a (s−)d(Q̂Yb(s)) =

∫ t

0
Y T
a (s−)Q̂ AYb(s)ds

+
q∑

k=1

∫ t

0
Y T
a (s−)Q̂Ψ kYb(s−)dMk(s)

and

∫ t

0
Y T
b (s−)Q̂d(Ya(s)) =

∫ t

0
Yb(s−)T Q̂ AYa(s)ds

+
q∑

k=1

∫ t

0
Yb(s−)T Q̂Ψ kYa(s−)dMk(s).

By Eq. (8), the mean of the quadratic covariations is given by

E[eTi Ya(t), eTi Q̂Yb(t)]t =
q∑

k=1

E

∫ t

0
eTi Ψ kYa(s)e

T
i Q̂Ψ kYb(s)ds E

[
Mk(1)

2
]
.
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With Theorem 2.11 (i), we obtain

E

[
Ya(t)

T Q̂Yb(t)
]

= aT Q̂b + E

[∫ t

0
Y T
a (s)Q̂ AYb(s)ds

]

+ E

[∫ t

0
Y T
a (s)AT Q̂Yb(s)ds

]

+
q∑

k=1

E

[∫ t

0
Ya(s)

T (Ψ k)T Q̂Ψ kYb(s)ds

]
E

[
Mk(1)

2
]

using that the trajectories of Ya and Yb only have jumps on Lebesgue zero sets. �	
If we set a = ei and b = e j in Proposition 3.11, we obtain

E

[
eTi Φ(t)T Q̂Φ(t)e j

]
=eTi Q̂e j +E

[∫ t

0
eTi ΦT (s)Q̂ AΦ(s)e j ds

]

+ E

[∫ t

0
eTi ΦT (s)AT Q̂Φ(s)e j ds

]

+ E

[∫ t

0
eTi Φ(s)T

q∑

k=1

(Ψ k)T Q̂Ψ k
E

[
Mk(1)

2
]
Φ(s)e j ds

]

.

This yields

E

[
Φ(t)T Q̂Φ(t)

]
= Q̂ + E

[∫ t

0
ΦT (s)Q̂ AΦ(s)ds

]
+ E

[∫ t

0
ΦT (s)AT Q̂Φ(s)ds

]

+E

[∫ t

0
Φ(s)T

q∑

k=1

(Ψ k)T Q̂Ψ k
E

[
Mk(1)

2
]
Φ(s)ds

]

.

Let Q be the solution of the generalized Lyapunov equation

AT Q + QA +
q∑

k=1

(Ψ k)T QΨ k
E

[
Mk(1)

2
]

= −CTC. (22)

Then,

E

[
Φ(t)T QΦ(t)

]
= Q − E

[∫ t

0
ΦT (s)CTCΦ(s)ds

]

and by taking the limit t → ∞, we have

Q = E

[∫ ∞

0
ΦT (s)CTCΦ(s)ds

]
(23)
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due to the asymptotic mean square stability of the homogeneous equation (u ≡ 0),
which provides the existence of the integral in Eq. (23) as well.

Remark The matrix Eq. (22) is uniquely solvable, since

L :=
(

AT ⊗ In + In ⊗ AT +
q∑

k=1

(Ψ k)T ⊗ (Ψ k)T · E
[
Mk(1)

2
])

has non zero eigenvalues and hence the solution of L · vec(Q) = − vec(CTC) is
unique.

Next, we assume that the system (9) is uncontrolled, that means u ≡ 0. By using our
knowledge concerning the homogeneous system, X (t, x0, 0) is given byΦ(t)x0,where
here, x0 ∈ R

n denotes the initial value of the system. So, we obtainY (t) = CΦ(t)x0.
We observe Y on a time interval [0,∞). The problem is to find x0 from the

observations we have. The energy produced by the initial value x0 is

‖Y ‖2L2 := E

∫ ∞

0
Y T (t)Y (t)dt = xT0 E

∫ ∞

0
ΦT (t)CTCΦ(t)dt x0 = xT0 Qx0,

(24)

where we set Q := E
∫ ∞
0 ΦT (s)CTCΦ(s)ds. As in Benner and Damm [5], Q takes

the part of the observability Gramian of the stochastic system with output Eq. (20).
We call a state x0 unobservable if it is in the kernel of Q. Otherwise it is said to be
observable. We say that a system is completely observable if the kernel of Q is trivial.

4 Balanced truncation for stochastic systems

For obtaining a reduced order model for a deterministic LTI system, balanced trunca-
tion is a method of major importance. For the procedure of balanced truncation in the
deterministic case, see Antoulas [1], Benner et al. [4] and Obinata, Anderson [20]. In
this section, we want to generalize this method for stochastic linear systems, which
are influenced by Levy noise.

4.1 Procedure

We assume A, Ψ k ∈ R
n×n (k = 1, . . . , q), B ∈ R

n×m and C ∈ R
p×n , and consider

the following stochastic system:

dX (t) = [AX (t) + Bu(t)]dt +
q∑

k=1

Ψ k X (t−)dMk(t), t ≥ 0, X (0) = x0,

Y (t) = CX (t), (25)
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where the noise processes Mk (k = 1, . . . , q) are uncorrelated real-valued and square
integrable Levy processes with mean zero. We assume the homogeneous solution Yy0 ,
which fulfills

dY (t) = AY (t)dt +
q∑

k=1

Ψ kY (t−)dMk(t), t ≥ 0, Y (0) = y0,

to be mean square asymptotically stable. In addition, we require that the system (25) is
completely reachable and observable, which is equivalent to PD and Q being positive
definite. Hence, the reachability Gramian P is also positive definite using Proposi-
tion 3.8.

Let T ∈ R
n×n be a regular matrix. If we transform the states using

X̂(t) = T X (t),

we obtain the following system:

d X̂(t) = [ Ã X̂(t) + B̃u(t)]dt +
q∑

k=1

Ψ̃ k X̂(t−)dMk(t), X̂(0) = T x0,

Y (t) = C̃ X̂(t), t ≥ 0, (26)

where Ã = T AT−1, Ψ̃ k = TΨ kT−1, B̃ = T B and C̃ = CT−1. For an arbitrary
fixed input, the transformed system (26) has always the same output as the system
(25).
The reachability Gramian P := ∫ ∞

0 E
[
Φ(s)BBTΦT (s)

]
ds of system (25) fulfills

−BBT = AP + PAT +
q∑

k=1

Ψ k P(Ψ k)T · ck,

where ck = E
[
Mk(1)2

]
. By multiplying T from the left and T T from the right hand

side, we obtain

−B̃ B̃T = T APT T + T P AT T T +
q∑

k=1

TΨ k P(Ψ k)T T T · ck

= ÃT PT T + T PT T ÃT +
q∑

k=1

Ψ̃ kT PT T (Ψ̃ k)T · ck .

Hence, the reachability Gramian of the transformed system (26) is given by P̃ =
T PT T . For the observability Gramian of the transformed system it holds Q̃ =
T−T QT−1, where Q := ∫ ∞

0 E
[
ΦT (s)CTCΦ(s)

]
ds is the observability Gramian

of the original system. Hence,
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−C̃T C̃ = ÃT Q̃ + Q̃ Ã +
q∑

k=1

(Ψ̃ k)T Q̃Ψ̃ k · ck .

In addition, it is easy to verify that the generalized Hankel singular values σ1 ≥ · · · ≥
σn > 0 of (25), which are the square roots of the eigenvalues of PQ, are equal to
those of (26).

Like in the deterministic case (see [1] and [20]), we choose T such that Q̃ and P̃ are
equal and diagonal. A system with equal and diagonal Gramians is called balanced.
The corresponding balancing T is given by

T = Σ
1
2 KTU−1 and T−1 = UKΣ− 1

2 , (27)

where Σ = diag(σ1, . . . , σn), U comes from the Cholesky decomposition of P =
UUT and K is an orthogonal matrix corresponding to the eigenvalue decomposition
(singular value decomposition (SVD) respectively) of UT QU = KΣ2KT . So, we
obtain

Q̃ = P̃ = Σ.

Our aim is to truncate the average states that are difficult to observe and difficult to
reach, which are those producing least observation energy and causing themost energy
to reach, respectively. By equation (24), we can say that the states which are difficult
to observe are contained in the space spanned by the eigenvectors corresponding to the
small eigenvalues of Q. Using (19), an average state x is particularly difficult to reach if
the expression xT P−1x is large. Those states are contained in the space spanned by the
eigenvectors corresponding to the small eigenvalues of P (or to the large eigenvalues
of P−1, respectively). The eigenspaces that correspond to the small eigenvalues of P
contain all difficult-to-reach states if we would know the future completely, see the
remarks below Proposition 3.10. In a balanced system, the dominant reachable and
observable states are the same.

We consider the following partitions:

T =
[
WT

T T
2

]
, T−1 = [

V T1
]
and X̂ =

(
X̃
X1

)
,

where WT ∈ R
r×n, V ∈ R

n×r and X̃ takes values in Rr (r < n). Hence, we have

(
d X̃(t)
dX1(t)

)
=

([
WT AV WT AT1
T T
2 AV T T

2 AT1

] (
X̃(t)
X1(t)

)
+

[
WT B
T T
2 B

]
u(t)

)
dt

+
q∑

k=1

[
WTΨ kV WTΨ kT1
T T
2 Ψ kV T T

2 Ψ kT1

] (
X̃(t−)

X1(t−)

)
dMk(t) (28)
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and

Y (t) = [
CV CT1

] (
X̃(t)
X1(t)

)
.

By truncating the system and neglecting the X1 terms, the approximating reduced
order model is given by

d X̃(t) = [WT AV X̃(t) + WT Bu(t)]dt +
q∑

k=1

WTΨ kV X̃(t−)dMk(t),

Ŷ (t) = CV X̃(t). (29)

We will show now that the homogeneous solution Ỹy0 of the reduced system (29)
fulfilling

dY (t) = WT AVY (t)dt +
q∑

k=1

WTΨ kVY (t−)dMk(t), Y (0) = y0, (30)

is mean square stable which means that it is bounded in mean square.

Proposition 4.1 Let Ỹy0 be the homogeneous solution satisfying Eq. (30) with initial
condition y0 ∈ R

r , then

E

∥∥∥Ỹy0(t)
∥∥∥
2

2
≤ σ1

σr
‖y0‖22 , t ≥ 0. (31)

Proof In Eq. (28), we block-wise set

[
Ã11 Ã12

Ã21 Ã22

]

:=
[
WT AV WT AT1
T T
2 AV T T

2 AT1

]
and

[
Ψ̃ k
11 Ψ̃ k

12

Ψ̃ k
21 Ψ̃ k

22

]

:=
[
WTΨ kV WTΨ kT1
T T
2 Ψ kV T T

2 Ψ kT1

]
.

In the corresponding output equation, we block-wise define

[
C̃1 C̃2

] := [
CV CT1

]
.

We know
[
ÃT
11 ÃT

21

ÃT
12 ÃT

22

] [
Σ1

Σ2

]
+

[
Σ1

Σ2

] [
Ã11 Ã12

Ã21 Ã22

]

+
q∑

k=1

[
(Ψ̃ k

11)
T (Ψ̃ k

21)
T

(Ψ̃ k
12)

T (Ψ̃ k
22)

T

] [
Σ1

Σ2

] [
Ψ̃ k
11 Ψ̃ k

12

Ψ̃ k
21 Ψ̃ k

22

]

· ck = −
[
C̃T
1 C̃1 C̃T

1 C̃2

C̃T
2 C̃1 C̃T

2 C̃2

]

,

where Σ1 = diag (σ1, . . . , σr ) ,Σ2 = diag (σr+1, . . . , σn) and ck = E[Mk(1)2].
Considering the left upper block, we obtain
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ÃT
11Σ1+Σ1 Ã11+

q∑

k=1

(Ψ̃ k
11)

TΣ1Ψ̃
k
11 · ck =−

( q∑

k=1

(Ψ̃ k
21)

TΣ2Ψ̃
k
21 · ck+C̃T

1 C̃1

)

=:L .

From Eq. (21), we can conclude that

E

[
Ỹy0(t)

TΣ1Ỹy0(t)
]

= yT0 Σ1y0 + E

[∫ t

0
Ỹ T
y0(s)Σ1 Ã11Ỹy0(s)ds

]

+ E

[∫ t

0
Ỹ T
y0(s) Ã

T
11Σ1Ỹy0(s)ds

]

+ E

[∫ t

0
Ỹy0(s)

T
q∑

k=1

(Ψ̃ k
11)

TΣ1Ψ̃
k
11ckỸy0(s)ds

]

.

Thus,

E

[
Ỹy0(t)

TΣ1Ỹy0(t)
]

= yT0 Σ1y0 + E

[∫ t

0
Ỹ T
y0(s)LỸy0(s)ds

]
≤ yT0 Σ1y0.

Using σrv
T v ≤ vTΣ1v ≤ σ1v

T v, we obtain

σrE
[
Ỹy0(t)

T Ỹy0(t)
]

≤ σ1y
T
0 y0.

�	
Remark (i) One persisting problem is to find an explicit structure of the Gramians

of the reduced order model. As we will see in an example below, in contrast to
the deterministic case the reduced order model is not balanced, that means the
Gramians are neither diagonal nor equal. In addition, the Hankel singular values
are different from those of the original system.

(ii) From Proposition 4.1, we know that Ỹy0 is bounded. This is equivalent to

Ir ⊗ A11 + A11 ⊗ Ir +
q∑

k=1

Ψ k
11 ⊗ Ψ k

11 · E
[
Mk(1)

2
]

has just eigenvalues with non positive real parts, where A11 := WT AV and
Ψ k
11 := WTΨ kV . To prove the asymptotic mean square stability of the uncon-

trolled reduced order model it remains to show that the Kronecker matrix above
has no eigenvalues on the imaginary axis. This was shown in [6]. Hence, we know
that balanced truncation preserves asymptotic mean square stability, also in the
stochastic case.

Example 4.2 We consider the case, where q = 1 and the noise process is a Wiener
process W . So, the system we focus on is
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dX (t) = [AX (t) + Bu(t)]dt + Ψ X (t)dW (t),

Y (t) = CX (t). (32)

The followingmatrices (up to the digits shown) provide a balanced and asymptotically
mean square stable system:

A =
( −4.4353 3.9992 −0.3287

2.9337 −11.0285 −0.4319
−0.0591 −0.1303 −11.5362

)
, B =

( −3.4648 −1.9391 −3.6790
5.7925 4.1379 2.3036−0.3258 1.1359 2.8972

)
,

Ψ =
( −1.4886 2.8510 −0.2429

0.4720 0.5803 3.1152−1.6123 −0.8082 −0.0917

)
, C =

( −3.0588 0.4275 0.2630
−4.8686 1.2886 1.0769
−4.3349 0.6747 −0.1734

)
.

The Gramians are given by

P = Q = Σ =
(
8.4788 0 0

0 3.3232 0
0 0 1.4726

)
.

The reduced order model (r = 2) is asymptotically mean square stable and has the
following Gramians:

PR = ( 7.7470 −0.3562
−0.3562 2.5496

)
and QR = ( 7.7495 −0.2074

−0.2074 2.8980

)
.

The Hankel singular values of the reduced order model are 7.6633 and 2.7001.

At the end of this section, we provide a short example that shows that the reduced order
model need not be completely observable and reachable even if the original system is
completely observable and reachable:

Example 4.3 We consider the Eqs. (32) with the matrices

(A, B, Ψ,C) =
(( −0.25 1

1 −9

)
,
(

0√
7

)
,
(
0 1
1 −3

)
, ( 0

√
7 )

)

and obtain a balanced and asymptotically mean square stable system being completely
reachable and observable. The Hankel singular values are 2 and 1. Truncating yields
a system with coefficients

(A11, B1, Ψ11,C1) = (−0.25, 0, 0, 0) having Gramians PR = QR = 0.

4.2 Error bound for balanced truncation

Let
(
A, Ψ k, B,C

)
(k = 1, . . . , q) be a realization of system (25). Furthermore, we

assume the initial condition of the system to be zero. We introduce the following
partitions:
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T AT−1 =
[
A11 A12
A21 A22

]
, TΨ kT−1 =

[
Ψ k
11 Ψ k

12
Ψ k
21 Ψ k

22

]
, T B =

[
B1
B2

]
, and

CT−1 = [
C1 C2

]
, (33)

where T is the balancing transformation defined in (27) and
(
A11, Ψ

k
11, B1,C1

)
are the

coefficients of the reduced order model. The output of the reduced (truncated) system
is given by

Ŷ (t) = C1 X̃(t) = C1

∫ t

0
Φ̃(t, s)B1u(s)ds,

where Φ̃ is the fundamental matrix of the truncated system. In addition, we use a
result from [6]. Therein it is proven that the homogeneous Eq. (u ≡ 0) of the reduced
system is still asymptotically mean square stable. This is vital for the error bound
we provide below since the existence of the Gramians of the reduced order model is
ensured. Moreover, we know

Y (t) = CX (t) = C
∫ t

0
Φ(t, s)Bu(s)ds.

It is our goal to steer the average state via the control u and to truncate the average
states that are difficult to reach for obtaining a reduced order model. Therefore, it is a
meaningful criterion to consider the worst case mean error of Ŷ (t) and Y (t). Below,
we give a bound for that kind of error:

E

∥∥
∥Ŷ (t) − Y (t)

∥∥
∥
2

= E

∥∥∥
∥C

∫ t

0
Φ(t, s)Bu(s)ds − C1

∫ t

0
Φ̃(t, s)B1u(s)ds

∥∥∥
∥
2

≤ E

∫ t

0

∥∥
∥
(
CΦ(t, s)B − C1Φ̃(t, s)B1

)
u(s)

∥∥
∥
2
ds

≤ E

∫ t

0

∥∥∥CΦ(t, s)B − C1Φ̃(t, s)B1

∥∥∥
F

‖u(s)‖2 ds,

and by the Cauchy-Schwarz inequality, it holds

E

∥∥
∥Ŷ (t) − Y (t)

∥∥
∥
2

≤
(
E

∫ t

0

∥∥∥CΦ(t, s)B − C1Φ̃(t, s)B1

∥∥∥
2

F
ds

) 1
2
(
E

∫ t

0
‖u(s)‖22 ds

) 1
2

.

Now,

E

∫ t

0

∥
∥∥CΦ(t, s)B − C1Φ̃(t, s)B1

∥
∥∥
2

F
ds

= E

∫ t

0
‖CΦ(t, s)B‖2F +

∥∥∥C1Φ̃(t, s)B1

∥∥∥
2

F
− 2

〈
CΦ(t, s)B,C1Φ̃(t, s)B1

〉

F
ds

= E

∫ t

0
tr

(
CΦ(t, s)BBTΦT (t, s)CT

)
ds
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+ E

∫ t

0
tr

(
C1Φ̃(t, s)B1B

T
1 Φ̃T (t, s)CT

1

)
ds

− 2E
∫ t

0
tr

(
CΦ(t, s)BBT

1 Φ̃T (t, s)CT
1

)
ds

= tr

(
C

∫ t

0
E

[
Φ(t, s)BBTΦT (t, s)

]
ds CT

)

+ tr

(
C1

∫ t

0
E

[
Φ̃(t, s)B1B

T
1 Φ̃T (t, s)

]
ds CT

1

)

− 2 tr

(
C

∫ t

0
E

[
Φ(t, s)BBT

1 Φ̃T (t, s)
]
ds CT

1

)
. (34)

Due to the remarks before Proposition 3.4, we have

E

[
Φ(t, s)BBTΦT (t, s)

]
= E

[
Φ(t − s)BBTΦT (t − s)

]
and

E

[
Φ̃(t, s)B1B

T
1 Φ̃T (t, s)

]
= E

[
Φ̃(t − s)B1B

T
1 Φ̃T (t − s)

]

for 0 ≤ s ≤ t . Furthermore, we need to analyze the term in (34). For that reason, we
need the following proposition:

Proposition 4.4 The Rn×r -valued function E

[
Φ(t)BBT

1 Φ̃T (t)
]
, t ≥ 0, is the solu-

tion of the following differential equation:

Ẏ(t) = Y(t)AT
11 + AY(t) +

q∑

k=1

Ψ k
Y(t)(Ψ k

11)
T
E

[
Mk(1)

2
]
, Y(0) = BBT

1 .

(35)

Proof With B = [b1, . . . , bm] and B1 =
[
b̃1, . . . , b̃m

]
, we obtain

Φ(t)BBT
1 Φ̃T (t) = Φ(t)b1b̃

T
1 Φ̃T (t) + · · · + Φ(t)bmb̃

T
mΦ̃T (t). (36)

By applying the Ito product formula from Corollary 2.5, we have

Φ(t)bl b̃
T
l Φ̃T (t) = bl b̃

T
l +

∫ t

0
d(Φ(s)bl)b̃

T
l Φ̃T (s−) +

∫ t

0
Φ(s−)bld(b̃Tl Φ̃T (s))

+
([

eTi Φbl , e
T
j Φ̃b̃l

]

t

)
i=1,...,n
j=1,...,r

.

From (8), we know that

E

[
eTi Φbl , e

T
j Φ̃b̃l

]

t
=

q∑

k=1

E

[∫ t

0
eTi Ψ kΦ(s)bl b̃

T
1 Φ̃T (s)(Ψ k

11)
T e j ds

]
E

[
Mk(1)

2
]
.
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With Theorem 2.11 (i), we obtain

E

[
Φ(t)bl b̃

T
l Φ̃T (t)

]
= bl b̃

T
l + E

[∫ t

0
Φ(s)bl b̃

T
l Φ̃T (s)ds

]
AT
11

+ AE

[∫ t

0
Φ(s)bl b̃

T
l Φ̃T (s)ds

]

+
q∑

k=1

Ψ k
E

[∫ t

0
Φ(s)bl b̃

T
l Φ̃T (s)ds

]
(Ψ k

11)
T
E

[
Mk(1)

2
]

using that the trajectories of Φ and Φ̃ only have jumps on Lebesgue zero sets. By Eq.
(36), we have

E

[
Φ(t)BBT

1 Φ̃T (t)
]

= BBT
1 + E

[∫ t

0
Φ(s)BBT

1 Φ̃T (s)ds

]
AT
11

+ AE

[∫ t

0
Φ(s)BBT

1 Φ̃T (s)ds

]

+
q∑

k=1

Ψ k
E

[∫ t

0
Φ(s)BBT

1 Φ̃T (s)ds

]
(Ψ k

11)
T
E

[
Mk(1)

2
]

(37)

which proves the result. �	

By Proposition 4.4, we can conclude that the function E
[
Φ(t − τ)BBT

1 Φ̃T (t − τ)
]
,

t ≥ τ ≥ 0, is the solution of the equation

Ẏ(t) = Y(t)AT
11 + AY(t) +

q∑

k=1

Ψ k
Y(t)(Ψ k

11)
T
E

[
Mk(1)

2
]
, Y(τ ) = BBT

1 ,

(38)

for all t ≥ τ ≥ 0. Analogous to Proposition 4.4 we can conclude that

E

[
Φ(t, τ )BBT

1 Φ̃T (t, τ )
]
is also a solution of Eq. (38), which yields

E

[
Φ(t, τ )BBT

1 Φ̃T (t, τ )
]

= E

[
Φ(t − τ)BBT

1 Φ̃T (t − τ)
]

(39)

for all t ≥ τ ≥ 0. Using Eq. (39), we have

E

∫ t

0

∥
∥∥CΦ(t, s)B − C1Φ̃(t, s)B1

∥
∥∥
2

F
ds

= tr

(
C

∫ t

0
E

[
Φ(t − s)BBTΦT (t − s)

]
ds CT

)
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+ tr

(
C1

∫ t

0
E

[
Φ̃(t − s)B1B

T
1 Φ̃T (t − s)

]
ds CT

1

)

− 2 tr

(
C

∫ t

0
E

[
Φ(t − s)BBT

1 Φ̃T (t − s)
]
ds CT

1

)
.

By substitution, we obtain

E

∫ t

0

∥
∥∥CΦ(t, s)B − C1Φ̃(t, s)B1

∥
∥∥
2

F
ds

= tr

(
C

∫ t

0
E

[
Φ(s)BBTΦT (s)

]
ds CT

)

+ tr

(
C1

∫ t

0
E

[
Φ̃(s)B1B

T
1 Φ̃T (s)

]
ds CT

1

)

− 2 tr

(
C

∫ t

0
E

[
Φ(s)BBT

1 Φ̃T (s)
]
ds CT

1

)

= E

∫ t

0

∥∥∥CΦ(s)B − C1Φ̃(s)B1

∥∥∥
2

F
ds.

The homogeneous equation of the truncated system is still asymptoticallymean square
stable due to [6]. Hence, the matrices PR = E

∫ ∞
0 Φ̃(τ )B1BT

1 Φ̃T (τ )dτ ∈ R
r×r and

PM = E
∫ ∞
0 Φ(τ)BBT

1 Φ̃T (τ )dτ ∈ R
n×r exist. So, it holds

E

∥∥∥Ŷ (t) − Y (t)
∥∥∥
2
≤

(
E

∫ ∞

0

∥∥∥CΦ(s)B−C1Φ̃(s)B1

∥∥∥
2

F
ds

) 1
2
(
E

∫ t

0
‖u(s)‖22 ds

) 1
2

=
(
tr

(
CPCT

)
+ tr

(
C1PRC

T
1

)
− 2 tr

(
CPMCT

1

)) 1
2 ‖u‖L2

t
,

where P = E
∫ ∞
0 Φ(τ)BBTΦT (τ )dτ is the reachability Gramian of the original

system, PR the reachability Gramian of the approximating system and PM a matrix
that fulfills the following equation:

0 = BBT
1 + PM AT

11 + APM +
q∑

k=1

Ψ k PM (Ψ k
11)

T
E

[
Mk(1)

2
]
, (40)

which we get by taking the limit t → ∞ on both sides of Eq. (37). We summarize
these results in the following theorem:

Theorem 4.5 Let
(
A, Ψ k, B,C

)
be a realization of system (25) and

(
A11, Ψ

k
11,

B1,C1) the coefficients of the reduced order model defined in (33), then

sup
t∈[0,T ]

E

∥
∥
∥Ŷ (t)−Y (t)

∥
∥
∥
2
≤

(
tr

(
CPCT

)
+tr

(
C1PRC

T
1

)
− 2 tr

(
CPMCT

1

)) 1
2 ‖u‖L2

T

(41)
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for every T > 0, where Y and Ŷ are the outputs of the original and the reduced
system, respectively. Here, P denotes the reachability Gramian of system (25), PR

denotes the reachability Gramian of the reduced system and PM satisfies Eq. (40).

Remark If u ∈ L2 we can replace ‖·‖L2
T
by ‖·‖L2 and [0, T ] byR+ in inequality (41).

Now, we specify the error bound from (41) in the following proposition.

Proposition 4.6 If the realization (A, Ψ k, B,C) is balanced, then

tr
(
CPCT + C1PRC

T
1 − 2CPMCT

1

)

= tr(Σ2(B2B
T
2 + 2PM,2A

T
21)) +

q∑

k=1

tr(Σ2(2Ψ
k
22PM,2(Ψ

k
21)

T

+ 2Ψ k
21PM,1(Ψ

k
21)

T − Ψ k
21PR(Ψ k

21)
T ))ck,

where PM,1 are the first r and PM,2 the last n − r rows of PM , ck = E
[
Mk(1)2

]
and

Σ2 = diag(σr+1, . . . , σn).

Proof For simplicity of notation, we prove this result just for the case q = 1 but of
course it is easy to generalize the proof for an arbitrary q. Here, we additionally set
Ψ := Ψ 1 and c := c1. Then, we have

[
AT
11 AT

21

AT
12 AT

22

] [
Σ1

Σ2

]

+
[
Σ1

Σ2

] [
A11 A12

A21 A22

]

+
[
Ψ T
11 Ψ T

21

Ψ T
12 Ψ T

22

] [
Σ1

Σ2

] [
Ψ11 Ψ12

Ψ21 Ψ22

]
c = −

[
CT
1 C1 CT

1 C2

CT
2 C1 CT

2 C2

]

.

Hence,

AT
11Σ1 + Σ1A11 + Ψ T

11Σ1Ψ11c + Ψ T
21Σ2Ψ21c = −CT

1 C1, (42)

AT
22Σ2 + Σ2A22 + Ψ T

22Σ2Ψ22c + Ψ T
12Σ1Ψ12c = −CT

2 C2 (43)

and

AT
21Σ2 + Σ1A12 + Ψ T

11Σ1Ψ12c + Ψ T
21Σ2Ψ22c = −CT

1 C2. (44)

Furthermore,

[
A11 A12
A21 A22

] [
Σ1

Σ2

]

+
[
Σ1

Σ2

] [
AT
11 AT

21

AT
12 AT

22

]

+
[
Ψ11 Ψ12

Ψ21 Ψ22

] [
Σ1

Σ2

] [
Ψ T
11 Ψ T

21

Ψ T
12 Ψ T

22

]

c = −
[
B1BT

1 B1BT
2

B2BT
1 B2BT

2

]

,
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such that one can conclude

A11Σ1 + Σ1A
T
11 + Ψ11Σ1Ψ

T
11c + Ψ12Σ2Ψ

T
12c = −B1B

T
1 (45)

and

A22Σ2 + Σ2A
T
22 + Ψ22Σ2Ψ

T
22c + Ψ21Σ1Ψ

T
21c = −B2B

T
2 . (46)

From

[
A11 A12
A21 A22

] [
PM,1
PM,2

]
+

[
PM,1
PM,2

]
AT
11 +

[
Ψ11 Ψ12
Ψ21 Ψ22

] [
PM,1
PM,2

]
Ψ T
11c

= −
[
B1BT

1

B2BT
1

]

we also know that

A11PM,1 + A12PM,2 + PM,1A
T
11 + Ψ11PM,1Ψ

T
11c + Ψ12PM,2Ψ

T
11c = −B1B

T
1 .

(47)

We define E := (
tr

(
CΣCT

) + tr
(
C1PRCT

1

) − 2 tr
(
CPMCT

1

)) 1
2 and obtain

E 2 = tr

(
[
C1 C2

] [
Σ1

Σ2

] [
CT
1

CT
2

])

+ tr
(
C1PRC

T
1

)

− 2 tr

([
C1 C2

] [
PM,1
PM,2

]
CT
1

)

= tr(C2Σ2C
T
2 + C1Σ1C

T
1 + C1PRC

T
1 − 2C1PM,1C

T
1 − 2C2PM,2C

T
1 ).

Using Eq. (44) yields

tr(−C2PM,2C
T
1 )

= tr(−CT
1 C2PM,2)

= tr
(
AT
21Σ2PM,2 + Σ1A12PM,2 + Ψ T

11Σ1Ψ12PM,2c + Ψ T
21Σ2Ψ22PM,2c

)

= tr(AT
21Σ2PM,2 + A12PM,2Σ1 + Ψ12PM,2Ψ

T
11Σ1c + Ψ T

21Σ2Ψ22PM,2c).

By Eq. (47), we obtain

tr(−C2PM,2C
T
1 )

= tr(AT
21Σ2PM,2 + Ψ T

21Σ2Ψ22PM,2c)

− tr((B1B
T
1 + PM,1A

T
11 + A11PM,1 + Ψ11PM,1Ψ

T
11c)Σ1).
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Using Eq. (42), we have

tr(PM,1A
T
11 + A11PM,1 + Ψ11PM,1Ψ

T
11c)Σ1)

= tr(AT
11Σ1 + Σ1A11 + Ψ T

11Σ1Ψ11c)PM,1)

= − tr(CT
1 C1PM,1 + Ψ T

21Σ2Ψ21PM,1c),

and hence

E 2 = tr(C2Σ2C
T
2 + C1Σ1C

T
1 + C1PRC

T
1 ) + 2 tr(AT

21Σ2PM,2 + Ψ T
21Σ2Ψ22PM,2c)

− 2 tr(B1B
T
1 Σ1) + 2 tr(Ψ T

21Σ2Ψ21PM,1c).

Thus,

E 2 = tr(Σ2(C
T
2 C2 + 2PM,2A

T
21 + 2Ψ22PM,2Ψ

T
21c + 2Ψ21PM,1Ψ

T
21c))

+ tr(C1Σ1C
T
1 − B1B

T
1 Σ1 + BT

1 (QR − Σ1)B1)

using the identity tr(C1PRCT
1 ) = tr(BT

1 QRB1). Inserting Eq. (45) provides

tr(−B1B
T
1 Σ1) = tr(A11Σ1Σ1 + Σ1A

T
11Σ1 + Ψ11Σ1Ψ

T
11Σ1c + Ψ12Σ2Ψ

T
12Σ1c)

= tr(Σ1Σ1A11 + Σ1A
T
11Σ1 + Σ1Ψ

T
11Σ1Ψ11c + Ψ12Σ2Ψ

T
12Σ1c)

= − tr(Σ1C
T
1 C1) − tr(Σ1Ψ

T
21Σ2Ψ21c) + tr(Ψ12Σ2Ψ

T
12Σ1c).

So, it holds

E 2 = tr(Σ2(C
T
2 C2 + 2PM,2A

T
21 + 2Ψ22PM,2Ψ

T
21c + 2Ψ21PM,1Ψ

T
21c))

+ tr(Σ2(Ψ
T
12Σ1Ψ12c − Ψ21Σ1Ψ

T
21c))

+ tr(BT
1 (QR − Σ1)B1).

From (43), it follows

tr(Σ2Ψ
T
12Σ1Ψ12c) = tr(−Σ2(A

T
22Σ2 + Σ2A22 + Ψ T

22Σ2Ψ22c + CT
2 C2))

= tr(−Σ2(Σ2A
T
22 + A22Σ2 + Ψ22Σ2Ψ

T
22c + CT

2 C2)).

Using (46) yields

tr(Σ2Ψ
T
12Σ1Ψ12c) = tr(Σ2(Ψ21Σ1Ψ

T
21c + B2B

T
2 − CT

2 C2)),

such that

tr(Σ2(Ψ
T
12Σ1Ψ12c − Ψ21Σ1Ψ

T
21c)) = tr(Σ2(B2B

T
2 − CT

2 C2)),
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and hence,

E 2 = tr(Σ2(B2B
T
2 + 2PM,2A

T
21 + 2Ψ22PM,2Ψ

T
21c + 2Ψ21PM,1Ψ

T
21c))

+ tr(BT
1 (QR − Σ1)B1).

By definition, the Gramians PR and QR satisfy

AT
11QR + QR A11 + Ψ T

11QRΨ11c = −CT
1 C1

and

A11PR + PR A
T
11 + Ψ11PRΨ T

11c = −B1B
T
1 .

Thus,

tr(B1B
T
1 (QR − Σ1))

= tr(−(A11PR + PR A
T
11 + Ψ11PRΨ T

11c)(QR − Σ1))

= tr(−PR(AT
11(QR − Σ1) + (QR − Σ1)A11 + Ψ T

11(QR − Σ1)Ψ11c))

= tr(−PRΨ T
21Σ2Ψ21c).

Finally, we have

E 2= tr(Σ2(B2B
T
2 +2PM,2A

T
21+2Ψ22PM,2Ψ

T
21c+2Ψ21PM,1Ψ

T
21c − Ψ21PRΨ T

21c)).

�	
The error bound we obtained in Proposition 4.6 has the same structure as theH2 error
bound in the deterministic case, which can be found in Sect. 7.2.2 in Antoulas [1].
Furthermore, with this representation of the error bound we are able to emphasize
the cases in which balanced truncation is a good approximation. In Proposition 4.6
the bound depends on Σ2 which contains the n − r smallest Hankel singular values
σr+1, . . . , σn of the original system. In case these values are small, the reduced order
model computed by balanced truncation is of good quality.

5 Applications

In order to demonstrate the use of the model reduction method introduced in Sect. 4
we apply it in the context of the numerical solution of linear controlled evolution equa-
tions with Levy noise. For that reason, we apply the Galerkin scheme to the evolution
equation and end up with a sequence of ordinary stochastic differential equations.
Then, we use balanced truncation for reducing the dimension of the Galerkin solution.
Finally, we compute the error bounds and exact errors for the example considered
here.
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5.1 Finite dimensional approximations for stochastic evolution equations

In this section, we deal with an infinite dimensional system, where the noise process
is denoted by M . We suppose that M is a Levy process with values in a separable
Hilbert spaceU . Additionally, we assume that M is square integrable with zero mean.
The most important properties regarding this process and the definition of an integral
with respect to M can be found in the book of Peszat, Zabczyk [21].

Suppose A : D(A) → H is a densely defined linear operator being self adjoint and
negative definite such that we have an orthonormal basis (hk)k∈N of H consisting of
eigenvectors of A:

Ahk = −λkhk,

where 0 ≤ λ1 ≤ λ2 ≤ · · · are the corresponding eigenvalues. Furthermore, the linear
operator A generates a contraction C0-semigroup (S(t))t≥0 defined by

S(t)x =
∞∑

k=1

e−λk t 〈x, hk〉 hk

for x ∈ H . It is exponentially stable for the case 0 < λ1.ByQwedenote the covariance
operator of M which is a symmetric and positive definite trace class operator that is
characterized by

E 〈M(t), x〉U 〈M(s), y〉U = min{t, s} 〈Qx, y〉U
for x, y ∈ U and s, t ≥ 0. We can choose an orthonormal basis of U consisting of
eigenvectors (uk)k∈N of Q.6 The corresponding eigenvalues we denote by (μk)k∈N
such that

Quk = μkuk .

We then consider the following stochastic differential equation:

dX (t) = [AX (t) + Bu(t)] dt + Ψ (X (t−))dM(t), X (0) = x0 ∈ H,

Y (t) = CX (t), t ≥ 0. (48)

We make the following assumptions:

– Ψ is a linear mapping on H with values in the set of all linear operators fromU to

H such that Ψ (h)Q
1
2 is a Hilbert-Schmidt operator for every h ∈ H . In addition,

∥∥
∥Ψ (h)Q

1
2

∥∥
∥
LHS(U,H)

≤ M̃ ‖h‖H (49)

6 By Theorem VI.21 in Reed, Simon [23], Q is a compact operator such that this property follows by the
spectral theorem.
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holds for some constant M̃ > 0, where LHS indicates the Hilbert-Schmidt norm.
– The process u : R+ × Ω → R

m is (Ft )t≥0-adapted with

∫ T

0
E ‖u(s)‖22 ds < ∞

for each T > 0.
– B is a linear and bounded operator on R

m with values in H and C ∈ L(H,Rp).

Definition 5.1 An adapted cadlag process (X (t))t≥0 with values in H is called mild
solution of (48) if P-almost surely

X (t) = S(t)x0 +
∫ t

0
S(t − s)Bu(s)ds +

∫ t

0
S(t − s)Ψ (X (s−))dM(s) (50)

holds for all t ≥ 0.

Remark Since the operator A generates a contraction semigroup, the stochastic con-
volution in Eq. (50) has a cadlag modification (Theorem 9.24 in [21]), which enables
us to construct a cadlag mild solution of Eq. (48). This solution is unique for every
fixed u considering Theorem 9.29 in [21].

We will now approximate the mild solution of the infinite dimensional Eq. (48).
We use the Galerkin method for a finite dimensional approximation that one can find
for example in Grecksch, Kloeden [12]. Therein they deal with strong solutions of
stochastic evolution equations with scalar Wiener noise.

Weconstruct a sequence (Xn)n∈N of finite dimensional cadlag processeswith values
in Hn = span {h1, . . . , hn} given by

dXn(t) = [AnXn(t) + Bnu(t)] dt + Ψn(Xn(t−))dMn(t), t ≥ 0,

Xn(0) = x0,n, (51)

where

– Mn(t) = ∑n
k=1 〈M(t), uk〉U uk, t ≥ 0, is a span {u1, . . . , un}-valued Levy

process,
– Anx = ∑n

k=1 〈Ax, hk〉H hk ∈ Hn holds for all x ∈ D(A),
– Bnx = ∑n

k=1 〈Bx, hk〉H hk ∈ Hn holds for all x ∈ R
m ,

– Ψn(x)y = ∑n
k=1 〈Ψ (x)y, hk〉H hk ∈ Hn holds for all y ∈ U and x ∈ H ,

– x0,n = ∑n
k=1 〈x0, hk〉H hk ∈ Hn .

Since An is a bounded operator for every n ∈ N, we know that An generates a
C0-semigroup on H of the form Sn(t) = eAnt , t ≥ 0. For all x ∈ Hn it has the
representation Sn(t)x = ∑n

k=1 e
−λk t 〈x, hk〉H hk such that the mild solution of Eq.

(51) is given by

Xn(t) = Sn(t)x0,n +
∫ t

0
Sn(t − s)Bnu(s)ds +

∫ t

0
Sn(t − s)Ψn(Xn(s−))dMn(s)
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for t ≥ 0. Furthermore, we consider the p dimensional approximating output

Yn(t) = CXn(t), t ≥ 0.

With similar arguments like in the proof of Theorem 1 in Grecksch, Kloeden [12] one
can show the Theorem 5.2 below. This shows that

E ‖Yn(t) − Y (t)‖22 → 0

is true for n → ∞ and t ≥ 0:

Theorem 5.2 It holds

E ‖Xn(t) − X (t)‖2H → 0

for n → ∞ and t ≥ 0.

Remark If U = R
q , one has to replace Mn by M in Eq. (51) and Theorem 5.2 holds

for this case as well.

We now determine the components of Yn . They are given by

Y l
n(t) = 〈Yn(t), el〉Rp = 〈CXn(t), el〉Rp =

n∑

k=1

〈Chk, el〉Rp 〈Xn(t), hk〉H

for l = 1, . . . , p, where el is the l-th unit vector in R
p. We set

X (t) = (〈Xn(t), h1〉H , . . . , 〈Xn(t), hn〉H )T , C = (〈Chk, el〉Rp )l=1,...,p
k=1,...,n

and obtain

Yn(t) = CX (t), t ≥ 0.

The components ofX fulfill the following equation:

〈Xn(t), hk〉H = 〈
Sn(t)x0,n, hk

〉
H +

∫ t

0
〈Sn(t − s)Bnu(s), hk〉H ds

+
〈∫ t

0
Sn(t − s)Ψn(Xn(s−))dMn(s), hk

〉

H
.

Considering the representation Sn(t)x = ∑n
i=1 e

−λi t 〈x, hi 〉H hi (x ∈ Hn), we have

〈
Sn(t)x0,n, hk

〉
H = e−λk t

〈
x0,n, hk

〉
H = e−λk t 〈x0, hk〉H
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and

〈Sn(t − s)Bnu(s), hk〉H
= e−λk (t−s) 〈Bnu(s), hk〉H =

m∑

l=1

e−λk (t−s) 〈Bel , hk〉H 〈u(s), el〉Rm

for k = 1, . . . , n, where el is the l-th unit vector in R
m . Furthermore,

〈∫ t

0
Sn(t − s)Ψn(Xn(s−))dMn(s), hk

〉

H

=
n∑

j=1

∫ t

0

〈
Sn(t − s)Ψn(Xn(s−))u j , hk

〉
H d

〈
M(s), u j

〉
U

=
n∑

j=1

n∑

i=1

∫ t

0

〈
Sn(t − s)Ψn(hi )u j , hk

〉
H 〈Xn(s−), hi 〉H d

〈
M(s), u j

〉
U

=
n∑

j=1

n∑

i=1

∫ t

0
e−λk (t−s) 〈

Ψ (hi )u j , hk
〉
H 〈Xn(s−), hi 〉H d

〈
M(s), u j

〉
U .

Hence, in compact formX is given by

X (t) = eA t X0 +
∫ t

0
eA (t−s) Bu(s)ds +

n∑

j=1

∫ t

0
eA (t−s) N jX (s−)dM j (s),

(52)

where

– A = diag(−λ1, . . . ,−λn),B = (〈Bei , hk〉H )k=1,...,n
i=1,...,m

,

N j = (〈
Ψ (hi )u j , hk

〉
H

)
k,i=1,...,n

,

– X0 = (〈x0, h1〉H , . . . , 〈x0, hn〉H )T and M j (s) = 〈
M(s), u j

〉
U .

The processes M j are uncorrelated real-valued Levy processes with E
∣∣M j (t)

∣∣2 =
tμ j , t ≥ 0, and zero mean. Below, we show that the solution of Eq. (52) fulfills the
strong solution equation as well. We set

f (t) := X0 +
∫ t

0
e−A s Bu(s)ds +

n∑

j=1

∫ t

0
e−A s N jX (s−)dM j (s), t ≥ 0,

and determine the stochastic differential of eA t f (t) via the Ito product formula in
Corollary 2.4:
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eTi X (t) = eTi eA t f (t) = eTi f (0) +
∫ t

0
d

(
eTi eA s

)
f (s−) +

∫ t

0
eTi eA s d f (s)

= eTi

(
X0 +

∫ t

0
A eA s f (s)ds

+
∫ t

0
Bu(s)ds +

n∑

j=1

∫ t

0
N jX (s−)dM j (s)

)
,

where ei is the i-th unit vector ofRn and the quadratic covariation terms are zero, since
t �→ eTi eA t is a continuous semimartingale with a martingale part of zero. Hence,

X (t) = X0 +
∫ t

0
AX (s) + Bu(s)ds +

n∑

j=1

∫ t

0
N jX (s−)dM j (s), t ≥ 0.

Example 5.3 Weconsider a bar of lengthπ , which is heated on [0, π
2 ]. The temperature

of the bar is described by the following stochastic partial differential equation:

∂X (t, ζ )

∂t
= ∂2

∂ζ 2 X (t, ζ ) + 1[0, π
2 ](ζ )u(t) + aX (t−, ζ )

∂M(t)

∂t
,

X (t, 0) = 0 = X (t, π),

X (0, ζ ) = x0(ζ ) (53)

for t ≥ 0 and ζ ∈ [0, π ]. Here, we assume that M is a scalar square integrable Levy
process with zero mean, H = L2([0, π ]), U = R, m = 1, A = ∂2

∂ζ 2
. Furthermore,

we set B = 1[0, π
2 ](·) and Ψ (x) = ax for x ∈ L2([0, π ]). Additionally, we assume

E
[
M(1)2

]
a2 < 2, which is equivalent to that the solution of the uncontrolled Eq.

(53) satisfies

E

∥∥∥Xh(t, ·)
∥∥∥
2

H
≤ c e−αt ‖x0(·)‖2H (54)

for c, α > 0. This equivalence is a consequence of Theorem 3.1 in Ichikawa [14]
and Theorem 5 in Haussmann [13]. For further information regarding the exponential
mean square stability condition (54), see Sect. 5 in Curtain [9].7 It is a well-known
fact that here the eigenvalues of the second derivative are given by −λk = −k2

and the corresponding eigenvectors which represent an orthonormal basis are hk =√
2
π
sin(k·). We are interested in the average temperature of the bar on [π

2 , π ] such
that the scalar output of the system is

7 Curtain, Ichikawa and Haussmann stated these conditions for exponential mean square stability for the
Wiener case, which can be easily generalized for the case of square integrable Levy process with mean
zero.
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Y (t) = 2

π

∫ π

π
2

X (t, ζ )dζ,

where Cx = 2
π

∫ π
π
2
x(ζ )dζ for x ∈ L2([0, π ]). We approximate Y via

Yn(t) = CX (t),

C T = (Chk)k=1,...,n =
(( 2

π

) 3
2 1
k

[
cos( kπ2 ) − cos(kπ)

])

k=1,...,n
.

X is given by

X (t) = X0 +
∫ t

0
AX (s) + Bu(s)ds +

∫ t

0
N X (s−)dM(s), (55)

where

– A = diag
(−1,−4, . . . ,−n2

)
,

– N = (〈Ψ (hi ), hk〉H )k,i=1,...,n = (〈ahi , hk〉H )k,i=1,...,n = aIn ,

– B = (〈B, hk〉H )k=1,...,n =
(〈
1[0, π

2 ](·), hk
〉

H

)

k=1,...,n

=
(( 2

π

) 1
2 1
k

[
1 − cos( kπ2 )

])

k=1,...,n
.

Since we now choose x0 ≡ 0 for simplicity, we additionally have X0 = 0.

Next, we consider a more complex example with a two dimensional spatial variable:

Example 5.4 We determine the Galerkin solution of the following controlled stochas-
tic partial differential equation:

∂X (t, ζ )

∂t
= ΔX (t, ζ ) + 1[ π

4 , 3π4 ]2(ζ )u(t) + e−|ζ1− π
2 |−ζ2 X (t−, ζ )

∂M(t)

∂t
,

t ≥ 0, ζ ∈ [0, π ]2,
∂X (t, ζ )

∂n
= 0, t ≥ 0, ζ ∈ ∂[0, π ]2,

X (0, ζ ) ≡ 0. (56)

Again, M is a scalar square integrable Levy process with zero mean, H =
L2([0, π ]2), U = R, m = 1, A is the Laplace operator, B = 1[ π

4 , 3π4 ]2(·), and
Ψ (x) = e−|·− π

2 |−· x for x ∈ L2([0, π ]2). The eigenvalues of the Laplacian on [0, π ]2
are given by −λi j = −(i2 + j2) and the corresponding eigenvectors which represent

an orthonormal basis are hi j = fi j‖ fi j‖H
, where fi j = cos(i ·) cos( j ·). For simplicity

we write −λk for the k-th largest eigenvalue, and the corresponding eigenvector we
denote by hk . The scalar output of the system is

Y (t) = 4

3π2

∫

[0,π ]2\[ π
4 , 3π4 ]2

X (t, ζ )dζ,
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where Cx = 4
3π2

∫
[0,π ]2\[ π

4 , 3π4 ]2 x(ζ )dζ for x ∈ L2([0, π ]2). The output of the
Galerkin system is

Yn(t) = CX (t)

with C T = (Chk)k=1,...,n . The Galerkin solutions X satisfies

X (t) =
∫ t

0
AX (s) + Bu(s)ds +

∫ t

0
N X (s−)dM(s), (57)

where

A = diag (0,−1,−1, . . .) , N =
(〈
e−|·− π

2 |−· hi , hk
〉

H

)

k,i=1,...,n
,

B =
(〈
1[ π

4 , 3π4 ]2(·), hk
〉

H

)

k=1,...,n
.

5.2 Error bounds for the examples

We consider the system from Example 5.3. Using Theorem 3.3, the uncontrolled Eq.
(55) is asymptotically mean square stable if and only if the Kronecker matrix

In ⊗ A +A ⊗ In+N ⊗N · E
[
M(1)2

]
= In⊗A +(A +E

[
M(1)2

]
a2 In) ⊗ In

is Hurwitz. From Sect. 2.6 in Steeb [25] we can conclude that the largest eigenvalue
of the Kronecker matrix is −2+E

[
M(1)2

]
a2. Thus, the solution of the uncontrolled

system (55) is asymptotically mean square stable if and only if E
[
M(1)2

]
a2 < 2,

which is fulfilled by (54).
We want to obtain a reduced order model via balanced truncation. We choose

a = E
[
M(1)2

] = 1 and additionally let n = 1000. It turns out that the system is
neither completely observable nor completely reachable since the Gramians do not
have full rank. So,weneed an alternativemethod to determine the reduced ordermodel.
We use a method for non minimal systems that is known from the deterministic case
and which is for example described in Sect. 1.4.2 in Benner et al. [4]. In this algorithm
we do not compute the full transformation matrix T . So, we obtain the matrices of the
reduced order model by

˜A = WT diag(−1, . . . ,−n2)V, ˜N = WT InV = Ir , B̃ = WTB, C̃ = C V .

Above, we set

WT = Σ
− 1

2
1 V T

1 R and V = STU1Σ
− 1

2
1 ,
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where V1 and U1 are obtained from the SVD of SRT :

SRT = [
U1 U2

]
[
Σ1

Σ2

] [
V T
1

V T
2

]
,

where Q = RT R and P = ST S. Reducing the model yields the following error
bounds:

Dimension of the reduced
order model

(
tr

(
C PC T

)
+ tr

(
C̃ PR C̃

T
)

− 2 tr
(
C PM C̃ T

)) 1
2

8 4.5514 · 10−6

4 2.3130 · 10−4

2 1.7691 · 10−3

1 0.0879

Below, we reduce the Galerkin solution of Example 5.4 with dimension n = 1000
and E

[
M(1)2

] = 1. Here, the matrix A = diag (0,−1,−1,−2, . . .) is not stable,
such that we need to stabilize system (57) before using balanced truncation. Inserting
the feedback control u(t) = −2eT1 X (t), t ≥ 0, where e1 is the first unit vector in
R
n , yields a asymptotically mean square stable system, since the following sufficient

condition holds (see Corollary 3.6.3 in [11] and Theorem 5 in [13]):AS = A −2BeT1
is stable and

∥∥∥∥

∫ ∞

0
eA

T
S t N TN eAS t dt

∥∥∥∥ = 0.0658 < 1.

We repeat the procedure from above and obtain

Dimension of the
reduced order model

(
tr

(
C PC T

)
+ tr

(
C̃ PR C̃

T
)

− 2 tr
(
C PM C̃ T

)) 1
2

8 3.7545 · 10−6

4 6.4323 · 10−4

2 3.1416 · 10−3

1 0.0333

for the the stabilized system (57) meaning that we replaced A by AS .

5.3 Comparison between exact error and error bound

Since Eqs. (55) and (57) do not have an explicit solution in general, we need to
discretize in time for estimating the exact error of the estimation given here. For
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simplicity, we assume that n = 80 and M is a scalar Wiener process and use the
Euler-Maruyama scheme8 for approximating the original system, yielding

Xk+1 = Xk + (AXk + Bu(tk)) h + N XkΔMk

and the reduced order model:

X̃k+1 = X̃k +
( ˜A X̃k + B̃u(tk)

)
h + ˜N X̃kΔMk,

where we consider these equations on the time interval [0, π ]. Furthermore, we choose
X0 = 0, h = π

10000 and tk = kh for k = 0, 1, . . . , 10000,ΔMk = M(tk+1) − M(tk).

For system (55) we insert the normalized control functions u1(t) =
√
2

π
M(t),

u2(t) =
√

2
π
cos(t), u3(t) =

√
2

1−e−2π e−t , t ∈ [0, π ] and obtain D :=
maxk=1,...,10000 E

∣∣
∣C Xk − C̃ X̃k

∣∣
∣ for different dimensions of the reduced order model

(ROM) and different inputs:

Dimension of the ROM D with u = u1 D with u = u2 D with u = u3 EB

8 9.0615 × 10−9 7.8832 × 10−8 1.3987 × 10−7 1.4813 × 10−6

4 3.8702 × 10−6 6.4204 × 10−6 1.1353 × 10−5 2.2706 × 10−4

2 6.8932 × 10−5 1.1195 × 10−4 1.9549 × 10−4 1.7671 × 10−3

1 0.0141 0.0243 0.0354 0.0879

Here, EB :=
(
tr

(
C PC T

) + tr
(
C̃ PRC̃ T

)
− 2 tr

(
C PM C̃ T

)) 1
2
is the balanced

truncation error bound derived in Sect. 4.
For system (57) we use the inputs ũi (t) = −2eT1 X (t) + ui (t), t ≥ 0, i = 1, 2, 3

and obtain

Dimension of the ROM D with u = ũ1 D with u = ũ2 D with u = ũ3 EB

8 5.6162 × 10−7 5.5374 × 10−7 6.5699 × 10−7 3.5376 × 10−6

4 4.7245 × 10−5 5.2722 × 10−5 6.8758 × 10−5 3.1487 × 10−4

2 5.1270 × 10−4 4.6627 × 10−4 6.2103 × 10−4 2.4164 × 10−3

1 3.7520 × 10−3 0.0118 9.9629 × 10−3 0.0327

These results show that the balanced truncation error bound, which is a worst case
bound holding for all feasible input functions, also provides a good prediction of the
true time domain error. In particular, it quite well predicts the decrease of the true error
for increased dimension of the reduced order model.

8 The theory regarding this method can be found in Kloeden and Platen [16].
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6 Conclusions

We generalized balanced truncation for stochastic system with noise processes hav-
ing jumps. In particular, we focused on a linear controlled state equation driven by
uncorrelated Levy processes which is asymptotically mean square stable and equipped
with an output equation. We showed that the Gramians we defined are solutions of
generalized Lyapunov equations. Furthermore, we proved that the observable states
and the corresponding energy are characterized by the observability Gramian Q and
that the reachability Gramian P provides partial information about the reachabilty of
an average state. We showed that the reduced order model (ROM) is mean square
stable, not balanced, the Hankel singular values (HV) of the ROM are not a subset of
the HVs of the original system and one can lose complete observability and reacha-
bility. Furthermore, we provided an error bound for balanced truncation of the Levy
driven system. Finally, we demonstrated the use of balanced truncation for stochastic
systems. We applied it in the context of the numerical solution of linear controlled
evolution equations with Levy noise and computed the error bounds and exact errors
for the example considered here.

Acknowledgments The authors would like to thank Tobias Damm for his comments and advice and
Tobias Breiten for providing Example 4.3.
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