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Abstract Systems of parabolic, possibly degenerate parabolic SPDEs are consid-
ered. Existence and uniqueness are established in Sobolev spaces. Similar results are
obtained for a class of equations generalizing the deterministic first order symmetric
hyperbolic systems.
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1 Introduction

In this paper we are interested in the solvability in L p spaces of linear stochastic
parabolic, possibly degenerate, PDEs and of systems of linear stochastic parabolic
PDEs. The equations we consider are important in applications. They arise in nonlinear
filtering of partially observable stochastic processes, in modelling of hydromagnetic
dynamo evolving in fluids with random velocities, and in many other areas of physics
and engineering.
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Among several important results, an L2-theory of degenerate linear elliptic and
parabolic PDEs is presented in [25–27] and [28]. The solvability in L2 spaces of
linear degenerate stochastic PDEs of parabolic type was first studied in [20] (see also
[29]).

Solving equations in W m
p spaces for sufficiently high exponent p allows one to

prove by Sobolev embedding better smoothness properties of the solutions than in the
case of solving them in W m

2 spaces. As it is mentioned above, the class of stochastic
PDEs considered in this paper includes the equations of nonlinear filtering of partially
observed diffusion processes. By our results one obtains the existence of the condi-
tional density of the unobserved process, and its regularity properties, under minimal
smoothness conditions on the coefficients.

The first existence and uniqueness theorem on solvability of these equations in W m
p

spaces, when they may also degenerate, is presented in [22]. This result is improved
in [8].

In the present paper we fill in a gap in the proof of the existence and uniqueness
theorems in [22] and [8]. Moreover, we essentially improve these theorems. In [22] the
existence and uniqueness theorem for W m

p -valued solutions is not separated from an
existence and uniqueness theorem for W m

2 -valued solutions. In particular, it contains
also conditions ensuring the existence and uniqueness of a W m

2 solution. In [8] these
conditions were removed, and for any q ∈ (0, p] an estimate for E supt≤T |u|qW m

p

for the solution u is obtained. In the present paper we remove the extra conditions
of the existence and uniqueness theorem in [22], remove the restriction q ≤ p on
the exponent q in the corresponding theorem in [8], and prove the uniqueness of
the solution under weaker assumptions than those in [22] and [8] (see Theorem 2.1
below). Note that to have q-th moment estimates for any high q is useful, for example,
in proving almost sure rate of convergence of numerical approximations of stochastic
PDEs, see, e.g., [5]. Moreover, we not only improve the existence an uniqueness
theorems in [22] and [8], but our main result, Theorem 3.1, extends them to degenerate
stochastic parabolic systems. We present also an existence and uniqueness theorem,
Theorem 3.2, on solvability in W m

2 spaces for a larger class of stochastic parabolic
systems, which, in particular, contains the first order symmetric hyperbolic systems.
This result was indicated in [9].

We would like to emphasise that the equations we consider in this paper may
degenerate and become first order equations. For non degenerate stochastic PDEs
L p- and Lq(L p)-theories are developed, see e.g. [13,14,17,18] and [15], which give
essentially stronger results on smoothness of the solutions.

There are many publications on stochastic PDEs driven by martingale measures,
pioneered by [30]. (See also [2] and the references therein.) In [3] two set-ups for
stochastic PDEs, concerning the driving noise are compared: a set-up when the driving
noise is a martingale measure, and an other set-up when the equations are driven by
martingales with values in infinite dimensional spaces. It is shown, in particular, that
stochastic integrals with respect to martingale measures can be rewritten as stochastic
Itô integrals with respect to martingales taking values in Hilbert spaces. Earlier this was
proved in [6] in order to treat SDEs and stochastic PDEs driven by martingale measures
as stochastic equations driven by martingales. In [16] super-Brownian motions in
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any dimension are constructed as solutions of SPDEs driven by infinite dimensional
martingales, more precisely, by an infinite sequence of independent Wiener processes.
As it is well-known, in the one-dimensional case the stochastic equation for the super-
Brownian motion can be written as a stochastic PDE driven by a martingale measure,
more precisely, by a space-time white noise, but as it is noted in [16], most likely this
is not possible in higher dimensions.

Solvability of stochastic PDEs of parabolic type are often investigated in the sense
of the mild solution concept, i.e., when solutions to stochastic PDEs are defined as
solutions to a stochastic integral equation obtained via Duhamel’s principle, called
also variation of constant formula in the context of ODEs (see, e.g., [2] and [3]). For
the theory of stochastic PDEs built on this approach, often called semigroup approach,
we refer the reader to the monograph [4]. In this framework there are many results on
solvability in various Banach spaces B, including W m

p spaces, when the linear operator
in the drift term of the equation is an infinitesimal generator of a continuous semigroup
of bounded linear operators acting on B. The equations investigated in most papers,
including [2] and [3], do not have a differential operator in their diffusion part, unlike
the equations studied in this paper. In the case when the differential operator in the
drift term is a time dependent random operator, serious problems arise in adaptation
the semigroup approach. Thus the semigroup approach is not used to investigate the
filtering equations of general signal and observation models, which are included in
the class of equations considered in the present paper.

Finally we would like to mention that for some special degenerate stochastic PDEs,
for example for the stochastic Euler equations, there are many results on solvability in
the literature. See, for example, [1] and the references therein. Concerning the equation
in [1] we note that its main term is non random, and its solution can be given in a sense
explicitly.

In conclusion we introduce some notation used throughout the paper. All random
elements will be given on a fixed probability space (�,F , P), equipped with a filtration
(Ft )t≥0 of σ -fields Ft ⊂ F . We suppose that this probability space carries a sequence
of independent Wiener processes (wr )∞r=1, adapted to the filtration (Ft )t≥0, such that
wr

t − wr
s is independent of Fs for each r and any 0 ≤ s ≤ t . It is assumed that F0

contains all P-null subsets of �, so that (�,F , P) is a complete probability space
and the σ -fields Ft are complete. By P we denote the predictable σ -field of subsets
of � × (0,∞) generated by (Ft )t≥0. For basic notions in stochastic analysis, like
continuous local martingales and their quadratic variation process, we refer to [12].

For p ∈ [1,∞), the space of measurable mappings f from R
d into a separable

Hilbert space H, such that

‖ f ‖L p =
(∫

Rd
| f (x)|p

H dx

)1/p

< ∞,

is denoted by L p(R
d ,H).

Remark 1.1 We did not include the symbol H in the notation of the norm in
L p(R

d ,H). Which H is involved will be absolutely clear from the context. We do the
same in other similar situations.
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Often H will be l2, or the space of infinite matrices {gi j ∈ R : i = 1, . . . ,M, j =
1, 2, . . .}, or finite M × M matrices with the Hilbert–Schmidt norm. The space of
functions from L p(R

d ,H), whose generalized derivatives up to order m are also in
L p(R

d ,H), is denoted by W m
p (R

d ,H). By definition W 0
p(R

d ,H) = L p(R
d ,H). The

norm |u|W m
p

of u in W m
p (R

d ,H) is defined by

|u|p
W m

p
=
∑

|α|≤m

|Dαu|p
L p
, (1.1)

where Dα := Dα1
1 , . . . , Dαd

d for multi-indices α := (α1, . . . , αd) ∈ {0, 1, . . .}d of
length |α| := α1 + α2 + · · · + αd , and Di u is the generalized derivative of u with
respect to xi for i = 1, 2 . . . , d. We also use the notation Di j = Di D j and Du =
(D1u, . . . , Ddu). When we talk about “derivatives up to order m” of a function for
some nonnegative integer m, then we always include the zeroth-order derivative, i.e.
the function itself. Unless otherwise indicated, the summation convention with respect
to repeated integer valued indices is used throughout the paper.

2 Formulation

In this section H = R and we use a shorter notation

L p = L p(R
d ,R), W m

p = W m
p (R

d ,R), W m+1
p (l2) = W m+1

p (Rd , l2).

Fix a T ∈ (0,∞) and consider the problem

dut (x) = (Lt ut (x)+ ft (x)) dt + (Mr
t ut (x)+ gr

t (x)
)

dwr
t , (2.1)

(t, x) ∈ HT := [0, T ] × R
d , with initial condition

u0(x) = ψ(x), x ∈ R
d , (2.2)

where

Lt = ai j
t (x)Di j + bi

t (x)Di + ct (x), Mr
t = σ ir

t (x)Di + νr
t (x),

and all functions, given on � × HT , are assumed to be real valued and satisfy the
following assumptions in which m ≥ 0 is an integer and K is a constant.

Assumption 2.1 The derivatives in x ∈ R
d of ai j up to order max(m, 2) and of bi

and c up to order m are P ⊗ B(Rd)-measurable functions, bounded by K for all
i, j ∈ {1, 2, . . . , d}. The functions σ i = (σ ir )∞r=1 and ν = (νr )∞r=1 are l2-valued and
their derivatives in x up to order m +1 are P ⊗B(Rd)-measurable l2-valued functions,
bounded by K .
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Assumption 2.2 The free data, ft and gt = (gr )∞r=1 are predictable processes with
values in W m

p and W m+1
p (l2), respectively, such that almost surely

Kp
m,p(T ) =

∫ T

0

(
| ft |p

W m
p

+ |gt |p

W m+1
p

)
dt < ∞. (2.3)

The initial value, ψ is an F0-measurable random variable with values in W m
p .

Assumption 2.3 For P ⊗ dt ⊗ dx-almost all (ω, t, x) ∈ �× [0, T ] × R
d

α
i j
t (x)z

i z j ≥ 0

for all z ∈ R
d , where

αi j = 2ai j − σ irσ jr .

This condition is a standard assumption in the theory of stochastic PDEs. If it is
not satisfied then Eq. (2.1) may be solvable only for very special initial conditions and
free terms. Notice that this assumption allows α = 0, which can happen, for example,
when σ ik = (

√
2a)ik for i, k = 1, . . . , d and σ ik = 0 for k > d.

Let τ be a stopping time bounded by T .

Definition 2.1 A W 1
p-valued function u, defined on the stochastic interval , is

called a solution of (2.1)–(2.2) on [0, τ ] if u is predictable on ,∫ τ

0
|ut |p

W 1
p

dt < ∞ (a.s.),

and for each ϕ ∈ C∞
0 (R

d) for almost all ω ∈ �

(ut , ϕ) = (ψ, ϕ)+
∫ t

0

{
−(ai j

s Di us, D jϕ)+ (b̄i
s Di us + csus + fs, ϕ)

}
ds

+
∫ t

0
(σ ir

s Di us + νr
s us + gr

s , ϕ) dwr
s

for all t ∈ [0, τ (ω)], where b̄i = bi − D j ai j , and (· , ·) denotes the inner product in
the Hilbert space of square integrable real-valued functions on R

d .

We want to prove the following existence and uniqueness theorem about the Cauchy
problem (2.1)–(2.2).

Theorem 2.1 Let Assumptions 2.3 and 2.1–2.2 with m ≥ 0 hold. Then there exists
at most one solution on [0, T ]. If together with Assumptions 2.3, 2.1–2.2 hold with
m ≥ 1, then there exists a unique solution u = (ut )t∈[0,T ] on [0, T ]. Moreover, u is a
W m

p -valued weakly continuous process, it is a strongly continuous process with values

in W m−1
p , and for every q > 0 and n ∈ {0, 1, . . . ,m}
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E sup
t∈[0,T ]

|ut |qW n
p

≤ N (E |ψ |qW n
p

+ EKq
n (T )), (2.4)

where N is a constant depending only on K , T , d, m, p and q.

This result is proved in [22] in the case q = p ≥ 2 under the additional assumptions that
EKr

m,r (T ) < ∞ and E |ψ |rW m
r
< ∞ for r = p and r = 2 (see Theorem 3.1 therein).

These additional assumptions are not supposed and a somewhat weaker version of
the above theorem is obtained in [8] when q ∈ (0, p]. The proof of it in [8] uses
Theorem 3.1 from [22], whose proof is based on an estimate for the derivatives of
the solution u, formulated as Lemma 2.1 in [22]. The proof of this lemma, however,
contains a gap. Our aim is to fill in this gap and also to improve the existence and
uniqueness theorems from [22] and [8]. Since Du = (D1u, . . . , Ddu) satisfies a
system of SPDEs, it is natural to present and prove our results in the context of
systems of stochastic PDEs.

3 Systems of stochastic PDEs

Let M ≥ 1 be an integer, and let 〈· , ·〉 and 〈·〉 denote the scalar product and the norm
in R

M , respectively. By T
M we denote the set of M × M matrices, which we consider

as a Euclidean space R
M2

. For an integer m ≥ 1 we define l2(Rm) as the space of
sequences ν = (ν1, ν2, . . .) with νk ∈ R

m , k ≥ 1, and finite norm

‖ν‖l2 =
( ∞∑

k=1

|ν|2
Rm

)1/2

(cf. Remark 1.1).
We look for R

M -valued functions ut (x) = (u1
t (x), . . . , uM

t (x)), of ω ∈ �, t ∈
[0, T ] and x ∈ R

d , which satisfy the system of equations

dut =
[
ai j

t Di j ut + bi
t Di ut + cut + ft

]
dt

+
[
σ ik

t Di ut + νk
t ut + gk

t

]
dwk

t , (3.1)

and the initial condition

u0 = ψ, (3.2)

where at = (ai j
t (x)) takes values in the set of d × d symmetric matrices,

σ i
t =

(
σ ik

t (x), k ≥ 1
)

∈ l2, bi
t (x) ∈ T

M , ct (x) ∈ T
M ,

νt (x) ∈ l2(T
M ), ft (x) ∈ R

M , gt (x) ∈ l2(R
M ) (3.3)

for i = 1, . . . , d, for all ω ∈ �, t ≥ 0, x ∈ R
d .

Note that with the exception of ai j and σ ik , all ‘coefficients’ in Eq. (3.1) mix the
coordinates of the process u.
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Let m be a nonnegative integer, p ∈ [2,∞) and make the following assumptions,
which are straightforward adaptations of Assumptions 2.1 and 2.2.

Assumption 3.1 The derivatives in x ∈ R
d of ai j up to order max(m, 2) and of bi and

c up to order m are P ⊗B(Rd)-measurable functions, in magnitude bounded by K for
all i, j ∈ {1, 2, . . . , d}. The derivatives in x of the l2-valued functions σ i = (σ ik)∞k=1
and the l2(TM )-valued function ν up to order m + 1 are P ⊗ B(Rd)-measurable
l2-valued and l2(TM )-valued functions, respectively, in magnitude bounded by K .

Assumption 3.2 The free data, ( ft )t∈[0,T ] and (gt )t∈[0,T ] are predictable processes
with values in

W m
p

(
R

d ,RM
)

and W m+1
p

(
R

d , l2(R
M )
)
,

respectively, such that almost surely

Kp
m,p(T ) =

∫ T

0

(
| ft |p

W m
p

+ |gt |p

W m+1
p

)
dt < ∞. (3.4)

The initial value,ψ is an F0-measurable random variable with values in W m
p (R

d ,RM ).

Set

β i = bi − σ irνr , i = 1, 2, . . . , d,

and recall that αi j = 2ai j − σ ikσ jk for i, j = 1, . . . , d. Instead of Assumption 2.3
we impose now the following condition, where δkl stands for the ‘Kronecker δ’, i.e.,
δkl = 1 if k = l and it is zero otherwise.

Assumption 3.3 There exist a constant K0 > 0 and a P × B(Rd)-measurable R
d -

valued bounded function h = (hi
t (x)), whose first order derivatives in x are bounded

functions, such that for all ω ∈ �, t ≥ 0 and x ∈ R
d

|h| + |Dh| ≤ K , (3.5)

and for all (λ1, . . . , λd) ∈ R
d

∣∣∣∣∣
d∑

i=1

(β ikl − δkl hi )λi

∣∣∣∣∣
2

≤ K0

d∑
i, j=1

αi jλiλ j for k, l = 1, . . . ,M. (3.6)

Remark 3.1 Let Assumption 3.1 hold with m = 0 and the first order derivatives of bi in
x are bounded by K for each i =1, 2, . . . , d. Then notice that condition (3.6) is a natural
extension of Assumption 2.3 to systems of stochastic PDEs. Indeed, when M = 1 then
taking hi =β i for i =1, . . . , d, we can see that Assumption 3.3 is equivalent to α ≥ 0.
Let us analyse now Assumption 3.3 for arbitrary M ≥ 1. Notice that it holds when α
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is uniformly elliptic, i.e., α ≥ κ Id with a constant κ > 0 for all ω, t ≥ 0 and x ∈ R
d .

Indeed, due to Assumption 3.1 there is a constant N = N (K , d) such that
∣∣∣∣∣

d∑
i=1

(β ikl − δklhi )λi

∣∣∣∣∣
2

≤ N
d∑

i=1

|λi |2 for every k, l = 1, 2, . . . ,M,

which together with the uniform ellipticity of α clearly implies (3.6). Notice also
that (3.6) holds in many situations when instead of the strong ellipticity of α we
only have α ≥ 0. Such examples arise, for example, when ai j = (σ irσ jr )/2 for all
i, j = 1, . . . , d, and b and ν are such that β i is a diagonal matrix for each i = 1, . . . , d,
and the diagonal elements together with their first order derivatives in x are bounded
by a constant K . As a simple example, consider the system of equations

dut (x) =
{

1
2 D2ut (x)+ Dvt (x)

}
dt + {Dut (x)+ vt (x)} dwt

dvt (x) =
{

1
2 D2vt (x)− Dut (x)

}
dt + {Dvt (x)− ut (x)} dwt

for t ∈ [0, T ], x ∈ R, for a 2-dimensional process (ut (x), vt (x)), where w is a one-
dimensional Wiener process. In this exampleα = 0 and β = 0. Thus clearly, condition
(3.6) is satisfied.

In Sect. 5 it will be convenient to use condition (3.6) in an equivalent form, which
we discuss in the next remark.

Remark 3.2 Notice that condition (3.6) in Assumption 3.3 can be reformulated as
follows: There exists a constant K0 such that for all values of the arguments and all
continuously differentiable R

M -valued functions u = u(x) on R
d we have

〈u, bi Di u〉−σ ik〈u, νk Di u〉≤ K0

∣∣∣∣∣∣
d∑

i, j=1

αi j 〈Di u, D j u〉
∣∣∣∣∣∣
1/2

〈u〉+hi 〈Di u, u〉. (3.7)

Indeed, set β̂ i = β i − hi IM , where IM is the M × M unit matrix, and observe that
(3.7) means

〈u, β̂ i Di u〉 ≤ K0

∣∣∣∣∣∣
d∑

i, j=1

αi j 〈Di u, D j u〉
∣∣∣∣∣∣
1/2

〈u〉.

By considering this relation at a fixed point x and noting that then one can choose u
and Du independently, we conclude that

〈∑
i

β̂ i Di u

〉2

≤ K 2
0α

i j 〈Di u, D j u〉 (3.8)

and (3.6) follows (with a different K0) if we take Di uk = λiδ
kl .
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On the other hand, (3.6) means that for any l without summation on l

∣∣∑
i

β̂ ikl Di u
l
∣∣2 ≤ K0α

i j (Di u
l)D j u

l .

But then by Cauchy’s inequality similar estimate holds after summation on l is done
and carried inside the square on the left-hand side. This yields (3.8) (with a different
constant K0) and then leads to (3.7).

The notion of solution to (3.1)–(3.2) is a straightforward adaptation of Definition 2.1
to systems of equations. Namely, u = (u1, . . . , uM ) is a solution on [0, τ ], for a
stopping time τ ≤ T , if it is a W 1

p(R
d ,RM )-valued predictable function on ,

∫ τ

0
|ut |p

W 1
p

dt < ∞ (a.s.),

and for each R
M -valued ϕ = (ϕ1, . . . , ϕM ) from C0(R

d) with probability one

(ut , ϕ) = (ψ, ϕ)+
∫ t

0

{
− (ai j

s Di us, D jϕ)

+ (b̄i
s Di us + csus + fs, ϕ)

}
ds (3.9)

+
∫ t

0

(
σ ir

s Di us + νr
s us + gr (s), ϕ

)
dwr

s (3.10)

for all t ∈ [0, τ ], where b̄i = bi − D j ai j IM . Here, and later on (�,�) denotes the
inner product in the L2-space of R

M -valued functions � and � defined on R
d .

The main result of the paper reads now just like Theorem 2.1 above.

Theorem 3.1 Let Assumption 3.3 hold. If Assumptions 3.1 and 3.2 also hold with
m ≥ 0, then there is at most one solution to (3.1)–(3.2) on [0, T ]. If together with
Assumption 3.3, Assumptions 3.1 and 3.2 hold with m ≥ 1, then there is a unique
solution u = (ul)M

l=1 to (3.1)–(3.2) on [0, T ]. Moreover, u is a weakly continuous
W m

p (R
d ,RM )-valued process, it is strongly continuous as a W m−1

p (Rd ,RM )-valued
process, and for every q > 0 and n ∈ {0, 1, . . . ,m}

E sup
t∈[0,T ]

|ut |qW n
p

≤ N
(

E |ψ |qW n
p

+ EKq
n,p(T )

)
(3.11)

with N = N (m, p, q, d,M, K , T ).

Example 3.1 In hydromagnetic dynamo theory the system of equations

∂

∂t
Bk

t (x) = λt (x)�Bk
t (x)+ D jv

k
t (x)B

j
t (x)−v j

t (x)D j Bk
t (x), k = 1, 2, 3, (3.12)

for t ∈ [0, T ] and x ∈ R
3, called induction equation, describes the evolution of a

magnetic field B = (B1, B2, B3) in a fluid flowing with velocity v = (v1, v2, v3),
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where λ ≥ 0 is the magnetic diffusivity (see, for example, [23]). Notice that one
can apply Theorem 3.1 to (3.12) to obtain its solvability in W m

p spaces. To study
effects in turbulent flows, induction equations with random velocity fields v have been
investigated in the literature (see, for example, [24]). In [7] convergence of (3.12) to a
system of stochastic PDEs is shown when the velocity fields are random and converge
to a random field which is white noise in time. We note that Theorem 3.1 can be
applied also to the system of stochastic PDEs obtained in this way.

In the case p = 2 we present also a modification of Assumption 3.3, in order to
cover an important class of stochastic PDE systems, the hyperbolic symmetric systems.

Observe that if in (3.6) we replace β ikl with β ilk , nothing will change. By the
convexity of t2 condition (3.6) then holds if we replace β ilk with (1/2)[β ilk + β ikl ].
Since

|a − b|2 ≤ |a + b|2 + 2a2 + 2b2

this implies that (3.6) also holds for

β̄ ikl = (β ikl − β ilk)/2

in place of β ikl , which is the antisymmetric part of β i = bi − σ irνr .
Hence the following condition is weaker than Assumption 3.3.

Assumption 3.4 There exist a constant K0 > 0 and a P × B(Rd)-measurable R
M -

valued function h = (hi
t (x)) such that (3.5) holds, and for all ω ∈ �, t ≥ 0 and

x ∈ R
d and for all (λ1, . . . , λd) ∈ R

d

∣∣∣∣∣
d∑

i=1

(β̄ ikl − δkl hi )λi

∣∣∣∣∣
2

≤ K0

d∑
i, j=1

αi jλiλ j for k, l = 1, . . . ,M. (3.13)

The following result in the special case of deterministic PDE systems is indicated
and a proof is sketched in [9].

Theorem 3.2 Take p = 2 and replace Assumption 3.3 with Assumption 3.4 in the
conditions of Theorem 3.1. Then the conclusion of Theorem 3.1 holds with p = 2.

Remark 3.3 Notice that Assumption 3.4 obviously holds with hi = 0 if the matrices
β i are symmetric and α ≥ 0. When a = 0 and σ = 0 then the system is called a first
order symmetric hyperbolic system.

Remark 3.4 If Assumption 3.4 does not hold then even simple first order deterministic
systems with smooth coefficients may be ill-posed. Consider, for example, the system

dut (x) = Dvt (x) dt

dvt (x) = −Dut (x) dt (3.14)
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for (ut (x), vt (x)), t ∈ [0, T ], x ∈ R, with initial condition u0 = ψ , v0 = φ, such
that ψ, φ ∈ W m

2 \ W m+1
2 for an integer m ≥ 1. Clearly, this system does not satisfy

Assumption 3.4, and one can show that it does not have a solution with the initial
condition u0 = ψ , v0 = φ. We note, however, that it is not difficult to show that for
any constant ε �= 0 and Wiener process w the stochastic PDE system

dut (x) = Dvt (x) dt + εDvt (x) dwt

dvt (x) = −Dut (x) dt − εDut (x) dwt (3.15)

with initial condition (u0, v0) = (ψ, φ) ∈ W m
2 (for m ≥ 1) has a unique solution

(ut , vt )t∈[0,T ], which is a W m
2 -valued continuous process. One can prove this statement

and the statement about the nonexistence of a solution to (3.14) by using Fourier
transform. We leave the details of the proof as exercises for those readers who find
them interesting. Clearly, system (3.15) does not belong to the class of stochastic
systems considered in this paper.

4 Preliminaries

First we discuss the solvability of (3.1)–(3.2) under the strong stochastic parabolicity
condition.

Assumption 4.1 There is a constant κ > 0 such that

αi jλiλ j ≥ κ

d∑
i=1

|λi |2

for all ω ∈ �, t ≥ 0, x ∈ R
d and (λ1, . . . , λd) ∈ R

d .

If the above non-degeneracy assumption holds then we need weaker regularity
conditions on the coefficients and the data than in the degenerate case. Recall that
m ≥ 0 and make the following assumptions.

Assumption 4.2 The derivatives in x ∈ R
d of ai j up to order max(m, 1) and of bi

and c up to order m are P ⊗ B(Rd)-measurable functions, bounded by K for all
i, j ∈ {1, 2, . . . , d}. The derivatives in x of the l2-valued functions σ i and l2(TM )-
valued function ν up to order m are P ⊗ B(Rd)-measurable l2-valued and l2(TM )-
valued functions, respectively, in magnitude bounded by K .

Assumption 4.3 The free data, ( ft )t∈[0,T ] and (gt )t∈[0,T ] are predictable processes
with values in W m−1

2 (Rd ,RM ) and W m
2 (R

d , l2(TM )), respectively, such that almost
surely

K2
m−1,2(T ) =

∫ T

0

(| ft |2W m−1
2

+ |gt |2W m
2

)
dt < ∞.

The initial value,ψ is an F0-measurable random variable with values in W m
2 (R

d ,RM ).
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The following is a standard result from the L2-theory of stochastic PDEs. See, for
example, [29]. Further results on solvability in W 1

2 spaces for non degenerate systems
of stochastic PDEs in R

d and in domains of R
d can be found in [15].

Theorem 4.1 Let Assumptions 4.1, 4.2 and 4.3 hold with m ≥ 0. Then (3.1)–(3.2)
has a unique solution u. Moreover, u is a continuous W m

2 (R
d ,RM )-valued process

such that ut ∈ W m+1(Rd ,RM ) for P × dt everywhere, and

E sup
t∈[0,T ]

|ut |2W m
2

+ E
∫ T

0
|ut |2W m+1

2
dt

≤ N

(
E |ψ |2W m

2
+ E

∫ T

0

(
| ft |2W m−1

2
+ |gt |2W m

2

)
dt

)
(4.1)

with N = N (κ,m, d,M, K , T ).

The crucial step in the proof of Theorem 2.1 is to obtain an apriori estimate, like
estimate (2.4). In order to discuss the way how such estimate can be proved, take
q = p, M = 1, and for simplicity assume that (ai j ) is nonnegative definite, it is
bounded and has bounded derivatives up to a sufficiently high order, and that all the
other coefficients and free terms in Eq. (2.1) are equal to zero. Thus we consider now
the PDE

du(t, x) = ai j (t, x)Di j u(t, x) dt, t ∈ [0, T ], x ∈ R
d , (4.2)

with initial condition (2.2), where we assume that ψ is a smooth function from W 1
p .

We want to obtain the estimate

|u(t)|p
W 1

p
≤ N |ψ |p

W 1
p

(4.3)

for smooth solutions u to (4.2)–(2.2).
After applying Dk to both sides of Eq. (4.2) and writing vk in place of Dkv, by the

chain rule we have

d
∑

k

|uk |p = p|uk |p−1uk

(
ai j

k ui j + ai j ui jk

)
dt.

Integrating over R
d we get

d
∑

k

|uk |p
L p

=
∫

Rd
Q(u) dx dt,

where

Q(u) = p|uk |p−2uk

(
ai j ui jk + ai j

k ui j

)
.
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To obtain (4.3) we want to have the estimate

∫
Rd

Q(v) dx ≤ N ||v||p
W 1

p
(4.4)

for any smooth v with compact support. To prove this we write ξ ∼ η if ξ and η have
identical integrals over R

d and we write ξ � η if ξ ∼ η + ζ such that

ζ ≤ N (|v|p + |Dv|p).

Then by integration by parts we have

|vk |p−2vkai jvi jk ∼ −(p − 1)|vk |p−2ai jvkivk j − |vk |p−2vkai j
i v jk

∼ −(p − 1)|vk |p−2ai jvkivk j − p−1 D j |vk |pai j
i

� −(p − 1)|vk |p−2ai jvkivk j .

By the simple inequality αβ ≤ ε−1α2 + εβ2 we have

|vk |p−2vkai j
k vi j ≤ ε−1|vk |p + ε|vk |p−2|ai j

k vi j |2

for any ε > 0. To estimate the term |ai j
k vi j |2 we use the following lemma, which is

well-known from [28].

Lemma 4.2 Let a = (ai j (x)) be a function defined on R
d , with values in the set of

non-negative m × m matrices, such that a and its derivatives in x up second order are
bounded in magnitude by a constant K . Let V be a symmetric m × m matrix. Then

|Dai j V i j |2 ≤ Nai j V ik V jk

for every x ∈ R
d , where N is a constant depending only on K and d.

By this lemma |ai j
k vi j |2 ≤ Nai jvilv jl . Hence

|vk |p−2vkai j
k vi j � Nε|vk |p−2ai jvilv jl .

Thus for each fixed k = 1, 2, . . . , d we have

Q(v) � −p(p − 1)|vk |p−2ai jvkivk j + ε|vk |p−2ai jvilv jl (4.5)

for any ε > 0. Notice that for each fixed k there is a summation with respect to l
over {1, 2, . . . , d} in the expression ε|vk |p−2ai jvilv jl , and terms with l �= k cannot
be killed by the expression

− p(p − 1)|vk |p−2ai jvkivk j . (4.6)
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Hence we can get (4.4) when d = 1 or p = 2, but we does not get it for p > 2 and
d > 1. To cancel every term in the sum ε|vk |p−2ai jvilv jl we need an expression like

−ν|vk |p−2ai jvlivl j ,

with a constant ν, in place of (4.6), for each k ∈ {1, . . . , d} in the right-hand side
of (4.5). This suggests to get (4.3) via an equation for | |Du|2|p/2

L p/2
instead of that for∑

k |Dku|p
L p

.
Let us test this idea. From

duk =
(

ai j ui jk + ai j
k ui j

)
dt

by the chain rule and Lemma 4.2 we have

d|Du|2 = 2ukai j ui jk dt + 2ukai j
k ui j dt ≤ ai j

[
|Du|2

]
i j

dt − 2ai j uiku jk dt

+ N |Du|
[
ai j uiku jk

]1/2
dt ≤ ai j

[
|Du|2

]
i j

dt + N |Du|2 dt

with a constant N . Hence

d
(
|Du|2

)p/2 ≤ (p/2)|Du|p−2ai j
[
|Du|2

]
i j

dt + N |Du|p dt,

where

|Du|p−2ai j [|Du|2]i j ∼ −|Du|p−2ai j
j

[
|Du|2

]
i

− ((p − 2)/2)|Du|p−4ai j
[
|Du|2

]
i

[
|Du|2

]
j

≤ − (2/p)ai j
j

[|Du|p]
i � N |Du|p, (4.7)

which implies

| |Du|2|p/2
L p/2

≤ N | |Dψ |2|p/2
L p/2

,

by Gronwall’s lemma. Consequently, estimate (4.3) follows, since it is not difficult to
see that

|u(t)|p
L p

≤ N |ψ |p
L p

holds. The careful reader may notice that though the computations in (4.7) are justified
only for p ≥ 4, by approximating the function |t |p−2, t ∈ R

d by smooth functions
we can extend them to get the desired estimate for all p ≥ 2.

The following lemma on Itô’s formula in the special case M = 1 is Theorem 2.1
from [19]. The proof of this multidimensional variant goes the same way, and therefore
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will be omitted. Note that for p ≥ 2 the second derivative, Di j 〈x〉p of the function
(x1, x2, . . . , xM ) → 〈x〉p for p ≥ 2 is

p(p − 2)〈x〉p−4xi x j + p〈x〉p−2δi j ,

which makes the last term in (4.8) below natural. Here and later on we use the con-
vention 0 · 0−1 := 0 whenever such terms occur.

Lemma 4.3 Let p ≥ 2 and let ψ = (ψk)M
k=1 be an L p(R

d ,RM )-valued F0-
measurable random variable. For i = 0, 1, 2, . . . , d and k = 1, . . . ,M let f ki and
(gkr )∞r=1 be predictable functions on � × (0, T ], with values in L p and in L p(l2),
respectively, such that

∫ T

0

⎛
⎝∑

i,k

| f ki
t |p

L p
+
∑

k

|gk·
t |p

L p

⎞
⎠ dt < ∞ (a.s.).

Suppose that for each k = 1, . . . ,M we are given a W 1
p-valued predictable function

uk on �× (0, T ] such that

∫ T

0
|uk

t |p
W 1

p
dt < ∞ (a.s.),

and for any φ ∈ C∞
0 with probability 1 for all t ∈ [0, T ] we have

(
uk

t , φ
) = (ψk, φ

)+
∫ t

0

(
gkr

s , φ
)

dwr
s +

∫ t

0

(
( f k0

s , φ)− ( f ki
s , Diφ)

)
ds.

Then there exists a set �′ ⊂ � of full probability such that

u = 1�′
(
u1, . . . , uk)

t∈[0,T ]

is a continuous L p(R
d ,RM )-valued process, and for all t ∈ [0, T ]

∫
Rd

〈ut 〉p dx =
∫
Rd

〈ψ〉p dx +
∫ t

0

∫
Rd

p〈us〉p−2〈us , gr
s 〉 dx dwr

s

+
∫ t

0

∫
Rd

(
p〈us〉p−2〈us , f 0

s 〉 − p〈us〉p−2〈Di us , f i
s 〉

− (1/2)p(p − 2)〈us〉p−4〈us , f i
s 〉Di 〈us〉2

+
∑

r

[
(1/2)p(p − 2)〈us〉p−4〈us , gr

s 〉2 + (1/2)p〈us〉p−2〈gr
s 〉2]) dx ds,

(4.8)

where f i := ( f ki )M
k=1 and gr := (gkr )M

k=1 for all i = 0, 1, . . . , d and r = 1, 2, . . ..
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5 The main estimate

Here we consider the problem (3.1)-(3.2) with at = (ai j
t (x)) taking values in the

set of nonnegative symmetric d × d matrices and the other coefficients and the data
are described in (3.3). The following lemma presents the crucial estimate to prove
solvability in L p spaces. It generalises the estimate for Du explained in section 4 for
a solution u to a simple PDE.

Lemma 5.1 Suppose that Assumptions 3.1, 3.2, and 3.3 hold with m ≥ 0. Assume that
u = (ut )t∈[0,T ] is a solution of (3.1)–(3.2) on [0, T ] (as defined before Theorem 3.1).
Then (a.s.) u is a continuous L p(R

d ,RM )-valued process, and there is a constant
N = N (p, K , d,M, K0) such that

d
∫

Rd
〈ut 〉p dx + (p/4)

∫
Rd

〈ut 〉p−2α
i j
t 〈Di ut , D j ut 〉 dx dt

≤ p
∫

Rd
〈ut 〉p−2

〈
ut , σ

ik Di ut + νk
t ut + gk

t

〉
dx dwk

t

+ N
∫

Rd

⎡
⎣〈ut 〉p + 〈 ft 〉p +

(∑
k

〈gk
t 〉2

)p/2

+
(∑

k

〈Dgk
t 〉2

)p/2
⎤
⎦ dx dt. (5.1)

Proof By Lemma 4.3 (a.s.) u is a continuous L p(R
d ,RM )-valued process and

d
∫

Rd
〈ut 〉p dx =

∫
Rd

p〈ut 〉p−2〈ut , σ
ik Di ut + νk

t ut + gk
t 〉 dx dwk

t

+
∫

Rd

(
p〈ut 〉p−2〈ut , bi

t Di ut + ct ut + ft − Di a
i j
t D j ut 〉

− p〈ut 〉p−2〈Di ut , ai j
t D j ut 〉

− (1/2)p(p − 2)〈ut 〉p−4 Di 〈ut 〉2〈ut , ai j
t D j ut 〉

+
∑

k

{
(1/2)p(p − 2)〈ut 〉p−4〈ut , σ

ik
t Di ut + νk

t ut + gk
t 〉2

+ (1/2)p〈ut 〉p−2〈σ ik
t Di ut + νk

t ut + gk
t 〉2
} )

dx dt. (5.2)

Observe that

〈ut 〉p−2〈ut , ft 〉 ≤ 〈ut 〉p + 〈 ft 〉p, 〈ut 〉p−2
∑

k

〈gk
t 〉2 ≤ 〈ut 〉p +

(∑
k

〈gk
t 〉2
)p/2

,

〈ut 〉p−2
∑

k

〈νk
t ut , gk

t 〉 ≤ N 〈ut 〉p−1

(∑
k

〈gk
t 〉2

)1/2

≤ N 〈ut 〉p + N

(∑
k

〈gk
t 〉2

)p/2

,

〈ut 〉p−4
∑

k

〈ut , gk
t 〉2 ≤ 〈ut 〉p−2

∑
k

〈gk
t 〉2 ≤ 〈ut 〉p +

(∑
k

〈gk
t 〉2

)p/2

,
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〈ut 〉p−4
∑

k

〈ut , ν
k
t ut 〉〈ut , gk

t 〉 ≤ N 〈ut 〉p−1

(∑
k

〈gk
t 〉2

)1/2

≤ 〈ut 〉p +
(∑

k

〈gk
t 〉2

)p/2

,

〈ut 〉p−2〈ut , ct ut 〉 ≤ 〈ut 〉p−1〈ct ut 〉 ≤ |ct |〈ut 〉p,

where |c| denotes the (Hilbert–Schmidt) norm of c.
This shows how to estimate a few terms on the right in (5.2). We write ξ ∼ η if

ξ and η have identical integrals over R
d and we write ξ � η if ξ ∼ η + ζ and the

integral of ζ over R
d can be estimated by the coefficient of dt in the right-hand side

of (5.1). For instance, integrating by parts and using the smoothness of σ ik
t and gk

t we
get

p〈ut 〉p−2〈σ ik
t Di ut , gk

t 〉 � −pσ ik
t (Di 〈ut 〉p−2)〈ut , gk

t 〉
= −p(p − 2)〈ut 〉p−4〈ut , σ

ik
t Di ut 〉〈ut , gk

t 〉, (5.3)

where the first expression comes from the last occurrence of gk
t in (5.2), and the last one

with an opposite sign appears in the evaluation of the first term behind the summation
over k in (5.2). Notice, however, that these calculations are not justified when p is
close to 2, since in this case 〈ut 〉p−2 may not be absolutely continuous with respect
to xi and it is not clear either if 0/0 should be defined as 0 when it occurs in the
second line. For p = 2 we clearly have 〈σ ik

t Di ut , gk
t 〉 � 0. For p > 2 we modify the

above calculations by approximating the function 〈t〉p−2, t ∈ R
M , by continuously

differentiable functions φn(t) = ϕn(〈t〉2) such that

lim
n→∞ϕn(r) = |r |(p−2)/2, lim

n→∞ϕ
′
n(r) = (p − 2)sign(r)|r |(p−4)/2/2

for all r ∈ R, and

|ϕn(r)| ≤ N |r |(p−2)/2, |ϕ′
n(r)| ≤ N |r |(p−4)/2

for all r ∈ R and integers n ≥ 1, where ϕ′
n := dϕn/dr and N is a constant independent

of n. Thus instead of (5.3) we have

pϕn(〈ut 〉2)〈σ ik
t Di ut , gk

t 〉 � −2pϕ′
n(〈ut 〉2)〈ut , σ

ik
t Di ut 〉〈ut , gk

t 〉, (5.4)

where
|ϕ′

n(〈ut 〉2)〈ut , σ
ik
t Di ut 〉〈ut , gk

t 〉| ≤ N 〈ut 〉p−2〈Di ut 〉〈gk
t 〉 (5.5)

with a constant N independent of n. Letting n → ∞ in (5.4) we get

p〈ut 〉p−2〈σ ik
t Di ut , gk

t 〉 � −p(p − 2)〈ut 〉p−4〈ut , σ
ik
t Di ut 〉〈ut , gk

t 〉,

where, due to (5.5), 0/0 means 0 when it occurs .
These manipulations allow us to take care of the terms containing f and g and

show that to prove the lemma we have to prove
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p(I0 + I1 + I2)+ (p/2)I3 + [p(p − 2)/2](I4 + I5)

� −(p/4)〈ut 〉p−2α
i j
t 〈Di ut , D j ut 〉, (5.6)

where

I0 = −〈ut 〉p−2 Di a
i j
t 〈ut , D j ut 〉, I1 = −〈ut 〉p−2ai j

t 〈Di ut , D j ut 〉
I2 = 〈ut 〉p−2〈ut , bi

t Di ut 〉, I3 = 〈ut 〉p−2
∑

k

〈σ ik
t Di ut + νk

t ut 〉2,

I4 = 〈ut 〉p−4
∑

k

〈
ut , σ

ik
t Di ut + νk

t ut

〉2
, I5 = −〈ut 〉p−4 Di 〈ut 〉2〈ut , ai j

t D j ut 〉.

Observe that

I0 = −(1/2)〈ut 〉p−2 Di a
i j
t D j 〈ut 〉2 = −(1/p)D j 〈ut 〉p Di a

i j
t � 0,

by the smoothness of a. Also notice that

I3 � 〈ut 〉p−2σ ik
t σ

jk
t 〈Di ut , D j ut 〉 + I6,

where

I6 = 2〈ut 〉p−2σ ik
t 〈Di ut , ν

kut 〉.

It follows that

pI1 + (p/2)I3 � −(p/2)〈ut 〉p−2α
i j
t 〈Di ut , D j ut 〉 + (p/2)I6.

Next,

I4 � 〈ut 〉p−4σ ik
t σ

jk
t 〈ut , Di ut 〉〈ut , D j ut 〉 + 2〈ut 〉p−4σ ik

t 〈ut , Di ut 〉〈ut , ν
k
t ut 〉

= (1/4)〈ut 〉p−4σ ik
t σ

jk
t Di 〈ut 〉2 D j 〈ut 〉2 + [2/(p − 2)](Di 〈ut 〉p−2)σ ik

t 〈ut , ν
k
t ut 〉

� (1/4)〈ut 〉p−4σ ik
t σ

jk
t Di 〈ut 〉2 D j 〈ut 〉2 − [1/(p − 2)]I6 − [2/(p − 2)]I7,

where

I7 = 〈ut 〉p−2σ ik
t 〈ut , ν

k
t Di ut 〉.

Hence

pI1 +(p/2)I3 + [p(p − 2)/2](I4 + I5) � −(p/2)〈ut 〉p−2α
i j
t 〈Di ut , D j ut 〉

−[p(p − 2)/8]〈ut 〉p−4α
i j
t Di 〈ut 〉2 D j 〈ut 〉2 − pI7,
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and

I2 − I7 = 〈ut 〉p−2(〈ut , bi
t Di ut 〉 − σ ik

t 〈ut , ν
k
t Di ut 〉) = 〈ut 〉p−2〈ut , β

i
t Di ut 〉,

with β i = bi − σ ikνk . It follows by Remark 3.2 that the left-hand side of (5.6) is
estimated in the order defined by � by

− (p/2)〈ut 〉p−2α
i j
t 〈Di ut , D j ut 〉

− [p(p − 2)/8]〈ut 〉p−4α
i j
t Di 〈ut 〉2 D j 〈ut 〉2

+ K0 p〈ut 〉p−2

∣∣∣∣∣∣
d∑

i, j=1

α
i j
t 〈Di ut , D j ut 〉

∣∣∣∣∣∣
1/2

〈ut 〉 + hi Di 〈ut 〉p

� −(p/4)〈ut 〉p−2α
i j
t 〈Di ut , D j ut 〉

− [p(p − 2)/8]〈ut 〉p−4α
i j
t Di 〈ut 〉2 D j 〈ut 〉2〉, (5.7)

where the last relation follows from the elementary inequality ab ≤ εa2 +ε−1b2. The
lemma is proved. ��
Remark 5.1 In the case that p = 2 one can replace condition (3.6) with the following:

There are constant K0, N ≥ 0 such that for all continuously differentiable R
M -

valued functions u = u(x)with compact support in R
d and all values of the arguments

we have
∫

Rd
〈u, β i Di u〉 dx ≤ N

∫
Rd

〈u〉2 dx

+ K0

∫
Rd

⎛
⎜⎝
∣∣∣∣∣∣

d∑
i, j=1

αi j 〈Di u, D j u〉
∣∣∣∣∣∣
1/2

〈u〉 + hi 〈Di u, u〉
⎞
⎟⎠ dx .

(5.8)

This condition is weaker than (3.6) as follows from Remark 3.2 and still by inspecting
the above proof we get that u is a continuous L2(R

d ,RM )-valued process, and there
is a constant N = N (K , d,M, K0) such that (5.1) holds with p = 2.

Remark 5.2 In the case that p = 2 and the magnitudes of the first derivatives of bi

are bounded by K one can further replace condition (5.8) with a more tractable one,
which is Assumption 3.4.

Indeed, for ε > 0

R := 〈u, (β i − hi IM )Di u〉 = 1
2β

ikl Di (u
kul)+ 〈u, (β̄ i − hi IM )Di u〉

≤ 1
2β

ikl Di (u
kul)+ ε〈(β̄ i − hi IM )Di u〉2/2 + ε−1〈u〉2/2.

Using Assumption 3.4 we get

R ≤ 1
2β

ikl Di (u
kul)+ εM K0α

i j 〈Di u, D j u〉/2 + ε−1〈u〉2/2
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for every ε > 0. Hence by integration by parts we have

∫
Rd

〈u, β i Di u〉 dx ≤ N
∫

Rd
〈u〉2 dx +

∫
Rd

〈u, hi IM Di u〉 dx

+ M K0

∫
Rd
(ε/2)αi j 〈Di ut , D j ut 〉 + (ε−1/2)〈u〉2 dx .

Minimising here over ε > 0 we get (5.8). In that case again u is a continuous
L2(R

d ,RM )-valued process, and there is a constant N = N (K , d,M, K0) such that
(5.1) holds with p = 2.

Remark 5.3 If M = 1, then condition (3.7) is obviously satisfied with K0 = 0 and
hi = bi − σ ikνk .

Also note that in the general case, if the coefficients are smoother, then by formally
differentiating equation (3.1) with respect to xi we obtain a new system of equations
for the M × d matrix-valued function

vt = (vnm
t ) = Dut = (Dmun

t ).

We treat the space of M × d matrices as a Euclidean Md-dimensional space, the
coordinates in which are organized in a special way. The inner product in this space
is then just 〈〈A, B〉〉 = tr AB∗. Naturally, linear operators in this space will be given
by matrices like (T (nm)(pj)), which transforms an M × d matrix (Apj ) into an M × d
matrix (Bnm) by the formula

Bnm =
m∑

p=1

d∑
j=1

T (nm)(pj)Apj .

We claim that the coefficients, the initial value and free terms of the system for vt

satisfy Assumptions 3.1, 3.2, and 3.3 with m ≥ 0 if Assumptions 3.1, 3.2, and 3.3 are
satisfied with m ≥ 1 for the coefficients, the initial value and free terms of the original
system for ut .

Indeed, as is easy to see, vt satisfies (3.1) with the same σ and a and with b̃i , c̃, f̃ ,
ν̃k , g̃k in place of bi , c, f , νk , gk , respectively, where

b̃i(nm)(pj) = Dmai jδ pn + binpδ jm, c̃(nm)(pj) = cnpδmj + Dmb jnp, (5.9)

f̃ nm = Dm f n + ur Dmcnr , ν̃k(nm)(pj) = Dmσ
jkδnp + νknpδmj ,

g̃knm = Dm gkn + ur Dmν
knr . (5.10)

Then the left-hand side of the counterpart of (3.7) for v is

d∑
m=1

Km +
M∑

n=1

Jn,
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where (no summation with respect to m)

Km = vnmbinr Div
rm − σ ikvnmνknr Div

rm

and (no summation with respect to n)

Jn = vnm Dmai j Div
nj − σ ikvnm Dmσ

jk Div
nj .

Observe that Div
nj = Di j un implying that

σ ik Dmσ
jk Div

nj = (1/2)Dm(σ
ikσ jk)Di j u

n,

Jn = (1/2)vnm Dmα
i j Di j u

n .

By Lemma 4.2 for any ε > 0 and n (still no summation with respect to n)

Jn ≤ Nε−1〈〈v〉〉2 + εαi j Dikun D jkun,

which along with the fact that Dikun = Div
nk yields

M∑
n=1

Jn ≤ Nε−1〈〈v〉〉2 + εαi j 〈〈Div, D jv〉〉.

Upon minimizing with respect to ε we find

M∑
n=1

Jn ≤ N

⎛
⎝ d∑

i, j=1

αi j 〈〈Div, D jv〉〉
⎞
⎠

1/2

〈〈v〉〉.

Next, by assumption for any ε > 0 and m (still no summation with respect to m)

Km ≤ Nε−1〈〈v〉〉2 + εαi j Div
rm D jv

rm + (1/2)hi Di

M∑
r=1

(vrm)2.

We conclude as above that

d∑
m=1

Km ≤ N

⎛
⎝ d∑

i, j=1

αi j 〈〈Div, D jv〉〉
⎞
⎠

1/2

〈〈v〉〉 + hi 〈〈Div, v〉〉

and this proves our claim.
The above calculations show also that the coefficients, the initial value and the free

terms of the system for vt satisfy Assumptions 3.1, 3.2, and 3.4 with m − 1 ≥ 0 if
Assumptions 3.1, 3.2, and 3.4 are satisfied with m ≥ 1 for the coefficients, the initial
value and free terms of the original equation for ut . (Note that due to Assumptions 3.1
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with m ≥ 1, b̃, given in (5.9), has first order derivatives in x , which in magnitude are
bounded by a constant.)

Now higher order derivatives of u are obviously estimated through lower order ones
on the basis of this remark without any additional computations. However, we still
need to be sure that we can differentiate equation (3.1).

By the help of the above remarks one can easily estimate the moments of the
W n

p -norms of u using of the following version of Gronwall’s lemma.

Lemma 5.2 Let y = (yt )t∈[0,T ] and F = (Ft )t∈[0,T ] be adapted nonnegative sto-
chastic processes and let m = (mt )t∈[0,T ] be a continuous local martingale such
that

dyt ≤ (N yt + Ft ) dt + dmt on [0, T ] (5.11)

d[m]t ≤ (N y2
t + y2(1−ρ)

t G2ρ
t ) dt on[0, T ], (5.12)

with some constants N ≥ 0 and ρ ∈ [0, 1/2], and a nonnegative adapted stochastic
process G = (Gt )t∈[0,T ], such that

∫ T

0
Gt dt < ∞ (a.s.),

where [m] is the quadratic variation process for m. Then for any q > 0

E sup
t≤T

yq
t ≤ C Eyq

0 + C E

{∫ T

0
(Ft + Gt ) dt

}q

with a constant C = C(N , q, ρ, T ).

Proof This lemma improves Lemma 3.7 from [10]. Its proof goes in the same way as
that in [10], and can be found in [11]. ��
Lemma 5.3 Let m ≥ 0. Suppose that Assumptions 3.1, 3.2, and 3.3 are satisfied and
assume that u = (ut )t∈[0,T ] is a solution of (3.1)-(3.2) on [0, T ] such that (a.s.)

∫ T

0
|ut |p

W m+1
p

dt < ∞.

Then (a.s.) u is a continuous W m
p (R

d ,RM )-valued process and for any q > 0

E sup
t∈[0,T ]

|ut |qW m
p

≤ N (E |ψ |qW m
p

+ EKq
m,p(T )) (5.13)

with a constant N = N (m, p, q, d,M, K , K0, T ). If p = 2 and instead of Assump-
tion 3.3 Assumption 3.4 holds and (in case m = 0) the magnitudes of the first deriv-
atives of bi are bounded by K , then u is a continuous W m

2 (R
d ,RM )-valued process,

and for any q > 0 estimate (5.13) holds (with p = 2).
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Proof We are going to prove the lemma by induction on m. First let m = 0 and denote
yt := |ut |p

L p
. Then by virtue of Remark 5.2 and Lemma 5.1, the process y = (yt )t∈[0,T ]

is an adapted L p-valued continuous process, and (5.11) holds with

Ft : =
∫

Rd

⎡
⎣〈 ft 〉p +

(∑
k

〈gk
t 〉2

)p/2

+
(∑

k

〈Dgk
t 〉2

)p/2
⎤
⎦ dx,

mt : = p
∫ t

0

∫
Rd

〈us〉p−2
〈
us, σ

ik
s Di us + νk

s us + gk
s

〉
dx dwk

s .

Notice that

d[mt ] = p2
∞∑

r=1

(∫
Rd

〈ut 〉p−2〈ut , σ
ir
t Di ut + νr

t ut + gr
t 〉 dx

)2

dt.

≤ 3p2(At + Bt + Ct ) dt,

with

At =
∞∑

r=1

(
p
∫

Rd
〈ut 〉p−2σ ir

t 〈ut , Di ut 〉 dx

)2

=
∞∑

r=1

(∫
Rd
σ ir

t Di 〈ut 〉p dx

)2

,

Bt =
∞∑

r=1

(∫
Rd

〈ut 〉p−2〈ut , ν
r
t ut 〉 dx

)2

, Ct =
∞∑

r=1

(∫
Rd

〈ut 〉p−2〈ut , gr
t 〉 dx

)2

.

Integrating by parts and then using Minkowski’s inequality, due to Assumption 2.1,
we get At ≤ N y2

t with a constant N = N (K ,M, d). Using Minkowski’s inequality
and taking into account that

∞∑
r=1

〈u, νr u〉2 ≤ 〈u〉4
∞∑

r=1

|νr |2 ≤ N 〈u〉4,

∞∑
r=1

〈u, gr 〉2 ≤ 〈u〉2|g|,

we obtain

Bt ≤ N y2
t , Ct ≤

(∫
Rd

〈ut 〉p−1|gt | dx

)2

≤ |yt |2(p−1)/p|gt |2L p
.

Consequently, condition (5.12) holds with Gt = |gt |p
L p

, ρ = 1/p, and we get (5.13)
with m = 0 by applying Lemma 5.2.

Let m ≥ 1 and assume that the assertions of the lemma are valid for m − 1, in
place of m, for any M ≥ 1, p ≥ 2 and q > 0, for any u, ψ , f and g satisfying the
assumptions with m − 1 in place of m. Recall the notation v = (vnl

t ) = (Dlun
t ) from

Remark 5.3, and that vt satisfies (3.1) with the same σ and a and with b̃i , c̃, f̃ , ν̃k , g̃k

in place of bi , c, f , νk , gk , respectively. By virtue of Remarks 5.3 and 5.2 the system
for v = (vt )t∈[0,T ] satisfies Assumption 3.3, and it is easy to see that it satisfies also
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Assumptions 3.1 and 3.2 with m − 1 in place of m. Hence by the induction hypothesis
v is a continuous W m−1

p (Rd ,RM )-valued adapted process, and we have

E sup
t∈[0,T ]

|vt |qW m−1
p

≤ N

(
E |ψ̃ |q

W m−1
p

+ EK̃q
m−1,p(T )

)
(5.14)

with a constant N = N (T, K , K0,M, d, p, q), where ψ̃nl = Dlψ
n ,

K̃p
m−1,p(T ) :=

∫ T

0

(
| f̃t |p

W m−1
p

+ |g̃t |p
W m

p

)
dt.

It follows that (ut )t∈[0,T ] is a W m
p (R

d ,RM )-valued continuous adapted process, and
by using the induction hypothesis it is easy to see that

EK̃q
m−1,p(T )) ≤ N

(
E |ψ |qW m

p
+ EKq

m,p(T )
)
.

Thus (5.13) follows.
If p = 2 and Assumption 3.3 is replaced with Assumptions 3.4, then the proof of

the conclusion of the lemma goes in the same way with obvious changes. The proof
is complete.

6 Proof of Theorems 3.1 and 3.2

First we prove uniqueness. Let u(1) and u(2) be solutions to (3.1)-(3.2), and let Assump-
tions 3.1, 3.2 and 3.3 hold with m = 0. Then u := u(1)−u(2) solves (3.1) with u0 = 0,
g = 0 and f = 0 and Lemma 5.1 and Remark 5.2 are applicable to u. Then using
Itô’s formula for transforming |ut |p

L p
exp(−λt) with a sufficiently large constant λ,

after simple calculations we get that almost surely

0 ≤ e−λt |ut |p
L p

≤ mt for all t ∈ [0, T ],

where m := (mt )t∈[0,T ] is a continuous local martingale starting from 0. Hence almost
surely mt = 0 for all t , and it follows that almost surely u(1)t (x) = u(2)t (x) for all t
and almost every x ∈ R

d . If p = 2 and Assumptions 3.1, 3.2 and 3.4 hold and
the magnitudes of the first derivatives of bi are bounded by K and u(1) and u(2) are
solutions, then we can repeat the above argument with p = 2 to get u(1) = u(2).

To show the existence of solutions we approximate the data of system (3.1) with
smooth ones, satisfying also the strong stochastic parabolicity, Assumption 4.1. To
this end we will use the approximation described in the following lemma.

Lemma 6.1 Let Assumptions 3.1 and 3.3 (3.4, respectively) hold with m ≥ 1. Then
for every ε ∈ (0, 1) there exist P ⊗ B(Rd)-measurable smooth (in x) functions aεi j ,
b(ε)i , c(ε), σ (ε)i , ν(ε), Dkaεi j and h(ε)i , satisfying the following conditions for every
i, j, k = 1, . . . , d.
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(i) There is a constant N = N (K ) such that

|aεi j − ai j | + |b(ε)i − bi | + |c(ε) − c| + |Dkaεi j − Dkai j | ≤ Nε,

|σ (ε)i − σ i | + |ν(ε) − ν| ≤ Nε

for all (ω, t, x) and i, j, k = 1, . . . , d.
(ii) For every integer n ≥ 0 the partial derivatives in x of aεi j , b(ε)i , c(ε), σ (ε)i and

ν(ε) up to order n are P ⊗ B(Rd)-measurable functions, in magnitude bounded
by a constant. For n = m this constant is independent of ε, it depends only on m,
M, d and K ;

(iii) For the matrix αεi j := 2aεi j − σ (ε)ikσ (ε) jk we have

αεi jλiλ j ≥ ε

d∑
i=1

|λi |2 for all λ = (λ1, . . . , λd) ∈ R
d ;

(iv) Assumption 3.3 (3.4, respectively) holds for the functions αεi j , βεi := b(ε)i −
σ (ε)ikν(ε)k and h(ε)i in place ofαi j ,β i and hi , respectively, with the same constant
K0.

Proof The proofs of the two statements containing Assumptions 3.3 and 3.4, respec-
tively, go in essentially the same way, therefore we only detail the former. Let ζ be a
nonnegative smooth function on R

d with unit integral and support in the unit ball, and
let ζε(x) = ε−dζ(x/ε). Define

b(ε)i = bi ∗ ζε, c(ε) = c ∗ ζε, σ (ε)i = σ i ∗ ζε, ν(ε) = ν ∗ ζε, h(ε)i = hi ∗ ζε,

and aεi j = ai j ∗ ζε + kεδi j with a constant k > 0 determined later, where δi j is the
Kronecker symbol and ‘∗’ means the convolution in the variable x ∈ R

d . Since we
have mollified functions which are bounded and Lipschitz continuous, the mollified
functions, together with aεi j and Dkaεi j , satisfy conditions (i) and (ii). Furthermore,

|σ (ε)irν(ε)r − σ irνr | ≤ |σ (ε)i − σ i ||ν(ε)| + |σ i ||ν(ε) − ν| ≤ 2K 2ε,

for every i = 1, . . . , d. Similarly,

|σ (ε)irσ (ε) jr − σ irσ jr | ≤ 2K 2ε, |b(ε)i − bi | ≤ K ε, |h(ε)i − hi | ≤ Nε

for all i, j = 1, 2, . . . , d. Hence setting

Bεi = b(ε)i − σ (ε)ikν(ε)k − h(ε)i IM ,

and using the notation Bi for the same expression without the superscript ‘ε’, we have

|Bεi − Bi | ≤ |b(ε)i − bi | + |σ (ε)irν(ε)r − σ irνr | + √
M|h(ε)i − hi | ≤ Rε,

|B(ε)i + Bi | ≤ R
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with a constant R = R(M, K ). Thus for any z1,…,zd vectors from R
M

|〈Bεi zi 〉2 − 〈Bi zi 〉2| = |〈(Bεi − Bi )zi , (B
ε j + B j )z j 〉|

≤ |Bεi − Bi ||Bε j + B j |〈zi 〉〈z j 〉 ≤ d R2ε

d∑
i=1

〈zi 〉2.

Therefore

〈Bεi zi 〉2 ≤ 〈Bi zi 〉2 + C1ε

d∑
i=1

〈zi 〉2

with a constant C1 = C1(M, K , d). Similarly,

∑
i, j

(
2aεi j − σ (ε)ikσ (ε) jk

)
〈zi , z j 〉

≥
∑
i, j

(2ai j − σ ikσ jk)〈zi , z j 〉 + (k − C2)ε
∑

i

〈zi 〉2

with a constant C2 = C2(K ,m, d). Consequently,

〈(βεi − h(ε)i IM )zi 〉2 ≤ 〈Bi zi 〉2 + C1ε

d∑
i=1

〈zi 〉2

≤ K0

d∑
i, j=1

αi j 〈zi , z j 〉 + C1ε

d∑
i=1

〈zi 〉2

≤ K0

d∑
i, j=1

αεi j 〈zi , z j 〉 + (K0(C2 − k)+ C1)ε

d∑
i=1

〈zi 〉2.

Choosing k such that K0(C2 − k)+ C1 = −K0 we get

〈(βεi − h(ε)i IM )zi 〉2 + K0ε

d∑
i=1

〈zi 〉2 ≤ K0

d∑
i, j=1

αεi j 〈zi , z j 〉.

Hence statements (iii) and (iv) follow immediately. ��
Now we start with the proof of the existence of solutions which are W m

p (R
d ,RM )-

valued if the Assumptions 3.1, 3.2 and 3.3 hold with m ≥ 1. First we make the
additional assumptions that ψ , f and g vanish for |x | ≥ R for some R > 0, and that
q ∈ [2,∞) and

E |ψ |qW m
p

+ EKq
m,q(T ) < ∞. (6.1)
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For each ε > 0 we consider the system

duεt =
[
σ
(ε)ir
t Di u

ε
t + ν

(ε)r
t uεt + g(ε)rt

]
dwr

t

+ [aεi j
t Di j u

ε
t + b(ε)it Di u

ε
t + f (ε)t

]
dt (6.2)

with initial condition
u(ε)0 = ψ(ε), (6.3)

where the coefficients are taken from Lemma 6.1, and ψ(ε), f (ε) and g(ε) are defined
as the convolution of ψ , f and g, respectively, with ζε(·) = ε−dζ(·/ε) for ζ ∈
C∞

0 (R
d) taken from the proof of Lemma 6.1. By Theorem 4.1 the above equation has

a unique solution uε, which is a W n
2 (R

d ,RM )-valued continuous process for all n.
Hence, by Sobolev embeddings, uε is a W m+1

p (Rd ,RM )-valued continuous process,
and therefore we can use Lemma 5.3 to get

E sup
t∈[0,T ]

|uεt |qW n
p′

≤ N

(
E |ψ(ε)|qW n

p′
+ E(Kε

n,p′)q(T )

)
(6.4)

for p′ ∈ {p, 2} and n = 0, 1, 2, . . . ,m, where Kε
n,p′ is defined by (3.4) with f (ε) and

g(ε) in place of f and g, respectively. Keeping in mind that T 1/r ≤ max{1, T }, and
using basic properties of convolution, we can conclude that

E

(∫ T

0
|uεt |rW n

p′ dt

)q/r

≤ N (E |ψ |qW n
p′

+ EKq
n,p′(T )) (6.5)

for any r > 1 and with N = N (m, p, q, d,M, K , T ) not depending on r .
For integers n ≥ 0, and any r, q ∈ (1,∞) let H

n
p,r,q be the space of R

M -valued

functions v = vt (x) = (vi
t (x))

M
i=1 on�×[0, T ]×R

d such that v = (vt (·))t∈[0,T ] are
W n

p (R
d ,RM )-valued predictable processes and

|v|q
Hn

p,r,q
= E

(∫ T

0
|vt |rW n

p
dt

)q/r

< ∞.

Then H
n
p,r,q with the norm defined above is a reflexive Banach space for each n ≥ 0

and p, r, q ∈ (1,∞). We use the notation H
n
p,q for H

n
p,q,q .

By Assumption 3.2 the right-hand side of (6.5) is finite for p′ = p and also for
p = 2 since ψ , f and g vanish for |x | ≥ R. Thus there exists a sequence (εk)k∈N

such that εk → 0 and for p′ = p, 2 and integers r > 1 and n ∈ [0,m] the sequence
vk := uεk converges weakly in H

n
p′r,q to some v ∈ Hm

p′,r,q , which therefore also
satisfies

E

(∫ T

0
|vt |rW n

p′ dt

)q/r

≤ N (E |ψ |qW n
p′

+ EKq
n,q(T ))
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for p′ = p, 2 and integers r > 1. Using this with p′ = p and letting r → ∞ by
Fatou’s lemma we obtain

E ess sup
t∈[0,T ]

|vt |qW n
p

≤ N (E |ψ |qW n
p

+ EKq
n,p(T )) for n = 0, 1, . . . ,m. (6.6)

Now we are going to show that a suitable stochastic modification of v is a solution of
(3.1)-(3.2). To this end we fix an R

M -valued function ϕ in C∞
0 (R

d) and a predictable
real-valued process (ηt )t∈[0,T ], which is bounded by some constant C , and define the
functionals �, �k , � and �k over H

1
p,q by

�k(u) = E
∫ T

0
ηt

∫ t

0

{
−(aεk i j

s Di us, D jϕ)+ (b̄εk i
s Di us + c(εk )

s us, ϕ)
}

ds dt,

�(u) = E
∫ T

0
ηt

∫ t

0

{
−(ai j

s Di us, D jϕ)+ (b̄i
s Di us + csus, ϕ)

}
ds dt,

�(u) = E
∫ T

0
ηt

∫ t

0
(σ ir

t Di ut + νr
t ut , ϕ) dwr

t dt

�k(u) = E
∫ T

0
ηt

∫ t

0

(
σ
(εk )ir
t Di ut + ν

(εk )r
t ut , ϕ

)
dwr

t dt

for u ∈ H
1
p,q for each k ≥ 1, where b̄εi = b(ε)i − D j aεi j IM . By the Bunyakovsky-

Cauchy-Schwarz and the Burkholder-Davis-Gundy inequalities for all u ∈ H
1
p,q we

have

�(u) ≤ C N T 2−1/q |u|H1
p,q

|ϕ|W 1
p̄
,

�(u) ≤ CT E sup
t≤T

∣∣∣∣
∫ t

0
(σ ir

t Di ut + νr
t ut , ϕ) dwr

t

∣∣∣∣

≤ 3CT E

{∫ T

0

∞∑
r=1

(σ ir
t Di ut + νr

t ut , ϕ)
2 dt

}1/2

≤ 3CT E

{∫ T

0

(∫
Rd

|〈σ ir
t Di ut + νr

t ut , ϕ〉|l2 dx

)2

dt

}1/2

≤ CT N E

{∫ T

0
|ut |2W 1

p
|ϕ|2

W 1
p̄

dt

}1/2

≤ C N T q/2|u|H1
p,q

|ϕ|W 1
p̄

with a constant N = N (K , d,M), where p̄ = p/(p − 1). (In the last inequality we
make use of the assumption q ≥ 2.) Consequently, � and � are continuous linear
functionals over H

1
p,q , and therefore

lim
k→∞�(v

k) = �(v), lim
k→∞�(v

k) = �(v). (6.7)
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Using statement (i) of Lemma 6.1, we get

|�k(u)−�(u)| + |�k(u)−�(u)| ≤ Nεk |u|H1
p,q

|ϕ|W 1
p̄

(6.8)

for all u ∈ H
1
p,q with a constant N = N (k, d,M). Since uε is the solution of (6.2)-

(6.3), we have

E
∫ T

0
ηt (v

k
t , ϕ) dt = E

∫ T

0
ηt (ψ

k, ϕ) dt +�(vk)+�(vk)

+ F( f (εk ))+ G(g(εk)) (6.9)

for each k, where

F( f (εk )) = E
∫ T

0
ηt

∫ t

0

(
f (εk )
s , ϕ

)
ds dt,

G(g(εk)) = E
∫ T

0
ηt

∫ t

0

(
g(εk )r

s , ϕ
)

dwr
s dt.

Taking into account that |vk |H1
p,q

is a bounded sequence, from (6.7) and (6.8) we obtain

lim
k→∞�n(v

k) = �(v), lim
k→∞�k(v

k) = �(v). (6.10)

One can see similarly (in fact easier), that

lim
k→∞ E

∫ T

0
ηt (v

k
t , ϕ) dt = E

∫ T

0
ηt (vt , ϕ) dt, (6.11)

lim
k→∞ E

∫ T

0
ηt (ψ

(εk )
t , ϕ) dt = E

∫ T

0
ηt (ψ, ϕ) dt, (6.12)

lim
k→∞ F( f (εk )) = F( f ), lim

k→∞ G(g(εk)) = G(g). (6.13)

Letting k → ∞ in (6.9), and using (6.10) through (6.13) we obtain

E
∫ T

0
ηt (vt , ϕ) dt

= E
∫ T

0
ηt

{
(ψ, ϕ)+

∫ t

0

[− (ai j
s Di us, D jϕ)+ (b̄i

s Di us + csus + fs, ϕ)
]

ds

+
∫ t

0
(σ ir Divs + νrvs, ϕ) dwr

s

}
dt
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for every bounded predictable process (ηt )t∈[0,T ] and ϕ from C∞
0 . Hence for each

ϕ ∈ C∞
0

(vt , ϕ) = (ψ, ϕ)+
∫ t

0

[− (ai j
s Divs, D jϕ)+ (b̄i

s Divs + csvs + fs, ϕ)
]

ds

+
∫ t

0
(σ ir Divs + νrvs + gr

s , ϕ) dwr
s

holds for P × dt almost every (ω, t) ∈ �× [0, T ]. Substituting here (−1)|α| Dαϕ in
place of ϕ for a multi-index α = (α1, . . . , αd) of length |α| ≤ m − 1 and integrating
by parts, we see that

(Dαvt , ϕ) = (Dαψ, ϕ)+
∫ t

0

[−(F j
s , D jϕ)+(F0

s , ϕ)
]

ds +
∫ t

0
(Gr

s , ϕ) dwr
s (6.14)

for P × dt almost every (ω, t) ∈ �× [0, T ], where, owing to the fact that (6.6) also
holds with 2 in place of p, Fi and (Gr )∞r=1 are predictable processes with values in
L2-spaces for i = 0, 1, . . . , d, such that

∫ T

0

(
d∑

i=0

|Fi
s |2L2

+ |Gs |2L2

)
ds < ∞ (a.s.).

Hence the theorem on Itô’s formula from [21] implies that in the equivalence class of
v in H

m
2,q there is a W m−1

2 (Rd ,RM )-valued continuous process, u = (ut )t∈[0,T ], and

(6.14) with u in place of v holds for any ϕ ∈ C∞
0 (R

d) almost surely for all t ∈ [0, T ].
After that an application of Lemma 4.3 to Dαu for |α| ≤ m − 1 yields that Dαu is an
L p(R

d ,RM )-valued, strongly continuous process for every |α| ≤ m − 1, i.e., u is a
W m−1

p (Rd ,RM )-valued strongly continuous process. This, (6.6), and the denseness of
C∞

0 in W m
p (R

d ,RM ) implies that (a.s.) u is a W m
p (R

d ,RM )-valued weakly continuous
process and (3.11) holds.

To prove the theorem without the assumption thatψ , f and g have compact support,
we take a ζ ∈ C∞

0 (R
d) such that ζ(x) = 1 for |x | ≤ 1 and ζ(x) = 0 for |x | ≥ 2,

and define ζn(·) = ζ(·/n) for n > 0. Let u(n) = (ut (n))t∈[0,T ] denote the solution
of (3.1)-(3.2) with ζnψ , ζn f and ζng in place of ψ , f and g, respectively. By virtue
of what we have proved above, u(n) is a weakly continuous W m

p (R
d ,RM )-valued

process, and

E sup
t∈[0,T ]

|ut (n)− ut (l)|qW m
p

≤ N E |(ζn − ζl)ψ |qW m
p

+ N E

(∫ T

0

{
|(ζn − ζl) fs |p

W m
p

+ |(ζn − ζl)gs |p

W m+1
p

}
ds

)q/p

.

Letting here n, l → ∞ and applying Lebesgue’s theorem on dominated convergence
in the left-hand side, we see that the right-hand side of the inequality tends to zero. Thus
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for a subsequence nk → ∞ we have that ut (nk) converges strongly in W m
p (R

d ,RM ),
uniformly in t ∈ [0, T ], to a process u. Hence u is a weakly continuous W m

p (R
d ,RM )-

valued process. It is easy to show that it solves (3.1)–(3.2) and satisfies (3.11).
By using a standard stopping time argument we can dispense with condition (6.1).

Finally we can prove estimate (3.11) for q ∈ (0, 2) by applying Lemma 3.2 from [8] in
the same way as it is used there to prove the corresponding estimate in the case M = 1.
The proof of the Theorem 3.1 is complete. We have already showed the uniqueness
statement of Theorem 3.2, the proof of the other assertions goes in the above way with
obvious changes.
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