
ORIGINAL RESEARCH

Capability of some agricultural wastes for removing some
heavy metals from polluted water stocked in combination
with Nile tilapia, Oreochromis niloticus (L.)

Mohsen Abdel-Tawwab . Gamal O. El-Sayed . Sherien H. H. Shady

Received: 14 January 2017 / Accepted: 18 April 2017 / Published online: 28 April 2017

� The Author(s) 2017. This article is an open access publication

Abstract Heavy metal (HM) pollution is one of the major problems that adversely affect the aquatic

ecosystem and inhabiting biota. Heavy metals adsorption by low-cost adsorbents is one of the techniques used

for HM removing from polluted water. In the present study, agricultural wastes (AW), i.e., rice straw,

sugarcane bagasse, and maize stalks, were washed with distilled water, dried in a dry-oven, cut into small

pieces (\0.5 cm long), and immersed at 1.0 g/L in aquaria containing synthetic mixture of lead (Pb), cadmium

(Cd), copper (Cu), and zinc (Zn). Nile tilapia, Oreochromis niloticus (L.), fingerlings (25.2 ± 0.88 g) were

stocked at a density of ten fish per 100-L aquarium for 72 h, during which fish were fed on a fish diet

containing 25% crude protein ad libitum twice daily. Samples of water, AW, and fish were collected at

different times to determine HM concentrations. The HM removal from polluted water was depending on the

type of the metal ions, AW, and the contact time. However, HM concentrations in aquaria waters of all AW

treatments decreased significantly by increasing contact time up to 24 h after which their concentrations were

almost the same. Concentrations of waterborne Pb, Cd, Cu, and Zn in AW-containing aquaria were signifi-

cantly lower than those of AW-free aquaria. The presence of any AW reduced significantly HM concentra-

tions. In AW-free aquaria, HM-exposed fish accumulated more HM in their body than those reared in AW-

containing aquaria. The results of this experiment showed that all AW had the capability to remove HM levels

from the polluted water and reduce their bioaccumulation in fish body. However, rice straw was the more

efficient adsorbent for all metals.

Keywords Nile tilapia � Agricultural wastes � Rice straw � Maize stalks � Sugarcane bagasse � Heavy metals �
Bioaccumulation

Introduction

Heavy metal (HM) pollution is spreading throughout the world due to the expansion of industrial activities and

they easily reach the aquatic ecosystem. Unfortunately, HM are non-biodegradable and could deteriorate fish

growth and health (Fazio et al. 2014; Savorelli et al. 2016; Abdel-Tawwab 2016; Abdel-Tawwab et al.
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2013, 2016). Thus, scientific methods for HM removal and/or detoxification are essential to improve the health

of the fish inhabiting HM-stressed environment. One of these methods is the use of feed supplements that

could adsorb HM and/or facilitate their release out of fish body and subsequently could improve fish health

(Abdel-Tawwab 2015; Abdel-Tawwab et al. 2015, 2017a, 2017b). Many other treatment technologies such as

adsorption have been developed to remove HM from polluted water.

Adsorption is generally known to be one of the most effective techniques for HM removal from wastewater

(Benhima et al. 2008; Zafar et al. 2007; Gupta and Babu 2009; Mosa et al. 2011; Chiban et al. 2012; Witek-

Krowiak and Reddy 2013). Considerable attention has been paid to the development of effective and low-cost

adsorbents. Thus, studies have been done on the use of AW as alternative biosorbants for HM removal from

the aqueous effluents (Tarley and Arruda 2004; Mohan and Pittman 2006; Karnitz Júnior et al. 2010; Dos

Santos et al. 2011; Chiban et al. 2012).

Nile tilapia, Oreochromis niloticus (L.), is one of the most known freshwater fish species in Egypt and

worldwide due to its good growth and high-value market. This fish inhabits different aquatic ecosystems,

which may be HM-polluted. On the other hand, some countries use wastewater in fish farming and polluted

water may enter the fish farms (Easa et al. 1995; Shereif and Mancy 1995; Shereif et al. 1995). The HM

pollution definitely deteriorates fish health and subsequently human health if the fish are consumed. Hence, a

low-cost method for HM removal is essential to improve the health of aquatic ecosystem and subsequently the

health of the farmed fish. Therefore, the present study was conducted to investigate the capability of rice straw,

sugarcane bagasse, and maize stalks to remove HM from the polluted water and reduce their bioaccumulation

in Nile tilapia.

Materials and methods

Preparation of the adsorbents

Rice straw, sugarcane bagasse, and maize stalks were collected from a local area (Abbassa, Abo-Hammad,

Sharqia, Egypt). They were washed with distilled water many times, dried in a dry-oven (GCA, model 18EM,

Precision Scientific group, Chicago, Illinois, USA) at 85 �C until constant weight, and cut into small pieces

(\0.5 cm long). Afterward, these wastes were used without any pre-treatment as adsorbents for HM.

Preparation of synthetic mixture of heavy metals

Several wastewater samples were collected randomly from Saft-El-Henna drainage (10 km North-East

Zagazig city, Sharqia, Egypt), stored in polyethylene bottles, decanted, and filtered on Whatman paper

(0.45 mm porosity). Concentrations of lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) were determined

as described. Synthetic mixtures of HM, containing the same concentrations as in the drainage samples, were

prepared using lead nitrate (Pb(NO3)2), cadmium chloride (CdCl2�2.5H2O), zinc sulfate (ZnSO4), copper

sulfate (CuSO4�5H2O; Merck & Co Inc., Kenilworth, NJ, USA).

Fish rearing and adsorption study

This study was based on a 4 9 6 factorial design with four adsorbents (control, rice straw, sugarcane bagasse,

and maize stalks) and six contact times (0, 3, 6, 24, 48, and 72 h) in triplicates. Nile tilapia, O. niloticus (L.),

fingerlings were obtained from the nursery ponds of the Central Laboratory for Aquaculture Research

(CLAR), Abbassa, Abo-Hammad, Sharqia, Egypt. Fish were transferred to the wet laboratory and kept in an

indoor fiberglass tank for 2 weeks for adaptation to the laboratory conditions where light–dark photoperiod

cycle was maintained at 12–12 h using fluorescent tubes as a light source. During the adaptation period and the

experimental running, fish were fed on a fish diet containing 25% crude protein as used by Abdel-Tawwab

(2016) ad libitum twice daily at 9:00 and 14:00 h. The synthetic HM mixture was added to each 100-L

aquarium and vigorously stirred. Then, fish (25.2 ± 0.88 g) were distributed into aquaria at a density of 10

fish per aquarium. Each aquarium was supplied with compressed air via air-stones using aquarium’s air pump.
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Each AW was kept in a net (\0.5-mm pore) and inserted in each corresponding aquarium at 1.0 g/L. At each

contact time, samples from aquarium’s water, AW, and whole-fish body were taken for HM determination.

Water quality parameters

Water samples were collected at each contact time from each aquarium to monitor different water quality

parameters. Water temperature and dissolved oxygen were measured in site using a portable oxygen meter

(Jenway, London, UK). The pH was measured using a pH-meter (Digital Mini-pH Meter, model 55, Fisher

Scientific, Denver, CO, USA). The unionized ammonia (NH3) was measured using Multi-parameters Ion

Analyzer (HANNA Instruments, Rhode Island, USA). Total alkalinity and total hardness were determined by

titration according to Boyd (1984).

Heavy metals residue

For measuring HM concentrations in water, 1-L water sample was filtered via 0.8 lm Millipore acetylcel-

lulose filter paper (Millipore, Bedford, MA, USA), digested with 10 ml concentrated H2SO4 on a hot plate at

70 �C, concentrated to 50 ml, and transferred to a volumetric flask. Samples were adjusted up to 100 ml with

redistilled water.

For measuring HM concentrations in AW and whole-fish body, a 1.0-g sample was oven-dried at 85 �C
until constant weight and ashed in a muffle furnace (Thermolyne Corporation, Dubuque, Iowa, USA) at

550 �C for 6 h. Ash was digested with 5 ml concentrated H2SO4 and gradually kept at 130 �C on a hot plate

until complete dryness. Then, the digests were diluted with 2 N HCl to a constant volume. Heavy metal

concentrations were determined by using an atomic absorption spectrophotometer (Thermo 6600, Thermo

Electron Corporation, Cambridge, UK), which was calibrated using standard solutions.

Statistical analysis

The obtained data were subjected to two-way ANOVA to evaluate effects of agricultural wastes and contact

time as factors. Differences between means were tested at the 5% probability level using Duncan test. All the

statistical analyses were performed using SPSS program version 20 (SPSS, Richmond, VA, USA) as described

by Dytham (1999).

Results and discussion

Water quality parameters (Table 1) did not show significant differences among the different treatments

(P[ 0.05) and they were within the acceptable ranges for fish culture (Boyd 1984). The metal concentrations

used in the present study were 58.4 lg/L, 1.31 mg/L, 22.15 lg/L, and 2.72 mg/L for Pb, Cd, Cu, and Zn,

respectively (Table 2). Only, Cd concentration exceeded the permissible limits (USEPA 1986; WHO 1989).

Metal concentrations in aquaria’s water were significantly affected by AW, contact time, and their inter-

action (P\ 0.05; Table 2). In addition, concentrations of waterborne Pb, Cd, Cu, and Zn in AW-containing

Table 1 Changes in physico-chemical parameters of aquaria’s water stocked with different agricultural wastes in combination

with Nile tilapia exposed to synthetic heavy metals mixture for different contact times

3 h 6 h 24 h 48 h 72 h P value

Water temperature (�C) 26.4 ± 0.22 26.8 ± 0.09 26.6 ± 0.06 26.7 ± 0.22 26.6 ± 0.13 0.192

Dissolved oxygen (mg/L) 5.8 ± 0.11 5.9 ± 0.12 5.7 ± 0.12 5.9 ± 0.09 5.8 ± 0.14 0.530

pH 7.65 ± 0.022 7.68 ± 0.031 7.68 ± 0.054 7.68 ± 0.031 7.67 ± 0.021 0.081

Unionized ammonia (mg/L) 0.55 ± 0.022 0.54 ± 0.016 0.56 ± 0.025 0.53 ± 0.025 0.59 ± 0.015 0.074

Total alkalinity (mg/L) 158.3 ± 1.67 160.0 ± 2.58 160.0 ± 2.01 160.0 ± 2.88 155.8 ± 1.54 0.371

Total hardness (mg/L) 244.2 ± 4.91 244.2 ± 4.91 253.3 ± 3.08 250.0 ± 4.83 249.2 ± 2.71 0.482
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aquaria were significantly lower than those of AW-free aquaria. Moreover, metal concentrations in AW were

significantly affected by AW, contact time, and their interaction (P\ 0.05; Table 3). Concentrations of all

tested metals in AW increased significantly by time up to 24–48 h after that their concentrations were

approximately the same (Table 3). These results could be attributed to the availability of adsorbing site

(surface functional groups) on the adsorbent surface. Additionally, AW may be fermented within days and

subsequently their adsorption capacity was low. Similar results with rice straw were obtained by Swelam et al.

(2016) who found that the Cu adsorption by straw rice increased significantly with increasing contact time and

became almost constant for *3.5 h.

All AW adsorbed metals, but rice straw, were the most efficient adsorbent for all metals. It is clear that

metal removal was depending on the type of the metal ions, the adsorbent, and the contact time. Each AW

contains many compounds, which have a variety of functional groups present in the binding process, for

example carboxyl, amino, alcohol, and esters (Gupta and Ali 2000). These functional groups have the ability

Table 2 Concentrations of lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) in aquaria’s water stocked with different

agricultural wastes in combination with Nile tilapia exposed to synthetic heavy metals mixture for different contact times

Exposure time (h) Wastes Lead (lg/L) Cadmium (mg/L) Copper (lg/L) Zinc (mg/L)

Control

0 56.5a 1.12a 21.45a 2.22a

3 38.9b 0.59c 15.66b 0.70cd

6 33.7cd 0.51cd 12.18cd 0.61de

24 29.6e 0.45def 12.00de 0.51efgh

48 27.3ef 0.41defg 10.95de 0.49efgh

72 24.2f 0.39efgh 10.58de 0.47fghi

Rice straw

0 56.5a 1.12a 21.45a 2.22a

3 37.1bc 0.51cd 10.16def 1.06b

6 27.0ef 0.43def 9.11efgh 0.77c

24 25.1f 0.39efgh 7.19ghi 0.50efgh

48 24.6f 0.38efgh 7.17ghi 0.43ghi

72 24.1f 0.34gh 6.50hi 0.40hij

Sugarcane bagasse

0 56.5a 1.12a 21.45a 2.22a

3 30.2de 0.58c 10.58de 0.60def

6 17.7g 0.58c 6.54hi 0.55efg

24 15.2gh 0.50cd 6.51hi 0.52efgh

48 15.1gh 0.48cde 5.92i 0.51efgh

72 15.1gh 0.48cde 5.48i 0.50efgh

Maize stalks

0 56.5a 1.12a 21.45a 2.22a

3 26.2ef 0.69b 14.78bc 0.78c

6 16.6g 0.58c 9.62defg 0.36ijk

24 14.2gh 0.45def 7.38fghi 0.28jkl

48 12.1h 0.35fgh 6.32hi 0.26kl

72 11.9h 0.29h 4.74i 0.23l

Pooled SE 1.769 0.031 0.668 0.079

Two-way ANOVA P value

Agricultural wastes (AW) 0.0001 0.0001 0.0001 0.0001

Contact time 0.0001 0.0001 0.0001 0.0001

AW 9 contact time 0.0001 0.008 0.013 0.0001

Means followed by the same letter are not significantly different
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to bind metal ions in solution or by donation of an electron pair from these groups to form metal complexes.

Due to the differences in chemical compositions and functional groups of each AW used in the present study,

the adsorption capability differs. Many researchers found a relationship between the presence of various

functional groups and their complexation with metals during biosorption process (Tarley and Arruda 2004).

The AW capacity for metal removal depends on many factors such as metallic elements, pretreatments of AW,

and operating conditions; however, AW tended to prefer some metals more than others (Nguyen et al. 2013).

Benaissa (2006) investigated the capacity of four inexpensive materials which are peels of peas, broad bean,

medlar and fig leaves, to remove Cd from aqueous solutions; it was noted that the broad bean peel has the

maximum adsorption capacity for Cd.

In the present study, rice straw was more effective adsorbent than sugarcane bagasse and maize stalks. The

higher adsorption capacity of rice straw is probably due to the presence of silanol (SiOH) groups in its

structure and more surface area (Fatemeh et al. 2008). In this regard, Osman et al. (2010) reported that rice

hull showed highest efficiency in sequestering Zn, Cd, and iron among biosorbents investigated and the

removal efficiencies by rice hull, sawdust, sugarcane bagasse, and wheat straw were 98.2, 96.9, 93.0, and

91.2%, respectively. Additionally, the difference in AW capacity to adsorb metals could be attributed to the

abundant availability of binding sites, which enhances the retention of metals onto AW surface (Marin-Rangel

et al. 2012; Jiménez-Cedillo et al. 2013; Nguyen et al. 2013). Kelly-Vargas et al. (2012) reported that lemon

peel and orange peel demonstrated adsorption capacities for Cu and Pb were 48 and 15% higher than banana

peel, respectively, and the Cd uptake by banana peel was higher than that of lemon peel and orange peel 82

and 57%, respectively. On the other hand, Mosa et al. (2011) reported that the removal efficiency of metals

Table 3 Concentrations of lead, cadmium, copper, and zinc (mg/g dry weight) in different agricultural wastes stocked in

combination with Nile tilapia exposed to synthetic heavy metals mixture for different contact times

Exposure time (h) Wastes Lead Cadmium Copper Zinc

Rice straw

0 0.23j 0.65g 0.28f 1.32h

3 1.50e 2.89f 0.74e 2.71g

6 2.41c 6.91e 1.28d 5.36f

24 3.04b 14.72d 1.64b 10.39c

48 3.48a 35.49a 1.98a 14.85a

72 3.64a 35.68a 2.07a 15.31a

Sugarcane bagasse

0 0.27j 0.72g 0.26f 1.37h

3 0.87g 2.11f 0.61e 2.59g

6 0.94fg 6.73e 1.15d 5.45f

24 1.94d 13.23 1.43c 6.14ef

48 2.48c 21.66c 1.48c 7.02de

72 2.52c 23.99c 1.74b 8.10d

Maize stalks

0 0.15j 0.37g 0.22f 1.28h

3 0.42i 2.30f 0.68e 2.98g

6 0.68h 6.07e 1.19d 5.28f

24 0.82g 13.66d 1.48c 11.14c

48 0.93fg 26.22b 1.74b 13.78bc

72 0.97fg 29.61b 1.96a 14.18ab

Pooled SE 0.162 0.225 0.191 0.960

Two-way ANOVA P value

Agricultural wastes (AW) 0.0001 0.0001 0.0001 0.0001

Contact time 0.0001 0.0001 0.0001 0.0001

AW 9 contact time 0.0001 0.001 0.0001 0.0001

Means followed by the same letter are not significantly different
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decreased in the order of cotton stalks, maize stalks, and rice straw. They attributed highest removal by cotton

stalks to its highest concentration of cellulose, hemicellulose, and lignin as compared to other crop-residues.

All AW adsorbents reduced significantly HM concentrations in whole-fish body (P\ 0.05; Table 4). In

AW-free aquaria, HM-exposed fish accumulated more HM than those reared in AW-containing aquaria. These

results suggest that AW immersion in aquaria stocked with Nile tilapia could reduce metal bioaccumulation in

their body. It also noticed that metal concentrations in fish body were higher than those in polluted water.

Concentration of Pb, Cd, Cu, and Zn in whole-body of Nile tilapia 72-h post exposure in AW-free aquaria

were 0.714, 5.47, 1.309, and 7.37 mg/g dry weight, respectively, (Table 4). However, Pb concentrations

(0.267, 0.286, and 0.290 mg/g dry weight), Cd concentrations (3.98, 3.52, and 3.58 mg/g dry weight), Cu

concentrations (0.284, 0.262, and 0.283 mg/g dry weight), and Zn concentration (3.27, 3.64, and 3.13 mg/g

dry weight) in fish body were approximately the same when fish were stocked with rice straw, sugarcane

bagasse, and maize stalks for 72 h, respectively.

Table 4 Concentrations of lead, cadmium, copper, and zinc (mg/g dry weight) in whole-body of Nile tilapia exposed to synthetic

heavy metals mixture in combination with different agricultural wastes for different contact times

Exposure time (h) Wastes Lead Cadmium Copper Zinc

Control

0.0 0.031g 1.67e 0.082h 1.42f

3 0.372d 3.41c 0.412d 4.23c

6 0.449c 4.23b 0.617c 5.62b

24 0.575b 4.84ab 0.975b 6.39ab

48 0.656ab 5.22a 1.249a 6.91a

72 0.714a 5.47a 1.309a 7.37a

Rice straw

0.0 0.031g 1.67e 0.082h 1.42f

3 0.112f 1.98de 0.102g 1.83ef

6 0.175ef 2.23d 0.161fg 2.28e

24 0.218ef 2.84d 0.216ef 2.73de

48 0.251ef 3.52c 0.252ef 3.13d

72 0.267ef 3.98c 0.284e 3.27d

Sugarcane bagasse

0.0 0.031g 1.67e 0.082h 1.42f

3 0.135f 1.72e 0.125g 1.83ef

6 0.190ef 1.83de 0.174fg 2.24e

24 0.231ef 1.97de 0.213ef 2.83de

48 0.263ef 2.38de 0.243ef 3.18d

72 0.286e 2.86d 0.262ef 3.64d

Maize stalks

0.0 0.031g 1.67e 0.082h 1.42f

3 0.113f 1.81de 0.132g 1.78ef

6 0.175ef 2.31d 0.198fg 2.10e

24 0.228ef 2.92d 0.237ef 2.97de

48 0.262ef 3.46c 0.261ef 3.05d

72 0.290e 3.58c 0.283e 3.13d

Pooled SE 0.854 0.449 0.659 1.519

Two-way ANOVA P value

Agricultural wastes (AW) 0.0001 0.0001 0.0001 0.0001

Contact time 0.0001 0.0001 0.0001 0.0001

AW 9 contact time 0.0001 0.0001 0.0001 0.0001

Means followed by the same letter are not significantly different
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Metal concentrations in whole-fish body were higher than those of HM-polluted water. This is because fish

accumulated more metals in their bodies. Similar results were obtained by Abdel-Tawwab et al. (2013, 2016).

Khalil and Hussein (1997) reared Nile tilapia for 9 months in secondary effluents with 1.0 Pb mg/L and found

that the concentration of Pb in fish flesh was tenfold higher than the food standard. It is also noticed that HM

accumulation in fish body increased as contact time increased. Easa et al. (1995), Shereif et al. (1995) and

Shereif and Mancy (1995) studied Pb, Cu, Zn, and Cd in Nile tilapia reared in fishponds received wastewater.

They found that HM concentrations in the fish increased by increasing the culture period.

Conclusions

Rice straw, sugarcane bagasse, and maize stalks are effective and cheap adsorbents for removal of Pb, Cd, Cu,

and Zn from polluted water. They also reduced HM bioaccumulation in fish body. Rice straw showed higher

adsorption efficiency than the others.
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