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Abstract: A critical review on existing creep theories in calcium-silicate—hydrate (C—S—H) is presented with an emphasis on
several fundamental questions (e.g. the roles of water, relative humidity, temperature, atomic ordering of C—S—H). A consensus on
the rearrangement of nanostructures of C—S—H as a main consequence of creep, has almost been achieved. However, main
disagreement still exists on two basic aspects regarding creep mechanisms: (1) at which site the creep occurs, like at interlayer,
intergranular, or regions where C—S—H has a relatively higher solubility; (2) how the structural rearrangement evolutes, like in a
manner of interlayer sliding, intra-transfer of water at various scales, recrystallization of gelled-like particles, or dissolution—
diffusion—reprecipitation at inter-particle boundary. The further understanding of creep behavior of C—S—H relies heavily on the

appropriate characterization of its nanostructure.
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1. Introduction

Creep is a material property commonly defined as a time-
dependent deformation under sustaining loads. Creep is
essentially important to cementitious materials since excess
deformation can negatively impact the long-term service-
ability and sustainability of concrete structures (Neville
1981; Bazant 2001; Mindess et al. 2003; Singh et al. 2013;
Li 2012; Ye et al. 2015). The creep behavior of cementitious
materials was reported to be internally associated with the
viscous nature of its main hydration product, i.e. calcium—
silicate—hydrate (C—S—H), proportion of other secondary
hydrated phases (e.g. portlandite), as well as externally
affected by atmospheric conditions, e.g. relative humidity
(RH) and temperature (Neville 1981; Bazant 2001; Powers
1968; Wittmann 2008; Alizadeh et al. 2010; Bu et al. 2015;
Nguyen et al. 2013). The so-called basic creep and drying
creep in cementitious materials are termed as the additional
acquired deformation under constant water content (i.e. no
moisture exchange with ambient and specimens, but not
necessarily in saturated state) and decreasing water content
(i.e. drying condition), respectively (Wittmann and Roelfstra
1980). Regardless of what type of creep, its behavior is
drastically related to the interior water status in pore struc-
ture, which is further influenced by ambient RH (Ali and
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Kesler 1964; Bazant et al. 1997). For instance, cementitious
material can reduce up to 80 % deformation after a sever
drying pre-treatment (e.g. heating to 105 °C) (Mindess et al.
2003; Glucklich and Ishai 1962), whilst its deformation can
be more than three times higher when it is exposed to a
simultaneous loading and drying conditions (Mindess et al.
2003; Pickett 1942). Nevertheless, different experimental
observations lead researchers to propose different creep
mechanisms to explain their data. Therefore, no one creep
mechanism has been universally accepted despite the
extensive investigation was conducted over decades.

One of the major debates among various theories (will be
elaborated in Sect. 2) lies on the role of water involving in
creep, as some researchers argued that water is inessential to
creep (Feldman 1972) while others believed that water is
important (Powers 1968; Alizadeh et al. 2010). Additionally,
for the creep mechanisms that are relevant to water, discrepancy
also exists regarding the function of water at various scales in
C-S—H (Powers 1968; Alizadeh etal. 2010; Glucklich and Ishai
1962; Ruetz 1968). Roughly, water in C—S—H is classified into
three types: capillary water, adsorbed water and interlayer water
(Powers and Brownyard 1946). However, the classification of
water at various dimensions also varies slight among different
nanostructures of C—S—H (Powers and Brownyard 1946; Ali-
gizaki 2006). In addition, the role of water is reported to be
different for different mechanisms, and even same type of water
is reported to have different functions in different mechanisms.
The first subject of this paper is to review the role of water
proposed in various modern creep theories and potentially
provide some insights on further research.

On the other hand, it is essentially necessary to introduce
shrinkage since creep (especially drying creep) and shrink-
age has some sorts of intimate relation (Wittmann 2008;
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Wittmann and Roelfstra 1980). Drying shrinkage is defined
as the deformation of a specimen during drying without
external loading. Both creep and shrinkage are believed to be
affected by the water content in material interior, as well as
external conditions. However, the mechanism between these
two may not be exactly identical. It is difficult or even
impossible to distinguish drying shrinkage and creep com-
ponents when a material is under a circumstance of simul-
taneous loading and decreasing RH (i.e. drying creep)
(Bazant et al. 1997). First of all, drying shrinkage (especially
for irreversible component) also exhibits a time-dependent
characteristic, which is intrinsically correlated to reorgani-
zation of C—S—H induced by internally drying-induced stress
(e.g. capillary stress, desorption-induced solid surface ten-
sion increase, and disjoining pressure) rather than externally-
applied stress (Jennings 2000; Ye et al. 2014). All of these
stresses may be considerably different in their locations and
magnitudes. For instance, capillary pressure exerts stress on
solid skeleton by putting adjacent particle closer, external
load exerts stress on the bulk materials, while desorption-
induced stress exerts primarily on the solid surface (Kovler
and Zhutovsky 2006; Beltzung and Wittmann 2005). The
second part of this paper is to understand how the drying and
thermal condition can potentially influence the -creep
performance.

Finally, this paper briefly discusses how the chemical
composition, pore solution, and atomic ordering (presence of
defects) of C—S—H can affect creep. In addition, the potential
application of generalized creep equation on C-S-H
research is also discussed.

2. Nanostructure of Calcium Silicate Hydrate

The nanostructure of C-S—H, which is believed to be
strongly related to its creep performance, is still mysterious
and controversial. Therefore, this paper briefly reviews some
popular models for nanostructure of C—S—H before going
deep to its creep mechanism (in Sect. 3). A more compre-
hensive review on nanostructure of C—S—H can be found in
the literature (Papatzani et al. 2015).

21 Powers and Brownyard Model (First
Colloidal Model) (Powers and Brownyard 1946)

The first nanostructure model (denoted as P-B model) that
published by Powers and Brownyard, basically announces
that C—S—H is a colloidal material with more or less crys-
talline phases. In P-B model, water is classified into three
types: capillary water, physically adsorbed water (gel water)
and interlayer water. As illustrated in Fig. 1a, capillary water
refers to the water that is unreacted by cement hydration,
primary remaining in the space between partial-/fully-
hydrated particles; gel water refers to the physically adsor-
bed evaporable water in gel pores of C—S-H; interlayer
water refers to the chemically bonded non-evaporable water
incorporated in the solids of C—S—H (loss of interlayer water
causes dehydration of C—S—H) (Mindess et al. 2003; Powers
1958). It should be noted that the above classification is

somewhat arbitrary since differentiating capillary water and
gel water is not easy in realistic circumstance. As further
noted by Powers, the C—S—H consists mostly of fibrous
particles with straight edges, where bundles of such fibers
seem to form a cross-linked network, containing some more
or less amorphous interstitial material (Powers 1958).

2.2 Feldman and Sereda Mode (Layered
Structure Model) (Feldman and Sereda 1968)

Feldman and Sereda modified the P-B model by noticing
that the C—S—H particle structurally resembles to a layered
tobermorite-like crystal (denoted as F-S model) (see
Fig. 1b). The significant improvement of F—S model is that it
incorporates the structural function of the interlayer water in
C-S—H ‘particle’, and emphasizes the importance of inter-
layer water in the mechanical and physical properties of
hardened cement. As introduced later, this model argues the
interlayer of C—S—H is crucial to creep of C—S—-H.

2.3 Jennings and His Co-workers Model
(Colloidal model) (Jennings 2000, 2008; Allen
et al. 2007)

The colloidal model (denoted as CM-I and II) proposed by
Jennings and his co-workers is basically a comprehensive
combination of a layer model and a colloid model (see
Fig. 1c, d). The basic unit in the CM model is a grain-like
particle with a thickness of few layers stacked together.
These particles can cluster together to form the globules
(basic building block) of about 5.6 nm diameter. The
packing density of this globule is reported to be important
to the creep of C—S—H. The nano-granular nature of C—S—
H is experimental verified by atomic force microscopy
(AFM) (Nonat 2004) and nano-identification (Vandamme
and Ulm 2009; Jones and Grasley 2011), as well as theo-
retically proven by molecular dynamics simulation (Pellenq
et al. 2008). However, different experiments or simulations
give different particle sizes of C—S—-H (Papatzani et al.
2015).

3. Role of Water on Creep Mechanisms

3.1 The Role of Capillary Water

The theory is in nature analogous to the concept of con-
solidation in soil mechanics, in which reduction in volume
takes place by expulsion of water under long-term static
loads. It roughly treats C—S—H as a composite filled with free
liquid (i.e. not physically/chemically bonded) and solid (i.e.
C-S—H solid sheets with bonded water). The external load is
distributed between the bulk liquid and the solid phases,
where compressed water diffuses from high to low pressure
areas and, consequently, a gradual transfer of the load from
the water to the solid phase takes place. Hence, the stress in
the solid gradually increases causing, in turn, a gradual
volumetric reduction, i.e. creep. That is, creep may be
regarded as a delayed elastic deformation. Accordingly, a
lower creep is to be expected in concrete with a higher
modulus of elasticity and lower moisture content, which is
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Fig. 1 Nanostructures of C-S—H (a) Powers and Brownyard model [adopted from Powers and Brownyard (1946)], b Feldman and
Sereda model [adopted from Feldman and Sereda (1968)], ¢ CM-I model [adopted from Jennings (2000)], and d CM-II

model [adopted from Jennings (2008)]

however proven to be wrong by numerous experiments
(Mindess et al. 2003).

The capillary water is not commonly regarded as the main
status of water that contributes to creep deformation. The
role of capillary water is inessential to creep mainly due to
two main drawbacks: one is that it cannot account for the
irreversible creep, which is believed to be in a considerable
proportion of total deformation (Mindess et al. 2003).
Another one is that re-immersing creeped sample into
organic liquid, which can only penetrate into capillary pores
but not gel and interlayer spaces, shows no volumetric
change (Maekawa et al. 2003).

3.2 The Role of Adsorbed Water (Gel Water)

3.2.1 Seepage Theory

Based on the P-B model, Powers proposed the seepage
theory, which ascribes creep due to the change in the gel
water content as a manner of time-dependent seepage
(Powers 1968). The process of transferring water from load-
bearing areas into non-load-bearing results in the time-de-
pendent volumetric reduction. Particularly, the external
applied load violates the pre-existed balance between
attractive and disjoining forces, which is gradually alleviated
by the moisture diffusion among different phases. The

particular type of water which is easiest to be squeezed out
and responsible for main volumetric reduction is believed to
be the load-bearing water or water in the hindered adsorption
region. As the hindered adsorption water decrease, the pre-
existed disjoining pressure also decreases. It should be noted
that the withdrawal of disjoining pressure is also commonly
regarded as a main mechanism for drying shrinkage (Belt-
zung and Wittmann 2005). But different than external
applied loading, the driving force for the water movement is
attributed to decreasing RH for shrinkage. The seepage
theory can account for several experimental evidence,
including that oven-dried sample experiences very low creep
rate (Glucklich and Ishai 1962), and drying creep is signif-
icantly higher than either dry or wet samples due to triggered
water movement (Ali and Kesler 1964).

Some researchers argue that creep can occur in sealed or
immersed specimens where water loss will be inhibited, and
creep can even occurs for complete dried samples, both of
which seems to question the seepage theory (Ali and Kesler
1964; Glucklich and Ishai 1962). It is important to note that
creep occurs in sealed or immersed conditions does not
necessarily mean that there is on moisture transfer and
movement in material interior. It is likely the water is
redistributed in various types of pores, and does not
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apparently exhibit any loss of moisture. The water in seep-
age theory is simply described as hindered adsorption water
and commonly believed to be adsorbed water instead of
capillary water.

In seepage theory, the irreversible creep is attributed to the
formation of new bonds between surfaces of C—S—H when
they are pressed together for the first time. Wittmann (1973)
found that the creep rate only increased significantly when
dried samples were re-exposed to a RH above approximately
45 %. These results cannot be accounted for by the seepage
theory.

3.2.2 Microprestress-Solidification Theory

Extending the seepage theory, a microprestress-solidifica-
tion theory was proposed by BaZant and his co-workers to
predict creep using thermodynamic approach (Bazant 1972;
Jirasek and Havlasek 2014). The microprestress is generated
by the disjoining pressure of the hindered adsorbed water in
the micropores and by very large and highly localized vol-
ume changes caused by hydration or drying. However,
Bazant maintains that the same equations are valid whether
the evaporable water is capillary, interlayer, or adsorbed. It
is, however, necessary to define the state of the water
associated with creep in order to understand and perhaps
control the mechanism of creep.

3.2.3 Viscous Shear Theory

The viscous shear theory as proposed by Ruetz (1968)
suggests that creep occurs through slip between C-S-H
particles in a shear process. The sliding process takes place
also in adsorbed water, in which water acts as a lubricant.
Different to seepage theory, viscous shear theory considers
the rearrangement of overall C—S—H particles under shear
force. Although the overall tendency of C—S—H particles is
to approach and contributes to volumetric reduction, the
local movement of each C—S—H particle may be even more
complicated rather than merely being close as disjoining
pressure decreases. Since the rearrangement of C—S—H par-
ticles finally presents as a volumetric reduction, it is rea-
sonable to assume that there should have some sorts of
squeezed and redistributed water as well. The difference
from seepage theory is that viscous shear theory emphasizes
the role of gel water as lubricator to promote C—S—H slip
rather than merely being squeezed out.

3.2.4 Thermal Activation Energy Theory

Wittmann (1973) proposed a thermal activation theory,
which considers the absorbed water plays an indirect role on
weakening interparticle bonds (Klug and Wittmann 1974).
This mechanism is actually similar to viscous shear theory
since weakening interaction between C—S—H particles is also
the function of water lubricant. This theory also suggests that
after the strength of these forces is reduced, the particles
slide apart with respect to each other and creep is therefore
increased. Furthermore, thermal activation theory hypothe-
sizes that time-dependent strains are the result of thermally
activated processes described as the rate-determining and
structural-deforming process theory. The creep occurs

towards a lower energy state when additional external
energy is provided to the materials. The argument is intrin-
sically similar to the rearrangement and redistribution of C—
S—H particles which evolve towards lower energy. In addi-
tion, a concept of creep centers is introduced in this theory to
further distinguish the particle region with slip occurs
between adjacent particles of C—S—H. Klug and Wittmann
(1974) concluded that individual solid particles are respon-
sible for creep, and that the movement of single molecules of
water is negligible. Admittedly, the energy-relaxed or
arranged and organized structures are mostly irreversible.

3.2.5 Rearrangement of Globules

Based on the CM-I/II model, Jennings and his co-workers
ascribe creep as a rearrangement of the globules under stress,
resulting a reduction in gel porosity and enhancement of
bonds which is directly correlated to the degree of silicate
polymerization (Thomas and Jennings 2006). However, as
noticed in CM-II model, although Jennings and his co-
workers do agree that the C—S—H particle is comprised of a
bunch of tobermorite-like layered sheets, how these layered
sheets enter C—S—H particle rearrangement is still unknown.
In other words, the structural role and physical description of
adsorbed and interlayer water are not addressed in this the-
ory. Recently, based on nano-indentation techniques, Van-
damme and Ulm (2009) confirmed that creep is due to the
rearrangement and tighter packing of C—S—H agglomerate
around limit packing densities. As well, the structural role of
water on creep is not elaborated in this argument.

3.2.6 Dissolution-Diffusion—Reprecipitation Theory

A recent study indicates that the nanoparticle rearrange-
ment could be a result of dissolution—diffusion—reprecipi-
tation process in which the grain boundary dissolves at the
high stress fields and then transport and precipitate at lower
stress fields (i.e. regions where solubility is lower), con-
tributing to an overall lower energy (Pachon-Rodriguez
et al. 2014). A computational model has also shown that
loading can affect the dissolution—formation process of
load-bearing phases at early age, which contributes to a
reasonable viscous characteristic (Li et al. 2015). Therefore,
it would be appealing to observe the change of composi-
tions in hydrated phases and pore solution due to loading,
since other theories (e.g. denser packing of globules) do
not necessarily require an evolution of phase assemblages
and composition.

3.3 The Role of Interlayer Water

3.3.1 Crystallization/Aging Theory

Feldman and Sereda stated that adsorbed water playing a
relatively minor role, whilst interlayer water in C—S—H is
responsible for the major portion of creep (Feldman 1972).
The interlayer theory hypothesizes that creep of cement
paste is a manifestation of the gradual crystallization or
aging of a poorly crystallized layered silicate material,
accelerated by drying or stress. During creep, compression
of C—S—H sheets causes the interactions between adjacent
sheets and formation of new interlayer space.
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3.3.2 Sliding/Translation Theory

Based on beam-bending technique (Vichit-Vadakan and
Scherer 2001), Alizadeh et al. (2010) suggested that the
viscoelastic behavior of C—S—H is attributed to the sliding
and translation of the C—S—H sheets under stress, which
actually supports the interlayer theory proposed by Feldman
and Sereda. The stress relaxation during beam-bending test
is comprised of hydrodynamic relaxation (i.e. flow of liquid
in the porous body) and viscous relaxation of the solid
network (Vichit-Vadakan and Scherer 2001). Their study
indicated that the water seepage accounts for minor pro-
portion of total creep, but the interlayer water severs as a
lubricator contributing to the layered structure sliding.

3.4 Consensus and Discrepancy

Although the nanostructure models of C—S—H proposed by
Feldman and Sereda (layered structure) and Jennings (col-
loid model) are intrinsically different, the consequence of
creep has almost been reached a consensus. They all attri-
bute a featured consequence of creep as a rearrangement of
nanostructures. Figure 2 illustrates the possible manners of
nanostructure evolution based on different nanostructure

Redugtion of pore space

Reorganized
of C-S-H Sheets

Increased bonding numbers (Si polymerization)

models of C—S-H (see Fig. 1). Accordingly, some new
features should be observed in C—S—H after structural reor-
ganization, such as the closure of small pores, increased
bonding between C—S—H chains, elongated mean chain
length, formation of interlayer regions.

However, main disagreement still exists on several fun-
damental aspects regarding creep mechanisms:

1. At which site the creep occurs. It can be in the
interlayer, intergranular (particle) or regions where the
solubility of C—S—H is relatively higher (due to a locally
stress concentration).

2. How the nanoscale rearrangement evolutes. In the mech-
anism based on Feldman and Sereda, the sliding or collapse
of interlayer has been explicitly indicated, although there is
no direct evidence regarding the inter-crystalline slip.
However, the exact manners of how rearrangement occurs
were not been extensively provided by previous research-
ers. It is probably be one of the interlayer sliding or
dissolution—diffusion—precipitation at intergranular bound-
ary, or intra-transfer of water, or stress and drying-induced
re-crystallization of gelled-like particles.

(b)

Closure of Small Gel Pore

Fig. 2 Reorganized nanostructure of C-S—H (a) Powers and Brownyard model [adopted from Powers and Brownyard (1946)],
b Feldman and Sereda model [adopted from Feldman and Sereda (1968)], ¢ CM-I model [adopted from Jennings (2000)],

and d CM-II model [adopted from Jennings (2008)]
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3. Regardless of at which site creep occurs, reorganization
process involves some sorts of break and reform bonds,
which contributes to the irreversible portion. Therefore,
it is hard to differentiate the rearrangement manners by
simply observing the nanostructure changes after creep
using nuclear magnetic resonance spectroscopy. More
attention needs to be paid on stress-induced changes of
phase assemblages, chemical composition, pore solution
species, and morphology of C—S—H.

4. Influence of Drying Condition

Drying creep (also known as Pickett effect) (Wittmann and
Roelfstra (1980); Pickett (1942)) is the excess of creep at
drying over the sum of shrinkage and basic creep. It indicates
that there is a strong correlation between creep and shrinkage,
and no-linear relation between deformation and loading for
drying creep. However, the exact mechanism of Pickett effect
is still mysterious although several dubious hypotheses were
proposed. For example, Ali and Kesler (1964) suggested
drying creep is a stress-modified shrinkage, while Ruetz
(1968) suggested that shearing action takes place under
loading, accelerated by a concurrent moisture movement.

Thermodynamically, ambient RH plays an important role
on creep by influencing several aspects: First of all, it con-
trols the total amount of water in the C—S—H and hydrostatic
capillary pressure due to drying. The capillary pressure is
determined as the difference between the gas pressure above
the meniscus and pressure inside the liquid (i.e.
De = Pg — pi1)- The well-known Kelvin-Laplace equation is
commonly used to establish the mechanical and thermody-
namic equilibrium between liquid and gas (Chen et al. 2013;
Cohan 1938; Radlinska et al. 2008):

2y -cos 0 RT

= = ) =" InRH 1
V4 " /’an (1)

where p, is the capillary pressure, p, is the gas pressure, p; is
the liquid pressure, p;, is density of liquid, M is molar mass of
liquid, R is the universal gas constant, 7 is temperature in
Kelvin, . is capillary radius at the position of meniscus, also
named Kelvin radius; y is surface tension between pore
water and vapor, 0 is the contact angle denoting the
hydrophilicity of pore wall. Since the liquid pressure excess
significantly that of atmospheric pressure during drying (i.e.
lpil] > |Ipgll), the gas pressure is eliminated and p; ~ p..
As a consequence of Eq. (1), at a given RH, all pores whose
radii are smaller than Kelvin radius are completely filled
with water, whereas larger pores have dried with layers of
adsorbed water (Maekawa et al. 2003). In addition, the
capillary pressure is primarily controlled by the ambient RH,
irrespective of the pore size (Radlinska et al. 2008).
Secondly, the RH controls the diffusion rate of interior
moisture moving to the exposed boundary. For instance, at
high RH, the gradient of chemical potential of vapor is less
and diffusion occurs slowly. Under that circumstance, the
slow water movement may contribute to the long-term

rearrangement of C—S—H nanoparticles or sheets. As evi-
denced by a recently study (Vlahini¢ et al. 2012), transient
creep occur as the RH changes, mainly originating from the
water movement due to the triggered chemical potential gra-
dient. However, as mentioned before that capillary pressure
decreases as RH increases, therefore there may exist a trade-
off for the influence of RH on the creep behaviors. In addi-
tion, RH affects the viscoelastic behavior of the C—S—H due to
the modification of its bulk properties (Maruyama et al. 2014).

Additionally, the initial formed gel-like colloid particle in
pore solution are held by a equilibrium of various forcers,
like crystal-forming tendency, surface tension, solid to liquid
attraction and electrical attraction and repulse. The drying of
C-S—-H destroys the initial quasi-balance forces in wet
condition, and promotes the semi-amorphous phases to re-
crystallize. Admittedly, crystallization result in a volumetric
reduction as the structure becomes more stable and periodic.

Another important aspect is that the stress distribution of
C-S-H under simultaneous external loads and drying is
extremely complicated, and has not been addressed yet. It
may help to understand the creep mechanism during drying
if one could unveil the constitutive relation of C—-S-H in
nano-scale.

5. Effects of Temperature

The creep performance of cementitious material is also
dependent on the ambient temperature and thermal history
(Bazant 1983). It was reported that short-term creep
increases approximately linearly with temperature up to
80 °C, where it is about three times value at ambient tem-
perature (Mindess et al. 2003). Regardless of the creep
mechanisms involved, temperature can alter several factors
those are important to creep rate. First, temperature affects
the rates of dissolution, diffusion, and reaction process
during any chemical action in C—S—H structural reorgani-
zation. Furthermore, temperature can slightly alter the
physical properties of pore solution (e.g. viscosity) and
statured vapor pressure, both of which influence the water
status in concrete (Chaube et al. 1993). Another important
aspect is that creep is an activation energy-associated pro-
cess, which is considerably controlled by temperature as
well (Green 1998). However, a pre-heating treatment can
reduce the long-term creep deformation for C—S—H (Mindess
et al. 2003), which may be attributed to a modification in the
pore structure, (packing) density, and crystallinity of C—S—H
(Thomas and Jennings 2006).

6. Atomic Ordering of C-S—-H

Considering the rearrangement of nanostructure under
external or internal stress, the dislocation site (i.e. defects) in
C-S—H is likely to be a major factor. Generally, a crystalline
phase is more resistant to plastic deformation than its glassy
state with a similar chemical composition due to the

458 | International Journal of Concrete Structures and Materials (Vol.9, No.4, December 2015)



extensive presence of defects (Green 1998). A molecular
dynamic simulation of crystalline and glassy C—S—H under
shear stress indicates that glassy C—S—H has a lower shear
strength and larger irreversible deformation (Manzano et al.
2013). This would be a reason why the creep of semi-
amorphous C—S—H prepared by synthesis is higher than that
of tobermorite minerals as experimentally measured
(Nguyen et al. 2014). However, it is still unknown how to
accurately access the atomic ordering in C—S—H due to its
small dimensions, although some advanced nanoscale
characterization techniques have shed some lights on it
(Nonat 2004; Lothenbach and Nonat 2015; Chae et al.
2013). In addition, the chemical composition and pore
solution species are both likely to affect the structure of C—
S—-H (Lothenbach and Nonat 2015). Therefore, it is not
surprising that the Ca/Si ratio of C-S-H, additive of
admixtures (e.g. slag, silica fume, colloid silica) can affect
the creep performance (Alizadeh et al. 2010; Li and Yao
2001; Singh et al. 2015), probably due to a modification in
the degrees of micro-defects and polymerization (Nguyen
et al. 2013). On the other hands, a large incorporation of
alumina and alkalis into C—S—H has shown to drastically
change its structure and behaviors (Lodeiro et al. 2010). This
becomes increasingly crucial to innovative alternative bin-
ders like alkali-activated slag, which has shown larger creep
deformation than ordinary Portland cement (Ye et al. 2014;
Hikkinen 1986).

7. Application of the Generalized Creep
Equation

It is still unknown whether there is more than one mech-
anism for creep, or whether the creep mechanism varies

depending on the experienced stress levels and ambient
conditions (e.g. RH and temperature). Nevertheless, the
primary issue regarding the creep mechanism is the criteria
to differentiate various mechanisms at least qualitatively.

In the case of polycrystals (e.g. metals, minerals), the
generalized creep equation has been widely implemented to
differentiate the creep mechanisms, as shown below (Green
1998):

m n
(e ()
kT \d I

where ¢ is the creep rate at secondary steady period; 4 is a
dimensionless constant; D is the diffusion coefficient asso-
ciated with the creep process; u is the shear modulus; b is the
Burgers vector; d is the grain size, m is the grain size
exponent and n is the stress exponent. The various creep
mechanisms give rise to different m and » values (as shown
in Table 1), which can be obtained experimentally by
varying the grain size of materials and applied stress.

Upon application on C—S—H, the primary challenge is how
to change the grain size of C—S—H nanoparticles, since
varying the stress level is much easier. However, the deter-
mination of the particle size of C—S—H and how the inter-
layer structure incorporated into the colloid structure needs
to be pre-understood. According to the CM-II model, the
interlayer is perfectly incorporated and stacked together to
form a grain called globules, while in Feldman and Sereda
model, the separation between particle boundary and inter-
layer is not clear. By admitting the CM-II model, another
important aspect before applying the generalized creep
equation is how to vary the particle size experimentally.
Physically, the application of stress and high temperature
evaluation could possibly reduce the grain size for some

Table 1 Creep equation exponents and diffusion paths for various creep mechanisms [adopted from Green (1998)]

Creep mechanism I m

" |

Diffusion path
Dislocation creep mechanisms
Dislocation glide climb (climb 0 4-5 Lattice
controlled)
Dislocation glide climb, glide 0 3 Lattice
controlled
Dissolution of dislocation loops 0 4 Lattice
Dislocation climb without glide 0 3 Lattice
Dislocation climb by pipe diffusion| 0 5 Dislocation core
Diffusional creep mechanisms
Vacancy flow through grains 2 1 Lattice
Vacancy flow along boundaries 3 1 Grain boundary
Interface reaction control 1 2 Lattice/grain boundary
Grain boundary sliding mechanisms
Sliding with liquid 3 1 Liquid
Sliding without liquid (diffusion 2-3 1 Lattice/grain boundary
control)
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materials, like metals (Green 1998). However, CM-II model
emphasizes that both of them basically increase the packing
density of grains rather than reduce the size. Nevertheless, it
is still mysterious whether the grain boundary involved in
creep behavior is identical to that described by CM-II.

8. Summaries

Creep of cementitious materials is a complicated phe-
nomenon, which is influenced by the loading magnitude/
history, temperature, relative humidity, thermal and drying
histories, as well as chemical composition and structure of
C—S—H itself. These mechanical- thermal- physical- chemi-
cal interactions are simultaneously presented and non-lin-
early coupled. Understanding the creep mechanism requires
a proper pre-examination of the nanostructure of C-S-H.
The exact creep mechanism should be reflected by a con-
current evolution of nanostructure, chemical composition of
hydrated phases, and pore solution composition during
creep. Although a combination of various advanced tech-
nique for nanostructure characterization may shed some
lights on the creep mechanism, there still exist several dis-
agreements among the results obtained by different tech-
niques. As elaborated in the text, two fundamental questions
regarding creep are still unclarified yet. One is ‘where does
the creep take place’, and another is ‘how does creep occur’.
Answering these questions will provide the theoretical
backgrounds on how to mitigate creep, quantitatively predict
creep deformation, and enhance the volumetric stability of
cementitious materials.
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