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Abstract Symmetric spaces arise in wide variety of problems in Mathematics and Physics. They are mostly
studied in Representation theory, Harmonic analysis and Differential geometry. As many physical systems
have symmetric spaces as their configuration spaces, the study of controllability on symmetric space is quite
interesting. In this paper, a driftless control system of type ẋ = ∑m

i=1 ui fi (x) is considered on a symmetric
space. For this we have established global controllability condition which is illustrated by few examples of
exponential submanifolds of SE(3) and random matrix ensembles.

Mathematic Subject Classification 34H05 · 37N35 · 53C35 · 93B05

1 Introduction

Lie theory was first introduced by Brockett [8,9] in motion control problems. He studied various aspects of
controllability and observability of systems involving Lie groups. The controllability properties of the systems
on Lie groups were investigated in [22,23,41]. Later, studies were done on these type of control systems
from a geometric point of view [1,21,38]. Recent times have witnessed a lot of activities where by control
theory (more particularly driftless control system) on Lie groups could play a lead role in explaining many
physical, chemical and engineering problems in the area of quantum control [33], space altitude control [44],
robotic controls [43], chemical reaction control [16,17] etc. which could not be easily tackled by control theory
defined on a conventional state space. With the advent of new technological challenges in control theory such
as motion patterns of many kinesiological/robot mechanical systems or control on ensembles, it is being felt
that a modified theory should be developed for tackling such type of situation, similar but not exact, to the case
where Lie group replaced the ordinary state space in control theory.

The motion pattern of human shoulder complex, human knee joint, mechanical device such as omni-wrist
are associated with spaces which can be approximated or shown to be some types of symmetric spaces.
Similarly considering a dynamical system on random matrix ensembles such as Circular ensembles, Gaussian
ensembles [Orthogonal (GOE), Sympletic (GSE), Unitary (GUE)] [24] it becomes necessary to devise a theory
of control system on symmetric space which is the main aim of our paper. We have confined ourselves to the
study of controllability of non linear driftless control system on these type of spaces, as most of the physical
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system can be modelled on such background. However, one can extend such types of studies to bilinear system
or affine system etc. which we have not ventured into, in this paper.

Progresses have been made to some extent in this regard by various authors [25,40] in which they have
discussed optimal control problems in Lie groups where control belong to symmetric space. A class of optimal
control problems defined on certain kinds of symmetric spaces is discussed by Bloch et al. [6,7]. Similarly
a lot of progress has been made to study control of complex networks [5,28] and control of ensembles
through structural controllability [12,13] and by other authors [2,3,26,27,39], but to our knowledge nobody
has discussed about these in the context of random matrix ensembles like GOE, GSE, GUE which actually
correspond to Riemannian symmetric spaces classified by Cartan [10]. These randommatrix ensembles which
actually correspond to Riemannian symmetric spaces, play an important role in explaining quantum transport
in a disordered wire, carbon nano tube etc. Thus we hope our theory can play an important role in quantum
control of these phenomena in quantum materials [11]. Taking these viewpoints into consideration we were
motivated to extend the study of control theory on Lie groups (Lie algebras) to symmetric spaces (Lie triple
systems).

Our task becomes simpler as Lie triple systems and symmetric spaces are related by exponential mapping
similar to Lie algebras and Lie groups. As a result many of the theories on Lie groups are extended very easily
to the case of symmetric spaces.

In the next section we gave an introduction to the concepts and definitions of symmetric spaces and Lie
triple system along with their relations. In the third section we define a nonlinear control system (driftless) on
a symmetric space and obtain the condition under which a system is globally controllable. In the fourth section
we apply these theories to a few simple but important examples. The last section contains few concluding
remarks.

2 Symmetric space and lie triple system

2.1 Symmetric space

A symmetric space [18,20,29,32] is a manifold S with a differential symmetric product · that obeys the
following conditions:

(i) a · a = a
(ii) a · (a · b) = b
(iii) a · (b · c) = (a · b) · (a · c),

and moreover
(iv) every a has a neighbourhood U such that ∀b ∈ U , a · b = b ⇒ b = a.

In other words, for x ∈ S, there exists an element sx in the isometry group of S which satisfies the following
properties

sx (x) = x, and (dsx )x = −I d.

This isometry sx is known as symmetry at x . Hence, a symmetric space S is a homogeneous space with a
symmetry sa at some point a ∈ S. A pointed symmetric space (S, o) is a pair which consists of a symmetric
space S and a point o known as the base point. The following are some examples of symmetric spaces.

1. The subsets of a group G which are closed under the composition a · b = ab−1a, where ab is the usual
multiplication in G.

2. The set of all symmetric positive definite matrices forms a symmetric space with the product defined by
a · b = ab−1a.

3. Let S = Sn be the unit sphere in Rn+1 with the standard scalar product. The symmetry at any x ∈ Sn is the
reflection at the line Rx in R

n+1, i.e., sx (y) = −y + 2 〈y, x〉 x . In this case, the symmetries generate the
full isometry group which is the orthogonal group O(n + 1).

2.2 Lie triple system

Lie triple system [18,20,29,32,45] is a vector space L over a fieldKwith a trilinear mapμ : L× L× L −→ L
satisfying(if we write μ(A1 ⊗ A2 ⊗ A3) = [A1, A2, A3]):
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1. [A1, A1, A2] = 0
2. [A1, A2, A3] + [A2, A3, A1] + [A3, A1, A2, ] = 0
3. [A1, A2[D, E, F]] = [[A1, A2, D], E, F]+[D, [A1, A2, E], F]+[D, E, [A1, A2, F]], for A1, A2, D, E,

F ∈ L , [· , ·, ·] is called ternary operation of the Lie triple system.

Generally, any subset of a Lie algebra g that is closed under the operator
TA(·) = ad2A(·) = [A, [A, ·]]

is a Lie triple system.
Some examples of Lie triple system is given below.

(i) The set of all n × n matrices is a Lie triple system with Lie double bracket defined by [A1, A2, A3] =
[[A1, A2], A3], for any n × n matrices A1, A2, A3 and [A1, A2] = A1A2 − A2A1.

(ii) The set of all n × n symmetric matrices is a Lie triple system with Lie double bracket defined by
[A1, A2, A3] = [[A1, A2], A3], for A1, A2, A3 any n × n symmetric matrices and [A1, A2] = A1A2 −
A2A1.

(iii) Let T be a Lie triple system and S be any nonempty set. Then the set T S of all functions f from S to T is
a Lie triple system with respect to a ternary operation given by [ f1, f2, f3](x) = [ f1(x), f2(x), f3(x)].

2.3 Lie double bracket of vector fields on a symmetric space

Let X1 and X2 be smooth vector fields on a n-manifold M , then X1 and X2 are first order differential operators
on smooth functions M −→ R. Hence for a smooth function f : M −→ R, X1 f and X2 f are also smooth
functions M −→ R.

Now we first define a differential operator [X1, X2] termed as Lie bracket of X1 and X2 as [X1, X2] :=
X1X2 − X2X1, i.e., for smooth functions f : M −→ R,

[X1, X2]( f ) := X1X2( f ) − X2X1( f ).

So by definition, [X1, X2] is a second order differential operator. But it appears that [X1, X2] is indeed a first
order differential operator and in fact, a vector field.

For any smooth vector fields X1 and X2, the Lie bracket [X1, X2] is again a smooth vector field on M .
Extending this, it can be shown that [[X1, X2], X3] is again a first order differential operator where

[[X1, X2], X3] ( f ) =X1X2X3( f ) − X3X1X2( f ) − X2X1X3( f ) + X3X2X1( f ).

Before proceeding further, let us extend the concepts of left invariant vector fields on symmetric spaces.
Let T be a Lie triple system (LT S) with its ternary operation μ(A1 ⊗ A2 ⊗ A3) = [A1, A2, A3] and G be a
Lie group. Then G is said to act on T from left if there exist a function

ϕ :G × T → T
(g, A) 	→ ϕ(g, A) = gA

which satisfies the following properties

1. ex = x, ∀x ∈ T, where e ∈ G is group identity,
2. g1(g2x) = (g1g2)x, ∀g1, g2 ∈ G and ∀x ∈ T,
3. for every g ∈ G, the left translation ϕg = ϕ(g) : T → T, A 	→ gA is a linear map,
4. ∀g ∈ G and A1, A2, A3 ∈ T; μ(gA1, gA2, gA3) = gμ(A1, A2, A3) = g[A1, A2, A3].

The above action is denoted by (G,T).The Lie triple systemwith an action of a groupG is calledG−LT S.

Further we see that the group G acts on the space of points G/K and maps it onto itself. In particular the
coset representations c ∈ G/K ⊂ G map the origin (base point) of G/K on to the point c ∈ G/K . If c is
any point in G/K , it can be mapped into any other point c′ in G/K by some group operation: (c′c−1)c →
c′, c′c−1 = g ∈ G. Moreover, the only group operation which leaves every point c fixed is the identity,
gc = c, ∀c ∈ G/K ⇒ g = I d.

The vector fields of the form U (X) = X A, V (X) = XB, W (X) = XC, X ∈ S, A, B,C ∈ T (tangent
space at the base point) are called left invariant vector fields if they satisfy the following property

[[U, V ],W ](X) = [X A, XB, XC] = X [A, B,C].
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Suppose now we have three left invariant smooth vector fieldsU, V,W on a symmetric space S and VF (S)
denotes the space of all smooth vector fields on S. The Lie double bracket of the fields U, V,W is the vector
field, [[U, V ],W ]] ∈ VF (S). It can be shown that

[[U, V ],W ](X) = d

dt

∣
∣
∣
∣
t=0

γ (
3
√
t), X ∈ S,

where the curve γ is defined as

γ (t) = e−tW ◦ e−tU ◦ e−tV ◦ etU ◦ etV ◦ etW ◦ e−tV ◦ e−tU ◦ etV ◦ etU (X). (1)

Here etU denotes the flow of the vector field U

d

dt
etU (X) = U

(
etU (X)

)
, etU

∣
∣
∣
∣
t=0

(X) = X.

The left invariant vector fields now have the Lie double bracket defined as

[[U, V ],W ](X) = [[X A, XB], XC]
= X [[A, B],C]
= X ((AB − BA)C + C(BA − AB))

= X (ABC − BAC + CBA − CAB).

The matrix exponential gives the flows of the left invariant vector fields, so

etU (X) = Xe(t A), etV (X) = Xe(t B), etW (X) = Xe(tC).

Computing the lower order terms of the curve γ from (1); we obtain

γ (t) = Xe(t A)e(t B)e(−t A)e(−t B)e(tC)e(t B)e(t A)e(−t B)e(−t A)e(−tC)

= X

(

I d + t A + t2

2! A
2 + t3

3! A
3 + · · ·

)(

I d + t B + t2

2! B
2 + t3

3! B
3 + · · ·

)

(

I d − t A + t2

2! A
2 − t3

3! A
3 + · · ·

)(

I d − t B + t2

2! B
2 − t3

3! B
3 + · · ·

)

(

I d + tC + t2

2!C
2 + t3

3!C
3 + · · ·

) (

I d + t B + t2

2! B
2 + t3

3! B
3 + · · ·

)

(

I d + t A + t2

2! A
2 + t3

3! A
3 + · · ·

)(

I d − t B + t2

2! B
2 − t3

3! B
3 + · · ·

)

(

I d − t A + t2

2! A
2 − t3

3! A
3 + · · ·

)(

I d − tC + t2

2!C
2 − t3

3!C
3 + · · ·

)

= X

(

I d + t2(AB − BA) + t3

2! (A
2B + BA2 + 2BAB − 2ABA − AB2 − B2A)

)

(

I d + tC + t2

2!C
2 + t3

3!C
3 + · · ·

)(

I d + t2(BA − AB) + t3

2! (AB
2 + B2A

+ 2ABA − 2BAB − A2B − BA2)

)(

I d − tC + t2

2!C
2 − t3

3!C
3 + . . .

)

= X

(

I d + tC + t2

2!
(
C2 + 2AB − 2BA

) + t3

3! (C
3 + 6ABC − 6BAC + 3A2B + 3BA2

+ 6BAB − 6ABA − 3AB2 − 3B2A)

)(

I d − tC + t2

2!
(
C2 + 2BA − 2AB

)

− t3

3!
(
C3 + 6BAC − 6ABC − 3A2B − 3B2A + 6BAB − 6ABA + 3A2B + 3BA2)

)
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= X

(

I d + t3(AB − BA)C − C(AB − BA)

)

= X

(

I d + t3[[A, B],C] + · · ·
)

.

Hence,

γ (
3
√
t) = X (I d + t[[A, B]C] + · · · ) ,

is a smooth curve at t = 0, and

d

dt

∣
∣
∣
∣
t=0

γ (
3
√
t) = [[A, B],C].

Thus, we see that these types of vector fields form a tangent space to the symmetric space at the base point
and is called Lie triple system.

Special types of symmetric spaces can also be constructed as follows:
A symmetric space is associated to an involutive automorphismof a givenLie algebrag. To bemore specific, ifσ
is an automorphism then it preserves themultiplication: [σ(x), σ (y)] = σ([x, y]).Let the linear automorphism
σ : g → g be such that σ 2 = 1, however σ is not the identity, which implies σ has eigen values ±1 and it
splits the algebra g into orthogonal eigen spaces corresponding to these eigen values. Such type of mapping is
known as an involutive automorphism.

Let σ be an involutive automorphism of a compact simple Lie algebra g and g = k
⊕

p where

σ(y) = y, ∀y ∈ k,

σ (y) = −y, ∀y ∈ p.

It is simple to verify that k is a subalgebra whereas p is not. Moreover, the commutation relation

[k, k] ⊂ k, [k, p] ⊂ k, [p, p] ⊂ k (2)

holds.A subalgebra ‘k’ satisfying (2) is called a symmetric subalgebra.When the elements of p aremultiplied by
i (weyl unitary trick), a new non compact algebra g∗ = k+ p∗ is obtained. This is called Cartan decomposition
and ‘k’ is the maximal compact subalgebra of g∗. The coset spaces P � ep � G/K , where G � eg, is a
symmetric space. SimilarlyG∗/K is also a symmetric space. The corresponding Lie triple systems are denoted
by g/k and g∗/k respectively. For example

G/K = SU (n,C)/SO(n,R);
G∗/K = SL(n,R)/SO(n,R);

are symmetric spaces of compact and non compact type respectively. These types of symmetric spaces has
been classified by Cartan [10] and they corresponds to various random matrix ensembles.

The Lie triple systems associated with the above two types of symmetric spaces are denoted by

g/k = su(n,C)/so(n,R);
g∗/k = sl(n,R)/so(n,R);

respectively.
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3 Driftless control system on a symmetric space and its controllability condition

To beginwith, we introduce some basic concepts and definitions relatedwith control system following standard
literature on control theory.

Let S be a smooth n-dimensional manifold with tangent space at x denoted by Tx S. A general control
system takes the form

ẋ = f (x, u)

where x ∈ S denotes the state, u ∈ R is the control, and f (·, u), is a vector field on S for all u.
Suppose that f is locally Lipschitz relative to the second variable, then ∀x ∈ S and ∀u ∈ L2([0, t f ],Rm),

the cauchy problem

ẋ(t) = f (x(t), u(t)), t ∈ [0, t f ], x(0) = x

has a unique solution

x(·) = x(·, x, u) :
[
0, t ′f

]
−→ S with t ′f ≤ t f .

Mainly there are three types of controllability: global controllability, local controllability at an equilib-
rium point and local controllability along a reference trajectory. In this paper we extend the study of global
controllability to symmetric spaces.

A control system of the form ẋ = f (x, u) defined as above is said to be globally controllable on S if for
any x1, x2 ∈ S and t f > 0, there exist a control u ∈ L2([0, t f ],Rm) such that the solution of the cauchy
problem starting at x1 satisfy x(t f ) = x2.

Now, given a family F of smooth vector fields on symmetric space S, denote LT S {F} as the Lie triple
system generated by F . It is the smallest vector subspace V of smooth vector fields containing F , which
satisfies

[[A, B],C] ∈ V, ∀A, B ∈ F, ∀C ∈ V.

The sufficient condition of global controllability for a driftless control system on Lie group is given and
proved independently by P. Rashevsky [35] and W. L. Chow [14]. More recently simpler proofs given by
F. Jean [21] and L. Rifford [37] separately. In this paper we have extended Rashevsky and Chow’s theorem
to symmetric spaces following Jean closely, which we call extended Rashevsky and Chow’s theorem for
symmetric spaces, which is explained below:

Extended Rashevsky-Chow’s Theorem. Let S be a smooth connected n-manifold of symmetric space and
{X1, X2, . . . , Xm} be m smooth vector fields on S. Assume that

LT S {X1, X2, . . . , Xm} (x) = Tx S, ∀x ∈ S.

Then the control system

ẋ =
m∑

i=1

ui Xi (x),

is globally controllable on S.
The controllability of a driftless control system on a symmetric space is characterized by the properties of

the Lie triple system generated by the vector fields {X1, X2, . . . , Xm} .

Let VF (S) denote the set of all smooth vector fields on S and�1 be the linear subspace of VF (S) generated
by vectors fields {X1, . . . , Xm},

i.e.,�1 = span {X1, . . . , Xm} .

For p ≥ 1, define

�p+1 = �p + [[
�1, �p] ,�1]

123



Arab. J. Math.

where
[[

�1, �p] , �1] = span
{[[A, B],C]] : A,C ∈ �1, B ∈ �p} .

The vector fields {X1, . . . , Xm} generates a Lie triple system, which is defined as

LT S {X1, . . . , Xm} =
⋃

p≥1

�p.

From the Jacobi identity property of Lie triple system, LT S {X1, . . . , Xm} is the smallest linear subspace
of VF (S) which contains {X1, . . . , Xm} and is invariant under Lie double brackets.

LetL be the free Lie algebra generated by the elements {1, . . . ,m} .Here,L is theR vector space generated
by {1, . . . ,m} and their bracket [·, ·] combined with relation of skew symmetry and the Jacobi identity.

The length of an element I of L is denoted by |I | and is defined inductively by |I | = 1 for I = 1, . . . ,m,
|I | = |I1| + |I2| for I = [I1, I2] and |I | = |I1| + |I2| + |I3| for I = [I1, I2], I3]. With every element
I ∈ L associate the vector field XI ∈ LT S {X1, . . . , Xm} obtained by plugging in Xi , i = 1, 2, . . . ,m for the
corresponding letter i in I . For example X[1,2,3] = [[X1, X2], X3].

Due to Jacobi identity property of Lie triple system

�p = span {XI : |I | � p} .

For x ∈ S, we set LT S {X1, . . . , Xs} (x) = {X (x) : X ∈ LT S{X1, . . . , Xm}} and for p � 1,�p(x) =
{X (x) : X ∈ �p}. By definition, these sets are linear subspaces of Tx S.

We say that the control system

ẋ =
m∑

i=1

ui Xi (x), (3)

and the vector fields {X1, . . . , Xm} satisfies Chow’s condition if LT S{X1, . . . , Xm}(x) = Tx S, ∀x ∈ S.

Equivalently, for any x ∈ S ∃ an integer r = r(x) such that dim�r (x) = n.

If (3) satisfies Chow’s condition, then ∀x ∈ S, the reachable set Rx is a neighbourhood of x .
Now we confine ourselves to a small neighbourhood of x , i.e., Ux ⊂ S which can be identified with a

neighbourhood of 0 in Rn .

Let � i
t = exp(t Xi ), i = 1, 2, . . . ,m be the flow of the vector field Xi . Each curve t 	−→ � i

t (x1) is a
trajectory of (3) and we have

� i
t = id + t Xi + O(t).

For every element I ∈ L, we define the local diffeomorphism � I
t on Ux by induction on the length |I | of

I : if I = [I1, I2], I3] then

� I
t =

[[
�

I1
t , �

I2
t

]
, �

I3
t

]

= �
I3−t ◦ �

I1−t ◦ �
I2−t ◦ �

I1
t ◦ �

I2
t ◦ �

I3
t ◦ �

I2−t ◦ �
I1−t ◦ �

I2
t ◦ �

I1
t .

By construction, � I
t may be expanded as a composition of flows of the vector fields Xi , i = 1, 2, . . . ,m. As

a result � I
t (x1) is the end point of a trajectory of (3) induced from x1. Further, on a neighbourhood of x there

holds

� I
t = id + t |I |XI + O

(
t |I |

)
. (4)

A diffeomorphism now can be defined whose derivative with respect to the time is exactly XI and is given
by

ψ I
t = id + t X I + O(t) (5)

and ψ I
t (x1) is the endpoint of a trajectory of (3) starting from x1.
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Now we choose double commutators XI1, XI2 , . . . , XIn whose values at x span Tx S. This is feasible
through Chow’s condition. Let φ be a map defined on a small neighbourhood U0 of 0 in R

n by

φ(t1, . . . , tn) = ψ
In
tn ◦ · · · ◦ ψ

I1
t1 (x1) ∈ S.

We infer from (5) that this map is C1 near 0 and has an invertible derivative at 0, which implies that it is a local
C1-diffeomorphism. Hence φ(U0) contains a neighbourhood of x .

Now, ∀t ∈ U0, φ(t) is the endpoint of a concatenation of trajectories of (3), the first one starting from
x . It is then the endpoint of a trajectory starting from x . Hence, φ(U0) ⊂ Rx , which implies that Rx is a
neighbourhood of x .

Let x1 ∈ S and if x2 ∈ Rx1 , then x1 ∈ Rx2 . As a result, Rx1 = Rx2 for any x2 ∈ S and by the above result,
Rx1 is an open set. Therefore the union of the sets Rx1 which are pairwise disjointed covers the manifold S.
Since S is a connected manifold, there can only be one open set which can cover S, i.e., Rx1 . Hence, any two
points in S can be connected by trajectories of (3).

Thus we see that as (3) satisfies the Chow’s condition, ∀x ∈ S, the reachable set Rx is a neighbourhood of
x . So now if S is connected and if (3) satisfies the Rashevsky-Chow’s condition then any two points of S can
be connected by a trajectory of (3) and we obtain the extended Chow’s theorem.

4 Applications

Immediate examples of symmetric spaces which are applied directly to physical applications are symmetric
submanifolds of special Euclidean group SE(3) which are related to various kinesiological and mechanical
systems and accordingly, have numerous potential applications in robot kinematics [42,43]. Similarly, as
discussed earlier the random matrix ensembles like GOE, GUE and circular ensembles have a lot application
in quantum transport problems, etc. So in this section we have studied the controllability aspect of some
symmetric spaces. But to start with, we have simplest example of symmetric space SO(3)/SO(2) � S2. Each
element of SO(3)/SO(2) can be fully characterized by three real parameters such that their moduli sum to 1
and then there is a one-to-one correspondence between each element of SO(3)/SO(2) and a set of Cartesian
coordinates for S2.

4.1 Controllability on SO(3)/SO(2)

The infinitesimal generators of the Lie algebra so(3) of Lie group SO(3), corresponds to the derivative of
rotation around the each of the standard axes, evaluated at the identity, which are

X1 =
⎡

⎣
0 0 0
0 0 −1
0 1 0

⎤

⎦ , X2 =
⎡

⎣
0 0 1
0 0 0

−1 0 0

⎤

⎦ ,

X3 =
⎡

⎣
0 −1 0
1 0 0
0 0 0

⎤

⎦ .

The infinitesimal generators of the Lie algebra so(2) of Lie group SO(2) correspond to the derivative of
rotation evaluated at the identity, which is

X =
[
0 −1
1 0

]

.

This result for infinitesimal generator for rotation about the z- axis i.e. X3 is essentially identical to those of
SO(2). So the generators of so(3)/so(2) are {X1, X2} and

[X1, X2] =
⎡

⎣
0 −1 0
1 0 0
0 0 0

⎤

⎦ = X3.
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Also,

[[X1, X2] , X1] = [X3, X1] = X2

and

[[X1, X2] , X2] = [X3, X2] = −X1.

We can verify that {X1, X2} form a Lie triple system.
Now we consider a driftless control system of the following type in classical notation [38]

ẋ = x
2∑

i=1

Xiui , x ∈ S (6)

where x ∈ SO(3)/SO(2), ui are controls on it and Xi are smooth vector fields on the given symmetric space.
Let �1 = span{X1, X2}, for p > 1,�p+1 = �p + [

�1,
[
�1, �p

]]
, so �2 = �1 + [

�1,
[
�1, �1

]]
.

Let A, B,C ∈ �1 be arbitrary, then we can write A = α1X1 + β1X2, B = α2X1 + β2X2, C =
α3X1 + β3X2, αi , βi , i ∈ {1, 2, 3} are scalars.
Now,

[
�1,

[
�1, �1

]]

= [α1X1 + β1X2, [α2X1 + β2X2, α3X1 + β3X2]]

= [α1X1 + β1X2, ([α2X1, α3X1] + [α2X1, β3X2] + [β2X2, α3X1] + [β2X2, β3X2])]

= [α1X1 + β1X2, α2β3 [X1, X2] + β2α3 [X2, X1]]

= [α1X1 + β1X2, (α2β3 − β2α3) X3]

= [
α1X1 + β1X2, γ X3

]
, where γ = α2β3 − β2α3

= α1γ [X1, X3] + β1γ [X2, X3]

= α1γ X1 + β1γ X2 ∈ �1

So, �2 =�1 + [
�1,

[
�1, �1]]

= �1

Hence, number of generators of �2 = 2. This implies dim �2 = 2.
And hence so(3)/so(2) satisfies the Chow’s condition as dim �2 = 2 i.e., dim �2 is same as the dimension
of SO(3)/SO(2). So we conclude that the control system defined in (6) is controllable by Chow–Rashevsky’s
theorem. This is a trivial case, however we have done it in detail and the result coincides with the paper by
Brockett for controllability on Sn sphere [9,30,38].

4.2 Controllability on symmetric submanifolds of SE(3)

The special Euclidean group SE(3) admits an inversion symmetry through any of its elements hence it is a
symmetric space. The Lie algebra of SE(3) is se(3) whose basis elements are these 4 × 4 matrices, each of
which corresponds to either infinitesimal rotations or infinitesimal translations along each axis:

e1 =
⎡

⎢
⎣

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎦ , e2 =

⎡

⎢
⎣

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤

⎥
⎦ ,

e3 =
⎡

⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤

⎥
⎦ , e4 =

⎡

⎢
⎣

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎤

⎥
⎦ ,

e5 =
⎡

⎢
⎣

0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎤

⎥
⎦ , e6 =

⎡

⎢
⎣

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎦ .
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There is one to one correspondence betweenLie triple systems of SE(3) and the symmetric submanifolds of
SE(3). Therefore, the classification of symmetric submanifolds of SE(3) upto conjugation is equivalent to that
of the conjugacy class of Lie triple system of SE(3). There are seven conjugacy classes of symmetric submani-
folds of SE(3), all ofwhich can be locally represented by exp M withM being aLie triple (sub)systemof se(3).
As discussed earlier, the Lie triple system are vector subspace of se(3) closed under double Lie brackets. The
Lie triple systems of se(3) [43] are {e3, e4}, {e3, e4 +pe1}, {e4, e5}, {e1, e3, e4}, {e3, e4, e5}, {e1, e2, e4, e5}
and {e1, e2, e3, e4, e5} here p takes an arbitrary finite value.

From control theory point of view, a system is controllable on a space with all available controls in hand.
But generally we are interested in controlling a system with fewer number of controls. In this case we see that
the following two systems are controllable on the given symmetric spaces.

1. A left invariant driftless control system defined on the symmetric submanifold of SE(3), represented by
M1 = exp {e1, e2, e4, e5} is given by

ẋ =x (e1u1 + e2u2 + e4u4 + e5u5) , x ∈ M1, ui , i = 1, 2, 4, 5 ∈ R. (7)

Since, [[e2, e4] , e5] = e1, so the three generators {e2, e4, e5} upon double bracket commutation generates
the full set of basis elements of LT S {e1, e2, e4, e5}. So the system (7) can be controlled with fewer number
of controls by Rashvesky-Chow’s theorem and is represented as

ẋ =x (e2u2 + e4u4 + e5u5) , x ∈ M1, ui , i = 2, 4, 5 ∈ R. (8)

2. Similarly, a left invariant driftless control system defined on the symmetric submanifold of SE(3), repre-
sented by M2 = exp {e1, e2, e3, e4, e5} is given by

ẋ =x (e1u1 + e2u2 + e3u3 + e4u4 + e5u5) , x ∈ M2, ui , i = 1, . . . , 5 ∈ R. (9)

Since, [[e1, e5] , e4] = e2, so, the four generators {e1, e3, e4, e5}upondouble bracket commutation generates
the full set of basis elements of LT S {e1, e2, e3, e4, e5}. So the system (9) can be rewritten as

ẋ =x (e1u1 + e3u3 + e4u4 + e5u5) , x ∈ M2, ui , i = 1, 3, 4, 5 ∈ R (10)

and it is controllable by Rashvesky–Chow’s theorem.

4.3 Controllability on symmetric spaces associated with random matrices

Randommatrix theory deals with the study of matrix ensembles, i.e., matrices with a probability measure. The
classical non-compact matrix Gaussian ensembles are GOE, GUE and GSE. These ensembles arises when a
Gaussian-like probability measure is introduced in each set of a family of non-compact matrices. Each set
of matrices, along with the probability measure on it, is invariant under the action of the orthogonal, unitary
or symplectic group, respectively. The ensembles above have compact counterparts the Circular Orthogonal
Ensemble (COE), the Circular Unitary Ensemble (CUE) and the Circular Symplectic Ensemble (CSE), leav-
ing the probability measure invariant. The members of all the six ensembles discussed are submanifolds of
Euclidean space. In fact, they are (essentially) Riemannian globally symmetric spaces. The integration man-
ifolds of the random matrices, the distribution of eigenvalues and the Dyson characterizing the ensembles
[19] are strictly in correspondence with symmetric spaces. This identification can lead to a number of critical
outcomes.

A new classification of random matrix ensembles arises from the Cartan classification of triplets of sym-
metric spaces with positive, zero and negative curvature. Now we discuss controllability on two examples of
GOE and COE respectively.

4.3.1 Gaussian Orthogonal Ensemble (GOE)

For each n, the set of n × n real symmetric matrices, whose entries are independent normal random variables,
form the ensemble GOE i.e.,

SGOE (n) = {
A = (ai j )n×n = (a ji )

}
(11)
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with the probability measure

dμ(A) ∝ exp

(

−tr
A2

2

)

d A (12)

where d A = ∏
i� j dai j is the (additive) Haar measure on SGOE . The nonsingular matrices in (11) form an

open set of full measure, one of whose components S consists of all the real symmetric positive definite n × n
matrices. It is known the symmetric positive definite matrices [31] are symmetric spaces, with symmetric
product a · b = ab−1a and its Lie triple system are the set of symmetric matrices. The Lie triple system of the
3 × 3 symmetric positive random matrix, are the set of 3 × 3 symmetric matrices, whose basis elements are

a1 =
⎡

⎣
1 0 0
0 0 0
0 0 0

⎤

⎦ , a2 =
⎡

⎣
0 0 0
0 1 0
0 0 0

⎤

⎦ ,

a3 =
⎡

⎣
0 0 0
0 0 0
0 0 1

⎤

⎦ , a4 =
⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦ ,

a5 =
⎡

⎣
0 0 1
0 0 0
1 0 0

⎤

⎦ , a6 =
⎡

⎣
0 0 0
0 0 1
0 1 0

⎤

⎦ .

So a driftless control system on the symmetric space S of symmetric positive definite matrices with six number
of controls is given by

ẋ = x
6∑

i=1

aiui , x ∈ S, ui ∈ R. (13)

Since, [[a1, a4], a4] = −2a2, [[a2, a4], a4] = a6 and [[a2, a6], a4] = a5. The three basis element
{a1, a3, a4} upon double bracket commutation generates the full set of basis elements of the 3 × 3 symmetric
matrices. So now the control system with fewer number of controls is given by

ẋ =x (a1u1 + a3u3 + a4u4) , x ∈ S, ui , i = 1, 3, 4 ∈ R. (14)

It is controllable on given GOE by Rashvesky-Chow’s theorem. The maximum number of controls is 6.
We can construct a number of control systems with different combinations with fewer number of controls, but
not all such systems are controllable. In this case, control systems with two controls, will not be controllable.
In particular, if we take the control system (14) as above then we see that only with these three number of
controls, we can control the whole system defined in (13).

4.3.2 Circular Orthogonal Ensemble (COE)

In SU (n), the subgroup SO(n) is the fixed-point set of the involution

a 	→ aσ := (
a−1)t .

The space SU (n)/SO(n) can be realized as the set of matrices

S(n) =
{
A ∈ SU (n)| A is symmetric, i.e., A = AT

}
. (15)

The ensemble S(n) endowed with its Haar probability measure is Dyson’s Circular Orthogonal Ensemble
(COE) [11] i.e., the integration manifold of the COE is SU (n)/SO(n). If we have consider the case of n = 3,
the group SU (3) is characterized by 3× 3 unitary matrices with determinant 1. The generators are Hermitian
matrices 3 × 3 with zero trace. Such general Hermitian matrix can be parametrized with eight real numbers
a, . . . , h

⎡

⎣
a c − id e − i f

c + id b g − ih
e + i f g + ih −a − b

⎤

⎦ .
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The Lie algebra su(3) of SU (3) is defined as the collection of 3 × 3 anti-Hermitian square matrices having
trace zero. The following Gell-Mann matrices, are the generators of su(3)

A1 =
⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦ , A2 = i

⎡

⎣
0 −1 0
1 0 0
0 0 0

⎤

⎦ ,

A3 =
⎡

⎣
1 0 0
0 −1 0
0 0 0

⎤

⎦ , A4 =
⎡

⎣
0 0 1
0 0 0
1 0 0

⎤

⎦ ,

A5 = i

⎡

⎣
0 0 −1
0 0 0
1 0 0

⎤

⎦ , A6 =
⎡

⎣
0 0 0
0 0 1
0 1 0

⎤

⎦ ,

A7 = i

⎡

⎣
0 0 0
0 0 −1
0 1 0

⎤

⎦ , A8 = 1√
3

⎡

⎣
1 0 0
0 1 0
0 0 −2

⎤

⎦ .

The generators {A2, A5, and A7} of su(3) are essentially identical to the generators of so(3). So, the
generators of su(3)/so(3) are {A1, A3, A4, A6 and A8}. So a driftless control system on the symmetric space
SU (3)/SO(3) is given by

ẋ = x (A1u1 + A3u3 + A4u4 + A6u6 + A8u8) , x ∈ SU (3)/SO(3), ui , i = 1, 3, 4, 6, 8 ∈ R. (16)

Since, [[A1, A3], A4] = 2A6, so, the four generators {A1, A3, A4, A8} upon double bracket commutation
generates the full set of basis elements of su(3)/so(3). So the system (16) can be controlled with fewer
number of controls and the system can be given by

ẋ = x (A1u1 + A3u3 + A4u4 + A8u8) , x ∈ SU (3)/SO(3), ui , i = 1, 3, 4, 8 ∈ R. (17)

In this case, control systems with three controls, will not be controllable. But, if we take the control system
(17) as above then we see that only with these four number of controls, we can control the whole system
defined in (16).

5 Concluding remarks

In this article, we have extended Rashvesky-Chow’s theorem for global controllability condition on Lie groups
to that of symmetric spaces and shown that how it can be readily and directly implemented for driftless
nonlinear control systems on various physical system of symmetric submanifold of SE(3) and random matrix
ensembles. The extension of Rashvesky-Chow’s theorem from Lie groups to symmetric space is not straight
forward. Lie group is a group but symmetric space is not. The tangent space to the group at identity element
is a Lie algebra (with a bilinear Lie bracket), but the tangent space to the symmetric space at the base point is
a Lie triple system (with a trilinear Lie double bracket). For Lie groups, the Lie algebra are obtained through
four operations of flows on the manifold, while in case of symmetric spaces it involves ten operations of flow
on the manifold. Now it is quite interesting to extend such type of studies for Hamiltonian formalism [6] (using
Lie double brackets) and using various analytical and numerical integrators [15,36] to understand the system
dynamics. These type of studies can also be used to understand the controllability of different other physical
systems such as quantum systems, molecular systems, etc. [4,33,34].
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