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Abstract In the past few decades, the discrete dynamics of difference maps have attained the remarkable
attention of researchers owing to their incredible applications in different domains, like cryptography, secure
communications, weather forecasting, traffic flow models, neural network models, and population biology.
In this article, a generalized chaotic system is proposed, and superior dynamics is disclosed through fixed
point analysis, time-series evolution, cobweb representation, period-doubling, period-3window, and Lyapunov
exponent properties. The comparative bifurcation and Lyapunov plots report the superior stability and chaos
performance of the generalized system. It is interesting to notice that the generalized system exhibits superior
dynamics due to an additional control parameter β. Analytical and numerical simulations are used to explore
the superior dynamical characteristics of the generalized system for some specific values of parameter β.
Further, it is inferred that the superiority in dynamics of the generalized system may be efficiently used for
better future applications.

Mathematics Subject Classification 37B25 · 37D45 · 37G15 · 37H15 · 37M10 · 37M25

1 Introduction

In recent times, due to the prominent role of discrete chaos, various discrete chaotic systems are frequently
used in different branches of natural and social sciences. In general, chaos theory reports an unpredictable
and aperiodic behavior in nonlinear dynamical systems, that displays sensitive dependence upon initial condi-
tions. The chaotic dynamics of nonlinear systems was initially studied by Poincare [38]. However, the recent
advancements in chaos theory are primarily based on the research works of Lorenz [32] and May [35]. To
know further about discrete chaos, one can also refer to Devaney [17,18], Diamond [19], Prigogine et al. [39],
Wiggins [53], Holmgren [24], Strogatz [49], Robinson [46], Alligood et al. [1], Martelli [34], Elaydi [20],
Ausloos and Dirickx [9], Elhadj and Sprott [21], Gleick [22], and Ott [36].

In the 21st century, owing to their simple formations and tremendous chaotic characteristics, the discrete
chaotic systems have found significant applications in different domains such as secure communication [48],
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image encryption [10,11], particle swarm optimization [50], traffic control model [2,4], neural network model
[14], pseudo-random number generation [27,31,52], synchronization control [8,37], network evolution [33]
and physics, population biology, chemistry and engineering [49], etc. Lorenz [32], the founder ofmodern chaos
theory, established the first chaotic system. After that, various other discrete chaotic systems have also been
proposed, like, the logistic map [35], Henon map [23], tent map [17], Lorenz-like system [12], coupled map
lattices [26], and numerous other chaotic systems [30,55]. Themost celebrated discrete chaotic systemmodel is
the standard logistic system, which is a major advancement in the area of nonlinear dynamics and chaos theory.
The standard logistic system, given by the discrete difference equation ρx(1 − x), was initially proposed by
Verhulst [51] as a prominent model of population growth. Due to its simple structure and complex dynamics,
the logistic system has been extensively used to examine different nonlinear phenomena. The logistic system
remains in a stable state for 0 < ρ ≤ 3.57 and chaotic state for 3.57 < ρ ≤ 4 [17,24,51]. Further, for ρ > 4,
the system is undefined as there exists atleast one xn such that xn /∈ [0, 1].

Distinct iteration processes and feedback algorithms were applied so far to enhance the stability per-
formance and predictability of discrete logistic system for an extensive range of growth-rate parameter ρ
and its applications were also studied (see [2–4,16,25,41,42] and various other references therein). Fur-
ther, different generalized versions of the discrete systems have been studied by various researchers (see
[5,6,15,40,43,44,47]). Cao and Ashish[13] explored the different dynamical characteristics of the logistic
map along with some scaling methods using Euler’s numerical algorithm. Moreover, the stabilization in fixed
and periodic states of discrete chaotic maps via Noor orbit with applications is studied in [7]. Wu and Baleanu
[54] also explored the discrete chaos in fractional delayed logistic maps.

Recently, Ashish et al. [5] studied about discrete chaos in a modulated logistic map and reported the
superiority in chaos performance of themodulated systemvia period-doubling, period-3window, andLyapunov
exponent characteristics. Also, Kumar et al. [28] examined the dynamical characteristics of another one-
dimensional chaotic system using different techniques. They showed that the stability and chaotic dynamics
of the established system are better than that of the discrete logistic system. Further, Renu et al. [45] examined
the discrete chaotic map proposed in [28] using superior orbit and reported its improved stability performance.
Motivating by these works and extensive applications of discrete logistic system, in this article, we introduce a
generalized chaotic system that exhibits enhanced chaos and stability performance as compared to the existing
chaotic systems. The stable and chaotic dynamics of the generalized system are examined through analytical
and numerical simulations using different dynamical properties. It is reported that due to the advantage of
an ordered parameter β, the generalized system exhibits stability and chaotic behavior for larger ranges of
control parameter ρ in contrast to the traditional chaotic systems. Because of the extensive range of its stability
performance, the generalized system may have better applications in various real-life problems where stability
is important like population control, traffic control etc. Further, the superiority in chaotic performance makes
the system more suitable for chaos-based applications such as image encryption decryption in cryptography,
secure communication systems and signal processing.

The complete article is arranged as follows: Sect. 1 provides an introduction and a short literature review
while Sect. 2 presents some general definitions, results, and notations that are used in the study. Sect. 3 deals
with the formation and dynamical exploration of the generalized system, in which the superior stability and
chaotic dynamics of the system is reported via fixed point analysis, time-series plots, cobweb diagrams, peri-
odic evolution, and Lyapunov exponent characteristics. Further, Sect. 4 is devoted to establish the dynamical
superiority of the generalized system by comparing the bifurcation and Lyapunov plots and also briefly high-
lights the possible applications of the generalized system. Finally, the results of the article are concluded in
Sect. 5.

2 Basic definitions

This section provides definitions of the specific terminology and concepts that are significant for the study of
discrete dynamical systems and chaos theory.

Definition 2.1 (Picard iteration process) [18] Let f : X → X be a discrete system, where X is a non-empty
set. Then, the iterative sequence {xn}, for an initial input x0 ∈ X , defined as

xn+1 = f (xn), (1)
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where n = 0, 1, 2, 3, ..., is termed as Picard orbit of iteration and the entire process is called Picard iteration
process or one-step feedback algorithm as it takes only one number, say x0, as input to provide a new member
as output.

Definition 2.2 (Fixed and periodic point) [17] If f : X → X denotes a discrete system defined on X , where
X is a non-empty set. Then, an arbitrary point x ∈ X is called fixed for the system f , if it satisfies f (x) = x .
Further, that point x is known as an order-p periodic point if f p(x) = x , where p indicates the smallest
positive integer and the iterative sequence {x1, x2, ...xp} is called an order-p orbit.

Definition 2.3 (Attracting and repelling fixed point) [18] Let f : X → X be a discrete system and X is a
non-empty set. Then, a fixed point x for the system f is known as attracting if that satisfies | f ′(x)| < 1 and if
| f ′(x)| > 1, that is known as repelling. If | f ′(x)| = 1, the fixed point is termed as weakly attracting or neutral.

Definition 2.4 (Critical point) [17] Suppose f : X → X is a discrete system and X denotes a non-empty set.
Then, an arbitrary point x ∈ X is known as a critical point of the system f , if that satisfies f ′(x) = 0. Further,
the point is called nondegenerate if f ′′(x) �= 0 and degenerate for f ′′(x) = 0.

Definition 2.5 (Chain rule of differentiation along a cycle) [18] If f : X → X denotes a discrete system,
where X is a non-empty set. Suppose {x1, x2, · · · , xn} is a sequence of iterates lying on period-n cycle of the
system f . Then, the differentiation for nth iterate of the system f is given by,

( f n)′(x1) = f ′(x1) × f ′(x2) × · · · × f ′(xn−1) × f ′(xn). (2)

It gives that the differentiation for f n at point x1 is just the multiplication of the derivatives of f at each point
of that orbit.

Definition 2.6 (Lyapunov exponent) [1] Let f : R → R be a discrete system defined on R, where R denotes
the set of real numbers. Then, for an iterative orbit {xn} of the system f , the Lyapunov exponent (γ ) is defined
by,

γ (x1) = lim
n→∞

1

n

n∑

i=1

log| f ′(xi )|, (3)

provided that the limit exists finitely. The system exhibits stable fixed and periodic states for negative Lyapunov
exponent value and chaos or unstable state is reported in the system for positive Lyapunov value. Further, if
the Lyapunov exponent value (γ ) is zero, then the system remains in a neutral state. In this way, the Lyapunov
exponent value is used to explore the stable and unstable states for the system.

3 Formulation and dynamical exploration of the generalized system Gρ,β(x)

Throughout this section, we deal with the formation and detailed analysis of a generalized chaotic system
using different dynamical properties. Therefore, let us consider a discrete chaotic map G : [0, 1] → [0, 1]
defined as:

Gρ,β(x) = ρx(1 − x)β

1 + x
, where ρ ∈ (0, ρmax ] , β > 1, and x ∈ [0, 1]. (4)

In particular, through induction, the corresponding discrete dynamical system or difference equation form of
the above chaotic map can be given as:

xn+1 = Gρ,β(xn) = ρxn(1 − xn)β

1 + xn
, (5)

where ρ ∈ (0, ρmax ], β > 1, n = 0, 1, 2, · · · , denotes the number of iterations, and xn ∈ [0, 1]. The above
systemGρ,β(x) (4) is termed as the generalized chaotic system, which at β = 1 reduces to the one-dimensional
chaotic system ρx(1−x)

1+x as suggested by Kumar et al. [28].
The entire dynamics for the generalized chaotic system Gρ,β(x) primarily depends on two control param-

eters, namely ρ and β. Now, we explore the discrete dynamics of the generalized system Gρ,β(x) through
distinct dynamical features like fixed and periodic points, time-series and cobweb representations, bifurcation
analysis, and Lyapunov exponent plots under different subsections.
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3.1 Fixed point analysis in the generalized system Gρ,β(x)

As, we have taken above Gρ,β(x) = ρx(1−x)β

1+x as a generalized chaotic system, where ρ ∈ (0, ρmax ], β > 1,
and x ∈ [0, 1], so by using Definition 2.1, we obtain the following orbit evolution:

x1 = Gρ,β(x0),

x2 = Gρ,β

(
Gρ,β(x0)

) = G2
ρ,β(x0),

x3 = Gρ,β

(
Gρ,β

(
Gρ,β(x0)

)) = G3
ρ,β(x0),

...
...

...

xn = Gρ,β(Gρ,β(Gρ,β(x0) · · · n-times)) = Gn
ρ,β(x0),

such that n ∈ N , Gn
ρ,β(x0) denotes the nth iterate of Gρ,β(x) at an initiator x0 ∈ [0, 1], and the resulting

sequence {Gn
ρ,β(x0)}or {xn} is called an iterative orbit for the generalized systemGρ,β(x). Further, the sequence

{x0, Gρ,β(x0) = x0, G2
ρ,β(x0) = x0, G3

ρ,β(x0) = x0, ...., Gn
ρ,β(x0) = x0, ....} or {x0, x0, · · · , x0, · · · }

is termed as fixed state iterative orbit of the system Gρ,β(x). Now, we analyze the properties of fixed point of
the system Gρ,β(x).

Theorem 3.1 For each β > 1, the generalized chaotic system Gρ,β(x) defined on [0, 1] admits only a trivial
fixed point 0 for 0 < ρ ≤ 1 and two fixed points 0 and pρ for ρ > 1 lying in the interval [0, 1].
Proof Using Definition 2.2 of fixed point for the generalized system Gρ,β(x), we get

Gρ,β(x) = ρx(1 − x)β

1 + x
= x,

that is, ρx(1 − x)β − x(1 + x) = 0,

x
(
ρ(1 − x)β − (1 + x)

) = 0,

either, x = 0 or ρ(1 − x)β − (1 + x) = 0. (6)

Thus, x = 0 is one trivial fixed point for the system Gρ,β(x) and the other non-trivial fixed point, say,
pρ (depending on parameter ρ) can be evaluated by solving the relation ρ(1 − x)β − (1 + x) = 0 for some
particular value of parameter β. So, by taking β = 2 in this relation, we find out the value of pρ of the system
ρx(1−x)2

1+x .
In this way, we obtain

ρx2 + (−2ρ − 1)x + (ρ − 1) = 0. (7)

Now, by solving (7), we get x = (2ρ+1)±√
8ρ+1

2ρ for ρ > 0, out of which x = (2ρ+1)−√
8ρ+1

2ρ lies in [0, 1]
for each ρ > 1. Hence, pρ = (2ρ+1)−√

8ρ+1
2ρ for ρ > 1 is the non-trivial fixed point for the system Gρ,2(x).

Further, putting β = 3 in the relation ρ(1 − x)β − (1 + x) = 0 to evaluate the value of pρ for the system

Gρ,3(x) = ρx(1−x)3

1+x , we get

ρ(1 − x)3 − (1 + x) = 0,

that is, − ρx3 + 3ρx2 + (−3ρ − 1)x + (ρ − 1) = 0. (8)

By simplifying (8), we find three values of x out of which two values are not real so we do not consider
them. And, the remaining one real value of x lying in the interval [0, 1] for each ρ > 1 as the non-trivial fixed
point (pρ) of the system Gρ,3(x) is given by:

pρ =
−

(
9ρ2 + √

3
√
27ρ4 + ρ3

)2/3 + 31/3ρ

32/3ρ
(
9ρ2 + √

3
√
27ρ4 + ρ3

)1/3 + 1. (9)
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Fig. 1 Fixed points of the system Gρ,β(x) for different values of parameters ρ and β
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Fig. 2 Functional plot of Gρ,β(x) fixed points v/s critical points for different values of β

In this way, pρ given in (9) is the required non-trivial fixed point of the systemGρ,3(x) for ρ > 1. Similarly,
the fixed point pρ for other values of parameter β can also be obtained. Thus, for each β > 1, the generalized
system Gρ,β(x) admits only the trivial fixed point 0 for 0 < ρ ≤ 1 and the two fixed points 0 and pρ for ρ > 1
as shown for β = 2 and 3 respectively in Fig. 1a and b. 	


Further, for β = 2, 3, 4, 5, the trivial fixed point 0 and the corresponding non-trivial fixed point pρ of the
system Gρ,β(x) lying in [0, 1] as x1, x2, x3 and x4 are also shown in Fig. 2, which are the points of intersection
of the diagonal y = x and the graph of Gρ,β(x).

Example 3.2 Determine the non-trivial fixed point pρ of the generalized system Gρ,β(x) for β = 2, ρ = 8.81
and β = 3, ρ = 11.68 which lies in the interval [0, 1].
Solution. As proved in Theorem 3.1, the non-trivial fixed point of the system Gρ,2(x) lying in [0, 1] is given
as pρ = (2ρ+1)−√

8ρ+1
2ρ for any ρ > 1. So, by putting ρ = 8.81, we get the required fixed point p8.81 ≈ 0.58

as shown by x1 in Fig. 2. Also, the non-trivial fixed point pρ of the system Gρ,3(x) is given in Eq. (9). Thus,
by substituting ρ = 11.68 in (9), we find p11.68 ≈ 0.49 (see x2 in Fig. 2) as the required fixed point at β = 3
and ρ = 11.68.

Remark 3.3 As the value of control parameter β increases from 2, the non-trivial fixed point (pρ) value of the
generalized system Gρ,β(x) decreases simultaneously (see Figs. 1 and 2).

Theorem 3.4 There exists a nondegenerate (local maxima) critical point lying in the interval [0, 1] of the
generalized system Gρ,β(x) for each particular value of parameter β > 1, at which the system Gρ,β(x)
admits its peak (maximum) value.
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Proof As, we have from relation (4)

Gρ,β(x) = ρx(1 − x)β

1 + x
,

then, G ′
ρ,β(x) = −ρ (1 − x)β−1 (

βx2 + (β + 1) x − 1
)

(1 + x)2
. (10)

Also, we obtain

G ′′
ρ,β(x) = ρ (1 − x)β−2 [

β(β − 1)x3 + 2
(
β2 − 1

)
x2 + (

β2 − β + 4
)
x − 2 (β + 1)

]

(1 + x)3
(11)

Now, using Definition 2.4, for critical point of the system Gρ,β(x), we must have

G ′
ρ,β(x) = 0,

i.e., −ρ (1 − x)β−1 (
βx2 + (β + 1) x − 1

)

(1 + x)2
= 0,

ρ (1 − x)β−1 (
βx2 + (β + 1) x − 1

) = 0,

either x = 1 or βx2 + (β + 1) x − 1 = 0. (∵ ρ > 0) (12)

From (12), first we obtain x = 1, but G ′′
ρ,β(1) = 0 for each β > 1. So, x = 1 is a degenerate critical point

and also a point of absolute (global) minima for each β > 1 (see Fig. 2). Thus, the required nondegenerate
(local maxima) critical point lying in [0, 1] of the generalized system Gρ,β(x) depending on the parameter β,
at which the system attains its maxima can be determined by solving the relation βx2 + (β + 1) x − 1 = 0.
In this way, we obtain

βx2 + (β + 1) x − 1 = 0,

i.e., x = −(β + 1) ± √
β2 + 6β + 1

2β
(13)

Out of these two values of x obtained in (13), the value x = −(β+1)+
√

β2+6β+1
2β lies in [0, 1] for each

β > 1. Hence, x = −(β+1)+
√

β2+6β+1
2β is the required critical point of the system Gρ,β(x) lying in [0,1].

Particularly, putting β = 2 and 3 in (13), we get the critical point for Gρ,2(x) and Gρ,3(x) as follows:

For β = 2, x = −3 + √
17

4
≈ 0.28

For β = 3, x = −4 + √
28

6
= −2 + √

7

3
≈ 0.21 (14)

Thus, x ≈ 0.28 and x ≈ 0.21 are the critical points of the system for β = 2 and 3 respectively as shown
by red and blue colors in Fig. 2. Further, we find G ′′

ρ,2(0.28) < 0 and G ′′
ρ,3(0.21) < 0 for each ρ > 0. So,

by Definition 2.4, these points are nondegenerate critical points and in particular points of local maxima for
Gρ,2(x) and Gρ,3(x) respectively. Also, the corresponding parameter ρmax values at β = 2, 3 are determined
as (ρmax )β=2 ≈ 8.81 and (ρmax )β=3 ≈ 11.68. Then, by putting ρ = 8.81, β = 2, and x = 0.28 in Gρ,β(x),
the maximum value is calculated as (Gρ,2(x))max ≈ 0.9990. Also, taking ρ = 11.68, β = 3, and x = 0.21 in
Gρ,β(x), the maximum value is obtained as (Gρ,3(x))max ≈ 0.9994.

Likewise, the required critical point for other values of parameter β can also be determined. In particular,
for β = 2, 3, 4, 5, the corresponding nondegenerate critical points of the systemGρ,β(x) lying in [0, 1], where
the system attains its maxima/peak value are also depicted in Fig. 2. 	

Remark 3.5 The nondegenerate critical point lying in the interval [0, 1] at which the peak value/maxima of
the generalized system Gρ,β(x) is attained decreases simultaneously when the value of parameter β increases
through 2 (see Fig. 2).
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Theorem 3.6 Let Gρ,β(x) be the generalized chaotic system defined on [0, 1] and 0 and pρ be the fixed points
for the system Gρ,2(x) in [0, 1]. Then, the fixed point 0 is attracting (stable) for 0 < ρ ≤ 1 and pρ is attracting
(stable) for 1 < ρ ≤ 4.95.

Proof As proved in Theorem 3.1 that 0 and pρ = (2ρ+1)−√
8ρ+1

2ρ for ρ > 1 are the fixed points for the system
Gρ,2(x) lying in [0, 1]. Now, to show that these fixed points are attracting (stable) in their respective ranges
of parameter ρ, we apply Definition 2.3 of attracting and repelling fixed point for Gρ,2(x) and show that
|G ′

ρ,2(x)| < 1.
Now, let us consider

Gρ,2(x) = ρx(1 − x)2

1 + x
,

then,
∣∣∣G ′

ρ,2(x)
∣∣∣ =

∣∣∣∣−
ρ (1 − x) (2x2 + 3x − 1)

(1 + x)2

∣∣∣∣ . (15)

Now, putting x = 0 in (15), we get
∣∣∣G ′

ρ,2(0)
∣∣∣ = |ρ| = ρ, as ρ > 0, that means, the fixed point x = 0

is attracting for ρ < 1, neutral (weakly attracting) for ρ = 1, and repelling for ρ > 1. Hence, it shows that
the fixed point 0 in the system Gρ,2(x) is attracting (stable) for each 0 < ρ ≤ 1. Similarly, to examine the

attracting behavior of the fixed point pρ of the systemGρ,2(x), by putting x = pρ = (2ρ+1)−√
8ρ+1

2ρ , in relation
(15), we obtain

∣∣∣G ′
ρ,2(pρ)

∣∣∣ =
∣∣∣∣∣−

ρ
(
1 − pρ

)
(2p2ρ + 3pρ − 1)

(1 + pρ)2

∣∣∣∣∣ ,

where, pρ = (2ρ + 1) − √
8ρ + 1

2ρ
. (16)

which gives that
∣∣∣G ′

ρ,2(pρ)

∣∣∣ < 1, that is, the fixed point pρ of Gρ,2(x) is attracting for 1 < ρ ≤ 4.95 and

repelling for ρ > 4.95. Hence, the fixed points 0 and pρ of the system Gρ,2(x) are attracting (stable) for
0 < ρ ≤ 1 and 1 < ρ ≤ 4.95 respectively. 	


3.2 Time-series and cobweb representation in the generalized system Gρ,β(x)

The dynamical systems are identified by different control parameters aroundwhich the entire nonlinear dynam-
ics of the systems revolve. In this section, the discrete dynamics in the generalized system Gρ,β(x) is explored
for the specific range of the control parameters ρ and β. Figures 3, 4, 5, 6, 7, 8 show the time-series and
cobweb plots of the system Gρ,β(x) for the parameter values β = 2 and 3 respectively from regular to chaotic
dynamics.

(a) For β = 2
Figures 3, 4, 5 show that for β = 2, the system Gρ,2(x) exhibits fixed, periodic, and chaotic dynamics for
0 < ρ ≤ 8.81. Further, for 0 < ρ ≤ 1, the iterative orbit of Gρ,2(x) converges to trivial fixed point x = 0 and
for 1 < ρ ≤ 4.95, it tends to the non-trivial fixed state solution pρ as shown in Fig. 3a. This attracting (stable)
behavior of fixed points 0 and pρ of Gρ,2(x) is also depicted through cobweb plot in Fig. 3b.

For ρ > 4.95, a complex situation occurs in the system and it vibrates between the period-2 stable solutions
for 4.95 < ρ ≤ 6.42 as shown by red color in Fig. 4a. Moreover, the blue color in Fig. 4a depicts the stable
period-4 oscillations of the system Gρ,2(x) for 6.42 < ρ ≤ 6.76. Also, the cobweb plot in Fig. 4b displays the
attracting (stable) behavior of period-2 and period-4 fixed points of Gρ,2(x). Likewise, for 6.76 < ρ ≤ 6.86,
the system fluctuates among 2n periodic cycles.

As ρ∞ ≈ 6.86, the system Gρ,2(x) enters into an unperiodic state and admits chaos for 6.86 < ρ ≤ 8.81
as shown in Fig. 5a. In addition, Fig. 5b displays the cobweb plot of unstable or chaotic behavior for the system
Gρ,2(x). And, for ρ > 8.81, the system Gρ,2(x) is not defined, as there exists atleast one such xn which does
not lie in [0, 1].
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Fig. 3 For the generalized system Gρ,β(x), a fixed state time-series plots for β = 2 and ρ = 0.8, 2, 3.25, 4.4, b fixed state
cobweb plots for β = 2 and ρ = 0.8, 2, 4.4
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Fig. 4 For the generalized system Gρ,β(x), a periodic state time-series plots for β = 2 and ρ = 5.5, 6.5, b periodic state cobweb
plots for β = 2 and ρ = 5.5, 6.5
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Fig. 5 For the generalized system Gρ,β(x), a chaotic state time-series plot for β = 2 and ρ = 7.25 and b chaotic state cobweb
plot for β = 2 and ρ = 7.25
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Fig. 6 For the generalized system Gρ,β(x), a fixed state time-series plots for β = 3 and ρ = 0.75, 2.5, 3.75, 4.9, b fixed state
cobweb plots for β = 3 and ρ = 0.75, 4.9
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Fig. 7 For the generalized system Gρ,β(x), a periodic state time-series plots for β = 3 and ρ = 7, 7.85, b periodic state cobweb
plots for β = 3 and ρ = 7, 7.85

(b) For β = 3
The system Gρ,3(x) displays its complete dynamics for 0 < ρ ≤ 11.68 as shown in Figs. 6, 7, 8. In particular,
the trajectory of the system admits a convergence to the trivial fixed state x = 0 for 0 < ρ ≤ 1 and to the
non-trivial state pρ for 1 < ρ ≤ 5.35 as shown in Fig. 6a. The cobweb plot in Fig. 6b depicts the attracting
(stable) behavior of fixed points 0 and pρ of Gρ,3(x).

As shown by blue color in Fig. 7a, the system Gρ,3(x) alternates between period-2 stable solutions for
5.35 < ρ ≤ 7.32 and among period-4 stable solutions for 7.32 < ρ ≤ 7.82. Also, the period-8 vibrations in
the system Gρ,3(x) for 7.82 < ρ ≤ 7.93 are depicted by red color in Fig. 7a. In addition, the cobweb plot
in Fig. 7b displays the attracting (stable) behavior of the period-2 and period-8 fixed points for the system
Gρ,3(x).

In this way, the system Gρ,3(x) oscillates among 2n periodic cycles upto ρ = 7.96. As ρ∞ ≈ 7.96, the
system admits an irregular or chaotic state for 7.96 < ρ ≤ 11.68 as displayed in Fig. 8a. Also, a cobweb
representation for the irregular or chaotic state of the system Gρ,3(x) is shown in Fig. 8b. Moreover, for
ρ > 11.68, the system Gρ,3(x) is undefined, as there exists one such xn , which does not lie in the interval
[0, 1].

3.3 Periodic evolution for the generalized system Gρ,β(x)

Periodic evolution, a tremendous feature of dynamical systems, is generally used to explore the discrete
dynamics of nonlinear systems, by analyzing the period-doubling nature of different orbits of the system. So,
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Fig. 8 For the generalized system Gρ,β(x), a chaotic state time-series plot for β = 3 and ρ = 9.25, b chaotic state cobweb plot
for β = 3 and ρ = 9.25

this section presents the period-doubling bifurcations versus the control parameters ρ and β in the generalized
system Gρ,β(x). For initiator x0 ∈ [0, 1], step size 0.001, and the parameter β = 2, 3, the period-doubling
representations are shown in Figs. 9a–d and 10a–d respectively.

(a) For β = 2
The complete bifurcation plot of the systemGρ,2(x) is displayed in Fig. 9a. Also, Fig. 9b clearly depicts that as
ρ ≈ 4.95, the fixed point pρ of the systemGρ,2(x) turns unstable and the first bifurcation appears in the system
where the system starts to vibrate between stable order-2 periodic points B1 and B2 for 4.95 < ρ ≤ 6.42.
Likewise, the next period-doubling take place for ρ > 6.42, i.e., for 6.42 < ρ ≤ 6.76, the period-2 fixed
points B1 and B2 become unstable and the trajectory of the system Gρ,2(x) starts to alternate among period-4
fixed points B11, B12, B21, and B22 as shown in Fig. 9b.

Further, the other higher 2n order bifurcations can be noticed in the system Gρ,2(x) for 6.76 < ρ ≤ 6.86.
It is surprising to notice that as ρ∞ ≈ 6.86, the system displays a shift from the period-doubling state to chaos.
The entire beauty of chaos in the magnified form for the parameter values 6.86 < ρ ≤ 8.81 can be seen in Fig.
9c. Moreover, for ρ > 8.81, the system Gρ,2(x) can not be defined, as xn /∈ [0, 1] there, i.e., the value of ρmax
for the system Gρ,2(x) is 8.81 (see Fig. 9a). Also, it is evident to observe the existence of order-3 periodic
window in the intermittent of chaotic region. So, again magnifying the Fig. 9c, the beauty of period-3 window
for the parameter extent 7.89 ≤ ρ ≤ 7.95 can easily be seen in Fig. 9d. Thus, from the result of Sarkovaski,
the system admits each order periodic windows, which in turn, validates the presence of classical chaos in the
discrete system Gρ,2(x).

(b) For β = 3
Figure 10a shows the bifurcation plot of the system Gρ,3(x) for the parameter range 1 ≤ ρ ≤ 11.68, i.e.,
ρmax = 11.68 for Gρ,3(x). Figure 10b clarifies that for 1 < ρ ≤ 5.35, the trajectory of the system Gρ,3(x)
converges to the non-trivial fixed point pρ and admits an oscillation between period-2 fixed points C1 and C2
for 5.35 < ρ ≤ 7.32. Further, it exhibits vibration among period-4 fixed points C11, C12, C21, and C22 for
7.32 < ρ ≤ 7.82.

Likewise, these 2n periodic oscillations of the system Gρ,3(x) end up at ρ = 7.96 and for ρ > 7.96, the
system enters into an irregular or chaotic state and thus approaches to ρmax , that means, chaos is reported in
the system for the parameter range 7.96 < ρ ≤ 11.68 as depicted in the magnified Fig. 10c. In addition, the
magnified Fig. 10d reveals the existence of period-3 window for 9.55 ≤ ρ ≤ 9.7, which indirectly implies
the presence of all order periodic windows and hence classical chaos in the system Gρ,3(x) by Sarkovaski’s
result.

Remark 3.7 For β = 2, the value of growth-rate parameter ρmax = 8.81 (Fig. 9a) and for β = 3, it stretches
to ρmax = 11.68 (Fig. 10a). Thus, the value of parameter ρmax increases as the control parameter value β
increases.

Remark 3.8 The range of growth-rate parameter corresponding to the stability performance of the system for
β = 2, 3 is given by 0 < ρ ≤ 6.86 (Figs. 9a, b) and 0 < ρ ≤ 7.96 (Figs. 10a, b) respectively. Hence, the
respective stability range of the system also increases along with the increase in control parameter β.
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Fig. 9 For the generalized system Gρ,β(x), a bifurcation plot for β = 2 and 1 ≤ ρ ≤ 8.81, b periodic regime for β = 2 and
2.5 ≤ ρ ≤ 6.86, cmagnified chaotic regime for β = 2 and 6.87 ≤ ρ ≤ 8.81, d period-3 window for β = 2 and 7.89 ≤ ρ ≤ 7.95

Remark 3.9 At β = 2, the system admits chaotic behavior for the parameter range 6.86 < ρ ≤ 8.81 (Fig. 9a),
c and at β = 3, chaos occurs for 7.96 < ρ ≤ 11.68 (Figs. 10a, c). So, the corresponding chaotic range of the
system also increases as we increase the control parameter β values through 2.

3.4 Lyapunov exponent analysis in the generalized system Gρ,β(x)

This section deals with the Lyapunov exponent, a significant characteristic of chaos to ascertain the predictable
behavior of nonlinear systems and their sensitivity to the initial conditions for different iterative orbits. Now,
for the generalized system Gρ,β(x), the Lyapunov exponent is derived as below:

Let � be the divergence between two iterative orbits starting with two close initial inputs x and x + τ , for
0 < τ < 1, which is estimated in the form of exponential growth τenγ , where γ is the Lyapunov exponent for
Gρ,β(x) and n indicates the iteration numbers. Then, we get

Gn
ρ,β(x + τ) − Gn

ρ,β(x) = � = τenγ ,

i.e.,
Gn

ρ,β(x + τ) − Gn
ρ,β(x)

τ
= enγ . (17)

Now, putting limit τ → 0 at both sides, we have

lim
τ→0

Gn
ρ,β(x + τ) − Gn

ρ,β(x)

τ
= enγ ,
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Fig. 10 For the generalized system Gρ,β(x), a bifurcation plot for β = 3 and 1 ≤ ρ ≤ 11.68, b periodic regime for β = 3 and
3 ≤ ρ ≤ 7.96, c magnified chaotic regime for β = 3 and 7.97 ≤ ρ ≤ 11.68, d period-3 window for β = 3 and 9.55 ≤ ρ ≤ 9.7

i.e., (Gn
ρ,β)′(x) = enγ . (18)

By applying logarithm at both sides of (18), we get

γ = 1

n
log|(Gn

ρ,β)′(x)|, (19)

where ρ ∈ (0, ρmax ], β > 1, and (Gn
ρ,β)′(x) signifies the first differentiation of Gn

ρ,β(x). Further, for the

sequence of iterates
{
x1, x2 = Gρ,β(x1), x3 = Gρ,β(x2), · · ·, xn+1 = Gρ,β(xn), · · ·}, the derivative for the

nth degree polynomial, i.e., (Gn
ρ,β)′(x1), by applying chain rule (Definition 2.5), can be determined as below:

(Gn
ρ,β)′(x1) = G ′

ρ,β(xn) · G ′
ρ,β(xn−1) · · · ·G ′

ρ,β(x2) · G ′
ρ,β(x1). (20)

Thus, by (19) and (20), the required Lyapunov exponent is given as:

γ = 1

n
log|G ′

ρ,β(xn) · G ′
ρ,β(xn−1) · · · ·G ′

ρ,β(x2) · G ′
ρ,β(x1)|,

= 1

n

[
log|G ′

ρ,β(xn)| + log|G ′
ρ,β(xn−1)| + · · · · + log|G ′

ρ,β(x2)| + log|G ′
ρ,β(x1)|

]
,

= 1

n

n∑

i=1

log|G ′
ρ,β(xi )|, (21)

where ρ ∈ (0, ρmax ] and β > 1. Hence, it is explored that the maximum Lyapunov exponent (γ ) is the average
value of log|G ′

ρ,β(x)| for the sequence of iterates {xn} in the generalized systemGρ,β(x). Further, the negative
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Lyapunov exponent value (γ ) corresponds to stable (dissipative) state in the system, while for the positive
Lyapunov exponent (γ ), the system displays chaos or irregular behavior and extreme sensitivity to the initial
conditions.

Now, for any fixed orbit of Gρ,β(x), Lyapunov exponent (γ ) takes the form:

γ = log|G ′
ρ,β(x1)|. (22)

Moreover, for any periodic orbit of order p, γ changes to the equation:

γ = 1

p

p∑

i=1

log|G ′
ρ,β(xi )|. (23)

However, for the aperiodic orbits, the Lyapunov exponent is estimated by using the entire length of an
iterative orbit, which is practically impossible. So, only the finite length of an orbit is used to evaluate the
Lyapunov exponent.

Example 3.10 Suppose Gρ,2(x) = ρx(1 − x)2

1 + x
is the discrete system, with ρ ∈ (0, 8.81] and x ∈ [0, 1].

Then, compute the maximum Lyapunov exponent (γ ) of the system Gρ,2(x) for ρ = 4.
Solution. As explained in Sect. 3.2, for the parameter range 1 < ρ ≤ 4.95, the iterative orbit of the

system Gρ,2(x) tends to the non-trivial fixed point solution pρ for each x ∈ [0, 1] and the corresponding

fixed point for the iterative orbit at ρ = 4, is given as p4 = (2×4+1)−√
8×4+1

2×4 = 0.41. Thus, to determine
the maximum Lyapunov exponent (γ ) of the fixed state orbit, we must simplify Eq. (22). Now, we have

G ′
ρ,2(x) = −ρ(1−x)(2x2+3x−1)

(1+x)2
.

So, by substituting ρ = 4 and x = 0.41, we obtain

G ′
4,2(0.41) = −4 × (1 − 0.41) × (2 × (0.41)2 + 3 × 0.41 − 1)

(1 + 0.41)2
= −0.67 (24)

Hence, from (22) and (24), we get

γ = log|−0.67| = −0.1739

Hence, the estimated Lyapunov exponent (γ ) at ρ = 4 is −0.1739, which is negative so, the fixed point
x = 0.41 is a stable attractor of the system Gρ,2(x).

Lyapunov Exponent (γ ) versus parameters ρ and β in the generalized system Gρ,β(x)

Now,we describe the Lyapunov exponent behavior in the generalized systemGρ,β(x), for parameter β > 1
and via plotting 10,000 points for the system.

(a) For β = 2
Figure 11a, b depict the Lyapunov exponent plots of the system Gρ,2(x). It is clear from Fig. 11a that the
maximum Lyapunov exponent tends to a negative value, that is, γ < 0, for the parameter range 0 < ρ ≤ 6.86,
which relates to the fixed stable and periodic states in the system Gρ,2(x). Also, for ρ > 6.86, the Lyapunov
exponent value γ > 0, that represents the chaotic performance of the system. Bymagnifying the Lyapunov part
for 6.86 < ρ ≤ 8.81, that interesting behavior of the system can be visualized in Fig. 11b, where the iterative
orbit displays extreme sensitivity to the initial conditions and a full-fledged chaos appears in the system.

(b) For β = 3
The complete Lyapunov exponent behavior of the system Gρ,3(x) is displayed in Fig. 11c, d. Figure 11c
depicts that the Lyapunov spectrum of the system Gρ,3(x) tends to a negative maximum Lyapunov exponent
value (γ < 0) for 0 < ρ ≤ 7.96 in the stable fixed and periodic regime whereas it approaches to a positive
Lyapunov value for ρ > 7.96 in the chaotic regime. The beautiful chaos performance of the system Gρ,3(x)
for the parameter range 7.96 < ρ ≤ 11.68 in the magnified form can be seen in Fig. 11d.

Remark 3.11 It is notable that for β = 2 and 3, the Lyapunov sequence {γ n} tends to a negative Lyapunov
exponent at the neighbourhood points of the parameter values ρ = 7.9 and 9.6 respectively, that are the places
where the system admits a stable window of period-3 in the chaotic region as displayed in Figs. 11b and d.
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Fig. 11 For the generalized system Gρ,β(x), Lyapunov exponent plot, a for β = 2 and 1 ≤ ρ ≤ 8.81, b for β = 2 and
6.87 ≤ ρ ≤ 8.81, c for β = 3 and 1 ≤ ρ ≤ 11.68, d for β = 3 and 7.97 ≤ ρ ≤ 11.68

Bifurcation-cum-Lyapunov Exponent versus ρ and β in the generalized system Gρ,β(x)

Further, to validate the different values of growth-rate parameter ρ derived in earlier subsections, for which
the generalized system Gρ,β(x) changes its dynamical behavior, combined bifurcation-cum-Lyapunov plots
for the system Gρ,β(x) are provided at β = 2 and 3 respectively in Figs. 12a and b.

The system admits two different regions, the stable region and the chaotic region, divided by a brown
dotted line at ρ = 6.86 (Fig. 12a) and 7.96 (Fig. 12b), which are the respective maximum values of the
growth-parameter ρ for β = 2 and 3, upto which the system remains in a stable state and after that chaos
appears in the system.

Remark 3.12 It is observed that for β = 2 and 3, the Lyapunov exponent (γ ) admits a negative value for
ρ < ρ∞ ≈ 6.86 and 7.96 respectively and tends to zero on the period-doubling bifurcations. The negative
spikes of the Lyapunov spectrum relate to 2n periodic cycles and an onset of chaos is reported close to ρ = 6.86
and 7.96, where γ initially turns positive. For ρ > 6.86 and 7.96, the Lyapunov exponent increases in general,
excluding the dips due to period-3 windows (see Figs. 12a, b).

4 Dynamical superiority of the generalized chaotic system Gρ,β(x)

Now, the question arises how the generalized system is better than the other classical systems? Therefore,
to prove the dynamical superiority of the generalized system Gρ,β(x), we comparatively analyze its stability
and chaos performance along with the original one-dimensional systems through bifurcation and Lyapunov
diagrams.
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Fig. 12 For the generalized system Gρ,β(x), bifurcation-cum-Lyapunov plot, a for β = 2 and 3 ≤ ρ ≤ 8.81 and b for β = 3
and 3 ≤ ρ ≤ 11.68

4.1 Superior stability performance of the generalized system Gρ,β(x)

First, we examine the stability performance of the generalized system Gρ,β(x) = ρx(1−x)β

1+x for ρ ∈ (0, ρmax ],
β > 1 in comparison with the existing logistic system ρx(1 − x) and the one-dimensional chaotic system
ρx(1−x)
1+x . From the comparative bifurcation plots shown in Fig. 13a, we notice that the logistic system ρx(1−x)

remains stable for the parameter range 0 < ρ ≤ 3.57 and the chaotic system ρx(1−x)
1+x is stable for 0 < ρ ≤

5.21. On the other hand, the generalized system Gρ,β(x) exhibits stable behavior in the parameter extent
0 < ρ ≤ 6.86 and 0 < ρ ≤ 7.96 for β = 2 and 3 respectively.

Further, the negative Lyapunov spikes, corresponding to stable fixed and periodic behavior, in the respective
ranges of growth-rate parameter ρ, for different systems, also confirm the superiority of the generalized system
Gρ,β(x) in terms of stability performance (see Fig. 13b). Thus, the generalized system Gρ,β(x) has enhanced
stability range than the existing chaotic systems and that stability range also increases as the control parameter
value β increases.

4.2 Superior chaos performance of the generalized system Gρ,β(x)

The chaos performance of a discrete system is a significant characteristic for chaos-based cryptography. The
distinct features of chaotic systems like aperiodicity, unpredictabilty, and extreme sensitivity to the initial
conditions are very much effective for image encryption-decryption applications. Here, we comparatively
examine the chaos performance of the generalized system Gρ,β(x) with existing chaotic systems in terms of
bifurcation plots.

So, from the comparative bifurcation plots shown in Fig. 14,we observe that there exists chaos in the logistic
system ρx(1− x) for 3.58 ≤ ρ ≤ 4 and in the one-dimensional chaotic system ρx(1−x)

1+x for 5.22 ≤ ρ ≤ 5.83.
Whereas the generalized system Gρ,β(x) exhibits chaos performance in the parameter range 6.87 ≤ ρ ≤ 8.81
and 7.97 ≤ ρ ≤ 11.68 for β = 2 and 3 respectively.

Hence, the generalized system Gρ,β(x) admits more complex chaotic behavior and a wider chaotic range
as compared to the existing chaotic systems. Also, the respective chaotic range of Gρ,β(x) increases rapidly
when the value of control parameter β increases through 2. Table 1 provides a comparative analysis of the
main dynamical aspects for the generalized system Gρ,β(x) versus the logistic system ρx(1 − x) and the
one-dimensional chaotic system ρx(1−x)

1+x .

4.3 Applications of the generalized system Gρ,β(x)

From the above discussion, we observe that the generalized system Gρ,β(x) admits a wider range of stability
and chaos performance in contrast to the existing chaotic systems. Further, the respective stability and chaotic
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Fig. 13 For the generalized chaotic system Gρ,β(x), a comparative bifurcation plots for 1 ≤ ρ ≤ 11.68 and β = 2, 3 and b
comparative Lyapunov plots for 1 ≤ ρ ≤ 11.68 and β = 2, 3 versus the traditional chaotic systems ρx(1 − x) and ρx(1−x)

1+x

Fig. 14 Comparative chaos performance of the generalized chaotic system Gρ,β(x) for β = 2, 3 versus parameter ρ and the

traditional chaotic systems ρx(1 − x) and ρx(1−x)
1+x

Table 1 Comparative table of generalized system Gρ,β(x) v/s the existing chaotic systems

Dynamics ρx(1 − x)
ρx(1 − x)

1 + x

ρx(1 − x)2

1 + x

ρx(1 − x)3

1 + x

Fixed state 0 < ρ ≤ 3 0 < ρ ≤ 4.22 0 < ρ ≤ 4.95 0 < ρ ≤ 5.35
Periodic state 3 < ρ ≤ 3.57 4.22 < ρ ≤ 5.21 4.95 < ρ ≤ 6.86 5.35 < ρ ≤ 7.96
Chaotic state 3.57 < ρ ≤ 4 5.21 < ρ ≤ 5.83 6.86 < ρ ≤ 8.81 7.96 < ρ ≤ 11.68

ranges in the system Gρ,β(x) also increase rapidly when the value of ordered parameter β increases from 2.
The extensive range of stability performance makes the generalized system Gρ,β(x) more suitable for distinct
real-life nonlinear phenomena in which stability is important, such as, traffic control [2,4].

Also, due to the enhanced chaotic range, the generalized system Gρ,β(x) may have credible applications
in chaos-based cryptography, image encryption, end-to-end encryption, and random number generation, etc.
(see [29,30,37,52] and various other references therein). So, for possible applications in cryptography, a
comparative analysis versus key space length, key space region, and Lyapunov exponent in the generalized
system Gρ,β(x) for distinct values of control parameters ρ and β is also given in Table 2.
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Table 2 Comparative analysis versus key space region, key space length, and Lyapunov exponent (LE) of the generalized system
Gρ,β(x) in terms of control parameters β and ρ

β ρ Key space region Key space length LE Remarks

1 0 < ρ ≤ 5.21 Nil Nil Negative No chaos
- 5.21 < ρ ≤ 5.83 5.21 < ρ ≤ 5.83 0.62 Positive Chaos occurs
2 0 < ρ ≤ 6.86 Nil Nil Negative No chaos
- 6.86 < ρ ≤ 8.81 6.86 < ρ ≤ 8.81 1.95 Positive Chaos occurs
3 0 < ρ ≤ 7.96 Nil Nil Negative No chaos
- 7.96 < ρ ≤ 11.68 7.96 < ρ ≤ 11.68 3.72 Positive Chaos occurs
4 0 < ρ ≤ 8.75 Nil Nil Negative No chaos
- 8.75 < ρ ≤ 14.49 8.75 < ρ ≤ 14.49 5.74 Positive Chaos occurs
5 0 < ρ ≤ 9.37 Nil Nil Negative No chaos
- 9.37 < ρ ≤ 17.27 9.37 < ρ ≤ 17.27 7.9 Positive Chaos occurs
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

5 Conclusions

In this article, we examine the discrete dynamics of a generalized chaotic system Gρ,β(x) = ρx(1−x)β

1+x , ρ ∈
(0, ρmax ] , β > 1, and x ∈ [0, 1]. Distinct dynamical characteristics such as fixed points, time-series evolution,
cobweb representation, period-doubling bifurcation, period-3 window, and Lyapunov exponent for the system
are explored in detail. The superiority in stability and chaos performance of the generalized system is reported
via comparative bifurcation and Lyapunov plots. The following conclusions are drawn from the study:

• The experimental analysis is performed for β = 2, 0 < ρ ≤ 8.81 and β = 3, 0 < ρ ≤ 11.68 and it is
shown that the stability and chaotic characteristics of the system increase rapidly along with the value of
parameter β.

• The trivial fixed point x = 0 of the system is stable (attracting) for 0 < ρ ≤ 1 and the non-trivial fixed
point pρ(depending on ρ) is stable in the range 1 < ρ ≤ 4.95 and 1 < ρ ≤ 5.35 respectively for β = 2
and 3.

• The generalized system displays periodicity for 4.95 < ρ ≤ 6.86 and 5.35 < ρ ≤ 7.96 in case of β = 2
and 3 respectively.

• The existence of period-3 window, an evidence of classical chaos for the generalized system is also reported
in the parameter range 7.89 ≤ ρ ≤ 7.95 and 9.55 ≤ ρ ≤ 9.7 for β = 2 and 3 respectively.

• Further, for β = 2 and 3, the generalized system exhibits chaotic behavior in the parameter range 6.86 <
ρ ≤ 8.81 and 7.96 < ρ ≤ 11.68 respectively.

Hence, it is strongly believed that the extensive range of stability as well as chaos performance of the
generalized systemGρ,β(x) in contrast to the traditional chaotic systemsmakes it more fit to different potential
real-life applications like traffic control and chaos-based cryptography in the future.
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