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Abstract This paper attempts to prove the Lipschitz continuity of the resolvent operator associated with a
(P, n)-accretive mapping and compute an estimate of its Lipschitz constant. This is done under some new
appropriate conditions that are imposed on the parameter and mappings involved in it; with the goal of
approximating a common element of the solution set of a system of generalized variational-like inclusions and
the fixed point set of a total asymptotically nonexpansive mapping in the framework of real Banach spaces.
A new iterative algorithm based on the resolvent operator technique is proposed. Under suitable conditions,
we prove the strong convergence of the sequence generated by our proposed iterative algorithm to a common
element of the two sets mentioned above. The final section is dedicated to investigating and analyzing the
notion of a generalized H (., .)-accretive mapping introduced and studied by Kazmi et al. (Appl Math Comput
217:9679-9688, 2011). In this section, we provide some comments based on the relevant results presented in
their work.

Mathematics Subject Classification 47HO0S5 - 47HO06 - 47HQ9 - 47122 - 47125 - 49J40 - 47J20

1 Introduction

Over the last 50 years, it has been revealed that the theory of variational inequalities is a powerful and
important tool in the study of a wide class of problems. These problems in various fields, such as mechanics,
physics, optimization and control, nonlinear programming, elasticity, and applied sciences, etc. For example,
see [6,27,32,38] and the references therein. Due to its many diverse applications, over the past few decades,
various generalizations of this theory have been proposed and analyzed using novel and innovative techniques.
In recent years, variational inclusion problem as a useful and important extension of the variational inequality
problem has received a lot of attention both as to mathematical investigation and applications. For further
details and applications of variational inclusions, we refer the reader to [5].

In the meantime, much attention has been given to develop general techniques for the sensitivity analysis
of the solution set of various classes of variational inequalities and inclusions. It is worth mentioning that
among the methods for solving variational inclusion problems, the resolvent operator techniques have become
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increasingly popular. For more information and further details, see, e.g., [2,8,20-22,25,26,28,29,33,39,42,
45,47,54,55] and the references therein. In particular, the applications of the generalized resolvent operator
technique have been explored and improved recently. To study different classes of variational inequality
problems and variational inclusion problems, many authors have shown interest in introducing various concepts
of generalized monotone operators and generalized accretive mappings. For instance, in 2001, Huang and Fang
[25] introduced a class of accretive mappings in the setting of Banach spaces the so-called generalized m-
accretive mappings which can be viewed as a verifying framework for the classes of maximal monotone
operators, maximal n-monotone operators [26], and n-subdifferential operators [18,34]. They defined the
resolvent operator associated with a generalized m-accretive mapping. They also showed some properties
related to it. In 2003, Fang and Huang [20] were the first to introduce the notion of H-monotone operator
as an extension of maximal monotone operator and gave the definition of the resolvent operator associated
with an H-monotone operator in a real Hilbert space setting. Based on the resolvent operator technique,
they constructed an iterative algorithm for solving a class of variational inclusions involving H-monotone
operators. In [21], a similar notion to H-monotone operator was defined in a more general setting of Banach
space and called it H-accretive operator. Subsequently, further generalized monotone and accretive operators,
such as (H, n)-monotone operator [22], A-monotone operator [45], M-monotone operator [42], and (A, n)-
monotone operator [47] in the setting of real Hilbert spaces, and (P, n)-accretive (also referred to as P-n-
accretive) mapping [28,39], (A, n)-accretive (also referred to as A-maximal m-relaxed n-accretive) mapping
[33], and H (., .)-accretive operator [54,55] in the framework of Banach spaces are introduced and studied. By
defining the resolvent operators associated with these operators and deriving properties concerning them, the
authors constructed iterative algorithms based on the resolvent operator technique to find approximate solutions
of various classes of variational inclusion problems and studied the convergence analysis of the sequences
generated by their iterative algorithms. Later, motivated and inspired by the works mentioned above, Kazmi
et al. [29] introduced the notion of generalized H (., .)-accretive mapping in real Banach spaces as a verifying
framework for the classes of H-monotone operators, H-accretive operators, M-monotone operators, and
H (., .)-accretive operators. They defined the proximal-point mapping associated with a generalized H (., .)-
accretive mapping and obtained some properties regarding it. By employing the proximal-point mapping
method, they proposed an iterative algorithm for solving a system of generalized variational inclusions involving
generalized H (., .)-accretive mappings in real g-uniformly smooth Banach spaces. At the same time, under
some suitable conditions, they proved the strong convergence of the sequence generated by their proposed
iterative algorithm, to a unique solution of the system of generalized variational inclusions.

On the other hand, fixed point theory whose study began almost a century ago in the field of algebraic
topology has gained impetus, due to its wide range of applicability in resolving diverse problems emanating
from the theory of nonlinear differential equations, theory of nonlinear integral equations, game theory, math-
ematical economics, and control theory. Because of the existence of a very close relation between variational
inequality/inclusion problems and the fixed point problems, in recent decades, a significant amount of research
has been conducted by researchers to present a unified approach to these two different problems; see, e.g., [4,7—
9,12,43] and the references therein. Meanwhile, due to the connection with the geometry of Banach spaces,
and the relevance of these mappings in the theory of monotone and accretive operators, in the past 50 years, the
study of the class of nonexpansive mappings is one of the major and highly active research areas of nonlinear
analysis. For this reason, since the the 70s, many authors proceeded to generalize the concept of nonexpansive
mappings in different spaces settings. In 1972, Goebel and Kirk [23] succeeded to introduce a generalized
nonexpansive mapping the so-called asymptotically nonexpansive mapping. During the past 2 decades, further
extensions of class of nonexpansive mappings have been introduced in the literature. For instance, in 2006,
Alber et al. [1] were the first to introduce the notion of total asymptotically nonexpansive mapping which
is more general than asymptotically nonexpansive mapping and studied methods for approximation of fixed
points of such a class of mappings. For more information and details regarding various extensions of the class
of nonexpansive mappings along with several illustrative examples, we refer readers to [1,10,23,30,40] and
the references therein.

The system of generalized variational-like inclusions and fixed point problems in real Banach spaces is a
mathematical framework that encompasses a wide range of problems in optimization, equilibrium theory, and
fixed point theory. This system involves studying of solutions to variational-like inclusions and fixed point
problems in the context of real Banach spaces. The concept of total asymptotically nonexpansive mappings
plays a crucial role in this framework. A mapping is said to be total asymptotically nonexpansive if it satisfies
specific contraction properties with respect to two given sets. These mappings provide a generalization of
nonexpansive mappings and play a fundamental role in solving variational-like inclusions and fixed point
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problems. This has led to significant contributions in the field. Some of the key contributions include: the
existence and uniqueness of solutions to the generalized variational-like inclusions and fixed point problems,
convergence analysis of iterative algorithms, and establish conditions guaranteeing convergence to a solution;
this framework has found applications in various areas, including optimization, game theory, and equilibrium
problems and various generalizations and extensions of the framework to handle more complex and specialized
problems. Overall, the study of the system of generalized variational-like inclusions and fixed point problems
in real Banach spaces, particularly with a focus on total asymptotically nonexpansive mappings and iterative
schemes, has made significant contributions to the field of optimization, equilibrium theory, and fixed point
theory. The theoretical developments and practical applications have enhanced our understanding of these
problems and provided valuable tools for solving them effectively. For more information and further details,
see, for example, [3,11,13,19,44,48,50,51].

The paper is outlined as follows. In Sect. 2, we review some background material on the (P, n)-accretive
mapping and its associated resolvent operator in a real Banach space setting, and also provides the necessary
notation and some conclusions to be used in the rest of the paper. In Sect. 3, a system of generalized variational-
like inclusions (SGVLI) involving (P, n)-accretive mappings in real g-uniformly smooth Banach space is
considered, and under some appropriate conditions, the existence and uniqueness of solution for the SGVLI is
discussed. Section 4 is devoted to introducing a new iterative process using the resolvent operator technique for
finding the common element of the set of fixed points of a total asymptotically nonexpansive mapping and the
set of solutions of the SGVLI. As an application of the notion of (P, n)-accretive mapping and our suggested
iterative algorithm, in Sect. 5, we show that the sequence generated by the proposed iterative algorithm in
Sect. 4 converges strongly to a common element of the above two sets under some parameters controlling
conditions. Finally, in Sect. 6, the concept of generalized H (., .)-accretive mapping as defined by Kazmi et al.
[29] is investigated and analyzed. We provide some comments regarding it and verify that under the conditions
considered in [29], every generalized H (., .)-accretive mapping is, in fact, P-accretive and not a new one.
Furthermore, the fact that all conditions presented in [29] can be deduced from our results derived in Sects.
2-5 is illustrated.

2 Preliminary materials and results

Throughout this paper, unless otherwise specified, we assume that E is a real Banach space with a norm ||.||,
that E* is the continuous dual of E, and that E and E* are paired by (., .). For the sake of simplicity, the norm
of E* is also denoted by the symbol ||.||. As usual, x* stands for the weak star topology in E*, and the family
of all nonempty subsets of E is denoted by 2£. Meanwhile, B and Sg denote, respectively, the unit ball and
the unit sphere in E. The graph of a given multi-valued mapping M : E — 2F is defined by

Graph(M) :={(x,u) e E X E :u € M(x)}.

Definition 2.1 A normed space E is called strictly convex if Sg is strictly convex, that is, the inequality
lx + y|| < 2 holds for all x, y € Sg, such that x # y.

Recall that a normed space E is said to be smooth if, for every x € Sg, there exists a unique x* € E*, such
that ||x*|| = (x, x*) = 1. It is well known that E is smooth if E* is strictly convex, and E is strictly convex if
E* is smooth.

Definition 2.2 A normed space E is called uniformly convex if, for any given ¢ > 0, there exists § > 0, such
that for all x, y € Bg with ||[x — y|| > &, the inequality ||x + y|| < 2(1 — §) holds.

The function g : [0, 2] — [0, , 1] defined by the formula

) 1
Se(e) =1Ilf{1 —glx+ylxy € Be. lx =yl = 8}

is called the modulus of convexity of E.
Definition 2.3 A normed space E is said to be uniformly smooth if, for any given ¢ > 0, there exists § > 0,
such that for all x € Sg and % € Bpg, the inequality
27N x4yl + e =yl — 1 < ellyll
holds.
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The function pg : [0, c0) — [0, co) defined by the formula

Il + ¥l + lx =yl —1:x,XeBE}
2 T

pE(T) = sup{

is called the modulus of smoothness of the space E. Taking into account the definitions of the functions ég
and pg, we note that a normed space E is uniformly convex if and only if §g(¢) > 0 for every ¢ € (0, 2],
and it is uniformly smooth if and only if lim;_.¢ pET(r) = 0. It should be pointed out that a Banach space E is
uniformly convex (resp., uniformly smooth) if and only if E* is uniformly smooth (resp., uniformly convex).

The spaces [”, L? and W,ﬁ, 1 < p < 0o, m € N, are uniformly convex as well as uniformly smooth; see
[17,24,35]. Furthermore, to see the modulus of convexity and smoothness of a Hilbert space and the spaces
IP,LP and W}, 1 < p < oo, m € N, we refer the reader to [17,24,35].

For an arbitrary but fixed real number ¢ > 1, the multi-valued mapping J, : £ — 2E" defined by the
formula

Jg(x) = (x* € E*: (x,x*) = |9, x| = Ix|"""}, VxeE

is called the generalized duality mapping of E.

In particular, J; is the usual normalized duality mapping. Itis known that, in general, J, (x) = ||x||? 21 (x),
for all x # 0. Note that J; is single-valued if E is uniformly smooth or equivalently E* is strictly convex. If
E is a Hilbert space, then J> becomes the identity mapping on E.

Definition 2.4 For a real constant ¢ > 1, a Banach space E is called g-uniformly smooth if there exists a
constant C > 0, such that pg(t) < Ct49, for all T € [0, +00).

It is well known that (see, e.g., [49]) L, (or [;) is g-uniformly smooth for 1 < g < 2 and is 2-uniformly
smooth if g > 2.

Concerned with the characteristic inequalities in g-uniformly smooth Banach spaces, Xu [49] proved the
following result.

Lemma 2.5 Let E be a real uniformly smooth Banach space. For a real constant ¢ > 1, E is q-uniformly
smooth if and only if there exists a constant ¢, > 0, such that for all x,y € E

x4yl < Ix1? + gy, Jg(x)) + cqllyll?.

Before proceeding to the main results of the paper, we also recall some necessary notation and few useful
results.

Definition 2.6 Let E be a real g-uniformly smooth Banach space andlet P : E — Eandn: E x E — E
be two vector-valued mappings. Then, P is said to be

(i) n-accretive if,
(P(x) = P(y), Jg(n(x,¥))) =0, Vx,y€E;

(ii) strictly n-accretive if, P is n-accretive and equality holds if and only if x = y;
(iii) r-strongly n-accretive if there exists a constant r > 0, such that

(P(x) = P(y), Jy(n(x, ) = rlx —yll?, Vx,y € E;
(iv) ¢-Lipschitz continuous if there exists a constant ¢ > 0, such that
[P(x) =PI <gsllx—yl, Vx,y€E.

It should be noted that if n(x, y) = x — y, forall x, y € E, then parts (i) to (iii) of Definition 2.6 reduce
to the definitions of accretivity, strict accretivity, and strong accretivity of the mapping P, respectively.

Definition 2.7 [21, Definition 1.2] Let E be a real g-uniformly smooth Banach space, P : E — E be a
single-valued mapping and M : E — 2F be a multi-valued mapping. M is said to be

(i) accretive if

(—v,Jy(x —y) =0, V(x,u),(y,v) € Graph(M);
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(ii) r-strongly accretive if there exists a constant r > 0, such that
(=, Jg@x =) = rlx = yl?. V(x,w), (y.v) € Graph(M);

(i1) m-accretive if M is accretive and I+ AM )(E) = E holds for every A > 0, where [ is the identity mapping
on E.

In 2001, Huang and Fang [25] introduced and studied the class of generalized m-accretive (also referred
to as m-n-accretive or n-m-accretive [16]) mappings which includes those of m-accretive mappings, maximal
n-monotone operators [26], and maximal monotone operators [52] as special cases.

Definition 2.8 [16,25] Let E be a real g-uniformly smooth Banach space,  : E x E — E be a vector-valued
mapping and M : E — 2F be a multi-valued mapping. M is said to be

(i) n-accretive if
(= v, Jy(n(x, ) = 0, ¥(x,u), (y,v) € Graph(M);
(i1) y-strongly n-accretive if there exists a constant y > 0, such that
(= v, Jy e, ) = yllx = y[14, V(e ). (7, v) € Graph(M);

(iii) generalized m-accretive if, Mis n-accretive and (I + AM )(E) = E holds for every A > 0.

We note that M is a generalized m-accretive mapping if and only if Mis n-accretive and there is no other -
accretive mapping whose graph strictly contains Graph(M ). The generalized m- accret1v1ty is to be understood
in terms of inclusion of graphs. If M:E—2Eisa generalized m-accretive mapping, then any modification
of its graph that results in the graph of a new multi-valued mapping will destroy the n-accretivity. In fact, the
extended mapping is no longer n-accretive. In other words, for every pair (x, u) € E x E\ Graph(M ), there
exists (y, v) € Graph(M ), such that (u — v, J;(n(x, y))) < 0. C0n51der1ng the above-mentioned arguments,
a necessary and sufficient condition for multi-valued mapping M:E —2Etobe generalized m-accretive is
that the property

(u—v, J;(n(x,y)) =0, V(y,v) € Graph(M)

is equivalent to u € M (x).

The above characterization of generalized m-accretive mappings provides a useful and manageable way
for recognizing that an element u belongs to M (x).

Subsequently, Fang and Huang [21] introduced and studied the class of H-accretive (also referred to as
P-accretive) mappings, which includes those of m-accretive and maximal monotone operators as special cases.

Definition 2.9 [21] Let E be a real g-uniformly smooth Banach space, P : E — FE be a single-valued

mapping, and let M : E — 2E be a multi-valued mapping. M is said to be P-accretive if M is accretive and
(P 4+ AM)(E) = E holds for every constant A > 0.

Kazmi and Khan [28] and later Peng and Zhu [39] introduced and studied another class of generalized
accretive operators known as P-n-accretive (also referred to as (H, n)-accretive) mappings. This class serves
as an extension of H-accretive mappings, (H, n)-monotone operators [22], generalized m-accretive mappings,
m-accretive mappings, maximal n-monotone operators, and maximal monotone operators as follows.

Definition 2.10 [28,39] Let E be a real g-uniformly smooth Banach space, P : E — Eandn: EX E — E
be two vector-valued mappings, and M E — 2F be amulti- valued mapping. M is said to be (P, n)-accretive
(also referred to as P-n-accretive) if M is n-accretive and (P + AM )(E) = E holds for every constant . > 0.

The following example shows that for given mappingsn : ExXE — Eand P : E — E,a (P, n)-accretive
mapping may be neither P-accretive nor generalized m-accretive.
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Example 2.11 Let m and n be arbitrary but fixed natural numbers and M,, ., (F) be the vector space of all
m X n matrices with real or complex entries, where F = R or C. Then, M,,«, () is a Hilbert space with the
Hilbert—Schmidt inner product

m n
(A.B)=1r(A*B) =) ajby. VA, B € Muxn(F),
=1 j=I

where tr(C) denotes the trace of the matrix C, that is, the sum of diagonal entries of C, and A* denotes the
Hermitian conjugate (or adjoint) of the matrix A, that is, A* = A’, the complex conjugate of the transpose
A, and the bar denotes complex conjugation and superscript denotes the transpose of the entries. The Hilbert—
Schmidt inner product defined above induces a norm on M, , (IF), the so-called Hilbert—Schmidt norm, as

1
Al = (Z;”:l Z?:l |a1j|2)2, forall A € M;,x,(F). Let us assume that F = C and m is an even natural

number. Then, for any A = (a;j) € Myxn(C), we have A = Y2 | >_=1 Alj, that is, every m x n matrix

A € M, +,,(C) can be written as a linear combination of % matrices A;;, where foreachl € {1,2, ..., %} and
j€{l,2,...,n}, Ajjisanm x n matrix, such thatits (/, j) and (f, J)-entries equal to a;; = x;; +iyj; andaij =
Xp; +iyij, respectively, and all other entries equal to zero, wherel = m —1+ 1, and/ € fm,m—1,..., % —1}..

Foreachle{1,2,...,%}andj e {l,2,...,n},ityields
00--- 0--- 00
00--- 0--- 00

00--- x;;+iy;j---00 . .
. T M . ylj+yfj—l(X1j+xlj,-)Q yij =y =iy —xp;)

Aj=11:... = 2 1j + 5 1js
00"'xij+’yij"'00
00-.. 0. 00
00-.. 0--- 00
where for each [ € {1,2,...,2}and j € {1,2,...,n}, Q;j is an m x n matrix in which the (/, j) and

d, Jj)-entries equal to i and all other entries equal to zero, Q; ; is an m X n matrix with the entries i and —i

at the ([, j) and (f , J) places, respectively, and 0’s everywhere else. Thus, any matrix A € M,;,«,(C) can be

written as a linear combination of mn matrices Q;; and ng l1=12,..., % and j =1, 2,...,n) as follows:
7 n 7 n ) il . v (v yn
Vij +y[j i (xy; +xlj) Yij = Yij i (xr xlj) ,
123y = 53 M g MR |

Accordingly, the set

m

[ PR
{Qlj,Qlj.l_1,2,...,3,]_1,2,...,n}

spans the Hilbert space M, x,(C). Taking ;; := \%Qlj and Ql’j = %Q;j, foreachl € {1,2,..., %} and
Jj €{1,2,..., n},itfollows that the rescaled matrices ¢;; and 91’]. spans also M, x, (C). In the meanwhile, it is
easy to prove that the set

%:{elj,el’j:1:1,2,...,%;]'=1,2,...,n}

is linearly independent and orthonormal, and so, the set B is an orthonormal basis for the Hilbert space
My (C).
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Let the mappings M : Myxn(C) — 2Mmwan©) o M (C) X Myyn(C) — Mypyn(C) and P :
My 5 (C) = My, (C) be defined by

Yy
M(A) = {CDA +0, p ;e(;yk,
a8 = {5 e
and P(A) = BA + y@vk, forall A, B € M;,«,(C), where
q):{@,j—egk,egj il=1,2,. ’;;jzl,Z,...,n},
o, B, y € Rare arbitrary constants, suchthat 8 < 0 < «a,5 € {1,2, ..., %} andk € {1,2, ..., n}are arbitrary

but fixed natural numbers, and 0 is the zero vector of the space M,,x, (C), that is, the zero m X n matrix.

Taking into account that every finite-dimensional normed space is a Banach space, it follows that
(M5, (©), |I.ID) is a 2-uniformly smooth Banach space. Then, for all A, B € M;,x,(C), A =2 B # 931(’
it yields

(M(A) — M(B), Jo(A — B)) = (M(A) — M(B), A — B)
=(—A+6,+B—-0,,A—B)

m n
=(B—A,A=B)=—|A=B|P=— | > ) la; —by,|* <0,

=1 j=1
ie., M is not accretive, and so, it is not P-accretive. For any given A, B € M,x,(C), A # B # 6y, we get

(M(A) — M(B), J»(n(A, B))) = (M(A) — M(B), 7(A, B))
=(—A+0), +B—0,,a(B— A))

m n
=a(B—AB-A)=ca|B—AlP=a |Y Y |a; —by>> 0.
I=1 j=1

In view of the fact that for each of the cases when A # B = Qs’k, B £ A= Qs’k and A = B = ng, we have
n(A, B) = 0, and it follows that:

<I/l — U, JZ(U(A9 B))) = <I/l — U, T](A, B)) = 07 V(A7 M), (Bs U) € Graph(M)
Consequently, M is an n-accretive mapping. Since for any A € M, (C), A # 6],
I+ M)A = 116}l =1>0
and

(1+A7)(9;k)={9,,»,9;j:l=1,2,... T;j:l,z,...,n}=%,

"2
where [ is the identity mapping on E = M, (C), we conclude that 0 ¢ (I + M )Y (M, 5, (C)). Therefore,
I + M is not surjective, and so, M is not a generalized m-accretive mapping.

Forany A > 0 and A € M, (C), taking B = ﬂ—iAA + K%‘Q{k (A # B, because B < 0), it yields

Paadh(B) = (P aiin [ —ay Vg A
(P + 1H)(B) = (P + )<ﬂ— + = ﬁvk>

Hence, forevery A > 0, P + AM is surjective, and so, Misa (P, n)-accretive mapping.

In the following example, the fact that for given mappings P : E — E andn : E x E — E, a generalized
m-accretive mapping need not to be (P, n)-accretive is illustrated.
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Example 2.12 Let H>(C) be the set of all Hermitian matrices with complex entries, from the definition of
2 x 2 Hermitian matrices, A is Hermitian matrix if and only if

Hy(C) = {(xjiyxl_uly)lx,y,z,weﬂ%}-

Then, H,(C) is a subspace of M;(C), the space of all 2 x 2 matrices with complex entries, with respect to the
operations of addition and scalar multiplication defined on M;(C), when M (C) is considered as a real vector
space. By defining the scalar product on H(C) as (A, B) := %tr(AB), for all A, B € Hy(C), it is easy to
check that (., .) is an inner product, that is, (H2(C), (., .)) is an inner product space. The inner product defined
above induces a norm on H»(C) as follows:

Al = (A, A) = \/%tr(AA) = \/xz 2+ %(Zz 4wy,

Taking into account that (H>(C), ||.||) is a finite-dimensional normed space, it follows that it is a Hilbert space
and so it is a 2-uniformly smooth Banach space. Suppose that the mappings P, M : H (C) - Hy(C) and
n : Hy(C) x Hy(C) — H(C) are defined, respectively, by

_ 2k 29 _ :1,2q
_ Z X-—=1y _ z X 1y
P(A)=Pp ((x +iy w )) - <x2‘1 +iy% w?r ) ’

—~ —~ i k q _ jvq
_ z x—1Iy _ oz x iy
M(a)=M ((x +iy w )) - (xq +iy?  Bw? )

and
_ z x—1iy Z xX—1iy
n(A’B>_n<<x+iy w )’(}?-ﬁ-i& W ))
B ywhd @ =" x1 =39 —i(y? - §9)
TA\X =R 4i(y7 =5 I — ) )
forall A = ¢ AT ,B=| . L Y € Hp(C), where s is an arbitrary real constant, [ is an
X+1y w X+i1y w

arbitrary but fixed even natural number, «, 8, y and 6 are arbitrary positive real constants, and m, n, p, q, k
are arbitrary but fixed odd natural numbers.

Then, for any A = (x _ﬁ iy * I_Uly) ,B = (2_’:& . ;ly) € H>(C), we obtain

(M(A) — M(B), J2(1(A, B))) = (M(A) — M(B), n(A, B))
=<( a(zk—ﬁk) xq—ﬁq—i(yq—jiq)> < ywlﬁ)l(z’"—ﬁm) xq—fq—i(yq—fzq))>

x4 =R +i(y? -3 BwP —P) Xl — R0 +i(y1 —$7)  0eSEHD " — ")

R R 0 2 N N R n
l I(Z )(Z m) + 'BTES(Z-‘FZ)(w[? _ wp)(wn _ wn) 4 ()Cq _ xq)z + (yq _ yq)Z
6 P ‘
— %Y il — 22 sz jzi 1zzm jzi-1 /32 D (4 — )2 prfj’ﬁ)j’fl 3 w11
j'=1 j’=1
q 42 42
+ (x7 =X + (y7 — y9)°.
Taking into account that m, n, k, p are odd natural numbers, it is easy to see that
sz Jzi-t sz JA] 1 pr /wJ—l an 3" pd' —1>0
,] _1 // 1
Since «, B, ¥, 6 > 0 and [ is an even natural number, the preceding relation implies that

(M(A) — M(B), J,(n(A, B))) >0, VA, B e Hy(C),
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which means that M is an n-accretive mapping. Let the functions f, g, # : R — Rbedefined by f(x) := x? 4+

axk, gx) = x2P 4 BxP and h(x) = x24 + x4 for all x € R. Then, for any A = (x _i iy . ;ly) € Hy(O),
it yields
~ = 7 x—liy
(P+ M)A)=(P+ M) <<x+iy w ))
_ 2k +azt x4 x —i(y* 4 y9)
T\ X2 4 x9 i(yM D) w2l + Bw?

_ f@ h(x) —ih(y)
“\hx)+inGy) g(w) ’

Considering the facts that for all x € R

2 2

2k k(o X\ et
fx) =x"+ax _(x -1—2) ) > 1
2 2 2
7 P — | xP E _/3_>_'3_

g(x) =x"Y + Bx (x +2> 1277

and
h = b= (v 1) 1o
X X X X 5 1277

it follows that: f(R) = [— +oo) ;é R, gR) = [——, +00) ;é R and 2(R) = [— 4, 400) # R. Hence,
(P + M)(Hz((C)) * Hz((C) ie., P+ M is not surjective and so M is not a (P, n)-accretive mapping.

We now suppose that A is an arbitrary p0s1t1ve real constant and let the functions f g, h:R — Rbe
defined, respectively, by f(x) = x + raxk, Z(x) := x + ABxP and h(x) = (1 4+ A)x?, for all x € R. Then,

. wly> € Hy(C), we get

forany A = X+ iy

(1+/\A71)(A)=(1+/\A71)(( < x_iy)>

X+iy w
_ 7+ razk (14 1)x9 —i(1 4+ 1)y4
A+ 2)x794+i(1+1)y4 w + ABw?P

(~ @) %(x)—i%(y)>
h(x) +ih(y)  Z(w) ’

where [ is the identity mapping on H>(C). Relying on the fact that k, p and ¢ are odd natural numbers, it
follows that f(R) = g(R) = h(R) = R. This fact implies that (I + XM)(HZ(C)) = H>(C), thatis, I 4 AM
is a surjective mapping. Taking into account the arbitrariness in the choice of A > 0, we conclude that Misa
generalized m-accretive mapping.

Example 2.13 Let M, «,(F) be defined as in Example 2.11, with the same norm and inner product. Let us
denote by D, (R) the space of all diagonal n x n matrices with real entries. In other words, the (i, j)-entry is
an arbitrary real number if i = j, and is zero if i # j. Then

D,(R) = {A = (a;j)laij € R,a;; =0ifi # jii,j=1,2,...,n}

is a subspace of M, «,(R) = M,(R) with respect to the operations of addition and scalar multiplication
defined on M, (R), and the Hilbert—Schmidt norm induced by it becomes as || A|| = (Zl | ag; )2 Now, define
the mappings Pi, P, M : D,(R) - D,(R) and n : D,(R) x D,(R) — D,(R), respectively, as follows:
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Pi(A) = Pi((aij)) = (aj;), Py(A) = Prx((aij)) = (af;), M(A) = M((a;j)) = () and (A, B) =
n((aij), (bij)) = (cij) forall A = (a;j ), B = (bij ) € Dy(R), where foreach i, j € {1,2,...,n},

l|a|*2_ P . .
a;jz{(z) ) i LT atj_{ﬁa”’ i £

0, i # ], 0, i #J,
4" = {aaﬁ, i=j,
Y 0, L # ],
and
Cij = {(S)'eya”b” (alki - bﬁ)’ i ;i

where o and ¢ are two arbitrary positive real constants, § and y are two arbitrary real constants, k and p
are two arbitrary but fixed odd natural numbers, and [ is an arbitrary but fixed even natural number, such
that p > [. It goes without saying that (D, (R), |.||) is a 2-uniformly smooth Banach space. Then, for any
A = (ajj), B = (bij) € D,(R), yields

(M(A) — M(B), J2(1(A, B))) = (M(A) — M(B), n(A, B))
=r{(e =45 (o))
=oc Z(a” bp eV il ”(a —bk)

k

k 1

=ug Z(all - b”)2eya,,b,, Zap SbA : i Jb] :
j=1

In the light of the fact that k and p are odd natural numbers, it can be easily observed that for each i €

{1,2,...,n}, ZS | 5 YbA 1 le{ﬂ k= JbJ ! are both greater than or equal to 0. With the help of these
facts, the preceding relation implies that

(M(A) = M(B), ,(n(A, B))) = 0, VA, B € Dy(R),
which means that M is an n-accretive mapping. Let f : R — R be a function defined by f(x) := (%)"“_2,
for all x € R. Then, for any A = (a;; ) € D,(R), we get
(P + M)(A) = (P + M)((ai;j ) = (af; +a]) = (@),
where foreach i, j € {1,2,...,n}

= ( )la”l 2= f(all) i =],

1] — . .

O, i # .
In virtue of the fact that f(R) = (0, 4], we conclude that (P} + M)(Dn R)) # D,(R), i.e., P1 + M is not
surjective. Therefore, M is not a (P1, n)-accretive mapping. Now, let A > 0 be an arbitrary real constant and let

the function g : R — R be defined by g(x) := Aax” + Bx/, forall x € R. Then, forany A = (a;; ) € D,(R),
we obtain

(Py + AM)(A) = (P + AM)((aij ) = (af; +ra])) = (@),
where for each i, j € {1,2,...,n}

G = { raal; + Baj; = g(ain), i =j,

/ 0, i #J.
Taking into account that / is an even natural number and p is an odd natural number, such that p > [, it can be
easily seen that g(R) = R, which implies that (P, + AM)(D,(R)) = D, (R), thatis, P, + AM is a surjective
mapping. Since p > 0 was arbitrary, it follows that M is an (P, n)-accretive mapping.
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Note, in particular, thatif P = I, the identity mapping on X, then the definition of (P, n)-accretive mapping
is equivalent to the definition of a generalized m-accretive mapping. In fact, the class of (P, n)-accretive
mappings has close relation with the generalized m-accretive mappings in the framework of Banach spaces.
However, it should be noted that, according to Example 2.11, for given single-valued mappings P : E — E
andn: E x E — E,a (P, n)-accretive mapping may not necessarily be a generalized m-accretive mapping.
The following conclusion provides us with sufficient conditions for a (P, n)-accretive mapping M to be a
generalized m-accretive mapping.

Lemma 2.14 [28, Theorem 3.1(a)] Let E be a real q-uniformly smooth Banach space, n : E x E — E be a
vector-valued mapping, P : E — E be a strictly n-accretive mapping, and M:E—2Ebea (P, m)-accretive
mapping. Let x, u € E be two given points. If (u — v, J;(n(x, y))) > 0 holds for all (y, v) € Graph(M) then

(x,u) e Graph(M)
The following assertion due to Fang and Huang [21] is a direct consequence of the last result.

Lemma 2.15 [39, Theorem2.1]Let P : E — E beastrictly accretive single-valued operator, M:E —2F “ be
a P-accretive operator, andx,u € E be given points. If (u—v, J;(x—y)) > 0holds, forall (y, v) € Graph(M)

then (x,u) € Graph(M)
Lemma 2.16 [28, Theorem 3.1(b)] Let E be a real q-uniformly smooth Banach space, n : E x E — E be a

vector-valued mapping, P . E — E be a strictly n-accretive mapping, and M:E— 2Ebea (P, n)-accretive
mapping. Then, the mapping (P + AM) V' E — E is single-valued for every real constant % > 0.

Taking n(x,y) = x — y, for all x, y € E, we obtain the following result as a direct consequent of the
previous lemma.

Lemma 2.17 [39, Theorem 2.2] Let P : E — E be a strlctly accretive mapping and M:E — 2E bea
P-accretive mapping. Then, the operator (P + AM) '« E — E is single-valued, where ) > 0 is a real
constant.

Based on Lemma 2.16, the resolvent operator R;["; associated with P, n, M and A > 0 is defined as
follows. ’

Definition 2.18 [28,39] Let E be areal g-uniformly smooth Banach space,  : E x E — E be a vector-valued
mapping, P : E — E be a strictly n-accretive mapping, M : E — 2% be a (P, n)-accretive mapplng, and

A > 0 be an arbitrary real constant. The resolvent operator R M S : E — E associated with P, n, M and A is
defined by ’

R%”;(u) =P +AM) '), VYucE.

When n(x, y) = x — y, forall x, y € E, Definition 2.18 reduces to the following definition due to Fang
etal. [21].

Definition 2.19 [21, Definition 2.4] Let P : E — E be a strictly accretive mapping, M :E — 2E bea P-
accretive mapping, and A > 0 be an arbitrary real constant. The resolvent operator R % A E — E associated

with P, M and X is defined by
RE (w)= (P +1M)"'(), YucE.

In the rest of the paper, we define that Misa (P, n)-strongly (resp., P-strongly) accretive with constant y,
which means that M is a y-strongly n-accretive (resp., y -strongly accretive) mapping and (P +AM)(E) = E
for every A > 0.

Before we proceed to our main result in this section, let us provide the following definition, which will be
used efficiently in its proof.

Definition 2.20 A vector-valued mapping n : E x E — FE is said to be t-Lipschitz continuous if and only if
there exists a constant t > 0, such that ||n(x, y)|| < t|lx — y||, forallu, v € E.

The next theorem states that the resolvent operator R%’Z associated with P, n, M and A > Ois Lipschitz
continuous and provides an estimate of its Lipschitz constant.
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Theorem 2.21 Let E be a real q-uniformly smooth Banach space, 1 : E X E — E be a t-Lipschitz continuous
mapping, P : E — E beanr-strongly n-accretive mapping andlet M : E — 2E bea (P, n)-strongly accretive

, . P . oga-l . .
mapping with constant y. Then, the resolvent operator R M"A :E— Eis %—szschztz continuous. In other
words, we have the following Lipschitz estimate:

gq—1

P, P,
IRE" ) — RE" ()] < lu—vll, Vu,veE.

Ay +r1

Proof Taking into consideration the fact that M is a (P, n)-accretive mapping, for any given points x, u € E
with H RE" () — RE" (v) H £ 0, we have

RG" ) = (P+AM)~ () and RE" (v) = (P + 2M) ™' (),
and so
1 _ 1 _
- (u —p (R%’l(u))) e M <R}%’z\(u)> and - (v —p (Rg)’;(v))) € MRE" ).
Since M is y-strongly n-accretive, it follows that:
1
- (u s (R;I’Z(u)) - (v _P (R%’K(v))) Ly (n (Rj;";(u), R%’";(v))))
q
>y |k - RET W]
which leads to
q
(= 0.0 (1 (RET @0 RE" ) 2 v | RE" @) = RE" )
+ <P (R%’K(u)) —p (Rl”q’l(v)) Jy (n (R/%’l(u), R%’l(v)))).

Employing the preceding inequality and in the light of the facts that n is r-Lipschitz continuous and P is
r-strongly n-accretive, we can obtain the following:

e ol |RET @) — RET @[
> vl | (RE" ., RE7 @)
= u— vl |7, (n (R @0, RE" )]
>y |RE @ - RET @)
+(P(RE" @) = P (RET @) . 4y (n (RET @, RE" )
>y [RET @) = RET @)+ [ RET @) - RET @)

=0y +7) H RG" () = RG" () Hq '

Relying on the fact that ” R;I"l(u) — RI%"; (v) H # 0, we conclude that

741

Ay +r

P.n P
[RE" 0 - RE" )] = = vl

This gives us the desired result. O
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Corollary 2.22 Let E be a real q-uniformly smooth Banach space, P : E — E be an r-strongly accretive
mapping, and M:E — 2Ebea P- strongly accretive mapping with constant y. Then, the resolvent operator
R= A’; = :E— Eis ﬁ-Llpschltz continuous. In other words, we have the following Lipschitz estimate:

1RG0 = Rg, @) < ———llu—v], Yu,veE.

Proof Taking n(x,y) =x — y,forall x, y € E, the statement follows immediately from Theorem 2.21. O

If E = H is a real Hilbert space, then we obtain the following result as a direct consequence of the last
conclusion. However, before presenting it, we need to recall the following assertion.

Lemma 2.23 [53, Theorem 2.1] Let P : H — 'H be a strongly monotone, continuous and single-valued
operator. Then, a multi-valued operator M : H — 2™ is P-monotone if and only if M is maximal monotone.

Corollary 2.24 [53, Theorem 2 2] Let P : H — 'H be a continuous and strongly monotone operator with
constant y and let M : H — 2™ be maximal strongly monotone with constant 1. Then, the resolvent operator
RP TH— His M—+-Llpschltz continuous, that is

IR, ) = R, 0] <

lu —v|l, Vu,veE.

Anty
Proof Since P is strongly monotone and continuous, according to Lemma 2.23 (that is, [53, Theorem 2.1]),
M is P-monotone. The desired result follows immediately from Corollary 2.22. O

3 System of generalized variational-like inclusions

Let p € N\{1} be an arbitrary real constant and let foreachi € {1, 2, ..., p}, E; beareal ¢; -uniformly smooth
Banach space withanorm ||.||;. Assumethatn; : E; x E; — E;, P : E; — E; and Fi i EyxEyx---xE), =
]_[,f:1 E,— E; (i =1,2,..., p) are single-valued mappings. Furthermore, let M E, — 2Ei pe a (P;, ni)-
accretive mapping foreachi € 1,2,..., p. Forgivena; € E; (i = 1,2, ..., p), we consider the problem of
finding (x1, x2, ..., xp) € [[4_, Ex. such that for each i € {1,2, ..., p}

ai € Fi(x1,x2, ..., xp) + M;(x;). (3.1)

The problem (3.1) is called a system of generalized variational-like inclusions (SGVLI) with (P, n)-accretive
mappings in real g-uniformly smooth Banach spaces.

If p=2,x1 =x,x3=y,foreachi € {1, 2} a; = 6; is the zero vector of E; and n; (u;, v;) = u; — v; for
all u;, v; € E;, then the SGVLI (3.1) reduces to the problem of finding (x, y) € E1 x E3, such that

{91 € Fi(x,y) + M (x),
0 € Fa(x,y) + Ma(y),

which is called a system of variational inclusions (SVI) with P-accretive mappings.

We note that for appropriate and suitable choices of the mappings F;, P;, n;, M;, the elements a; € E;,
and the spaces E; (i = 1,2, ..., p), the SGVLI (3.1) reduces to various classes of variational inclusions and
variational inequalities. These reductions have been studied in several works such as [20-22,39,45,46,53-55]
and the references therein.

The following statement, which establishes the equivalence between the SGVLI (3.1) and a fixed point
problem, provides a characterization of the solutions of SGVLI (3.1).

Lemma 3.1 Let E;, Fi,n; and a; (i =1,2,..., p) be the same as in the SGVLI (3. 1) Suppose that for each
ie{l,2,....,p}, P, E; > Ejisa smctly n;-accretive mapping andM E; — 2Fi isa (P;, n;)-accretive
mapping. Then, (x1,x2,...,Xp) € nk:l Ey is a solution of the SGVLI (3.1) if and only if (x1, x2,...,xp)
satisfies

(3.2)

= RA oM [P (x) — A Fi(x1,x2,...,xp) —a))], G=12,...,p), 3.3)

where A; > 0 (i = 1,2,..., p) are arbitrary real constants, and for each i € {1,2,..., p}, RE n)z =
(P; + 2 M)~
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Proof The conclusions follow directly from Definition 2.18 and some simple arguments. O

As a direct consequence of the previous lemma, we obtain the following assertion which gives a charac-
terization of the solution of SVI (3.2).

Lemma 3.2 Assume that fori = 1, 2, E; are real g;-uniformly smooth Banach spaces, F; : E1 X Ey — E;
are single-valued mappings, and let 0; be the zero vector of E; for each i € 1, 2. Suppose further that for each
i €{1,2), P, : E; — E; is a strictly accretive mapping and M; : E; — 2Fi is a P;-accretive mapping. Then,
(x,y) € E| X Ej is a solution of the SVI (3.2) if and only if (x, y) satisfies the following conditions:

_ ph _
X = Rﬁl,kl[Pl(x) AF1(x, y)],

P
y= Rﬁzz’xz[Pz(y) — B (x, y)l,

where L1, Ay > 0 are arbitrary real constants and fori = 1, 2, R%"_ = (P; 4+ A Ml-)fl.
Definition 3.3 Foreachi € {1,2,..., p}, let E; be a g;-uniformly smooth Banach space with a norm ||.||;. A
mapping F : [1}_, E; — E; is said to be
(i) accretive in the ith argument if
(F(X15 oo X1, X Xig 1y oo Xp) — F(X1, o Xm0, X Xig s oo, Xp), Jg (i — X)) = 0,
in,')Z} S Ei,x.,- S E/(j =1,2, NN 2 ] 751');

(i1) w;-strongly accretive in the ith argument if there exists a constant u; > 0, such that

(F('x17 "'7xi—la-xia-xi+17 '-'7-x[)) - F(-xla "'7xi—17/x\iaxi+17 ...,XP), Jq,('xl _/x\l)>

> willxi = %Y, Vi, % € Eixj € Ej(j=1,2,...,p; j #i);
(iii) ¢;-Lipschitz continuous in the ith argument if there exists a constant ¢; > 0, such that

”F(-x]a"'7xi—l5-xi7-xi+17"'7-xp)_F(-x17"'7-xl.—17/x\l'5-xl'+]7'-'7xp)||i
<gillxi —=%illi, Vxi,Xi € Ei,x; € E;(j=1,2,...,p;j #10).

Note, in particular, that for the special case when p = 2, we say that a mapping F : E; x E; — E;
(i =1,2)1is (v, B)-mixed Lipschitz continuous if F' is Lipschitz continuous in the first and second arguments
with constants « and S, respectively.

In the next theorem, under some appropriate and suitable conditions, the existence and uniqueness of a
solution for the SGVLI (3.1) is proven.

Theorem 3.4 Let E;, F;, P;, 1\7,-, nianda; i = 1,2,..., p) be the same as in the SGVLI (3.1), such that for
eachi e I' ={1,2,..., p},

(1) n; is a v;-Lipschitz continuous mapping;
(ii) P; is an ri-strongly n;-accretive mapping;
(iii) F; is a ju;-strongly accretive and &;-Lipschitz continuous in the ith argument and g; j-Lipschitz continuous
in the jth argument foreach j € I' = {1,2,..., p}, j #i;
(iv) M; is a (P;, n;)-strongly accretive mapping with constant y;;
(V) there exists a constant \; > 0, such that

qi—1
T. ; qi i qi &qi
e (q\/l = 2qiri +cq;0; + Y1 = 2higini + cq 25
qr—1
T Ak
T S Y
kel ki MeVe T
(3.4
where cg; (i = 1,2,..., p) are constants guaranteed by Lemma 2.5, and for the case when q; (i =
1,2,..., p) are even natural numbers, in addition to (3.4), the following conditions hold:
2giri < 1+ cq 0l and 22iqipi < 14 cg, AT (3.5)
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Then, the SGVLI (3.1) admits a unique solution.
p
Proof Let us first define, for each i € T, the mapping ¢; : Ey — E; by

k=1
Pi,n;
Qi(x1, X2, ..., Xp) = RM’_’HAI_[Pi(xi) — A Fi(xy, x2, ..., xp) — ap)], (3.6)

forall (x1, x2, ..., x,) € [[t_, Ex. Define ||.|l« on [T/_, Ex by
14 14
G, x2, - xp) e = Y Ikl Y1, x2,.0, %) € [ ] Exe 3.7)
k=1 k=1

It can be easily observed that ([T;_; Ex, |l.|l+) is a Banach space. At the same time, suppose that the mapping
v T1P_, Ex — 10, Ex is defined by

Y(x1, X2, 0.0 Xp) = (@1(X1, X2, 0o, Xp),s oo, @p(X1, X2, ..., Xp)), (3.8)
for all (x1,x2,...,xp) € ]_[,f:l Ey. We will now show that v is a contraction mapping. To do this, let
(x1,x2,...,%xp), X1, %2,...,Xp) € ]_[,‘f=1 E be chosen arbitrarily but fixed. Using (3.6) and Theorem 2.21,

it follows that for each i € I":

i (x1,x2, ..., xp) — @i (X1, X2, ..., Xp)|l;

gi—1
S l—”Pl(xl)_Pl(}\l)_)“l E(x17x29"'7-xi—ls-xi7-xi+19"'7xp)
Aivi +ri (
— Fi(X1, X2, « oo, Xim 1, Xy XigeLs s Xp)) |l
gi—1,
T, ;
+ﬁ Z | Fi (e, Xo, ooy X1, Xy Xjg s oo vy Xp)
YT jer i
_Fi(xlsxzv"'7xj—1a/x\j9xj+19"'7-xp)||i
gi—1 (3.9)
= ——— (Il =% = (Px) = PG
Aivi +ri

A llxi =% — A (Fi(en, X2, oy Xie 1, Xiy XLy - -2, Xp)

- Fl(-xla-x27 "'7xi—la}\l’7xl'+17 "7xp)>||l>

i—1
i ‘L’iq' )\i

T Z 1Fi(x1, X2, .oy Xjm1, Xj, Xjp1s oo oy Xp)
AiYi +ri

Jel.j#i
- Fl(-xls-x27 ""-xj—lv’-x\j3-xj+19 "'7-xp)||i‘

Taking into account that for eachi € T, E; is a real g;-uniformly smooth Banach space, in the light of Lemma
2.5, there exists a constant ¢, > 0, such that

lxi — % — (P (x) — PLGEIT < Nl = Fill? — 245 (P (xi) — Py (%), Jg i (i, %))

R (3.10)
+ cq; | Pi(xi) — Py @)Y

Since for each i € I', P; is an r;-strongly n;-accretive and p;-Lipschitz continuous mapping, from (3.10), we
conclude that

lxi =% = (P (i) = PGl < Y1 = 2qiri + cqu0 1xi — %illi- (3.11)
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Similarly, utilizing Lemma 2.5 and the fact that for each i € T", the mapping F; is w;-strongly accretive and
&;-Lipschitz continuous in the ith argument, yields

I — X — A (Fi (X1, X2, « oy X1, Xy Xig 1o oo Xp)
— Fi(X1, X2, oo Xie 1, i Xi 1o -, X)) I

< o = Xl = 2hiqi (F; Ger, X2, oo Xim, Xiy Xigds -2y Xp)
— Fi(X1, X2, ooy Xie 1, Ris Xige Ly -+ -5 X)), Jg (i — R0))i
+cqi)»?i||F,-(x1,x2,...,xi_l,xi,xi+1,...,xp)
— Fi(X1, X0, ooy Xim 1, Xy Xigels ooy Xp) ||

< (1= 2hiqipi + cq 21 6" Ilxi = %],

from which we obtain
i — X = A (Fi (X1, X2, -+ Xio 1 Xy XigLs oo Xp)

— Fi(x1, X2, .o, Xie 1, X Xig 1o -, X)) i (3.12)
< q\’/l —2Miqilki + cq,-)»iq"%‘f” llxi —Xilli.

Relying on the fact that for each i € I', the mapping F; is g; j-Lipschitz continuous in the jth argument
(j € y,j # 1), it follows that:

||Fl(x19-x2’ ""-xjfl’xjv-xj+17 "'7-xp) - Fl(xli-xz’ ""xjfl’jc\jv-xj+17 "'7-xp)||i

o (3.13)
< gijllx; —xjll;-
Substituting (3.10)—(3.13) into (3.9), for each i € T", we get
i (x1, x2, ..., xp) — @i (X1, X2, ..., Xp) i
qi—1
~ T; A ~ (3.14)
< Oillxi —xilli + ﬁ Z Gi.jlxj = xjlljs
RO
where foreachi € I
pi= (o agm G 01— 2hiqips + g ATET
t—m —2qiri +cq0;" + —2Aiqi ki + cqih; Ei .
Thereby, making use of (3.8) and (3.14), it yields
IV (x1, x2, ..., xp) — U (X1, X2, ..., Xp) I«
P
= Z lgi(x1, x2, ..., xp) — @i (X1, X2, ..., Xp) Il
i=1
P ‘Egiil)»l'
= Do\ il =Rl o Y il =Tl
i=1 Vi er G
14 qr—1
T Ak .
= <l91 + Zﬁ%,l) llxr — X1l
j=p MkVE T Tk (3.15)
-L—qk—l)\'k .
+ |+ D e g Sk | 2 — a2
kel kz2 "hVE T Tk

P
<0 lxi —Filli =011, x2. ... xp) — B F2e o Kp) s

i=1
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where
qr—1
T A
6 = max { v + Z )Lk—kgk,,' i=1,2,...,p
kel ket Yk + 1k
Clearly, (3.4) and (3.5) imply that 0 < 6 < 1, and so, (3.15) guarantees that v is a contraction mapping.
Accordance with Banach fixed point theorem, there exists a unique point (x]*, x;‘, e, x;) € ]_[f’:1 E;, such
that
V(xy, x5, .. .,x;) =(x], x5, ... ,x;).
It follows from (3.6) and (3.8), we deduce that (x}, x5, ..., x;) satisfies Eq. (3.3), i.e., foreach i € I':
Pi n;
x[ = Rﬁi';i[P[(x;k) — M F (], x5, x0) —a)l.

Now, Lemma 3.1 guarantees that (x}, x5, ..., x;‘;) € ]—[f’=1 E; is a unique solution of the SGVLI (3.1). The
proof is complete. O

An immediate consequence of the previous theorem can be derived as follows.

Corollary 3.5 Suppose that for each i € {1, 2}, E; is a real g;-uniformly smooth Banach space with a norm
I.ll;; P; : Ei — E; is an ri-strongly accretive mapping, and M; : E; — 2Fi is a P;-strongly accretive
mapping with constant y;. Let, for each i € {1, 2}, the mapping F; : E1 x Ey — E; be u;-strongly accretive
and (L, l;)-mixed Lipschitz continuous. Moreover, let there exist constants A1, Ao > 0, such that

AL
m( ‘7\1/1 —2qir1 +cg 00" + ‘1\1/1 —2X1q1 41 +cq,)\({'L‘;,'1) + kzizfrz <1,
1 q 9219 MIF,
m( q\z/l —2q2r2 + c05" + q\z/l —2haq2p2 + qu?uzzlpi) + s < b

(3.16)

where cy; (i = 1,2) are constants guaranteed by Lemma 2.5. In the case when q; (i = 1, 2) are even natural
numbers, in addition to (3.16), the following conditions hold:

2qiri < 1+cq0l', (i =1,2),
2x1qipr < 1+ cql)fflL%ll,

2hqau2 < 1+ cqzkgzqui.
Then, the SVI (3.2) has a unique solution.

4 Total asymptotically nonexpansive mappings and some iterative algorithms

We recall that a mapping T : E — E is called nonexpansive if ||T(x) — T(y)|| < ||x — y|| forall x,y € E.
Because of the connection with the geometry Banach spaces along with the relevance of these mappings in the
theory of monotone and accretive operators, since the 60s, the study of the class of nonexpansive mappings
has been one of the major and most active research areas of nonlinear analysis. Due to their importance and
applications in fixed point theory, during the last 5 decades, much attention has been given to develop the
notion of nonexpansive mapping. As an extension of the class of nonexpansive mappings, in 1972, Goebel and
Kirk [23] introduced the class of asymptotically nonexpansive mappings as follows.

Definition 4.1 [23] Amapping T : E — E issaid to be asymptotically nonexpansive if there exists a sequence
{a,} C (0, 00) with lim a, = 0, such thatforall x, y € E
n—0oo

IT" () = T"WI = L +ap)lx — yll, VneN.

The appropriate condition under which a self-mapping 7' of a nonempty subset K of a real normed linear
space E has a fixed point is also investigated and appears in [23].

As another generalization of the class of nonexpansive mappings, the concept of nearly asymptotically
nonexpansive mapping is introduced and studied by Sahu [40] as follows.

@ Springer



18 Arab. J. Math. (2024) 13:1-33

Definition 4.2 [40] A mapping T : E — E is said to be nearly asymptotically nonexpansive with respect to
the sequences {a,} and {b,} (or nearly ({a,}, {b,})-asymptotically nonexpansive) if there exist nonnegative
real sequences {a,} and {b,} with a,,, b,, — 0,as n — oo, such that forall x, y € E

IT" () = T"WIl < (A +an)llx — yll +bn, VneN.

Recently, Alber et al. [1] introduced another generalized nonexpansive mapping, the so-called total asymp-
totically nonexpansive mapping, which is more general than asymptotically nonexpansive and nearly asymp-
totically nonexpansive mappings.

Definition 4.3 [1] A mapping 7 : E — E is said to be total asymptotically nonexpansive (also referred to
as ({a,}, {bn}, ¢)-total asymptotically nonexpansive) if there exist nonnegative real sequences {a,} and {b,}
with a,, b, — 0 as n — oo and a strictly increasing continuous function ¢ : RT™ — R with ¢(0) = 0, such
that forall x,y € E

IT7") = T" W < llx =yl + and(lx — yI) + bn, Vn e N.

Remark 4.4 Itshould be pointed out that if ¢ = I, the identity mapping on R™, then the class of ({a, }, {b,}, ¢ =
I)-total asymptotically nonexpansive mappings becomes the same class of nearly ({a,}, {b,})-asymptotically
nonexpansive mappings [40]. For the special case when ¢ = [ and b, = O for all n € N, then the class of
({an}, 0, ¢ = I)-total asymptotically nonexpansive mappings coincides exactly with the class of asymptotically
nonexpansive mappings [23]. If a, = 0 for all n € N, then the class of (0, {b,}, ¢)-total asymptotically
nonexpansive mappings is actually the same class of nearly nonexpansive mappings [40].

To explore further generalizations of the notion of nonexpansive mapping and to find more information and
details along with some illustrative examples, we refer to [1,8,14,15,23,31,37,40] and the references therein.

Next, we provide an example that illustrates the fact that the class of total asymptotically nonexpansive
mappings properly includes the class of asymptotically nonexpansive mappings.

Example 4.5 For 1 < p < oo, consider the classical space

0]

17 = {x:(xn)neN:Z|xn|p <oo,xpeF=RorC},

n=1

consisting of all p-power summable sequences, equipped with the p-norm ||.||,, defined on it by

o0 ’
”x”p = (Z |xn|p) . Vx = (Xp)neN € 7.
n=1

In the meanwhile, consider E := (—00, a] x B with the norm ||.|g = |.Ir + ||.I| », Where o > 0 1is an arbitrary
real constant and B is the closed unit ball in /7. Suppose further that the self-mapping T of E is defined by

(u,%), if —oo<u <0,
Tux)={G.%, if0<u=<p,
(0736), lfﬁ < U S o,

where X = (X;,)7° |, with X; = X;42; =0foralll <i <gand j e N

ki A
6 ( . Kit2 i+2 e . 42
—A—(sin T |x| — x| 5), ifie{3r—2r=12,..., 52},
~ W mijy] o tJ;Z
Xg42i—1 =y Osin|x;| 3, lflE{3r—1|t:1,2,,,,,T},
0 o . Bi o
W(lx” 3 — —sin|x;| 3), 1fl€{3r|r=1,2,“.’%},

Xg4+204+1 = 9Xt+% foralll € {2j+3|j e N},0 <6 <1 < y and B € (0, @) are arbitrary real constants,

te{3s—2|seN},g >r+2andaw;, Bi, ki, ri,m; e N\{1} (i =1,2,..., %) are arbitrary but fixed natural
numbers. It is known that every asymptotically nonexpansive mapping is Lipschitzian and every Lipschitzian
mapping is continuous. Taking into account that the mapping 7 is discontinuous at the points (8, x) for all
x € B, it follows that T is not Lipschitzian, and therefore, it is not an asymptotically nonexpansive mapping.
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It is easy to show that for all (u, x), (v, y) € (—00,0) x B
170 = Tl = e =05 = Pl == v, (0,0,....0,——(sin* x| = sin® ||
— " Yor+l
q times
= (™ = 1n1*)), 0,6(sin o™ = sin 321", 0 O (sl* — Iysl* — (sin s
9 bl 9 9 W
0 kit kit A2 Argo
. ﬂl . Iz . Iz Iz Iz
— sin ,0,,...,0, <sm 3 x| —sin 3 —(x 3 — 3)),0,
ly31P1) s | Iyl = (1] |2l
. miq2 . m42 0 g2 =5 . B2
0(sin bl —sinlyen " ). 0. == (Fra"F = el = (sin g2l S
2p+1
. Bry2
= sin 2l ), 0,0k43 — 3143), 0, 6Crias = i), - ) ) |
ki » Ai »
< lu—vl +9<max {(Z IX3i—2|k"_J|y3i—zI/_1) : (Z 327 [yaial® _l) :
j=1 s'=1
m; , @ , 4.1)
<Z|x3i71|mi_r|Y3i71|r_l) (Z e3i (%7 | ysil? _1) ,
r=1 s"=1
Bi 00 1
- 1\ P . t+2 5
(X bty ) ni = L2 S Y - i)
r'=1 i=1
ki A
= Ju— vl + O max | Y brsia " yial T Y s lysial
j=1 =1

mj o

. 71 P " //71
E 31 1™ yzica E L3 (%775 |yl 7,
r=1

s"=1

Bi
- _ . t+2
D bl sl T i = 120 S = e

r'=1

Since Xy € B, it, follows that: 0 < |x3;_o|% 7, |y3,~,2|j_1 < 1 foreach j € {1,2,...,k}, 0 <
lx3ic2% 75, lysical* 71 < 1 for each 5" € {1,2,...,4}, 0 < |xzi—1|™ ", |y3i—1/""" < 1 for each

ref(l,2,...,mi},0 < |x3|% " |y 7! < 1foreachs” € {1,2,...,a;},and 0 < |x3;|F " |y3; | ~' < 1

foreachr’ € {1,2,...,B;}andi € {1,2, ..., %}. These facts imply that

ki A
ki—j i—1 s’ ]

0<) |x3i2"/|y3ic2l/™ <ki, 0< E lx3i 2" [y3ial” T < A4,

j=1 s'=1

m; a;

L —1 R ”_1

0< E Ix3i— 1™ " |yzic1l <mi, 0 < E 3 |95 | ysil* T <

r=1 s"=1

i

and0 < ) |)C3,-|ﬂi_’/|y3,-|’/_1 < Bi,foreachi € {1,2,..., %}. Thanks to the last mentioned facts and by

r'=1
applying (4.1), we deduce that for all (u, x), (v, y) € (—00,0) x B

IT @, x) =T, Ve < fu—=vl+0sllx = ylp. (4.2)

where ¢ = max{w;, Bi, ki, \i,m; :i =1,2,..., %}. Using the arguments similar to those used in (4.1) and

(4.2), one can prove that
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(i) forall (u, x), (v,y) € [0,8] x B

u UV o
||T(M,.x) - T(U, )’)”E = ” (_7 x) - <_9 y) ||E
4 14

1
;IM—U|+9§I|X—yllp 4.3)

IA

IA

B
ju = vl +0s e =yl +

(ii) for all (u, x), (v, y) € (B, a] x B

IT @, x) =T, Mle=10,5-Mle
=0sllx =yl 4.4
< lu—vl+6gllx —ylp;

(iii) for all (u, x) € (—00,0) x B and (v, y) € [0, B] x B

nnmm—TwaE=<mm—(3jﬂ
Y E

S H
=|(u——,x—
v WAL

v
w= | +osle i, *5)

IA

1
< ful + ;Ivl +O0slx =l

B
< fu—v[+0gllx =yl + v

@iv) forall (u,x) € (—00,0) x Band (v, y) € (B,a] x B

1T (u, x) =T, Ylle = I, %) — O, M
= I, X =Ml

< lul +6sllx — ylp (46)
< Ju—v|+0glx — yll;
(v) forall (u,x) € [0, 8] x Band (v,y) € (B,a] x B
1760 = TE e = |(.5) - 0.9,
ol (GRS
§Lﬂ+ﬂmu—ym @7

1
< lu = vl +0slx =yl + 1o
o
< lu—vl+0slx—yllp,+ v
Making use of (4.2)—(4.7) and taking into account that 0 < 8 < «, it follows that for all (u, x), (v, y) € E:
o
17w, x) =T, Mg <lu—vl+0slx =yl + "

u 4.8)
=lu—v[+lx=ylp+0s(u—v[+llx = ylp) + v
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For all (4, x) € (—00,0) x Bandn > 2, we have T"(u, x) = (u, x), where

~ 0 n. .

X = < 0,0,...,0, (—) (sinf1 Ix1] = |x1*1), 0,0, ...,0,6%sin |x2|™, 0,0, ...,0,
S—— «p/2P+l ~———— —
2"—1)q times 2"—1) times (2"—1) times

6 n % n kit2
e
X sin |x sin 3 |x
(grer) sl =sinbs™ o (s il
Y] . mi42 0 n A
e H ),O,O,...,O,@"sm|x,+1| 5 ,0,0,...,0,( ) (|x,+2| ;
S—— — «p/szrl
2"—1) times 2"—1) times
. ﬂt+2 n n
—sinxanl 5),0,0,...,0,60"x43,0,0,...,0,0 x4, ... ).
— —
(2" —1) times (2" —1) times

Then, by a similar way to the proofs of (4.1) and (4.2), for all (u, x), (v, y) € (—o0,0) x B and n > 2, one
can show that

17", x) = T"(, Ol = 1@, %) — @, De = I—v.x =D&

_ o "k k1 Al Al
_H(u—v,(O,O,...,O,<W) <sm 1| = sin®t [y1] = (ot Y = (1] )),0,0,...,0,

2"—1)q times (2"—1) times
0" sin xa "t —sin [yal"). 0,0, .. 0, (=) (st 15[ — (sin sl — sin 5 ).
— —— P 2p+1
(2"—1) times
() (sin™ Ll = sin 5 130l = (1" = 1357
S Syl = el 30—yl 30 ),
V2rt 4.9)
no migo . LFES)
0,0,...,0,0"(sin |x;41] 3 —sin|y4+1] 3 ),0,0,...,0,
2"—1) times (2"—1) times
() (bl = ysal 5 = (sin ™) = sin o))
—— +20 2 — (V421 ° — 421 - t+21 s
Y/op+1 !
07 09 ey 09 Gn(x[-‘r:‘; - YI+3), 07 01 sy 01 9”(-x1+4 - yt+4)7 e )) HE
2"—1) times (2"—1) times

< lu—vl+6"cllx = yllp.

Furthermore, for eachn € N, T"(u, x) = (%,35) and T"(u, x) = (0,X) for all (u,x) € [0, B] x B and
(u, x) € (B, a] x B, respectively. Then, by arguments analogous to the previous inequalities (4.1) and (4.2),
and using (4.9), it follows that for all (u, x), (v, y) € E andn > 2:

n n n o
17", x) =T (v, Vg < lu—v|+6 S'H-X_y”p"i_ﬁ

(4.10)
Slu—vl+lx=ylp+0"s(u—vl+llx —yllp) + o
Thereby, using (4.8) and (4.10), for all (u, x), (v, y) € E and n € N, we deduce that
o
17", x) = T"(, Mlle < lu—vl+llx = ylp +0"c(u — v+ llx — yllp) + —-
v 4.11)

= ll(u, x) — (0, WlE+ 0", x) — (v, e+ %

Let us now take i, = 6" and b,, = }f‘—,, for each n € N. Then, in virtue of the fact that 6 < 1 < y, we infer that
Un, by — 0,as n — oo. Defining the mapping ¢ : [0, +00) — [0, +00) as ¢ (w) = cw for all w € [0, +00),
and employing (4.11), for all (u, x), (v, y) € E and n € N, yields

17", x) = T"(u, Y)lle < 1@, x) = @, Ve + map (1w, x) = (0, W E) + ba,
thatis, T is a ({iu}, {bn}, ¢)-total asymptotically nonexpansive mapping.
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Lemma 4.6 Assume that, for eachi € {1, 2...,pl, E;i is a real Banach space with a norm ||.||;, and S; :
Ei — Ejisan ({an,i};’f:l, {bni};2 ¢i)—t0tal asymptotically nonexpansive mapping. Furthermore, let Q and
¢ be self-mappings of ﬂle E; and R, respectively, defined by

P
Q(x1, X2, ..., xp) = (S1x1, S2x2, ... Spxp), ¥(x1.x2.....xp) € [| Ei (4.12)

and
¢(t) =max{e;(t):i=1,2,...,p}, Vte RT. (4.13)

Then, Q isa ({Zl Vit Zle bn,i}oo | ¢)-t0tal asymptotically nonexpansive mapping.

Proof Taking into account that for each i € {1,2,....1}, S is an ({ani}>%, {bn.i}2%,, ¢i)-total

asymptotically nonexpansive mapping and ¢; : Rt — RT is a strictly increasing function, for all
(X1, X2, ..., Xp), (X1, X2, ..., Xp) € [[/_; Xi and n € N, we obtain

10" (x1, X2, ..y xp) — Q" (X1, X2y Xp) s

= ||(S{‘x1 — 811, S5x0 — S5%a, ..., Spxp — SZY,,)H*

= Z 1S x; — S7%i s

(Ilxi = Xilli + an,ii (lxi — Xilli) + bn.i)

™M=~

1

(4.14)

IA

||xl —%illi + Zan i (lxi —Xilli) + me

i=1 i=1

e — %illi + Zan,ﬂp(Z Ilxj — X715 + an,,-
1 i=1 j=1 i=1

|( X1, x2s---,xp)_(/x\lsz,u-,/x\p)”*

'Mm ‘HM":

IA

p
+ Zan,,-mn(xl, X2 Xp) = @R TP+ Y b

i=1 i=1

where ||.||+ is a norm on ]_[l_] E; defined by (3.7). From (4.14), it follows that the mapping Q is
({Zl | n,ite s {Zizl bn,i}oo | ¢)-total asymptotically nonexpansive mapping. This completes the
proof O

Let us now denote by Fix(S;) and Fix(Q), respectively, the sets of all the fixed pointsof S; (i = 1,2, ..., p)
and Q. At the same time, we denote the set of all the solutions of SGVLI (3.1) by ®sgvr1. Thanks to (4.12),
for any (x1, x2,...,xp) € ]_[f’:l E;, (x1,x2,...,xp) € Fix(Q) if and only if, foreach i € {1,2,..., p},
x; € Fix(S;), thatis, Fix(Q) = Fix(S1, $2, ..., 8)) = ]_[le Fix($;). If (x], x3, ..., x;) € Fix(Q) N dsgvLr,
then utilizing Lemma 3.1, it can be easily seen that foreachi € {1,2,..., p}andn e N

XF =8Pt = ’ﬁ""’ [Pl-(xi*) - )»i(Fi(xi‘,xi“, .. .,x;) - ai)] 1)
_Sn 771 [P (x ) — (F,-(x;‘,x;,...,x;)—a,-)]. '

The fixed point formulation (4.15) allows us to construct an iterative algorithm with mixed errors based
on the resolvent operator technique as follows.
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Algorithm 4.7 Let E;, ]\7,-, P, Fi,niand a; (i = 1,2,..., p) be the same as in Lemma 3.1 and let for
eachi e {1,2,...,p}, Si : Ei — E; be a ({bi,}, {cin}, ¢i)-total asymptotically nonexpansive map-
ping. For an arbitrary chosen initial point (x,0, X2,0, ..., Xp,0) € ]_[f:l E;, compute the iterative sequence
{10, X205+ oy xp,n)}g';o in ]_[f’:l E; by the iterative schemes

Pi,n;
Xin+1 = (1 —an — B)xin + OtnSl”RMi Z[[Pi (Xin) — Ai(Fi (X105 X205 -5 Xpop) — )]

+ opein + ,Bnti,n + Sin,

(4.16)

where i = 1,2,..., p;n > 0; A; > 0 are arbitrary real constants; {c,} 7, and {8,};2, are two sequences
in the interval [0, 1] satisfying > o g, = 00, oy + B, < 1 foralln > 0, > 72 B, < oo and for each
ie{l,2,..., phiein); 2o {tin}heg» (8in)he are three sequences in E; to take into account a possible inexact
computation of the resolvent operator point satisfying the following conditions: for each i € {1,2,..., p},
{ti,n};'lozo is a bounded sequence in E; and {e,-’n};’ozo, {si,n},‘fzo are two sequences in E;, such that for each
iefl,2,...,p}andforalln >0

€in = ez/',/n + e/l/{n;
. ’ .

nll)nolo ||(el,l’l’ ez’n7 ety ep,n)H* = 07

)

SN s e )l < 00 @17)
=0

"5

Z ”(sl,m S2msev s Sp,n)”* < oQ.

n=0

If foreachi € {1,2,..., p}, S; = I;, the identity mapping on E;, then Algorithm 4.7 reduces to the
following algorithm.

Algorithm 4.8 Let E;, Mi, P, Fi,nianda; (i = 1,2,..., p) be the same as in Lemma 3.1. For any given
(X1,0, X2,0, - .-, Xp,0) € ]_[f:1 E;, define the iterative sequence {(x1,,, X2, ..., Xp.n)}hey iN ]_[f:1 E; by the
iterative processes

Pini
Xin4+1 = (1 —oy — ﬂn)xi,n + oy A,/il,- I;ti[Pi(xi,n) - )Li(Fi(xl,n’ X2y ev s xp,n) —aj)]

+ ey + ﬂnti,n =+ Sin,

wherei = 1,2, ..., p;n > 0; the constants A; > 0 and the sequences {a,}7° . {Bn}ne s {€intneos ttin)yeo
and {s; n};2 (i =1,2,..., p) are the same as in Algorithm 4.7.

For the case when p =2, o, = 1, 8, = 0, ¢; , = s;., = 0 and n; (u;, vi) = u; — v; for all u;, v; € Ej,
n > 0andi = 1, 2, then Algorithm 4.8 collapses to the following iterative algorithm.

Algorithm 4.9 Suppose that E;, Mi, P; and F; are the same as in Lemma 3.2. For an arbitrary chosen initial
point (xg, yo) € E1 x E, compute the iterative sequence {(x,, y,)},- in E1 x E7 using the iterative schemes
Xapt = Rg . [P10) = A Fi Gon, v,

net =R P2 (yn) = M2 FaCxn, yn)],

wheren =0, 1,2,...; A1, Ap > 0 are two arbitrary real constants.

Remark 4.10 (i) Ife; , = s;i, =0foralln > 0andi = 1,2, ..., p, then Algorithms 4.7 and 4.8 become the
resolvent iterative processes with mean errors.

(i) Whene;, =t;, =s;, =0foralln > 0andi = 1,2, ..., p, then Algorithms 4.7 and 4.8 reduce to the
resolvent iterative processes without error.
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5 An application

In this section, as an application of our proposed iterative algorithm in the previous section, we verify that
the iterative sequence generated by Algorithm 4.7 converges strongly to a common element of the two sets
®sgver and Fix(Q), where Q is defined as (4.12).

Before proceeding to our main result, we need to recall the following significant lemma which plays a
crucial role in its proof.

Lemma 5.1 Let {a,}, {b,} and {c,} be three nonnegative real sequences satisfying the following conditions:
there exists a natural number ng, such that:
any1 < (1 —op)a, + b0, + ¢, Yn = no,

where o, € [0, 1], Y02 4 0y = 00, limy—s00 by = 0and Y pe s ¢y < 00. Then, limy—o0 ay = 0.

Proof The proof follows directly from Lemma 2 in [36]. O
Theorem 5.2 Let E;, Mi, P, Fiandn; (i =1,2,..., p) be the same as in Theorem 3.4 and let all the condi-
tions of Theorem 3.4 hold. Suppose further that foreachi € {1,2, ..., p}, Si : E; — Ejisa ({bin}, {cin}, ¢i)-
total asymptotically nonexpansive mapping and Q is a self-mapping of ]_[lp: | Ei defined by (4.12), such that

Fix(Q) N ®sgvLr # @. Then, the iterative sequence {(X1,n, X2.n, - - -, xp,n)}j;‘;o generated by Algorithm 4.7
converges strongly to the unique element of Fix(Q) N ®sgvLI-

Proof In the light of Theorem 3.4, the SGVLI (3.1) admits a unique solution (x}, x3, ..., x;) € ]_[11.”=1 E;.
Then, Lemma 3.1 implies that for each i € {1, 2, ..., p}

Pi,nj
xf = Rg" [P) = M(Fi (] x5, xp) — ai)]: S.D
Taking into account that ®ggyyry is a singleton set and Fix(Q) N ®ggyLr # ¥, it follows that for each
i € {l,2,..., p}, x € Fix(S;). Therefore, using (5.1) and based on the above-mentioned facts, for each
n>0andi €{1,2,..., p}, we have

xf =1 —o, — Bu)x] + anS,f’Rgi’,';"i[Pi () = M (Fi (e, x5, oy xp) —a)l + Baxis (5.2)

where the sequences {a,,}7° ; and {8, },° , are the same as in Algorithm 4.7. Invoking Theorem 2.21, it follows
that foreachi € I':

Pi.ni
IR UPi(xin) = M CFi (¥ X2, - Xp.n) = ai)]

Pini
- RIVI,-,’Z\;[Pi () = M (Fi (e, x5, -y x) —aplli

qi—1
T
5#”Pi(xi,n)_Pi(-x;k)_)\'i(Fi(xl,n’xln’--~axp,n)_Fi(xikax;,u-,-x;))”i
ivitri
gi-1
< mnpi(xi,n) — Pi(x}) = A (Fi (X100 X2,ms « <<y Xielns Xions XiLins -« - » Xpon)
_Fi(xl,n’XZ,nv-~-’xi71,nax;(,xi+l,n’-uyxp,n))”i
p S IFC )
T iX1,ns X2ny -+ s Xj—1n>Xjn,Xj+l,ns--+>Xpn
Nyi+ri = e TR R P (5.3)
JEeL, j#i
_Fi(xl,n,XZ,nv--~,xj—1,n,x;'<axj+l,n7--~,xp,n)||i
0!
< ————(lIxin = %] = (Pi(xin) = Pi(x)) i
)Li)/i-i-i”i( ’ o ’ ")
+ ”xi,n - x;k - )"i(F'i(-xl,nv x2,n» e 7xi—1,n1 xi,n’ xi+1,n9 . 7-xp,)’l)
_Fi(xl,naxlm--~axi—l,naxi*axi+l,n7---’xp,n))”[)
‘L'l-qiil)»,'
+ﬁ Z ”Fi(xl,naxln,---,xjfl,nsxj,naijrl,ns-wvxp,n)
VETTE jer i
_F‘i(-xl,ﬂaxz,nv--'axj—l,nax;‘f»xj—‘rl,ny~-'7xp,n)||i'
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In light of the assumptions and using the same arguments as for (3.10)—(3.13), one can prove that for each
ielandn >0

lxin — X — (Pi(xin) — Pi(x])li < "\’/1 —2giri + g0 1xin — x]1li, (5.4)
”xi,n - x;k — A (Fi(xl,na X2ns oo s Xi—1ns Xins Xi+1,ns «« « s xp,n)

— Fi(X 1, X2, ooy Xie L X3 Xig Lo -+ o Xp)) i

< 41— 2higimi + e X E i — xFl (5.5)

and

”Fi(xl,n, xz,l’lv sy xj—l,rh xj,nv -xj—‘,-l,ns ceey xp,n)

(5.6)
= Fi(Xtn, X2y ooy Xjmns X Xjns oo Xp) i < 61 jllxjn — X715
Combining (5.3)—(5.6), for each i € I and n > 0, we obtain
Py,
IR 5" [Py (xin) = % (Fi (¥ X2, - Xpon) = @i)]
Pi.ni
= R [Pi(x]) = & (Fi(xf x5, oxp) — aplli
i 5.7
471y,
[ 1
< illxin —Xi*“i + )»:%T Z Gi.jllxjn —x}k”j»

" jer.j#i

where for each i € I', ¥; is the same as in (3.1). Let us now assume that L = max{sup,,> [|tin» — xFici=
1,2,..., p}. Using (4.16), (5.2), and (5.7), foreach i € I" and n > 0, yields

Pini
i1 = X7 Nl < (1= ot = B i — X7 i + ot |1 S7 R TPi (xin)
— X (Fi(X1n, X205 -+ o Xp,p) — ai)]
Py n;i
= SPRG TP = Mi(F(xf . x3 o xp) = an)]li
+ Bulltin — x7 i + anlleinlli + lsinlli
Pini
= (1= = Bolin = 57 i + e (IRE™ [Py xin)
—Ai(Fi(X1,n, X200 - o Xpon) — Gi)]
Pi.n;
— R IP(x) — i (F (] )3 xp) — an)li
Py
+ bi,n¢i(”RMi n)Li[Pi(xi,n) —Ai(Fi(x1,n, X200+ -+ xp,n) —aj)]
Py (5.8)
= R PO = M (F (. L xg) — ai]lli)
+ Ci,n) + Balltin — xFNli +an(llef i + ey lli) + lsinll:

< (1= = B)lin = 7 i + o (B30 — 7

471

1

)vl s Z Gi.jllxjn = x5l + bingi (9illxi0 — X i
P jer i
Tiql_l)"i *

+ o Z Si,jllxjn —xj ;) + Ci,n)
lyl 1 JGF,]#I

+anllel,lli 4 el i + Isinlli + BalL-
Then, using (5.8), it follows that for all n > 0:

X5 X204 15 - - s Xpngt) — (X7, X5, o X)) s
p
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S (1 — 0y — ﬁn)”(xl,na x2,na ceey xp,n) - (xik?x;a ceey x;)”*

P ‘L"qiil)n,'
tan 3 (Billxin =37+ == Y il — ;)
i=1 Myt
P 'L'-L]i_l)ni
an Y bindi (Billxin = 57+ T D Gl — ;)
i=1 MYiHT '

p
o Y cimt anll @€y )l H ] €S e Dl

i=1
+ ”(sl,m S2.m5 00 sp,n)”* + pIBnL
S (1 - (Xn - ﬁn)”(xl,l’li x2,n, ceey xp,n) - ('xik7-x;’ ) x;)”*

P quk_l)\,k
o (14D g ) I = 47l
! k=22 AV + Tk o

Tgkil)»k
+ (172 + Z ﬁgk,z)llm,n =502+
kel k2 "KVE T Tk
r—1 _q—1
T M
+<z9+ k—k,)x,—x*>
» I;Wkﬂkg p ) xpn — X501
P T»qi_l)»i
+an2bl-,n¢,-(ﬁ,-nx,-,n—x;‘||,-+'— > gl-,,-||x,~,n—x;f||,-)
4 AiYi +ro
i=1 Jjel, j#i

p
o Y cimt anll @€y €l )+ 1] €S e Dl
i=1
+ ”(sl,m S2.m5 00 sp,n)”* + pIBnL
<{-ay - ﬂn)”(xl,l’h X2ns e xp,n) - (xik7 x;, cee x;)”*

+ ane”(xl,n»xlna e ,xp,n) - (xik’x;, ‘e ,x;)”*

gi—1
> Gijllxin —x315)

P
T. Ai

+ay E bindi (0illxin — x1li + —— :
AiYi + 1 ieD i

i=1

p
tan Y cintanll€l € e, D+ le] pnes ..o eh )l

i=1
+ ||(Sl,n, S2ms e Sp,n)”* + pBnL
S (1 - (1 - Q)Oln)”(xl,na x2,n, o axp,n) - (xik5 x;a L] x;)”*
-1
V4 ‘El-q )\,'

Bt Ol = 5P+ T Y e i1
—1 Pi,nPi\VillXin i Ry T, i,jl1Xj,n
+op(l—60) = L todn SJELIA

(5.9)

_x7||j) + v,

1-6
1 /7 /! L
+ ||(€1’nye2’n7"-’ep,n)”*_'_ ”(Sl,naSZ,na-~-’Sp,n)||*+p:3n )

where ¥, = ||(e’1’n, e/Z,n’ el e;,’n)||* + Zle cin and 0 is the same as in (3.15).
Let us take for eachn > 0
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ZZ\n = ”(xl,m X2mseves xp,n) - (-xika x>2k, ceny x;)”*v

P ‘L'qiil)v

i 1
~ 2ict bin®i Willxin — X[l + 5555 X jer,ji SiojlXjn — X717 4+ Wa
b, =
1—-6

al = ”(e/]/,n’ e/Q/’ns ceey e;;’n)”* + ”(Sl,nv S2,l’lv L] Sp,n)”* + pﬂl’llﬂ
o, = (1 —0)a,.

Taking into consideration the facts thatlim,,—, o0 b; , = lim, . ¢; , = Oforeachi € I' and Z;io B < 00,in
the light of (4.17) and (5.9), we observe that all the conditions of Lemma 5.1 are satisfied. Therefore, according
to Lemma5.13a, — ocoasn — 00,1.e., (X1, X205 - .., Xpp) = (x5, ..., x;‘,), asn — oo. Consequently,
the sequence {(x1,4, X2,1, - .., Xp.n)}re, generated by Algorithm 4.7 converges strongly to the only element
(7, x5, ..., x;) of the singleton set Fix(Q) N ®sgyL1. This completes the proof. O

As direct consequences of the above theorem, we have the following corollaries.

Corollary 5.3 Let E;, ]?I,-, P, Fiandn; (i =1,2,..., p) be the same as in Theorem 3.4 and let all the condi-
tions of Theorem 3.4 hold. Then, the iterative sequence {(x1 , X2.n, - - -, xp,n)}?,o:() generated by Algorithm 4.8
converges strongly to the unique solution of SGVLI (3.1).

Corollary 5.4 Suppose that E;, AZ-, P; and F; are the same as in Corollary 3.5 and assume further that all
the conditions of Corollary 3.5 hold. Then, the iterative sequence {(x,, yn)},— generated by Algorithm 4.9
converges strongly to the unique solution of SVI (3.2).

6 Generalized H (., .)-accretive mappings

The main motivation of this section is to investigate and analyze the notion of generalized H (., .)-accretive
mapping and the relevant results that appeared in [29] and to provide some comments regarding them. Addi-
tionally, we show that the results presented in [29] can be deduced as corollaries of our main results presented
in the previous sections.

Throughout the rest of the paper, unless otherwise stated, we assume that E is a g-uniformly smooth
Banach space.

Definition 6.1 [29,54] Let A, B: E — E and H : E x E — E be three single-valued mappings.
(1) H(A,.) is said to be o’-strongly accretive with respect to A if there exists a constant &’ > 0, such that
(H(Ax,u) — H(Ay, u), Jg(x —y)) = &'llx = y|?, Vx,y,u € E;
(i1) H(., B) is said to be B’-relaxed accretive with respect to B if there exists a constant 8/ > 0, such that
(H(u, Bx) — H(u, By), Jy(x = y)) = =p'Ilx = [, Vx,y,u € E;

(iii) H(.,.) is said to be o’ B’-symmetric accretive with respect to A and B, if H(A, .) is a’-strongly accretive
with respect to A and H (., B) is B’-relaxed accretive with respect to B with o’ > B’ and o’ = B’ if and
onlyifx =y, forallx, y € E;

(iv) H(.,.) is said to be &-Lipschitz continuous with respect to the first argument if there exists a constant
& > 0, such that

IHCe,u) — H(y,wl <&llx —yll, Vx,y,uckE;

(v) H(.,.)issaid to be ¢-Lipschitz continuous with respect to the second argument if there exists a constant
¢ > 0, such that

||H(u»x)_H(M7Y)”§§||X_J’||, Vx,y,uEE»

Proposition 6.2 Let A, B: E — E and H : E x E — E be three single-valued mappings. Suppose further
that the mapping P : E — E is defined by P(x) := H(Ax, Bx) for all x € E. Then, the following statements
hold:
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(1) IfH(.,.) is o' B'-symmetric accretive with respect to A and B, then P is (o' — B’)-strongly accretive.
Hence, it is strictly accretive if o' > B’ and accretive if a’ = B'.

(ii) IfH(.,.) is &-Lipschitz continuous with respect to A and ¢-Lipschitz continuous with respect to B, then
P is (¢ + ¢)-Lipschitz continuous.

Proof (i) Since H(.,.) is &’ B’-symmetric accretive with respect to A and B, according to Definition 6.1(iii),
H(A, ) is a’-strongly accretive with respect to A and H (., B) is 8’-relaxed accretive with respect to B. Then,
for all x, y € E, it follows that:

(P(x) — P(y), Jg(x — y)) = (H(Ax, Bx) — H(Ay, By), J4(x —y))
= (H(Ax, Bx) — H(Ay, Bx), J;(x — y))
+ (H(Ay, Bx) — H(Ay, By), Jy(x — y))
>dlx = yl? = Bllx — ylI?
= (' = B)lx =yl

If o’ > B’, the preceding inequality implies that P is (a’ — B’)-strongly accretive. Hence, the fact that P
is strictly accretive is straightforward. For the case when o’ = f’, in the light of the last inequality, it follows
that P is accretive.

(i1) Taking into account that H (., .) is &-Lipschitz continuous and ¢-Lipschitz continuous with respect to
A and B, respectively, for all x, y € E, we obtain

[P(x) =PIl = |H(Ax, Bx) — H(Ay, By)]||
< [[H(Ax, Bx) — H(Ay, Bx)]||
+ [1H (Ay, Bx) — H(Ay, By)||
=E+Dlx =yl

i.e., P is (¢ 4+ ¢)-Lipschitz continuous. The proof is complete. O

Remark 6.3 1t is worthwhile to stress that in the light of Proposition 6.2(i), every bifunction H : E X E — E
that is &’ 8’-symmetric accretive with respect to the mappings A and B is actually a univariate (o« — 8)-strongly
accretive mapping if o’ > B’ and accretive mapping if o’ = B’; however, this is not a new concept. Furthermore,
invoking Proposition 6.2(ii), the concept of Lipschitz continuity of the bifunction H : E x E — E with respect
to the mappings A, B : E — E presented in parts (iv) and (v) of Definition 6.1 is exactly the same notion of
Lipschitz continuity of a univariate mapping P := H(A, B) : E — E appeared in part (iv) of Definition 2.6
and is not a new concept.

Definition 6.4 [29] Let f, g : E — E be single-valued mappings and M : E x E — 2F be a multi-valued
mapping. Then

(1) M(f,.) is said to be a-strongly accretive with respect to f if there exists a constant « > 0, such that
—v,Jgx =) =allx—yll?, Vx,y,weE ueM(f(x),w),veM(f(y),w;

(i) M(., g) is said to be B-relaxed accretive with respect to g if there exists a constant 8 > 0, such that
(W—v,Jgx =) = =Bllx = yll?, Vx,y,weE,uecMw,gkx),veMw,g))

(i) M(.,.) is said to be af-symmetric accretive with respect to f and g if M (f,.) is a-strongly accretive
with respect to f and M (., g) is B-relaxed accretive with respect to g with « > 8 and o = g if and only
if x = y.

Proposition 6.5 Let f, g : E — E be single-valued mappings and M : E x E — 2E be a multi-valued
mapping. Suppose further that the multi-valued mapping M : E — 2F is defined by M (x) := M(f(x), g(x))
forallx € E.IfM(.,.) is af-symmetric accretive with respect to f and g, then M is (a — B)-strongly accretive
ifa > B and accretive if « = .
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Proof In virtue of the fact that M(., .) is af-symmetric accretive with respect to f and g, Definition 6.4(iii)
implies that M (f, .) is a-strongly accretive with respect to f and M (., g) is B-relaxed accretive with respect
to g. Thereby, forall x,y € E, u € M(x) and v € M(Yy), it follows that:
(=, Jgx = ) = (= w+w—v, Jg(x — )
=u—-—w,Jg(x —y)+(w—v, Jyg(x —y))
> aflx =yl = Bllx — yll?

= (a = Bllx —yl,
for all w € M(f(y), g(x)). For the case when o > g, the last inequality implies that the mapping M is
(¢ — B)-strongly accretive and when o = f it is accretive mapping. This gives us the desired result. O

Note, in particular, that in accordance with Proposition 6.5, every symmetric accretive mapping is actually
a strongly accretive or accretive mapping. In fact, the concept of o-symmetric accretive mapping presented in
Definition 6.4(iii) (that is, [29, Definition 3.3(vii)]) is exactly the same notion as r = (« — f8)-strongly accretive
(respectively, accretive) mapping given in part (ii) (Definition 2.7(i)) provided that > g (respectively, @ = B),
and is not a new concept.

In 2011, Kazmi et al. [29] introduced and studied another class of accretive mappings called generalized
H (., .)-accretive mappings. This class serves as a generalization of H -accretive mapping [21], H (., .)-accretive
mapping [54], and several another classes of accretive and monotone operators found in the literature as follows.

Definition 6.6 [29, Definition 3.4]Let A, B, f,g : E — E and H : E x E — E be single-valued mappings.
Let M : E x E — 2F be a multi-valued mapping. The mapping M is said to be generalized af-H (., .)-
accretive with respect to A and B, f and g, if M (f, g) is a8-symmetric accretive with respect to f and g, and
(H(A, B) + XM (f, g))(E) = E forevery A > 0.

Remark 6.7 It should be noticed that in the light of the above-mentioned arguments, Definition 6.6 coincides
exactly with Definition 2.9. In fact, by defining M:E—2EasM (x) :==M(f(x),g(x)) forall x € E, by
virtue of the fact that M is an a-symmetric accretive with respect to the mappings f and g, Proposition 6.5
1mphes that M is (o — B)-strongly accretive when o > B and accretive when o = $, and so, M is an accretive
mapping. Now, by defining the mapping P : E — E as P(x) := H(Ax, Bx) for all x € E and taking
into account that M is a generalized a-H (., .)-accretive mapping with respect to A, B, f and g, thanks to
Definition 6.6 we have (P +AM)(E) = (H(A, B)+AM(f, g))(E) = E forevery A > 0. Therefore, according
to Definition 2.9, M is a P-accretive mapping. Accordingly, for the case when o > B (resp., « = B), the
class of generalized o-H (., .)-accretive mappings coincides exactly with the class of P-strongly accretive
mappings with constant @ — B (resp., P-accretive mappings). In other words, the concept of generalized oS-
H (., .)-accretive mapping is actually the same notion of P-strongly accretive mapping with constant « — 8
when « > B and P-accretive mapping when o = B, and hence, this is not a new concept.

Theorem 6.8 [29, Theorem 3.1] Let A, B, f, g : E — E be single-valued mappings, H : E X E — E be
an o' B'-symmetric accretive mapping with respect to A and B and o' > ', andlet M : E x E — 2F be a
generalized aff-H (., .)-accretive mapping with respect to the mappings A, B, f and g. Suppose that for all
(y,v) € Graph(M(f, g)), the inequality (u — v, J;(x —y)) > 0 holds, then (x, u) € Graph(M(f, g)), where
Graph(M (f, g)) :={(x,u) € E X E :u € M(f(x), g(x))}.

It is significant to emphasize that there are some small flaw in the context of [29, Theorem 3.1]. In fact, in the
context of the mentioned theorem, M : E x E — E, (u, x) and (v, y) should be replacedby M : E x E — 2E,
(x, u) and (y, v), respectively, as we have done in the context of Theorem 6.8.

To define the resolvent operator associated with a generalized o8- H (., .)-accretive mapping, Kazmi et al.
[29] presented the following assertion in which they stated the sufficient conditions for the operator (H (A, B)+
AM(f, g))~! to be single-valued for every A > 0.

Theorem 6.9 [29, Theorem 3.2] Let A, B, f, g : E — E be single-valued mappings andlet H : E X E — E
be an o' B'-symmetric accretive mapping with respect to A and B. Suppose that M : E x E — 2F be a
generalized af-H (., .)-accretive mapping with respect to A, B, f and g. Then, the mapping (H(A, B) +
AM(f, g)~ " is single-valued for all & > 0.

Based on Theorem 6.9 (that is, [29, Theorem 3.2]), the authors defined the resolvent operator R ME ; S
associated with a generalized o8- H (., .)-accretive mapping M and an arbitrary real constant A > 0 as follows.
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Definition 6.10 [29, Definition 3.5] Let A, B, f, g : E — E besingle-valued mappingsandlet H : E X E —
E be an o’ B’-symmetric accretive mapping with respect to A and B. Let M : E x E — 2F be a generalized

aff-H(., .)-accretive mapping with respect to the mappings A, B, f and g. The proximal-point mapping

RZE:‘,";’A : E — FE is defined as follows:

UG (x) = (H(A, B) + AM(f, )" (), Vx € E.

It should be noted that there is a small mistake in the context of Deﬁnition 3.50f [29]. In fact, in the definition,
Ry, (x) = (H(A, B) + AM)~"(x) must be replaced by Ry} ; (x) = (H(A, B) + AM(f. ) L),

similar to Definition 6.10. Additionally, by defining the mappings P : E — E and M : E — 2F as P(x):=
H(Ax, Bx) and M (x) = M(f(x), g(x)), forall x € E, in the light of the assumptions of Definition 6.10 and

Propositions 6.2 and 6.5, P is a strictly accretive mapping and M is a P-accretive mapping. Thus, invoking

Definition 2.19, for any real constant A > 0, the resolvent operator R% L= RZ%:’:% , - E — E associated

with a P-accretive mapping M (generalized a8-H (., .)-accretive mapping M) is defined by
RrH o~ _
Ry() ) = R () = (P +2.M)" () = (H(A, B) + M (f.9)) " (), Vu € E.

In fact, based on the arguments mentioned above, the notion of the proximal-point mapping RZE ; , associated

with a generalized o8- H (., .)-accretive mapping M and an arbitrary real constant A > 0 given in Definition 6.10
is actually the same concept of the resolvent operator Rp assomated with P-accretive mapping M and real

constant A > 0 presented in Definition 2.19 and is not a new one.

With the goal of proving the Lipschitz continuity of the proximal-point mapping RY I ( ) , and computing
an estimate of its Lipschitz constant, section 3 in [29] is concluded with the following conclusion.
Theorem 6.11 [29, Theorem3.3]Let A, B, f, g : E — E be single-valued mappingsandletH : EXE — E

be an o B'-symmetric accretive mapping with respect to A and B. Suppose that M : E x E — 2F isa
generalized aff-H ( ) accretive mapping with respect to the mappings A, B, f and g. Then, the proximal-

point mapping R M( ) , « E — Eis Lipschitz continuous with constant L, that is
H(.,. H(.,.
IRy %) = Ry ) < Lilx® = y*|l. Va*,y* € E,
— 1
Where L= m.
Let, for each i € {1,2}, E; be a g;-uniformly smooth Banach space with a norm ||.||;, A;, B;, fi, & :
E; — E; and F;, H; : E1 x Eo — E; be single-valued nonlinear mappings and let M; : E; x E; — 25 pe

a generalized «; 8;-H; (., .)-accretive mapping. Kazmi et al. [29] investigated the problem of finding (x, y) €
E| x Ej satisfying the following conditions:

01 € Fi(x,y) + Mi(fi(x), g1(x)), ©6.1)
02 € Fa(x,y) + Mi(f2(y), &2(3)), ‘

where 61 and 6, are the zero vectors of E1 and E», respectively, and it is called a system of generalized
variational inclusions (SGVI).
H;(.,.)

With the assistance of the proximal-point mappings R MiC) (i =1, 2), they presented a characterization
of a solution to the SGVI (6.1) as follows.

Lemma 6.12 [29, Lemma 4.1] Let E;, A;, B;, fi, g, Hi, M;j and F; (i = 1, 2) be the same as in the SGVI
(6.1), such that for each i € {1, 2}, H; is an otlf ,Bl./ -symmetric accretive mapping with respect to the mappings
A; and B;. Then, for any given (x,y) € E1 x E, (x,y) is a solution of the SGVI (6.1) if and only if (x, y)
satisfies
x =Ry HI(AL BD)(x) — M Fi(x, )], .
H(... ’
y =Ry [Ha(Az, Bo)(y) — o Fa(x, )],

where A1, Ay > 0 are real constants; RAIZ(())M (x) = (Hi (A1, B)+MM(f1, g1)" ' (x) and RZZZ(())M ) =
(H2(A2, By) + M (f>, g2))"'(y), forall x € Ey and y € E.
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Remark 6.13 (i) In view of Theorem 6.9 and Definition 6.10, conclusions 6.2 are valid if, for each i € {1, 2},
H; : E1xE, — E;isan alfﬂl./—symmetric accretive mapping withrespectto A; and B;,and M; : E; X E; —
2Fi is a generalized o, ;- H; (., .)-accretive mapping with respect to the mappings A;, B;, f; and g;. Hence,
the condition of o/ B/-symmetric accretivity of the mapping H; with respect to the mappings A; and B;
(i = 1, 2) must be added to the context of Lemma 4.1 in [29], as we have done in Lemma 6.12.

(i) Upon careful examination, we have observed that contrary to the claim made by the authors in [29], the
characterization of the solution for the SGVI (6.1) involving generalized «; §;-H; (., .)-accretive mappings
M; (i = 1,2) given in Lemma 6.12 (that is, [29, Lemma 4.1]) coincides exactly with the characterization
of the solution for the system (3.2) involving P;-accretive mapping M; (i = 1, 2) presented in Lemma 3.2.
Therefore, it is not a new characterization but rather the same one as previously established.

Under some appropriate conditions, Kazmi et al. [29] discussed the existence of a unique solution for the
SGVI (6.1) as follows.

Theorem 6.14 [29, Theorem 5.1]

Fori =1, 2, let E; be q;-uniformly smooth Banach spaces; let A;, B;, fi, gi : Ei — E; be single-valued
mappings. Furthermore, let H; : E1 X Ey — E; be otlf ﬂl-/-symmetric accretive mappings with respect to
A; and B; and (v;, §;)-mixed Lipschitz continuous. Moreover, for each i € {1,2}, F; : E1 X E; — E; be
wi-strongly accretive mapping in the i'" argument and (L F;» LR, )-mixed Lipschitz continuous. Additionally,
My : E\ x Ey — 2P be a generalized ayB1-Hi(., .)-accretive mapping with respect to the mappings
A1, By, f1 and g1, and My : Ey x Ey — 22 be a generalized an r-Ho (., .)-accretive mapping with respect
to the mappings A>, By, f>» and g>. Suppose that there are constants A, Ay > 0 satisfying the following
conditions:

{kl :=my + rLyLp, <1, (6.3)

ko :=my+ M Lilp <1,

where

1 1
mip = Ll[(l —2q1(a) = B) 4 ¢y (01 + 814 + (1 = 2h1g1 a1 + cqy M LE) 4],
1 1
ma = La[(1 = 2205 = BY) + cqp (02 + 82)%)% + (1 = 2hagam2 + A PIE) 2 |
o 1 s
L= saprarp (=12

cq, and cq, are two constants guaranteed by Lemma 2.5 and for the case when q; (i =1, 2) are even natural
numbers, in addition to (6.3), the following conditions hold:

2gi(e; — B) < 1+ cq (vi +8)%,
2ngipn < 14 cqA{'LY, (6.4)
2hqair < 1+ qu)ugzl%;.

Then, the SGVI (6.1) has a unique solution.

It is important to note that by a careful reading the proof of [29, Theorem 5.1], we found thatif ¢; (i =1, 2)
are even natural numbers, then in addition to (6.3), (6.4) must be also satisfied, as we have incorporated these
required conditions to the context of Theorem 6.14.

To find an approximate solution of the SGVI (6.1), Kazmi et al. [29] suggested an iterative algorithm based
on Lemma 6.12 as follows.

Algorithm 6.15 [29, Iterative Algorithm 6.1] Fori = 1,2, let E;, A;, B;, fi, gi, Hi, F; and M; be the same
as in Lemma 6.12. For any given (xo, yo) € E1 x E;, compute (x,, y,) € E1 X E> by the iterative schemes

Hi(.,.

X1 = Ryp ) [Hi (A1, B1) () — A1 Fy (o )],
H>(.,.

st = Ry THA (A2, Bo) () — A2 Fa(n. yu).

wheren =0,1,2,...; A1, A2 > 0 are constants.
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Remark 6.16 Note, in particular, that if for i = 1, 2, the mappings P; : E; — E; and ]\7,- c E; — 2Fi are
defined as in the proof of Lemma 6.12, the assumptions and Propositions 6.2 and 6.5 imply that for each
i € {1, 2}, P; is a strictly accretive mapping and M; is a P;-accretive mapping. Therefore, Algorithm 6.15 is
actually the same Algorithm 4.9 and is not a new algorithm.
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