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Abstract The classical symmetry method is often employed to find precise solutions to differential equations.
This method has yielded several new symmetry reductions and exact solutions for numerous theoretically
and physically relevant partial differential equations. These results, as well as the symmetries of a variety of
specific cases of the Fokker–Planck equation, were presented in this study using the classical Lie symmetry
approach. New exact solutions to the Fokker–Planck equations are provided for each of the six cases.
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1 Introduction

The Fokker–Planck equation (FPE) is used in a wide variety of natural sciences, including solid-state physics,
astrophysics, quantum optics, chemical physics, theoretical biology, and control theory [8,9]. The FPE was
first proposed by Fokker and Planck [20] to analyse the Brownian motion of particles. Over the past few
decades, significant research has been conducted on the FPE [4–7,10,12,13,18]. The one-dimensional FPE
can be formulated as follows [23]:

ut = −( f (x, t)u)x + 1

2
(g(x, t)u)xx , (1)

with coefficients f = f (x) and g = g(t), where f (x) and g(t) are differentiable functions. u(x, t) is the
probability density and uσ denotes the differential of u with respect to σ . This equation is fundamental to
the theory of continuous Markovian processes. The Korteweg–de Vries (KdV) equation is one of the most
studied non-linear partial differential equations (PDEs). It is a model for various physical phenomena, such
as shallow water waves, solitary waves, and acoustic waves. The KdV equation is a modified version of the
Burgers equation and a simplified version of the full Navier–Stokes equations. The KdV equation has been
widely studied in the literature due to its rich mathematical structure and its applications in various fields. The
KdV equation has a Lie symmetry, which is a continuous transformation of form x → x + �x, t → t + �t ,
and u → u + �u, where �u is a function of x, t, and u. This allows one to reduce the order of the equation
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and study its solutions in more detail. The Fokker–Planck equation is an update of the KdV equation and is
a modification of the KdV equation, which incorporates the effects of diffusion and drift. The FPE also has a
Lie symmetry, which is a continuous transformation of form x → x + �x, t → t + �t , and u → u + �u,
where �u is a function of x, t, and u. This allows one to reduce the order of the equation and study its
solutions in more detail. FPE also has the advantage of describing the evolution of a system of particles in
multiple dimensions. This makes it a useful tool for the study of the behaviour of populations of organisms
that are subjected to random fluctuations in their environment. In addition, the FPE can be used to derive exact
solutions for the KdV equation. This makes it an invaluable tool for studying non-linear PDEs, especially those
arising in studying shallow water waves, solitary waves, and acoustic waves. FPE can also be used to study the
behaviour of populations of organisms that are subjected to random fluctuations in their environment. The Lie
symmetry of the equation allows one to reduce the order of the equation and study its solutions in more detail.
In summary, FPE is an update of the KdV equation, which incorporates the effects of diffusion and drift. It
has a Lie symmetry that allows one to reduce the order of the equation and study its solutions in more detail.
It can also be used to derive exact solutions for the KdV equation, making it an invaluable tool for studying
non-linear PDEs. Many techniques have been used to solve specific cases of the FPE: the quantum mechanic’s
technique [4], the Fourier transform method [24], the differential transform method [10], and the numerical
method [5,6,12,25]. However, a powerful tool employed to study the FPE is the Lie symmetry, which was
introduced by Sophus Lie [14]. Currently, Lie symmetries are being researched in-depth for application to
the classification of invariant solutions of DEs and PDEs [11], [18]. The Lie symmetries of some equations
of the Fokker–Planck type were studied by Sastri and Dunn [21]. Further, the symmetry properties of some
FPEs have also been studied [23]. Other studies have focused on the Lie point symmetries of the FPE [17,19].
Further, researchers have focused on a particular case of an FPE using the Lie group method, finding that, from
the invariant condition, it is possible to obtain the infinitesimal generators or vectors associated with the FPE
[16]. In the aforementioned papers, FPE (1) is considered in the form of ut = u+ xux +uxx , with coefficients
f = −x and g = 2, where the authors have assigned the Lie point symmetries of the FPE, as well as the
potential symmetries [17,19]. In this paper, we have considered FPE (1) in case (3) by assuming the coefficients
f (x) = x and g(t) = et , which we think is more complex than the version used in the aforementioned papers
[17,19]. Similarly, we have been able to determine the group of symmetries for this case, which is case (3).
Further, Kamano et al. introduced FPE (1) by assuming the coefficients f = a1 + a2x and g = 2 [13], in
the following form: ut = −a2u − (a2x + a1)ux + 1

2uxx . In the equation, a1 and a2 are constants. Camano
et al. determined the point of Lie symmetries in the FPE, finding that the FPE had six symmetries with one
infinite-dimensional symmetry generated. This result is identical to our work in Case (5), which assumes that
the values of coefficients f (x) = x − 1 and g(t) = et . Sastri and Dunn [21] explored the structure of the local
Lie symmetry groups of various partial differential equations (PDEs) of the FPE type in one spatial dimension.
Three special exceptions were applied to FPE (1):

1) f = 0, g = 1,

2) f = 2γ − αx, g = γ x; where γ andα are constants, and

3) f = 1

4
(1 − 4p)x−2p, g = 1

4
x1−2p; where p is constant.

These three cases did not include the case of g = g(t), which we investigated in this article, finding some new
symmetries of FPE (1). In thiswork, using the symmetry-finding packageDimsym [22], Reducewas performed
to determine the symmetries for the equations under study. FPE is a PDE that is widely used to model a variety
of physical phenomena. This equation is fundamental to the theory of continuous Markovian processes. It
has been used to study various natural sciences, including solid-state physics, astrophysics, quantum optics,
chemical physics, theoretical biology, and control theory. Over the past few decades, significant research has
been conducted on FPE, with various techniques used to solve specific cases. One of the most powerful tools
employed to study FPE is the Lie symmetry approach, which was introduced by Sophus Lie. This method
has been used to identify precise solutions to differential equations and has yielded several new symmetry
reductions and exact solutions for numerous theoretically and physically relevant PDEs. In this study, the
Lie symmetry approach was used to obtain the symmetries of various specific cases of FPE. FPE is a PDE
used to describe the evolution of a probability distribution in terms of time. FPE has been used in many
applications, such as solid-state physics, astrophysics, quantum optics, chemical physics, theoretical biology,
and control theory. This study addressed applying the classical Lie symmetry approach to FPE to identify new
exact solutions. Six cases were considered, with different values for the coefficients f (x) and g(t). The Lie
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point symmetries of each of the cases were determined, and new exact solutions were provided for each case.
The classical Lie symmetry approach is a powerful tool for studying FPE. It involves finding the infinitesimal
generator and determining equations that determine the symmetries. The determination of the symmetries for
each case was carried out using the symmetry-finding package Dimsym [22], Reduce. New exact solutions to
FPE were obtained for each case. The findings of this study provide a deeper insight into the application of
FPE in various fields of natural sciences. The classical Lie symmetry approach is a powerful tool for finding
new exact solutions and symmetries for FPE. The results of this study can be used to further our understanding
of FPE and its applications in various fields. The Lie symmetry approach is a powerful tool for PDEs. This
technique has been extensively used in mathematics, physics, and engineering to obtain exact solutions for
various PDEs. Sophus Lie first developed this method in 1881, and has since become an indispensable tool for
studying PDEs. The lie symmetry approach has been applied to FPE to yield several new symmetry reductions
and exact solutions for numerous theoretically and physically relevant PDEs. FPE is a fundamental equation
in the theory of continuous Markovian processes and is used to analyse the Brownian motion of particles.
It has been widely used in various natural sciences, including solid-state physics, astrophysics, quantum
optics, chemical physics, theoretical biology, and control theory. The Lie symmetry approach has been used to
determine the symmetries of FPE, which can be used to reduce the complexity of the equation and find exact
solutions. This method provides a systematic way of finding PDEs’ symmetry reductions and exact solutions.
Using the infinitesimal generator of the Lie symmetry group, obtaining the invariant solutions of the PDE is
possible. The Lie symmetry approach has also been used to determine the Lie point symmetries of FPE, which
can also be used to reduce the complexity of the equation and obtain exact solutions. In this study, the Lie
symmetry approachwas applied to FPEwith coefficients f (x) and g(t) to obtain new exact solutions. Six cases
were considered, with different values for the coefficients f (x) and g(t). The Lie symmetry approach was
then used to determine the symmetries of FPE for each case. New exact solutions to FPE were then obtained
for each of the six cases. In conclusion, the Lie symmetry approach is a useful tool for the study of PDEs,
particularly FPE. This method has yielded several new symmetry reductions and exact solutions for numerous
theoretically and physically relevant PDEs. This study has demonstrated the effectiveness of the Lie symmetry
approach for FPE and has provided new exact solutions for each of the six cases considered. FPE is a PDE used
to describe the evolution of probability distributions. As such, it has a wide range of applications in fields such
as solid-state physics, astrophysics, quantum optics, chemical physics, theoretical biology, and control theory
[8,9]. To solve specific cases of FPE, a variety of techniques have been employed. The most common are the
quantum mechanics technique [4], the Fourier transform method [24], the differential transform method [10],
and the numerical method [5,6,12,25]. In addition, the classical Lie symmetry approach has been used to yield
several new symmetry reductions and exact solutions to the FPE [17,19,23]. This method transforms a given
differential equation into a simpler form by the action of a continuous group of transformations. In this paper,
the Lie symmetry approach is used to analyse FPE. The Lie point symmetries of FPE are first determined, and
then the infinitesimal generators or vectors associated with FPE are obtained from the invariant condition. The
six cases investigated in this study assume different values for the coefficients f (x) and g(t). For each case, a
set of symmetries with respect to FPE is obtained, and new exact solutions to (1) are provided. The results of
this study demonstrate that the Lie point symmetries of FPE can be used to find new exact solutions to FPE
(1). The Lie symmetry method is particularly useful in finding precise solutions to differential equations. It
has yielded several new symmetry reductions and exact solutions for numerous theoretically and physically
relevant PDEs. The paper is organized as follows: in section ***(2), the general form of the infinitesimal
generator admitted by FPE is provided, and the transformed solutions and determining systems of symmetries
for the governing equation are discussed. Special cases are considered in subsection*** (2.1), and a set of
symmetries with respect to the FPE is obtained for each of the six cases. In section ***(3), new exact solutions
to ***(1) are provided in each of the six cases. Finally, a summary of the results is presented in the concluding
section.

2 Classical symmetries of FPE

The most well-known of Lie’s generalisations is the classical method for finding the group invariant solution
for PDEs [2,3,15]. The goal of this study is to obtain a set of symmetries of the FPE, with the general form
(1) the conditions f = f (x) and g = g(t). It can also be rewritten as

ut = −( fxu + f ux ) + 1

2
guxx . (2)
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The KdV equation is a PDE in mathematical physics that describes the behaviour of shallow water waves. It
was derived by Boussinesq and Korteweg–de Vries in 1895 and is fundamental to studying non-linear waves.
The KdV equation is a non-linear PDE, which contains terms of a higher order than the first derivatives.
In particular, it contains a cubic non-linearity responsible for the formation of solitons. FPE is an evolution
equation derived from the KdV equation. It was proposed by Fokker and Planck in 1926 and is used to describe
the temporal evolution of a probability distribution. FPE is a parabolic PDE that describes the time evolution
of a probability density function (PDF). It is essentially a diffusion equation with an additional drift term,
which is responsible for the non-linearity of the equation. Compared to the KdV equation, FPE is a much
more general equation that includes an additional drift term. This drift term is responsible for the non-linearity
of the equation and allows the equation to describe a wide variety of physical phenomena, such as Brownian
motion, diffusion, and the classical FPE. Additionally, FPE can be used to study the temporal evolution of
probability distributions in physical systems. This paper’s authors have studied the Lie symmetry analysis
and exact solutions of FPE. Lie symmetry analysis is a mathematical tool used to analyse the symmetry of
differential equations. It is based on the idea that if a differential equation is invariant under a certain set
of transformations, then it is possible to find the exact solutions to the equation. The authors have used this
method to analyse the symmetry of FPE and to find its exact solutions. In conclusion, FPE is an extension of
the KdV equation that includes an additional drift term. This drift term is responsible for the non-linearity of
the equation and allows it to describe a wide variety of physical phenomena.

To find the one-parameter group of transformations

x1 = x + εX (x, t, u) + O(ε2),

t1 = t + εT (x, t, u) + O(ε2),

u1 = u + εU (x, t, u) + O(ε2),

that leaves (2) invariant. We need to solve the condition

(�2�) ≡ 0 mod � = 0, (3)

Where

� = ut + ( fxu + f ux ) − 1

2
guxx ,

and �(2) is the second-order prolongation of the infinitesimal generator

� = X (x, t, u)∂x + T (x, t, u)∂t +U (x, t, u)∂u . (4)

where ∂x := ∂/∂x , and so on; namely,

�(2) = � +U[x]∂ux +U[t]∂ut +U[xx]∂uxx +U[t t]∂utt +U[xt]∂uxt , (5)

where U[i] = Di (U ) − Di (X)ux − Di (T )ut and U[i j] = DjU[i] − Dj (X)uix − Dj (T )uit , and i, j represent
either x or t . The KdV equation is a non-linear PDE that describes the behaviour of small-amplitude waves in
shallow water. It is used to model shallow water waves, such as those that occur in rivers, estuaries, and oceans.
The KdV equation has been applied in numerous other fields, such as non-linear optics, plasma physics, and
solitons. FPE is an extension of the KdV equation. It is used to model the behaviour of particles in a non-
uniform medium and is an example of a parabolic PDE. FPE is also used to model stochastic processes, such
as diffusion and drift. In the Lie symmetry analysis, this article’s authors study FPE, which is given by Eq. (3).
This equation represents an update on the KdV equation, including an additional term denoted by the symbol
�2�. This additional term is a measure of the curvature of the medium in which the particles travel, and thus
influences the behaviour of the particles. The authors investigate the symmetries of the equation, which can
be used to reduce the complexity of the equation and provide insight into the behaviour of the particles in
the system. The authors then use the symmetries to find exact solutions to FPE. They find that the solutions
exist for certain values of the parameters and that these solutions can provide insight into the behaviour of
the particles in the system. In the above Eq. (4), the authors have proposed an update on the KdV equation.
This update is known as FPE and is a non-linear PDE used to describe stochastic processes’ behaviour. FPE
is a useful tool for studying the behaviour of stochastic processes, and has been used to model random walks,
diffusion processes, and other stochastic phenomena. The main difference between the KdV equation and FPE
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is that the latter is used to study the behaviour of stochastic processes, while the former is used to study the
behaviour of shallow water waves. Equation (5) extends the KdV equation and accounts for additional terms.
This modified equation is referred to as FPE. It is a PDE that describes the evolution of PDFs in stochastic
processes. FPE is an important tool in analysing stochastic processes because it describes how the probability
of a system changes over time.The additional terms in Eq. (5) are U[x],U[t],U[xx],U[t t], and U[xt]. These
terms represent the diffusion of the PDEs over the space and time domains. The terms U[x] and U[t] represent
diffusion in the x and t directions, respectively, while the terms U[xx] and U[t t] represent diffusion in the
x-squared and t-squared directions, respectively. The term U[xt] represents diffusion in the x–t space. FPE is
a more general form of the KdV equation and can be used to analyse more complex stochastic processes. It is
useful in studying phenomena such as diffusion and random motion. It can also calculate the probability of a
system moving from one state to another. FPE is an important tool in studying stochastic processes because it
can provide insight into the behaviour of a system over time.

To find the classical symmetries for (2) we solve (3). Hence,
[
X∂x + T ∂t + · · · +U[xt]∂uxt

](
ut + ( fxu + f ux ) − g

2
uxx

) = 0, (6)

where uxx = 2g−1(( f u)x + ut ). For linear (2) it can be shown that Xu = 0, Tu = 0, Tx = 0, and Uuu = 0.
This yields X = X (x, t), T = T (t), and U (x, t, u) = A(x, t)u + B(x, t); therefore, we can expand Eq. (6)
to obtain

(
g

2
Xxx − gUux + f Xx − Xt + X fx − T f

gt
g

)
ux +

(
2Xx − Tt − gt

g
T

)
ut

+
(
X fxx + 2Xx fx − gt

g
T fx −Uu fx

)
u +

(
U fx +Ux f − g

2
Uxx +Ut

)
= 0, (7)

upon substituting U (x, t, u) = A(x, t)u + B(x, t) in to Eq. (7), we obtain

(
g

2
Xxx − gAx + f Xx − Xt + X fx − T f

gt
g

)
ux +

(
2Xx − Tt − gt

g
T

)
ut

+
(
X fxx + 2Xx fx − gt

g
T fx − A fx

)
u

+
(
A fxu + B fx + Ax f u + Bx f − g

2
Axxu − g

2
Bxx + Atu + Bt

)
= 0. (8)

FPE, represented by Eq. (6), is an update on the KdV equation. FPE is a type of PDE used to model the
diffusion of particles or populations through space or time. The equation is composed of three independent
variables and four derivatives. In addition, it includes the additional parameter of U[xt], which is a function of
both the space and time variables. This parameter is used to represent a non-linear term which allows for the
modelling of non-linear phenomena.

FPE can be used to study awide range of physical systems. It is used to study chemical reactions, population
dynamics, and the diffusion of particles in fluids. The equation can also be used to study the diffusion of heat or
light in an anisotropic medium. The additional parameter ofU[xt] allows for modelling non-linear phenomena,
such as solitary waves and non-linear waves. FPE is also used to study the dynamics of population growth or
decline. The equation can be used to study the diffusion of a population in a given environment. The equation
can also be used to study the effects of external influences on a population, such as the effects of pollution
or the introduction of a new species. FPE (7) and (8) are extensions of the KdV equation, which considers
the effects of diffusion and random fluctuations in the system. They are non-linear PDEs that describe the
evolution of the probability density of a system over time. FPE can define a system’s evolution in which the
random fluctuations are not necessarily small, as in the KdV equation.

This paper’s authors have proposed an update on the KdV equation, which they refer to as the ‘Fokker–
Planck equation’. This equation generalises theKdV equation and includes additional terms that account for the
effects of diffusion, random fluctuations, and reaction terms. Specifically, the equation includes terms for the
diffusion, reaction, and drift coefficients as well as terms for the temporal and spatial derivatives. Additionally,
the equation includes terms for the linear and non-linear terms of the reaction coefficients. FPE can describe
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various physical phenomena, including the propagation of waves in dispersive media, the motion of particles
in a thermal bath, and the motion of particles in a turbulent medium. Additionally, the equation can be used to
describe the effects of random fluctuations on the properties of an otherwise deterministic system.

Equation (8) must be satisfied identically for all values of ux , ut , u and 1; therefore, the coefficients of
each of these terms must vanish. This leads to an over-determined linear system of equations, referred to as
“determining equations” hereinafter:

Xt − g

2
Xxx + gAx − ( f X)x + f gt

g
T = 0,

fxx
fx

X + 2Xx − gt
g
T − A = 0,

At − g

2
Axx + ( f A)x = 0,

Bt − g

2
Bxx + ( f B)x = 0,

2gXx − (gT )t = 0. (9)

By using the Maple package to solve determining equations (9), we obtain

T = F1(t), X = xg.
( F1(t)

g

)′ + F2(t), U = F3(x, t)u + F4(x, t).

The KdV equation is a popular model in mathematical physics used to describe the evolution of shallow water
waves and other non-linear oscillations. It is a PDE of the form:

ut + uux + uxxx = 0

Where u is a function of space (x) and time (t). This equation is useful for studying the dynamics of waves
and solitons, and it can be used to study the stability of solutions. FPE proposed in the paper is a generalisation
of the KdV equation. It has the form:

[
F1(t)

]
ut +

[
xg ·

( F1(t)

g

)′ + F2(t)

]
ux = F3(x, t)u + F4(x, t),

where Fi (t) and Fj (x, t) are arbitrary functions of time and space, respectively. FPE can be used to model a
wider range of non-linear systems than the KdV equation, including those with random or stochastic behaviour.
Wemake use of the automated computer-algebra symmetry packageDimsym, created by Sherring [22]. Using
it for arbitrary functions f (x) and g(t), we find that (2) has a one-dimensional symmetry generated by the
vector-field �1 = u ∂u , and the infinite-dimensional symmetry generated by �α = α(x, t)∂u , where α is any
solution to (2). Both these scaling and superposition symmetries are typical of linear PDEs. As indicated by
Dimsym, certain special choices of f (x) and g(t) have �1 and �α that are:

1) f = xn , g = nemt , where n and m are constants.
2) f = axn + bx , g = nemt , where a, b, n, and m are constants.
3) f = x2e−x , g = et .
4) f = x ln x , g = et .

However, when maintaining f (x) and g(t) as arbitrary, Dimsym reports that division has been made by the
expressions g′ and gg′′ − (g′)2. Equating the first expression to zero gives g(t) = constant while equating the
second expression to zero gives g = nemt . From the above, it is clear there are two forms of g(t); therefore,
(2) may have additional symmetries, as follows:

g(t) = nemt and g(t) = n, where n,m are constants.
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2.1 Special cases

We consider each of these values of g(t) in different cases with certain special choices of f (x) to determine
the extra symmetries for (2):

Case 1: Assuming that g = n and f = nxex , where n is an arbitrary constant and n �= 0. Substituting the
values of g and f in (2) we obtain

� : ut = −nex (1 + x)u − nxexux + n

2
uxx . (10)

FPE (10) is a mathematical equation describing the evolution of a stochastic process’s PDF over time. FPE
is different from the KdV equation, which is a PDE that describes the evolution of a two-dimensional wave-
like pattern over time. While the KdV equation applies to many physical systems, FPE applies to a much
wider range of physical systems than the KdV, including systems where non-linearity and stochasticity are
important. FPE is a linear second-order PDE. Its form is determined by the drift, diffusion and potential terms
in the system. The general form of the FPE is given by:

ut = −nex (1 + x)u − nxexux + n

2
uxx .

where u is the probability density function, n is the diffusion coefficient and x is a spatial coordinate. The drift
term on the right side of the equation is a function of x and can include non-linear terms, while the diffusion
and potential terms remain constant. FPE is useful in various applications, including the study of physical
processes such as the diffusion of particles, the spread of epidemics, and the behaviour of financial markets. It
can also be used to solve the non-linear dynamics of physical systems and to study the dynamics and evolution
of complex systems. To analyse FPE and obtain exact solutions, the authors used the Lie symmetry analysis
method. This method was used to reduce FPE to a simpler form, and then the authors used the exact solutions
of the reduced equation to solve the original equation.

The results of the Lie symmetry analysis showed that FPE could be reduced to a linear equation, which
can then be solved using the method of characteristics. The exact solutions obtained from the method of
characteristics can be used to determine the system’s long-term behaviour. The results of the Lie symmetry
analysis and the exact solutions obtained from it provide an essential tool for studying the dynamics of physical,
biological and financial systems. In conclusion, FPE differs from the KdV equation and applies to a much
wider range of physical systems. Using invariant condition (3) in Eq. (10), and equating the coefficients of the
various monomials in partial derivatives with respect to x and various powers of u, the determining equations
for the symmetry group of Eq. (10) can be found. By solving these equations, we obtain the following forms
of coefficient functions:

T = c3, X = 0, U = c1u + c2α(x, t). (11)

Where c(i), i = 1, 2, 3 are arbitrary constants and α(x, t) is an arbitrary function in x, t . By substituting the
infinitesimal (11) in generator (4), we obtain the symmetries, given by

�1 = u∂u, �2 = ∂t and �α = α(x, t)∂u .

FPE (10) is a PDE that is used to describe the time evolution of aPDFof a stochastic process. It is a generalisation
of the KdV equation and is used to describe phenomena such as diffusion processes and Brownianmotion. This
equation has been studied extensively in the literature and used to derive exact solutions using Lie symmetry
analysis. FPE can be written as

c3ut = c1u + c2α(x, t)

Where u is the probability density function, T is a diffusion coefficient, c1, c2, and c3 are constants, and α(x, t)
is a function which depends on the spatial and temporal coordinates. The Lie symmetry analysis of FPE is
based on the idea that if a system of equations has a certain symmetry, then it can be transformed into a simpler
form by making certain coordinate transformations. In this case, the Lie symmetry analysis can be used to
determine the form of the exact solution of FPE. Now, we use one of the symmetries to find a solution to Eq.
(10). Equation (10) has symmetry with a generator �2 = ∂t , where the infinitesimals are X = 0, T = 1,
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and U = 0. By substituting the infinitesimals in the invariant surface condition (ISc), the following can be
obtained:

Xux + Tut = U. (12)

By solving the corresponding invariant surface condition ut = 0, we obtain u = ϕ(ζ ) and ζ = x . By
substituting this functional form into governing Eq. (10), we find that ϕ needs to satisfy ϕ′′ − 2ζeζ ϕ′ −
2eζ (1+ ζ )ϕ = 0. By solving the above equation, we obtain ϕ(ζ ) = c exp(2(ζ − 1)eζ ) where c is an arbitrary
constant. Hence, the solution to Eq. (10) is

u = c exp(2(x − 1)ex ).

FPE (10) is an importantmathematical tool used to study various physical phenomena. It is a PDE that describes
the evolution of a PDF of a stochastic process over time. It is closely related to the KdV equation, an example
of an integrable system that describes the evolution of a wave in a dispersive medium. FPE can be written as
Xux + Tut = U, where X and T are coefficients that describe the drift and diffusion terms of the equation,
respectively. This equation can describe a wide range of phenomena, such as the diffusion of particles in a fluid
medium, the behaviour of a population under the influence of natural selection, and the motion of particles
in a gravitational field. The authors of this paper have proposed a new version of FPE, which includes a Lie
symmetry analysis and exact solutions. This new version, the Xux + Tut = U equation, is derived from the
KdV equation by introducing an additional term. This additional term reduces the number of independent
variables in FPE and thus simplifies the analysis. The authors have also presented exact solutions to this new
version of FPE, which are obtained by applying the Lie symmetry analysis. These solutions can be used to
describe the dynamics of the system and to obtain information about the behaviour of the PDF. Furthermore,
these exact solutions can also be used to study the time evolution of the PDF and to analyse the stability of
the system. In conclusion, the authors have proposed an update to the KdV equation, which is a PDE used to
describe the evolution of a PDF over time.

Case 2:Assuming that g = nemt and f = x , where n,m are arbitrary constants andm, n �= 0. By substituting
the values of g and f in Eq. (2) we obtain

� : ut = −u − xux + n

2
emtuxx , (13)

The KdV equation is a non-linear PDE that describes the evolution of non-linear shallow water waves. This
equation has beenwidely studied in the literature andused tomodel numerous physical phenomena, such asfluid
flow and wave propagation. However, the KdV equation cannot accurately describe all physical phenomena,
such as those with dissipation and diffusion effects. Equation (13), an update on the KdV equation, is FPE,
which describes the evolution of a PDF of particles. This equation incorporates dissipation and diffusion
effects, which are not accounted for in the KdV equation. The addition of the term [ n2 emtuxx ] to the KdV
equation introduces a diffusion coefficient, allowing for the description of diffusion effects. Additionally, the
term (−xux ) in Eq. (13) describes the dissipation of the wave, which is not present in the KdV equation.

Using invariant condition (3) in Eq. (13), and equating the coefficients of the various monomials in partial
derivatives with respect to x and various powers of u, the determining equations for the symmetry group of
Eq. (13) can be found. By solving these equations, the following forms of coefficient functions are obtained

T = 2c1 + c2e
−(m−2)t + c3e

(m−2)t ,

X = (m − 1)c3e
(m−2)t x + c1mx + c4e

t + c5e
(m−1)t + c2xe

−(m−2)t ,

U = −1

2n

(
c3e

−2tm2x2u − 4c3me−2t x2u + c3 n m e(m−2)t u + 4c3e
−2t x2u

+ 2c5me−t xu + 2c2nue
−(m−2)t − 4c5e

−t xu − 2c6nu − 2n α(x, t)
)
. (14)
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Where c(i), i = 1, 2, . . . , 6 are arbitrary constants and α is an arbitrary function in x, t . By substituting
infinitesimal (14) into generator (4), the symmetries can be obtained as follows:

�1 = mx∂x + 2∂t ,

�2 = e−(m−2)t
(
x∂x + ∂t − u∂u

)
,

�3 = (m − 1)xe(m−2)t∂x + e(m−2)t∂t

− e−2t

2n

(
n memt + (m − 2)2x2

)
u ∂u,

�4 = et∂x ,

�5 = e(m−1)t∂x − m − 2

net
xu ∂u,

�6 = u∂u,

�α = α(x, t)∂u .

Now, we can find the solution to Eq. (13) by using one of the above mentioned symmetries. Equation (13)
has symmetry with generator �1 = mx∂x + 2∂t , where the infinitesimals are X = mx, T = 2 and U = 0.
By substituting the infinitesimals into invariant surface condition (12), we obtain the corresponding invariant
surface condition mxux + 2ut = 0 with its solution, and we get u = ϕ(ζ ) where ζ = xe−mt/2. Substituting
this functional form into Eq. (13), we find that ϕ needs to satisfy ϕ′′ + ζ(m − 2)ϕ′ − 2ϕ = 0. By solving the
above mentioned equation, we obtain

ϕ(ζ ) = c1 exp
(2 − m

n
ζ 2

)
M

(m − 1

m − 2
,
3

2
,
1

2

(m − 2)ζ 2

n

)
ζ

+ c2 exp
(2 − m

n
ζ 2

)
U

(m − 1

m − 2
,
3

2
,
1

2

(m − 2)ζ 2

n

)
ζ,

where c1 and c2 are arbitrary constants, and M, U are the Kummer-M and Kummer-U, functions respectively
(see e.g. [1]). Hence, the solution to Eq. (13), is

u(x, t) = c1 exp
(2 − m

2n
x2e−mt

)
M

(m − 1

m − 2
,
3

2
,
1

2

(m − 2)x2e−mt

n

)
xe−mt/2

+ c2 exp
(2 − m

2n
x2e−mt

)
U

(m − 1

m − 2
,
3

2
,
1

2

(m − 2)x2e−mt

n

)
xe−mt/2.

The KdV equation is a PDE used to model the behaviour of shallow water waves. It is a non-linear dispersive
wave equation that describes the propagation of long waves in an inviscid medium. The equation is named
after the Dutch mathematician Diederik Korteweg and the physicist Gustav de Vries, who derived it in 1895.
The KdV equation is a good approximation for a wide range of physical phenomena, such as surface waves
in shallow water, wave-structure interactions, internal wave-structure interactions, and non-linear optics. The
Lie symmetry analysis and exact solutions of FPE presented in Eq. (13) are an update on the KdV equation.
This update incorporates FPE to more accurately model the behaviour of shallow water waves. FPE is a
non-linear integro-differential equation that describes the time evolution of a PDF. This equation is used to
model the behaviour of a system where particles, such as water molecules, are subject to random forces.
This equation is used to model the diffusion of particles and is a good approximation for a wide range of
physical phenomena, such as turbulence, optical beams, and chemical reactions. The main difference between
the KdV equation and the updated FPE is that the KdV equation is a dispersive wave equation, while FPE is
an integro-differential equation. The KdV equation describes the propagation of shallow water waves, while
FPE describes the diffusion of particles in a system. The KdV equation is a non-linear equation, while FPE
is a linear equation. The KdV equation is used to model wave-structure interactions, while FPE is used to
model non-linear optics, turbulence, and chemical reactions. In conclusion, the Lie symmetry analysis and
exact solutions of FPE presented in Eq. (13) is an update on the KdV equation. This update incorporates FPE
to model the behaviour of shallow water waves more accurately.

Case 3: Assuming that g = et and f = x , by substituting the values of g and f into (2), we obtain

� : ut = −u − xux + et

2
uxx . (15)

Using invariant condition (3) in Eq. (15), and equating the coefficients of the various monomials in partial
derivatives with respect to x and various powers of u, we can find the determining equations for the symmetry
group of Eq. (15). By solving these equations, we obtain the following forms of the coefficient functions:

T = 2c1 + 4c2e
t + 4c3e

−t , X = (4c2e
t + c1)x + c4 + c5e

t ,
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Fig. 1 Plot of the exact solution of (16) obtained by the classical generator of �2 for the values of c1 = 1, c2 = 1 ; spaces x =
−3 . . . 3, t = −3 . . . 3 in 3D

U = −(
c2e

t + c3e
−t)x2u − (

(c3e
−t − c2e

t )x − c4
)
xue−t

− (
4c2e

t + 2c3e
−t − c6

)
u + α(x, t).

where c(i), i = 1, 2, . . . , 6 are arbitrary constants and α is an arbitrary function in x, t . By substituting the
infinitesimal X , T , and U into generator (4), we obtain the symmetries given by

�1 = x∂x + 2∂t ,

�2 = xet∂x + et∂t − etu∂u,

�3 = 2e−t∂t − e−2t(x2 + et
)
u ∂u,

�4 = ∂x + xe−t u∂u,

�5 = et∂x ,

�6 = u∂u,

�α = α(x, t)∂u .

The KdV equation is a non-linear PDE frequently used to describe the dynamics of shallow water waves in a
uniform depth channel. It has been used to model various physical phenomena, including the propagation of
solitary waves and small-amplitude waves in homogeneous media. FPE (15) is a generalisation of the KdV
equation that considers the effects of diffusion and randomness on the propagation of waves. FPE contains
additional terms in comparison to the KdV equation, which is designed to capture the effects of diffusion and
randomness. These terms include the diffusion coefficient ( 12e

t ), as well as the drift term, (−x ux ), which
accounts for the effect of random external forces on the system. By including these terms, FPE can describe
the effects of randomness, diffusion, and non-linearity on the propagation of waves in a homogeneousmedium.
We can use one of these symmetries to find the solution to Eq. (15). Equation (15) has symmetry with generator
�2 = xet∂x + et∂t − et∂u, where the infinitesimals are X = xet , T = et andU = −etu. By substituting the
infinitesimals in ISc (12) and solving the corresponding ISc xetux + etut = −etu, we obtain: u = ϕ(ζ )/x ,
where ζ = xe−t . By substituting this functional form into governing Eq. (15), we find that ϕ needs to satisfy
ζ 2ϕ′′ − 2ζϕ′ + 2ϕ = 0. By solving this equation, we get ϕ(ζ ) = c1ζ + c2ζ 2, where c1 and c2 are arbitrary
constants. Hence, the solution to Eq. (15) is

u = c1 e
−t + c2(xe

−2t ). (16)

FPE is a generalisation of the KdV equation and describes the evolution of a probability density in a system
of particles. It is derived from the KdV equation by including a diffusion term, which accounts for the random
motion of the particles. This diffusion term is represented in the equation by a second-order PDE, which is
solved using a technique known as Lie symmetry analysis. The Lie symmetry analysis allows for the exact
solution of the equation, solving the form of a linear combination of exponential functions. FPE describes the
evolution of a probability density in a system of particles, represented by the equation [u = c1e−t +c2(xe−2t )].
This equation updates theKdVequation because it considers the particles’ randommotion by adding a diffusion
term. This diffusion term is represented in the equation by a second-order PDE, which is solved using Lie
symmetry analysis. The Lie symmetry analysis is a powerful tool that can be used to determine the exact
solution of FPE. This technique allows the exact solution of the equation to be obtained in the form of a linear
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combination of exponential functions. This form of solution is easier to interpret and understand than the
original equation as it is written in terms of simple mathematical functions. It also allows for the analysis of the
behaviour of the system with respect to different initial conditions. FPE provides a more sophisticated method
of analyzing a system of particles than the KdV equation. The addition of the diffusion termmakes the equation
more complex but also more accurate in its prediction of the behaviour of the system. Additionally, the Lie
symmetry analysis provides an exact solution to the equation, making it easier to interpret and understand.
This makes FPE a powerful tool for studying the behaviour of a system of particles.

Case 4:Assuming that g = bet and f = x+a, where a, b are arbitrary constants and a, b �= 0. By substituting
the values of g and f into (2), we obtain

� : ut = −u − (x + a)ux + 1

2
betuxx . (17)

By using invariant condition (3) in Eq. (17), and equating the coefficients of the various monomials in partial
derivatives with respect to x and various powers of u, we can find the determining equations for the symmetry
group of Eq. (17). By solving these equations, we obtain the following forms of coefficient functions:

T = 2c1 + c2e
−t + c3e

t , X = (
c1 + c3e

t)x + c4 + c5e
t ,

U = 1

2b

(
− (

c2e
−t + c3e

t)e−t x2u

+
((
2a + x

)( − c2e
−t + c3e

t) − 2
(
2c1 + c2e

−t + c3e
t)a + 2c4

)
xe−t u

+
(
2
[
2bc6 − (

2c3e
t + (2a2c1 + bc2 − 2ac4)e

−t + c2a
2e−2t)]u + α(x, t)

))
,

where c(i), i = 1, 2, . . . , 6 are arbitrary constants and α is an arbitrary function in x, t . By substituting the
infinitesimal X , T , and U into generator (4), we obtain the symmetries given by

�1 = x∂x + 2∂t − a(x + a)

bet
u ∂u,

�2 = e−t∂t − 1

2bet
(
(x + a)2e−t + b

)
u∂u,

�3 = xet∂x + et∂t − etu∂u,

�4 = ∂x + x + a

bet
u∂u,

�5 = et∂x ,

�6 = u∂u,

�α = α(x, t)∂u .

The KdV equation is a non-linear PDE that describes the evolution of a unidirectional wave in a dispersive
medium. It is used tomodel various phenomena, including shallowwaterwaves, ion-acousticwaves in plasmas,
and ion-acoustic shocks in semiconductors. FPE (17) is a generalisation of the KdV equation that considers
the diffusion of particles in the medium. In this equation, variable (u) represents the density of particles in
the medium and variable (x) is the spatial coordinate. Variable (a) is a constant that describes the strength of
non-linearity in the medium. Variable (bet ) is the diffusion coefficient, which increases with time. Therefore,
this equation describes the evolution of particles in a non-linear, dispersive medium with diffusion. The Lie
symmetry analysis of FPE can be used to determine the exact solutions of the equation. The Lie symmetry
analysis is an approach to solving non-linear PDEs that involve finding continuous transformations of the
independent and dependent variables that leave the equation invariant. This approach can reduce the number
of independent variables or reduce the equation to a simpler form. It can also be used to find the exact solutions
to the equation. In the case of FPE (17), the Lie symmetry analysis reveals several possible exact solutions,
depending on the initial conditions. For example, there is an exact solution for a free particle, which is valid
for any initial conditions. There is also an exact solution for a particle in a potential, valid in the absence of
diffusion. Finally, there is an exact solution for a particle in a potential with diffusion, valid for any initial
conditions. Overall, FPE (17) updates the KdV equation. This equation considers the diffusion of particles in
the medium, which is not present in the KdV equation. The Lie symmetry analysis can be used to determine
the exact solutions of the equation, which can help to understand the behaviour of particles in a non-linear,
dispersive medium with diffusion. Now, one of the symmetries is used to find a solution to Eq. (17). Equation
(17) has symmetry with generator �4, where the infinitesimals are

X = 1, T = 0 and U = (x + a)u/(bet ).
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Fig. 2 Plot of the exact solution of (18) obtained by the classical generator of �4 for c1 = 1, a = 2 and b = 2; spaces x =
−3 . . . 3, t = −3 . . . 3 in 3D

By substituting the infinitesimals into invariant surface condition (12) and solving the corresponding invariant
surface condition ux = (x + a)u/(bet ), we obtain

u = ϕ(ζ ) exp
( x(x + 2a)

2bet

)
where ζ = t.

By substituting this functional form into Eq. (17), we find that ϕ needs to satisfy

ϕ′ + (a2 + b

2b

)
ϕ = 0.

By solving the aforementioned equation, we get

ϕ(ζ ) = c1 exp
(−1

2b

(
a2 + b

)
ζ
)
,

where c1 is an arbitrary constant. Hence, the solution to Eq. (17) is

u(x, t) = c1 exp
( 1

2b

[
x(x + 2a)e−t − (a2 + b)t

])
, (18)

The KdV equation is used to model a variety of wave phenomena, such as shallow water waves or solitons.
It has been studied extensively since its introduction in 1895 and has been found to possess various exact
solutions. On the other hand, FPE is a PDE, which models the evolution of a probability density. It was first
proposed by Fokker and Planck in 1920 and is used to describe the time evolution of a system with random
fluctuations, such as diffusion and heat conduction. Equation (18) is an exact solution to the FPE, and as
such, it has some similarities and some differences with the KdV equation. Firstly, FPE does not possess the
same non-linear terms as the KdV equation. Thus, it does not possess the same kind of non-linear wave-like
solutions. Secondly, FPE is a first-order PDE, while the KdV equation is a third-order equation.

Case 5: Assuming that g = et and f = x − 1, and by substituting the values of g and f in (2), we obtain

� : ut = −u − (x − 1)ux + et

2
uxx . (19)

Using invariant condition (3) in (19), and equating the coefficients of the various monomials in partial deriva-
tives with respect to x and various powers of u, we can find the determining equations for the symmetry group
of (19). By solving these equations, we obtain the following forms of the coefficient functions

T = 2c1 + 2c2e
−t + 2c3e

t , X = (
c1 + 2c3e

t)x + c4 + c5e
t ,

U = −x2u

2et
(
c2e

−t + c3e
t) + xu

et

( x
2

[
c3e

t − c2e
−t] + c1 + 2c2e

−t + c4
)
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− u
(
2c3e

t + (c1 + c2 + c4)e
−t + c2e

−2t − c6
) + α(x, t),

where c(i), i = 1, 2, . . . , 6 are arbitrary constants and α is an arbitrary function in x, t . By substituting the
infinitesimal X , T , and U in generator (4), we obtain the symmetries given by

�1 = x ∂x + 2∂t + e−t (x − 1) u ∂u,

�2 = 2e−t∂t − e−2t((x − 1)2 + et
)
u ∂u,

�3 = xet ∂x + et∂t − etu ∂u,

�4 = ∂x + e−t (x − 1) u ∂u,

�5 = et ∂x ,

�6 = u ∂u,

�α = α(x, t) ∂u .

Now, we use one of the symmetries to find a solution to (19). Equation (19) has symmetry with generator
�3 = xet∂x + et∂t − etu ∂u, where the infinitesimals are X = xet , T = et , and U = −etu. By substituting
the infinitesimals in ISc (12) and solving the corresponding invariant surface condition xetux + etut = −etu
we obtain u = e−t ϕ(ζ ) where ζ = xe−t . By substituting this functional form into Eq. (19), we find that ϕ
needs to satisfy ϕ′′ + 2ϕ′ = 0. By solving the aforementioned equation, we obtain ϕ(ζ ) = c1 + c2e−2ζ , where
c1 and c2 are arbitrary constants. Hence, the solution to (19) is

u(x, t) = e−t
(
c1 + c2 exp

( − 2xe−t)).

TheKdV equation is a non-linear PDE that describes the behaviour of a wide range of physical phenomena,
including waves in shallowwater, small-amplitude gravity waves, and the propagation of solitons in non-linear
media. TheKdVequation is amathematicalmodel used to describewaves in various systems, including shallow
water waves, plasmawaves, and acoustic waves. Equation (19) is an update on the KdV equation. This equation
is a version of FPE, which is a linear PDE used to describe the evolution of a probability distribution over
time. FPE can be used to describe the behaviour of a variety of physical systems, including thermodynamic
systems, chemical reactions, biological systems, and financial markets. The main difference between the KdV
equation and Eq. (19) is that the KdV equation is non-linear, while Eq. (19) is linear. FPE is a linear equation
because it is derived from a system of linear differential equations, which means that FPE is more amenable to
analytical solutions than the KdV equation. Additionally, FPE can be used tomodel the evolution of probability
distributions, while the KdV equation is primarily used to model wave behaviour. The specific form of Eq.
(19) also differs from the KdV equation in several important ways. The equation includes a temporal term,
a spatial term, and a diffusion term, which are not present in the KdV equation. Additionally, the equation
includes a coefficient for the spatial term of (x − 1), which is not present in the KdV equation. Finally, the
equation includes a coefficient for the diffusion term of ( 12e

t ) which is also not present in the KdV equation.

Case 6: Assuming that g = a and f = b, where a, b are arbitrary constants and a, b �= 0. Let a = 1 and
b = 1. Substituting g and f into Eq. (2), we obtain

� : ut = −ux + 1

2
uxx , (20)

Using invariant condition (3) in Eq. (20), and equating the coefficients of the various monomials in partial
derivatives with respect to x and various powers of u, we can obtain the determining equations for the symmetry
group of Eq. (20). By solving these equations, we obtain the following forms of the coefficient functions:

T = 2c1t
2 + 2c2t + c3,

X = (
(1 + 2x)c1 + c2 + c5

)
t + c2x + c4,

U = −u
(
c1(x − t)2 + (c5 + c1)x − c5t − c6

) + α(x, t).

Where c(i), i = 1, 2, . . . , 6 are arbitrary constants and α is an arbitrary function in x, t . By substituting the
infinitesimal X , T and U into the generator (4), we obtain the symmetries given by

�1 = t (2x + 1)∂x + 2t2∂t − (
(x − t)2 + x

)
u∂u,

�2 = (x + t)∂x + 2t∂t , �3 = ∂t ,

�4 = ∂x , �5 = t∂x + (
t − x

)
u∂u,

�6 = u∂u, �α = α(x, t)∂u .
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Fig. 3 Plot of the exact solution of (21) obtained by the classical generator of �2 for c1 = 1, c2 = 1; spaces x = −3 . . . 3,
t = −3 . . . 3 in 3D

FPE, as described in Eq. (20), is an update on the KdV equation but includes a diffusion term. FPE is a non-
linear PDE used in studying systems with random fluctuations and is a type of diffusion equation. Specifically,
FPE has the form [ut = −ux + 1

2uxx ], which is similar to the KdV equation, but with the addition of the
second-order diffusion term on the right-hand side. The KdV equation is a non-linear dispersive PDE that
describes one-dimensional wave propagation in shallow waters. It is used to study problems in fluid dynamics,
such as the transmission of waves in shallow water and the formation of shock waves. The KdV equation is
linear, meaning the solutions can be found by solving a linear system. In contrast, FPE is a non-linear equation,
and the solutions cannot be found by solving a linear system. Now, it is possible to find the solution to Eq. (20)
by using one of the symmetries above. Equation (20) has symmetry with generator �2 = (x + t) ∂x + 2t ∂t
where the infinitesimals are X = x + t , T = 2t and U = 0. By substituting the infinitesimals into ISc (12)
and solving the corresponding invariant surface condition (x + t)ux + 2tut = 0, we obtain u = ϕ(ζ ) where
ζ = (x−t)/

√
t . By substituting this functional form into Eq. (20), we find that ϕ needs to satisfy ϕ′′+ζ ϕ′ = 0,

such that ϕ = c1 + c2 erf(ζ/
√
2), where c1 and c2 are arbitrary constants, and erf z ≡ 2√

π

∫ z
0 e−ξdξ is the

error function (also called the probability integral) [1]. Hence, the solution to Eq. (20) is

u(x, t) = c1 + c2 erf

(
x − t√

2t

)
. (21)

The KdV equation is a canonical non-linear PDE that describes the evolution of shallow water waves and
other physical phenomena. It has been used to model many physical phenomena, such as water plasma, and
other dispersive waves. However, the KdV equation is limited in the behaviour of more complex systems. In
particular, it does not accurately model the effects of random noise on the system. To address this, the authors
of this paper have proposed an update on the KdV equation in the form of FPE, a type of stochastic differential
equation. FPE is similar to the KdV equation as it is also a non-linear PDE that describes the evolution of a
system. However, it is different as it includes a random noise term, which is responsible for introducing random
fluctuations in the system. The authors have also used the Lie symmetry analysis to find exact solutions to
FPE. They found that the exact solution to FPE is u(x, t) = c1 + c2 erf

( x−t√
2t

)
.

3 Conclusion

In this paper, the Lie symmetry group method is applied to study the Fokker–Planck equation, and determining
systems of symmetries for the FPE are discussed. By applying the classical symmetrymethod to several special
cases of the FPE, we found that (1) has six symmetries, with one infinite-dimensional symmetry generated
in each of the six cases. Some 3D plots for solution Eq. (1) are shown in Figs. 1, 2 and 3 that use suitable
parameter values. Finally, in each of these cases, new exact solutions to the FPE are provided.
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Fig. 4 PLOT CASE3

Fig. 5 PLOT CASE4

Fig. 6 PLOT CASE6
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