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Abstract Let G be adoubly connected domain in the complex plane C, bounded by Ahlfors 1-regular curves. In
this study the approximation of the functions by Faber-Laurent rational functions in the w-weighted generalized
grand Smirnov classes gpo (G, w) in the term of the rth, r = 1,2..., mean modulus of smoothness are
investigated.
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1 Introduction

Let " € C be aJordan rectifiable curve and let w : I' — [0, oo] be a weight function, that is a positive almost
everywhere (a.e.) and integrable function on I'. For 1 < p < oo we define a class L”(I", w) of Lebesgue
measurable functions f on I' satisfying the condition

: /If(z)l”w(z) ldz] < o0 | < oo,
r

I

where |I'| is the length of I". We denote by L”)*Q(F, w), 6 > 0, the Lebesgue space of all measurable
functions f on I', that is, the space of all such functions for which

g? e
||f||Lp>,0(r,w) ‘= sup — / |f(Z)|p78 w (z) |dz| < 0Q.
O<e<p—1 Tl 2

The space L??( T, w) is called the generalized grand Lebesgue space. L?Y(T", w) is Banach function
space, nonreflexive and nonseparable. The grand and generalized grand Lebesgue space were introduceed in
the works [13,26], respectively. If 0; < 6, then for 0 < ¢ < p — 1 the embeddings:

LP (T, w) C LP(T, w) c LP?(', w) C LP° T, w), 1<p<oo
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hold. Note that the information about properties and applications of the grand Lebesgue spaces can be found
in [11,13,26,33,35,36].

A Jordan curve I' is called Ahlfors 1-regular [37], if there exists a number ¢ > 0 such that for every
r>0, sup{|IT N D(z,r)|:z €'} <cr, ,where D(z, r) is an open disk with radius r and centered at z and
TN D(z, r)| is the length of the set ' N D(z, r).

Let w be a weight function on I'.  is said to satisfy Muckenhoupt’s A -condition on I if

p—1

1 1 _
supsup | — / w@)lde¢l| | - / [w(£)] = |d¢| < 00
zelr>0\ 7 r

I'nD(z,r) I'nD(z,r)

Let us further assume that B is a simply connected domain with a rectifiable Jordan boundary I'" and
B~ := extI". Without loss of generality we assume that 0 € B. Let

T={weC:|wl =1}, D:=intT, D :=extT.
Also, ¢* stand for the conformal mapping of B~ onto D~ normalized by
¢*(00) =

and

im &°®

=00 7

> 0,

and let ¥* be the inverse of ¢*. Let ¢ be the conformal mapping of B onto D™, normalized by
$7(0) =

and
lim z¢](z) > 0.
z—0
The inverse mapping of ¢} will be denoted by ;.
Note that the mappings ¥* and v/ have in some deleted neighborhood of oo representations:

w*(w)=aw+a0+%+%+~--+%+---, >0

and

%U—é+&+ +&+ -, B1>0.

Forl < p <ocoand 0 < & < p — 1 the functions:

dy* )\ "7
dw

, z€B
Y*(w) — 2
and
wo p = (dw (w)>
, Z€B™.
’#1 (w) —z

are analytic in the domain D™~ . The following expansions hold:

 ——
dy* (w) p=¢
(“5")

o} Z
_Z "’”(), ze€B, weD”

w*(w) —z wk+1
and
S (drw\ T
w (dw) Zkas() c B c D
9 Z b w b
I//ik(w) —z k+1
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where & ,_.(z) and Fy, p_g(%) are the p — ¢ Faber polynomials of degree k with respect to z and % for the

continuums B and B\ B, respectively (see also [5,20,23] and ([34], pp. 255-257).
Let E'(B) be a classical Smirnov class of analytic functions in B. The set EPY(B,w) =
{ feEYB): felLPT, a))} is called the w-weighted generalized grand Smirnov class in B.

Letw € A,(T). For f € LP-? (T, w) we define the operator

h
1
(vp f) () == E/Mff(w)}dt, h >0,
-0

where

A;f(w):=2(—1)’+’<+‘ (]’;)f(weik’), reN={1,2,..}, weT, t>0.
k=0

Ifwe Ap(T)and f € LP(T, w), then the operator vy, is a bounded on LY (T, ) [24]:

IZIIJPB i () “LPJ- 0wy = LIS, o1 0) -
=

Letl < p <00, we Ap(T)and f € LP-(T, w), 6 > 0. The function

Q;?)ﬁ,w (f,8) := |zl|lpa “ v, f (w)””), O(T.)* §>0
<

is called the r-th mean modulus of f € LP (T, ).

It can be easily shown that Q;)’ 9. (f5 -) isacontinuous, non-negative and nondecreasing function satisfying
the conditions:

(}i_r)r}) Q) o0, ([:8) =0, 25, (f+88) =R, ,,(f8)+Q,,(.38, §>0
for f, g € LPY(T, w).

Let G be a doubly connected domain in the complex plane C, bounded by the rectifiable Jordan curves I'
and I', (the closed curve I'; is in the closed curve I'y). Without loss of generality we assume 0 € intl">. Let
G(l): =intl'y, G{°: =extI'y, Gg: =intlp, G5°:=extl.

We denote by w = ¢ (z) the conformal mapping of G{° onto domain D~ normalized by the conditions:

¢ (00) =00, lim M >
z

0

and let ¢ be the inverse mapping of ¢.
We denote by w = ¢ (z) the conformal mapping of Gg onto domain D~ normalized by the conditions:

¢1(0) = oo, Zlii%(Z-d)l () >0

and let ¥r| be the inverse mapping of ¢ .
Let us take

Coo={z:lp@I=po > 1}, Tr:={z:lp1 ()| =ro>1}.
For ®; ;¢ (z) and Fy p (%) the following integral representations hold [5,20,23,34], pp. 255-257:

(1) If z € intCp,, then

1 k(4 1,1_5
D, p—e (z)=E/ [¢(§)]§(¢ ©) de. (1.1)

—Z
Cog
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(2) If z € extCp,, then

Dy p—e (2)
E( =
=[¢ @1" (¢/ (z))% 3 / L @)] (@'©) dz. (1.2)
T — 2
Cop
(3) If z € intCy,, then
1
Fk,p—s(_)
1
-2 A [¢1 (O = (¢1(C))7
= 191 177 ()7 — / — dz. (1.3)
Cry
(4) If z € extCp,, then
1
1y [p1 (O (451(4“))7
Frp-e (E) T 2mi / -z d. (14

If a function f (z) is analytic in the doubly connected domain bounded by the curves C,, and I'),, then

the following series expansion holds:

o0 o0
1
f@=) aPrpc@+ Y biFrpe (—) : (1.5)
Z
k=0 k=1
where
, 1
1 ree
g [ LWENG@)T gy k=012
2ri wk+1
|lw|=p1
and

2

p—e

k=1,2,...

/ £l )] (] () 7 w

wk+1

[wl=r

dw, (1 <r <rg,

The series (1.5) is called the p — ¢ Faber—Laurent series of f, and the coefficients a; and by, are said to be the
p — ¢ Faber—Laurent coefficients of f . For z € G by Cauchy’s integral formulac we have

_L @y L[ I®
@)= {_Z 5 = ds.
Iy Iz
If z € intI"; and z € extl'y, then
L[ f© G
%/{—zdg_ﬁ _de_O. (1.6)
Iy I
Let us consider | £ | £6)
11(z) == i —dé' h(z) = %/ £ _Zd$~
I I

The function /;(z) determines the functions / 1+ (z) and I, (z), while the function />(z) determines the

functions 12Jr (z) and I, (z). The functions / 1+ (z) and I, (z) are analytic in intI"; and extI";, respectively. The
functions 12Jr (z) and I, (z) are analytic in intI"; and extI;, respectively.
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Let B be a finite domain in the complex plane bounded by a rectifiable Jordan curve I" and f € L (I").
Then the functions f* and f~ defined by

f*(z)zﬁ —f@)d; LcB
r

_ 1
f (z) = 2— /
r

are analytic in B and B~ respectively, and f~ (c0) = 0. Thus the limit

L f©
sr(@i=tim oo [ Ko

and

c B

Io{s:¢—zl>¢}

exists and is finite for almost all z € T".

The quantity St (f)(z) is called the Cauchy singular integral of f atz € I'.

According to the Privalov theorem ([12], p. 431), if one of the functions f* or f~ has the non-tangential
limits a.e. on I', then Sr(f)(z) exists a.e. on I' and also the other one has the non-tangential limits a.e. on I'.
Conversely, if S (f)(z) exists a.e. on I, then the functions f (z) and f~ (z) have non-tangential limits a.e.
on I'. In both cases, the formulae

1 1
@) =Sr(NH)@) + Ef(Z)’ f @) =Sr(f)@)— Ef(z)

and hence
f=rt—r" (1.7)

holds a.e. on I'. From the results given in [33], it follows that if I'" is an Ahlfors 1- regular curve, then St is
bounded on L?- (T, w).

We will say that the doubly connected domain G is bounded by the Ahlfors 1-regular curve if the domains
G0 and G0 are bounded by the closed Ahlfors 1-regular curves.

Letl; (i = 1,2) bea regular curve and let fo == f[¥ (w)] ¥ (w) 7% for f e LPY('|, w) and let
fiw) == Y1 )] () 77w for f € LY, ). We also set wp(w) = o[y w)] , o (w) =
o [Y1(w)]. Then , if f € LY, w) and f € LP-9(I'y, w) we obtain fo € LPY(T, wp) and f; €
LPO(T, wy).
Moreover, f; (00) = f (00) = 0 and by (1.7)

fow) = fof (w) — fo_(w)}
fw) = fFw) — fi (w) (1.8)

a.e.onT.
Now, in the doubly connected domain we define the w-weighted generalized grand Smirnov class . Let
EY(G) be a classical Smirnov class of analytic functions in G. The set EPY (G, w) = {f e EL(G):

feLPT, w) } is called the w-weighted generalized grand Smirnov class in G. We denote by £7-¢ (G, w) the
closure of Smirnov class E” (G, w) in the space EPY (G, w).

Lemma 1.1 [23,24]. Let g € EPY(D,w), w € Ap(T), 1 < p <ocand 6 > 0.If Y} _odr(g)wk is the
nth partial sum of the Taylor series of g at the origin, then there exists a constant co > 0 such that

gw) = > di(wywt

k=0

1
<C29p)9w<g,;), reN
L9 (T,w)

for every natural number n.
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We set
n n 1
Rn(f, 7) = Zakcpk,pfs(Z) + Zbka,pfe (E) .

k=0 k=1

The rational function R, (f, z) is called the p — ¢ Faber-Laurent rational function of degree n of f.

Since series of Faber polynomials are a generalization of Taylor series to the case of a simply connected
domain, it is natural to consider the construction of a similar generalization of Laurent series to the case of a
doubly-connected domain.

The problems of approximation of the functions in the non-weighted and weighted grand Lebesgue spaces
were investigated in [6—10,23,24]. In this study the approximation problems of the functions by Faber-Laurent
rational functions in the weighted generalized grand Smirnov classes ey (G, w), 8 > 0, defined in the
doubly connected domains with the regular boundaries are studied. Similar problems in the different spaces
were investigated by several authors (see for example, [1-5,14-23,25,27-32,38,39]).

Our main result can be formulated as following.

Theorem 1.2 Let G be a finite doubly connected domain with the Ahlfors 1-regular boundary I' = I'1 U T';.
If we Ay(I), w0, w1 € Ap(T), 1 < p <ocand f € EPY (G, w), 6 > 0, then there is a constant c3
> 0 such that foranyn =1,2,3,...

If — Rn (-, f)”Lp)ﬁ(r,w) = {Q;),e,wo (fo, 1/n) + Q;),eywl (f1, 1/”)} )

where R, (., f) is the p — ¢ Faber—Laurent rational function of degree n of f.

2 Proof of main result

Proof of Theorem 1.1 We take the curves I'j, [, and T := {w € C : |w| = 1} as the curves of integration in
the formulas (1.2)—(1.5) and (1.6), respectively. (This is possible due to the conditions of Theorem 1.2). Let
f € ENP(G, w). Then fy € LV (T, wp). fi € LP*(T, wy). According to (1.8)

it - 7
F©) = L @©) = fy @@ @) @1

FE =17 @1E) — fT (@1EN@1(5) 7= (@[ (E) 7.
Let z € extI';. Using (1.2) and (2.1) we have

n
Zakq)k,p(Z)
k=0

=Y alp @1 @@ +
k=0

1 / @ )P Yy ar e () ;
27 {—z
I

=Y alp @F @' @)

k=0

1 / @ @7 Y _garlp ©OF — £ 16 ()]
e d¢

2mi {—z
I

1 1
o L@ 4 1o 0160/ @) . 2.2)

Tl {—z

Iy
For 7 € extI', the relations(1.4) and (2.1) imply that

n

Son ()

k=1
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L /(¢;(s))ﬂls¢1<s>f€ Shoibelg ©OF
2ri

E—2z2

/Zk obk [¢1 @
2m ds
/ (p1(8) 7= s(¢ )7 [fi (o1 (&) — Xi_o br (91 (6)1F] "
= omi E—z
—i, &ds. (2.3)

2mi E—z
I

For z € extI'}, by virtue (2.2), (2.3) we obtain

n n 1
Yo a (@ @1 + )Y aF (—)
k=0 k=1 <

1 / @O T b ©OF — /19 @I
2mi

=Y alp @F @ @) +
-z

k=0

1 / (¢ (s)rﬁ(as{(s))# [£iF @1 (&) — Yjeo b 91 (©)TF]

—fo 19 @)+ 5~ — dt.

Taking limit as z — z* € T'; along all non-tangential paths outside I'y, it appears that

Zakcpk Zbka< )

= Zak @' e

+ (¢(z ))w( Zak )

+5r, {(qb/)pls(f(r o — Zamk)} ()
k=0

fi (¢ (&)]—Zk b [ ()1

2m —z*

dé (2.4)

a.e.onl'.
Now using (2.4), Minkowski’s inequality and the boundedness of Sr; in LPY9('y, w) [33] we get

||f_Rn(f, Z)”Lp)ﬂ(rl, )

fo (@) —Z aj*

k=0

firw) =y et

k=0

<c4 +cs

LP-O(T,wp)

2.5)

LD (T 1)

That is, the Faber—Laurent coefficients ax and by of the function f are the Taylor coefficients of the functions
f0+ and f1+, respectively. Then by (2.5), Lemma 1 and [23] we obtain

1/ = R G Dllioys T1s @) = e6(p) { @) .0 S0 1/m) + Ly 0y (i 1/m]

Springer
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Let z € intI",. Then from (1.3) and (2.1) we have

. 1
S (1)
k=1 ¢
= @@ @) (z))‘ﬁ S bl @
/(«f)](c) E @) 7 Y bl ©F it
2mi

E—z

= @)TE G T Y bl @
s /<¢1(;> TG T (Sl e[y €~ 191 ©)
2mi
I

E—z
1
By I (é) dg — fi (¢ (Z)](d)l(z)) “(91(2)) e (2.6)
i ";“
I
For z € intI', using (1.1) and (2.1) we obtain
Zakcbk )
k=
L @O &l I
T 2mi {—z
I
o / @O (S alp ©F - i)
27 -z
I
1 /@)
T = Zd{. 2.7
I

Now, by virtue of (2.6) and (2.7) for z € intl", , we conclude that

n

> ar (2)
k=0
+Zbka (1)

/(qﬁ N7 (Xr_par o (O = f,F (¢ () i
2m {—z

1l

BT G T Y bl @1

.y GLOT @16 7 (T belgr ©F — 7 161 @)
2mi E—z

— 17 11 1@, () 7 ($1(2) 7
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Taking the limit as z — z* € I'; along all non-tangential paths inside I'>, we reach
n n 1
f (Z*) —Z ag P, p (Z*) —Z bkayp <—*>
k=0 k=1 .
1 1 2 n
= fif [¢1 ()] - §(¢i(z*>)ﬂ'—s (12" 7 > b [on ()] - £ (91 (29)]
k=1

=ses @D @0 7 (X0 bedh = (77 0 91))] @)
/ — n k _ ¢+
L e (Sl 1o OF ~ f 19 o8
2mi ¢ —z*
I

1

a.e.on .

Using (2.8), Minkowski’s inequality and the boundedness of Sr, in L9 (T, w) [33] we get

||f_Rn(f,Z)||Lp)-0(rz,w)

n n
<7 f1+(w) _2 Z kwk +cg f0+(w) _Zakwk . (29)
k=1 L9 (T,w) k=0 LP9(T,wp)

Use of (2.9), Lemma 1.1 and [23] leads to

1/ = Ra o Dot < €@y g0y s 1/m) + 2y .4 (o 1/m) ]

The proof is complete. O
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