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Abstract In this work, we investigate a one-dimensional porous-elastic system with thermoelasticity of type
II1. We establish the well-posedness and the stability of the system for the cases of equal and nonequal speeds
of wave propagation. At the end, we use some numerical approximations based on finite difference techniques
to validate the theoretical results.
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1 Introduction

In the recent decades, the study of problems related to elastic solids with voids has attracted the attention
of many researchers due to the extensive practical applications of such materials in different fields, such as
petroleum industry, foundation engineering, soil mechanics, power technology, biology, material science and
so on. Elastic solids with voids are one of the simple extensions of the theory of the classical elasticity. It allows
the treatment of porous solids in which the matrix material is elastic and the interstices are void of material.

In 1972, Godman and Cowin [12] proposed an extension of the classical elasticity theory to porous media.
They introduced the concept of a continuum theory of granular materials with interstitial voids into the theory
of elastic solids with voids. In addition to their usual elastic effects, these materials have a microstructure with
the property that the mass at each point is obtained as the product of the mass density of the material matrix
by the volume fraction. This latter idea was introduced by Nunziato and Cowin [22] when they developed a
nonlinear theory of elastic materials with voids. We refer the reader to [8,9,18,24] and the references therein
for more details.

It is well known that the classical thermoelasticity using Fourier’s Law of heat conduction, which states
that the heat flux is proportional to the gradient of temperature (g = —5V#6), leads to the physical paradox of
infinite speed of heat propagation. In other words, any thermal disturbance at one point will be instantaneously
transferred to the other parts of the body. This is practically unrealistic. To overcome this physical paradox
but still keeping the essentials of heat conduction process, many theories have subsequently emerged. One
of such theories was proposed by Green and Naghdi in 1990s [14-16]. They used an analogy between the
concepts and equations of the purely thermal and the purely mechanical theories and arrived at three types of
constitutive equations for heat flow in a stationary rigid solid labeled as type I, 11, and III. Consequently, using
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these constitutive equations, they obtained three models, called thermoelasticity of type I, thermoelasticity of
type II, and thermoelasticity of type III. The linear version of the first one coincides with the classical theory
based on Fourier’s law, the second one is known as thermoelasticity without energy dissipation because the
heat equation is not a dissipative process and the third one is the most general and it contains the former two
as limit cases. For a further historical review on these models, we refer the reader to [6,7,13-16].
The basic evolution equations for one-dimensional theories of porous materials with temperature are given
by:
,O(,()[[—TXZO, J(Dtt_Hx_G:O, a@t—i‘qx +:3(pl,X:0 (11)

where T is the stress tensor, H is the equilibrated stress vector, G is the equilibrated body force, and ¢ is
the heat flux vector. The variables w, ¢, and 0 are the displacement of the solid elastic material, the volume
fraction, and the difference temperature, respectively. The positive parameters p, J, and B are the mass density,
product of the mass density by the equilibrated inertia, and the coupling constant, respectively. Taking into
account Green and Naghdi’s theory, the constitutive equations are:

T = pwy +bp, H = dp, — BO

G =—bw, —Ep, q=—50, — kO, (1.2)

where 8, k denote the thermal conductivity, ® is the so-called thermal displacement whose time derivative is
the empirical temperature 0, that is, ®; = 6, and u, & are constitutive constants which satisfy

w>0, £€>0, pé > b (1.3)

To keep the coupling, the constant b must be different from zero. We substitute (1.2) into (1.1) to obtain the
following system

Py — fwyx — by, =0, in (0, 1) x (0, 4+00)
Jo1 — 8pxx + by +Ep + B0, =0, in (0, 1) x (0, 4+00) (1.4)
bl — 8Oy + By —kOpxy =0, in (0, 1) x (0, +00).

For the asymptotic behaviors of the solutions for porous-elastic systems. Quintanilla [25] considered the
one-dimensional porous dissipation elasticity:
pwtt - /’wax - b(ﬂx - Oa in (0’ L) X (Oa +OO) (1 5)
Jgal‘l‘ - 6(Pxx + wa + E‘P + T¢r = 0’ in (0’ L) X (01 +OO) ’

with initial and boundary conditions. He used Hurtwitz theorem to prove that the damping through porous-

viscosity (t¢;) is not strong enough to obtain an exponential decay but only a slow (nonexponential) decay.
5
However, Apalara [2,3] considered the same system and proved the exponential stability provided B 7
For various other damping mechanisms used and more results on porous elasticity, we refer the reader to
[5,26-28] and the references therein. Recently, Apalara [4] considered the following porous-elastic system

with microtemperature:

P — wxx — bey =0, in (0, 1) x (0, 4+00)
JOi = 8¢xx + by +E¢ + B =0, n (0, 1) x (0, +00) (1.6)
oty — kbxx + Box + k6 =0, in (0, 1) x (0, +00).

with Dirichlet-Neumann-Dirichlet boundary conditions. He showed that the unique dissipation given by
microtemperatures is strong enough to produce exponential stability if and only if:

-2 _Z_0 1.7
X P (1.7

and showed that the system is polynomially stable if x # O.
In the present work, we consider the system (1.4) which can be written as follows:

pPwy — wxy — by =0, in (0, 1) x (0, +00)
Joi — 8@y +bwy +E¢p + B0, =0, in (0, 1) x (0, +00) (1.8)
by — 80xx + Brex — kbixx = 0, in (0, 1) x (0, +00)

@ Springer



Arab. J. Math. (2021) 10:137-155 139

with the following boundary conditions
00,1 =w(,1) =¢0,1) = x(1,1) =0(0,1) =0(1,1) =0, Vi =0 (1.9)

and initial conditions
w(x,0) =wo(x), wi(x,0)=wi(x), x € (0,1
@(x,0) = @o(x), @(x,0) = gp1(x), xe(0,1) (1.10)
0(x,0) =0g(x), 6;(x,0) =06;(x), xe (0,1

We study the well-posedness and the asymptotic stability of (1.8)—(1.10). Using the semigroup theory, we prove
the existence and uniqueness of the solution. We then exploit the energy method to obtain the exponential decay
result for the case of equal wave speeds. When (1.7) does not hold, we prove a polynomial decay result.

The paper is organized as follows: in Sect. 2, we state the problem. In Sect. 3, we establish the well-
posedness of the system. In Sect. 4, we show that the system is exponentially stable under condition (1.7). The
polynomial stability when the wave-propagation speeds are different, is given in Sect. 5. In Sect. 6, we give
some numerical illustrations.

2 Statement of the problem

To obtain the dissipative nature of System (1.8), we introduce the new variables: u = w; and ¢ = ¢;. So,
System (1.8) takes the form

pur — Plxy — by =0, in (0, 1) x (0, +-00)
JOi — 8¢xx +buy +5¢ + 6, =0, in (0, 1) x (0, +00) (2.1
ab; — 80xx + Bprx — kbpxx =0, in (0, 1) x (0, +00)

with the following boundary conditions
u©,t) =u(l, 1) = ¢.(0,t) = p(1,1) =0(0,t) =0(1,t) =0, Yt >0 (2.2)

and initial conditions
u(x,0) =ug(x), u;(x,0) =ui(x), xe (0,1
d(x,0) =do(x), ¢(x,0)=¢1(x), xe€(0,1) (2.3)
0(x,0) =60p(x), 6;(x,0) =0(x), x € (0,1).

Since the boundary conditions on ¢ are of Newmann type, we introduce some transformation that allows the
use of Poincaré’s inequality on ¢. From the second equation in (2.1) and the boundary conditions (2.2), it
follows that

d2 1 %- 1
@/0 ¢(X,t)dx+7/(; ¢(x,t)dx = 0. 2.4)

So, by solving (2.4) and using the initial data of ¢, we obtain

: ([ £ T([ . \/?
/0 ¢(x,t)dx = </0 ¢0(x)dx> cos <\/;t) + \/; (/o ¢1(x)dx) sin < 7t . 2.5)

Consequently, if we let

1 1
P, 1) = ¢(x,1) — </O ¢o(x)dx) cos (\/?) - \/g (/O ¢1(x)dx> sin (\/?) ,

1
/ o(x,t)dx =0, Vr >0,
0

we get

which allows the use of Poincaré’s inequality on é. So, (u, ¢, 0) satisfies (2.1), (2.2) and similar initial
conditions (2.3). Therefore, we work with (u, ¢, ) but we write (u, ¢, 6) for simplicity.
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3 The well-posedness of the problem

In this section, we prove the existence, uniqueness and smoothness of solutions for the system (2.1)—(2.3)
using the semigroup theory. Introducing the vector function U = (u, v, ¢, ¥, 0, q)T, where v = u;, ¥ = ¢
and g = 6;. System (2.1)—(2.3) can be written as

U@)=AU@),t >0
{ U ) = U, (3.1)
where Uy = (ug, ui, ¢o, ¢1, 6o, 91)T and the operator A is defined by
v
1
;(Muxx + boy)
AU 1 v (3.2)
| 76t —bus =6 — Bar) '
{ q
a(aexx — BYx + kqxx)
We consider the energy space
H = H} 0, 1) x L*0,1) x HL(0, 1) x L2(0, 1) x H} (0, 1) x L*(0, 1),
where
1
L2(0,1) = {u e L*(0, 1)//0 udx = o}
1 1 : 1 2
H,(0,1) = {u € H (0, 1)//0 udx = O} = H (0,1) N L0, 1).
'H is a Hilbert space with respect to the following inner product
1 1 1 1
U, U)y :=,o/ vﬁdx+§/ Pppdx + J/ Yrdx +oz/ qqdx
0 0 0 0
1 1 _ _ I
+ M/ wpiipdx + 5f <¢x¢x + exex) dx + b/ (rd + piiy)dx. (3.3)
0 0 0

Remark 3.1 Under the hypothesis & > b2, it is easy to see that (3.3) defines an inner product. In fact, from
(3.3), we have

1 B2\ (! 1 1
IUNI3, = (U, U)x =,0/ vidx + (S - ;)/ ¢2dx+Jf 1//2dx+a/ q*dx
0 0 0 0

1 2
+M/O (ux + 5‘15)

Hence, since ué > b* we conclude that (U, U)7 defines an inner product on H and the associated norm
| - |l is equivalent to the usual one.

1
dx+8/ (¢§+9§)dx.
0

The domain of A is given by
DA ={U eH: ueH*0,1)NHy(0,1), ve Hj0,1), ¢ € H:(0,1)NH O, 1),
Y e H(0,1), g € Hy(0,1), (80 +kq) € H*(0, 1)},
where
H2(0,1) = {u € H*(0,1) : u,(0) = u,(1) = 0}.

We have the following well-posedness result:
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Theorem 3.2 Let Uy € H. Then, there exists a unique solution U € C(Ry, H) of problem (2.1)—(2.3).
Moreover, if Uy € D(A), then U € C(Ry, D(A)) N C Ry, H).

Proof The result follows from Lumer—Phillips theorem (see [19,23]) provided we prove that A is a maximal
dissipative operator, that is A is dissipative and that (I — .A) is surjective. Thus, for any U € D(A), we have

1

1 1 1 1
(AU, U)y =,u/ uxxvdx+b/ d)xvdx—I-E/ w¢dx+8/ ¢xx1/fdx—b/ uxyrdx
0 0 0 0 0
1 1 1 1 1
¢ [ ovax—p [qvax+s [ ongtr—p [ vngar+k [ guqar
0 0 0 0 0
1 1 1 1 1
—|—u/ uxvxdx—i—(S/ lﬁxgbxdx—i—(S/ quxdx—i—b/ vx¢dx+b/ Yuydx
0 0 0 0 0

1
=—@/q@x50
0

So, A is dissipative. Next, we prove that the operator (I — A) is surjective.
Let F = (f1, £2, £3, f*, £2, f®T € H, we prove that there exists a unique U € D(A) satisfying

(I—-AU=F. (3.4
That is,
u—v=f1=
PV — puxx — by :pf2
J — 8¢y + buy +E¢ + Bgx = Jf* '
0—q=f>
oaq — 00xx +,3¢x _kCIxx :af6-

Using Egs. (3.5)1, (3.5)3, (3.5)5 in (3.5)2, (3.5)4, (3.5)¢, respectively, we obtain
PU — Ulxx _bd)x :p(f2+fl)

J§ — 8ux +bux +E¢ + PO = J(f*+ £3) + Bf2 (3.6)
af — (8 + K)0xx + By = a(fO + ) + Bf3 — k[,

To solve (3.6), we consider the following variational formulation
B (9.0, 6.0) =1 (@@$.0). V@0 ew, (3.7)
where W = H& 0,1) x H*l 0,1) x HO1 0, 1), B: W x W — Ris the bilinear form defined by
1 1 1 1 1 1
p/ uftdx—}-u/ Uyilydx —b/ @Jtdx—i—(]—i—é)/ ¢¢dx+6/ Grprdx +b/ uypdx
0 0 0 0 0 0
1 _ 1 1
+ﬂ/ O + ¢ 0)dx + oe/ 00dx + (6 + k)/ 0,0,dx
0 0 0
and L : W — R is the linear form given by
1 1 _ 1 ~ I
p/o (f2+f1)ﬁdx+/0 (VU D+ 817) ¢>dx+/0 (a(f6+f5)+ﬂf$)edx+kfo £20.dx.

It is clear that W is a Hilbert space with the usual norm and we can easily show, using Cauchy—Schwarz
inequality, that B and L are continuous. On the other hand, using Young’s inequality and the fact u& > b2,
we have
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2

b
B((u,,0), (u,$,0)) > pllul® + (u - g) Il + TSI + Sl 1> + allON* + (k + 8)[16: 112

> cll(u, ¢, 03,

for some ¢ > 0. Hence, B is coercive. Consequently, Lax—Milgram lemma guarantees the existence of a unique
(u, ¢, 0) in W satisfying (3.7). Using (3.5), we have

v=u—fleH), v=¢9—f ecH!, g=0-f cH]
o If we take (¢, 0) = (0, 0) in (3.7), we get
1 1
u/ Uil dx :/ [p(f' + f% —u) + b, ] iidx, Vii € Hy (0, 1).
0 0
Thus, the elliptic regularity theory implies that
u e H*0,1)

and, moreover, we obtain

pu — pitxy — by = p(f' + f).

Since f! = u — v, then
PV — plyy — by = :Of2
which solves (3.5)>.
o If (i, 0) = (0, 0) in (3.7), then we have
1 1
5 / rxedx = / [T+ 5+ BIE = + 606 — bus — B0 | ddx. ¥ e HIO, 1. (38)
0 0
Here, we can’t use the regularity theorem, because q; S Hyl (0, 1). So, we take U e HO1 (0, 1) and set
1
d(x) = ¥(x) — f U (x)dx.
0

It is clear that & € H*l (0, 1). Then, a substitution in (3.8) leads to

1 |
5/ e Uydx =f rldx, YW e HL(O, 1),
0 0

where
r=J( 4 B = (T +E)¢ — bu, — po, € L0, 1).
So
¢ e H*0,1)
and

—8¢ex = J(f> + [N+ Bf) = (J +6)¢ — buy — po,.
We use f3 =¢ — ¥ and f> = 6 — g to obtain
T — 8¢pux +bux +E¢ + Ba. = Jf*.
This gives (3.5)4. Since —8¢,, = r(x), then

1 1
—5/ ¢qu>dx=/ rddx, Yo e H'(0,1).
0 0

; = @ Springer
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Namely,

1 1
—a¢x<1>|})+3/ ¢x<I>xdx:/ rddx, Vo € H'(0, 1).
0 0

Since H*1 C H'. Then, we have

~0dlh+5 [ pudr = / rax, Vg e HIO. D,
and the other hand, we have (3.8). Thus
¢ (DP(1) — ¢ (0)p(0) =0, ¥ € H} (O, 1).
Since é S H*l is arbitrary. Then,
¢x(1) = ¢x(0) =0,
and, hence,
¢ € H2(0, 1).

o If (ii, ¢) = (0, 0) in (3.7) we get, for any 6 € H}(0, 1),

1 1 1 1 1
a/ eédx+(a+k)/ Gxéxdx—lrﬂ/ ¢x§dx—k/ £56.dx :/ [a(f6+f5)+ﬂfx3]édx.
0 0 0 0 0

This, in turns, yields

/01 [(5 k)b, — kff] f.dx = /01 Rédx, VO € HL(0, 1),
where
R=a(f*+ f5 + Bf — ab — Bs.
Then,
[(5 + k)0 — ka] e H2(0, 1).
Since 3 =6 — g, then (80 + kq) € H?(0, 1) and we have

aq — 80xx + By —kgxx = Olf6

which solves (3.5)6.
Hence, there exists a unique U € D(.A) satisfies (3.4). Finally, using Lumer-Phillips theorem we deduce
that A4 is an infinitesimal generator of a contraction semigroup in H and this complete the proof. O
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4 Exponential stability

In this section, we use the energy method to prove that system (2.1)—(2.3) is exponentially stable in the case
of equal wave-speed propagation (1.7). To achieve this goal, we first establish some technical lemmas needed
in the proof of exponential stability result. We also use ¢ to be a positive generic constant.

Lemma 4.1 Let (u, ¢, 0) be the solution of (2.1)—(2.3). Then the energy functional E, defined by

1 1
E@ =3 / [pu? + J ¢} + b} + pus + 8¢idx + 807 + 2bu,p + £¢*]dx 4.1
0

satisfies

1
E(1)=—k / 62.dx <O0. (4.2)
0

Proof Multiplying (2.1) by u;, ¢, and 6, respectively, integrating over (0, 1) and using integration by parts
and the boundary conditions, we obtain

P d 1 ) w d 1 ) d 1 1
EWT: A u,dx—}—ia A uxdx—i—ba A ¢u,dx — b A ¢ruydx = 0. “4.3)

The second equation

J d
2dr

The third equation

s d 1 1
¢,2dx+55/ ¢§dx+b/ ux¢tdx+__/ ¢ dx+13/ 9tx¢tdx -
0 0

ad sd [! ! !
o 92dx+§a/0 efdx—ﬂ/o ¢t9,xdx+k/0 62.dx = 0.

Adding up the above identities we arrive at

1d ! |
2dr [pu? + J o7 + abF + pu? + 8¢2 + 802 + 2bgu, + £¢*|dx = —k/ 62 dx.
’ 0

This is exactly (4.2). ]
Lemma 4.2 Let (u, ¢, 0) be the solution of (2.1)—(2.3). Then the functional

1 ,Ob 1 X
Fi(r) := J/ ppdx — —/ Mr(/ ¢(y)dy)dx (4.4)
0 “Jo 0

satisfies, for any €1 > 0, the estimate

) s (1, ( bz) . 5 2 el c -
Fit)y<—= | ¢fdx —|&E—— / ¢dx+81/ dx—l——/ 9tdx+<J+—>f¢,dx. 4.5)
2 Jo w/) Jo 0 25 Jo €1/ Jo
Proof By taking the derivative of Fy, using (2.1) and integrating by parts, we get
Fl(t) = J/ ¢t dx + J/ ¢¢ndx — —/ utt(/ ¢dy>dx — —/ u,(/ ¢,dy>dx
= J/ ¢,dx+8/ dPrrdx — / Purdx —5/ $2dx —ﬂ/ PO dx
b /0 u( [ ¢dy)dx -z ¢x( [ ¢(y)dy)dx - / u( [ @(y)dy)

@ Springer
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We use integration by parts and fol ¢dx = 0 to obtain

1 X 1
/ uxx( / ¢(y)dy>dx =- / uypdx (4.6)
0 0 0
1 X 1
/ ¢x</ ¢(y)dy>dx = —/ $*dx.
0 0 0
1

1 1 1 1 1
Fi(1) = J/ ¢,2dx—5/ ¢>§dx—b/ ¢uxdx—é§/ ¢>2dx+/3/ ¢x91dx+b/ Uy pdx
0 0 0 0 0 0

b2 1 b,O 1 X
+—/ $>dx — —/ ut<f qb,(y)dy)dx. 4.7
nJo nJo 0

Using Young’s and Cauchy—Schwarz inequalities, we have,

1 5 1 ) /32 1 )
ﬁ/o @0, dx < 5/0 pydx + %/0 0;7dx
and, for any g1 > 0,

b,O 1 X 1 c 1 x 2
- — uz</ ¢>t(y)dy)dx < 81/ uldx + — (/ ¢z(y)dy> dx
Mmoo Jo 0 0 €1 Jo 0

1 1
< 51/ ufdx+£/ p2dx. (4.8)
0 &1 Jo

and

So,

Then, by substituting the above inequalities into (4.7), we get

, § 1 bZ 1 1 132 1
Fl(t)f——/ Prdx — (£ — — / ¢2dx+81/ utzdx—i——/ 02dx
2 0 I‘L 0 0 28 0

c 1
+<J+—)/ ¢Xdx. O
€1 0

Lemma 4.3 Let (u, ¢, 0) be the solution of (2.1)—(2.3). Then the functional

1 by
Fa(t) = —a /0 0 ( /0 @(y)dy) dx 4.9)

satisfies, for any &3 > 0, the estimate

, ﬁ 1 5 1 5 5 1 1 5 52 1 )
F(1) < ——/ ¢;dx + 682/ (d)x + ux>dx + c(l + —) / 0, . dx + —/ 07dx. (4.10)
2 Jo 0 e/ Jo B Jo

Proof The differentiation of F3, using (2.1), integration by parts, and the boundary conditions (2.2), gives

1 X 1 X
Fy(t) = —a / 9”( / @(y)dy)dx—a f 6, / $r (V) dydx

0 0 0 0

1 x 1 x
— s / o / ¢ (n)dydx + B / m( f @(y)dy)dx

0 0 0 0

1 X 1 X
k / 9( / ¢,(y)dy)dx—oe / @( / %(y)dy)dx.
0 0 0 0

1 1 1 1 X
= 5/ Oy prdx — ,Bf ¢t2dx +kf Orxprdx — Ol/ 91[ ¢ (y)dydx.
0 0 0 0 0

; = @ Springer
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Now, we estimate the terms in the right-hand side of the above identity. Using Young’s and Cauchy—Schwarz
inequalities, (2.1), and calculations as in (4.8), we find,

/0x¢,dx<—/ PXdx + — /de
0 B

2
/ 9,x¢,dx<ﬂ/ ¢Zdx +k szdx.
0 B Jo

and, for any &, > 0,

1 X 1 X

8 b & B
—oe/ 0; </ d),;(y)dy) dx = —a/ 6, (/ <—d)yy — —uy —=¢ — —th>dy> dx

0 0 0 0 J J

ad 02
= —— 9t¢xdx+— 9,udx+— 9, dx + — 0, dx
0
1
<82/ P> dx—i——/ 2dx+82/ W2dx + — / 62dx
0
+82[ $2dx + = / 67 dx + 2 /ed
0 €2
So, by Poincaré’s inequality and the above estimate, we arrive at
1 1 1 1
Fy(1) < _/ $2dx +< )/ e,zdx+82/ ¢2dx+82/ ¢§dx+82/ u’dx
0 0 0 0
dx + — / 2d)c
Sl
_—'3 ¢2dx+c l—i—l 92dx+8 — 62
i 2 (d) + u?)dx + Ocdx. O
2 Jo &) Jo

Lemma 4.4 Let (u, ¢, 0) be the solution of (2.1)—(2.3). Then the functional
w 1 S 1
F3(t) .= —/ Grudx + —/ ¢rudx “4.11)
P Jo J Jo
satisfies, for some positive constant my, the estimate
, 1 1 1 Sb 1
F3(1) < —m()/ udx + c/ Pdx + c/ 02.dx + — f P2dx. (4.12)
0 0 0 pJ Jo

Proof Direct computations, exploiting x = 0 (x = 0 defined by (2.7)) and using (2.1) and integration by
parts, yield

, m 1 m 1 S 1 S 1
@) = —/ Grruydx + —/ ruppdx + —/ Grxudx + —/ Oxusdx
p Jo P Jo I Jo T Jo

us ! bu (', ng ! Bu
= p_J/(; Grxttrdx — ,O_J/(; uydx — p_.l ; du,dx — p_J 9txuxdx ¢,xutdx
+5“/1¢ d+8b/l¢2d
— Uyydx + — x
JpJo T pd Jo

—bu 1 5 ué /l B /1 Sh /1 ) /1
=t dr — 22 dx — 25 | G updx + 22 dx —
o Jo T 0T )y Pt o Jo T 0T #xdx = x 0 Purtt

-b 1 1 1 sb 1
e uidx—”—éf qudx—ﬂ—”/ 9,xuxdx—|——/ $2dx. (4.13)
0 pJ Jo pJ Jo pJ Jo
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Using Young’s inequality, we get, for any &3 > 0,
Fy(1) < —/ uldx + = 5 f 2dx+— ¢2dx
—/ 2dx+—/ szdx—l— / ¢2dx
u2 2 8b 2
< - ——83 dx—i—— dbdx—f— de—i-— qbdx
pJ 0 0
Thus, by taking €3 small enough such that
b
mo = (—M—a) > 0,
pJ
we obtain (4.12). O
Lemma 4.5 Let (u, ¢, 0) be the solution of (2.1)—(2.3). Then the functional
1
Fi(t) = —,o/ usudx, 4.14)
0
satisfies
! p 3u (', Lo
Fyt) < —p uydx + — uydx +c¢ ¢ dx. 4.15)
0 2 Jo 0
Proof A differentiation of Fy, using (2.1) and integrating by parts and (2.2), gives
) 1 1
Fut) = —p/ upudx — ,0/ u,zdx
0 0
1 1 1
= —/L/ Uyxudx — b ¢rudx — ,0/ utzdx
0 0 0
1 1 1
:u/ u)zcdx—{—b/ ¢uxdx—,0/ u?dx.
0 0 0
Then use of Young’s and Poincaré’s inequalities leads to
) 1 1 "
F4(t)§—,0/ ufdx+u/ udx + 2/ 2dx+—/ $>dx
0 0
1 1
3
< —,0/ utzdx—f—?M/ u%dx—l—c/ qﬁdx. |
0 0 0
Lemma 4.6 Let (u, ¢, 0) be the solution of (2.1)—(2.3). Then the functional
1 k (! 1
Fs(1) := ozf 06,dx + E/ 02dx + ﬂ/ ¢x0dx (4.16)
0 0 0
satisfies, for e3 > 0,
) 1 1 B> 1
F5(t) < —3/ 02dx + & | Pidx + (a + —) / 67dx. 4.17)
0 0 4e2 ) Jo
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Proof A simple differentiation of F5s, using (2.1), (2.2) and integrating by parts, leads to
) 1 1 1 1 1
F5(t) = oe/ 9,2dx + oz/ 00 dx + k/ 0 6xdx + ﬂ/ ¢ 0dx + ,3/ ¢x0,dx
0 0 0 0 0
1 1 1 1 1
= oe/ 9,2dx + 8/ Oxx0dx — B | Pix0dx + k/ Orxx0dx + k/ O;x6dx
0 0 0 0 0

1 1
+,3/ ¢ Odx —{—,3/ ¢ 0,dx
0 0

1 1 1
=a/ e,zdx—af 93dx+ﬁ/ by 0,dx.
0 0 0

Next, by Young’s inequality, we arrive at

2
—af 9dx+a/ 9dx+82/ ¢2dx+’3 /dex
0 0 2 0

1 2
—8/ Gfdx + 82/ ¢§dx + <oz + 'B—> / 2d)c.
0 0 4e2 /) Jo

F5(1)

IA

IA

O

Lemma 4.7 Let (u, ¢, 0) be the solution of (2.1)—(2.3). Then, for N, N1, N2, N3, N5 > 0, to be chosen

properly, the Lyapunov functional, defined by
L(t) := NE(t) + N1 F1(t) + N2 F>(t) + N3F3(t) + F4(t) + N5 F5(t),

satisfies, for N sufficiently large,
L~FE

and the estimate |
L) < —/\/ W? + ¢ + 07 +u2 + ¢ + 02 + pH)dx,
0
where ) is a positive constant.

Proof The equivalence (4.19) is a matter of a routine calculations. See, for instance [5].

(4.18)

(4.19)

(4.20)

To prove (4.20), we differentiate £(¢), and recall (4.2), (4.5), (4.10), (4.12), (4.15) and (4.17). So, we have

K ' NS o, b\ [ by '
(t) < —Nk dex—T ¢ dx — Ny é—; ¢-dx + Ni&; uydx + Nic 0;7dx
0 0 0 0 0

1 1 1
+N; (J + si) / ¢Zdx — Nzé/ ¢Zdx + stzc/ (qﬁ + u)z()dx
1

1 52 !
+N2c<1+—>/ 62.dx + N2/ 0 dx—N3m0f u?dx + N3¢ ¢2dx
&) Jo B 0 0

1
+N3C/ Qtzxdx—l—N3—/ q&)%dx—p/ u?dx—f— —M/ uidx
0 pJd Jo 0 2 Jo
1 1 1 82 1
+c/ $2dx —8N5/ 9§dx+N582/ ¢dx + <a+ —>N5/ 62dx.
0 0 0 4ey 0

28
We apply Poincaré’s inequality for 6; and take N5 = FNZ’ to get

1 1
L@ <— |:Nk — Nic — Nzc<l + —) — N3c]/ 0t2xdx
0

2
— [? — Nacer — N3— — ci| / $2dx — [Nl (.s; — b—) N3ci| $2dx
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1 IB c 1 82 1
—(,O—lel)/ utzdx— |:N2——N1<J+—)]/ ¢,2dx——N2/- 9§dx
0 2 €1 0 B 0
3 1
—<N3m0 — Npcey — —M> / ujzcdx.
2 ) Jo

At this point, we choose the constants carefully. First, let us take ] = %, and choose N3 large enough such
1

that
oe1=N3mo—37'u > 0.
We then choose N large enough so that
o =N1<§ — {;—2> —N3c>0, a3=Nj=- — <N3%+c> > 0.

Next, we select N so large that

then pick ¢, small enough so that
o5 = o] — Nycer > 0, ag = a3z — Nacey > 0.

Finally, we choose N large enough so that (4.19) remains valid and, further,
1
a7 = Nk — Nic — Nzc(l + —) — N3c > 0.
&2

Therefore, we arrive at
1 1 1 o (!
L) < —a7/ 67.dx —Ol6/ $2dx —(xz/ ¢*dx — —/ udx
0 0 0 2 Jo

1 1 1
—om/ ¢rdx — oe5/ udx — c/ 02dx.
0 0 0

We finally use Poincaré’s inequality to substitute — fol Gft dx by — fol Qtzdx and, hence, (4.20) is established.
O

Theorem 4.8 Let (u, ¢, 0) be the solution of (2.1)~(2.3) and assume (1.7). Then there exist two positive
constants ki and k such that the energy functional (4.1) satisfies

E(t) < kie™, vt >0. 4.21)

Proof First, using Young’s inequality, (4.1) becomes

E(1) 5c/01 [u2 + @7 + 67 + u2 + 2 + 67 + ¢?] dx. (4.22)

The combination of (4.20) and (4.22) gives

L) < —cE(), Vt>0.
Using £ ~ E, we get

L'(@) < —koL(t), Yt > 0.
A simple integration over (0, t) yields

L(t) < L(O0)e ™, ¥t >0.
Consequently, (4.21) is established by recalling £ ~ E. O
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5 Polynomial stability

In this section, we prove the polynomial decay result for the non-equal speed of propagation case, that is
(1.7) does not holds. To establish our result, we work with the strong solution of (2.1)—(2.3) and define the
second-order energy functional

1 1
Ex(t) = 5 /0 [pu?, + T2 + alf + pul, + 8% + 86% + 2buscdy + £¢7 ]dx. (5.1)

Similar calculations, as in Lemma 4.1, lead to

1
E5(t) = —k fo 67.dx <0. (5.2)

Lemma 5.1 Let (u, ¢, 0) be the strong solution of (2.1)—~(2.3). Then the functional

1 1
F3(t) := BF3(t) — Xk/ Uy dx — X(S/ uy0,dx (5.3)
0 0

satisfies, for any €7 > 0 and for some positive constant m1, the estimate

1 1 1 1 1 1
N 8Bb
Fj(r) < —m1/ uidx+c/ ¢2dx+02/ 9,2xdx+£/ ¢§dx+c7f eﬁxdx+a7/ u?dx. (5.4)
0 0 0 pJd Jo 0 0

Proof A simple differentiation of (5.3) gives

1 1

1 1
F3/(t) = ,3F3/(t) — Xk/ U Ordx — ka UyBOsprdx — XS/ UsOrdx — XS/ Uy dx. (5.5
0 0 0 0

Using integration by parts for the second term in the right-hand of (5.5) and exploiting (2.1)3, we get
1 1 1 1 1
—Xk/ U Oppdx = Xk/ UOsppdx = ax/ UG dx — 8)(/ UOyrdx + ,3)(/ Urspdx. (5.6)
0 0 0 0 0

Substituting (5.6) and (4.13) into (5.5), we obtain

. —bﬂu/l > Mﬁé/l Bu /1 6ﬂb/1 > /1
Fi(t) = dx — 2= dx — == | BGpudx + — d 0,,d
3(1) o) Ouxx i 0¢uxx ol o txuxx+pJ O¢XX+oex Outnx

1 1
—Xk/ Uy O pdx — xS/ U0 cdx.
0 0

Using Young’s and Poincaré’s inequalities, we find

P bpu ' c ', c (' L '
F’(t)f—(——s6>fudx+—/¢dx+—/9 dx+—/¢dx+87/udx
3 pJ 0o &6 Jo g6 Jo od Jo o

+ ! + ! /192 d
c| — —_— X.
86 87 0 ttx

Finally, we choose g¢ small enough such that

to obtain (5.4). O
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Lemma 5.2 Let (u, ¢, 0) be the strong solution of (2.1)—~(2.3). Then the Lyapunov functional defined by
L(t) == N* (E(t) + E2(1)) + N{Fi(t) + Ny F2(t) + N3*I4~“3(t) + Fu(1) + N5 Fs(1) (5.7)

satisfies, for N*,NT,N;,N;,NS* > 0 to be chosen properly, and for a positive constant 1,
1
L) <—n / W? + ¢? + 607 +u + ¢? + 6% + ¢?)dx. (5.8)
0

Proof By exploiting (5.4) and the fact u& > b> we get

A * ! 2 * ' 2 NTS ! 2 * bz ! 2
Lt)<—Nk | 6dx—N"k Q,txdx - — q’)xdx - Ni(§—— ¢ dx
0
1 52 [l
+N;"81/O ufdx+N;‘c/0 02dx + Nj <J+ )/ ¢2dx — N3 2f PZdx +N*ﬂ /0 02dx
1 1 1
—I—N;cez/ (qb +u )dx—l—Nzc(l—i- )/ 9,2xdx—N§'<m1/ udx + Nic ¢2dx
0 &/ Jo 0 0
* ! 2 *_ﬂ 2 * ! 2 * ! 29, : 2
+N3cy [ 6/.dx + N3 q&xdx + N33 | 65dx + N3e7 | ujdx —p | u;dx
0 pJ Jo 0 0 0
3u ! 2 ! 2 * ! 2 * ! 2 '32 2
+— | wuidx+c | ¢pdx —Ni§ | 6;dx+ Nier | ¢pdx + Ni|o + — 0 dx.
2 Jo 0 0 0 4e2/ Jo

We apply Poincaré’s inequality for 6; to get

~ 1 1 1
L) < - |:N*k — Nfc— Nfc(l + —) — Njcr — N5*c<1 + 5)]/(; 02 .dx

N*§ b 1 b2 1
- [ 2‘ — Njces — N ij —c— N582i| / P2dx — [N;“(g - —) - N;c] P*dx
,o

2 1
0

3
_(N;‘ml — Njcep — 7“) / uldx — (N*k — N§C3)f Qtztxdx
0

0

N N§ = —Nj and g7 = and then choose Nj large
1

Similarly to what we did with £', we take &| = 5
B 4N3

enough such that
3
of = Njmy — L)
2
and select N{ large enough so that
b2
az_Nl(f;‘——)—N;‘c>O
n
and

5 «0b

Next we choose N so large that

B 4c Ny
P =N3> —N{(J 0,
oy 25 i\t . )7
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then pick 2 small enough such that
a3 =af — Njcer >0
and
*

¢ = a3 — Nicez > 0.

Finally, we take N* large enough such that
1
a7 = Nk — N{c — N;‘c(l + —) — Njc >0,
&2
and

ag = N*k — Njcz > 0.

Therefore, using Poincaré’s inequality, we arrive at

1 1 1 1 1 1
L) < —oe}“c/ 67dx — oe’g/ $2dx — aé‘f $>dx — B/ uZdx — oej{/ ¢dx — ag‘/ u?dx
0 0 0 2 Jo 0 0

1 1
—c/ 02dx —aé‘/ 62 dx.
0 0

So, there exists A; > 0 such that
1
£ < —n f W? + ¢? + 607 +u + ¢2 + 62 + pP)dx.
0

Theorem 5.3 Let (u, ¢, 0) be the strong solution of (2.1)—(2.3) and assume that (1.7) does not hold. Then
there exists a positive constant ky, independent of t and the initial data, such that

ka (E(0) + E2(0))

E(@) = ;

vt > 0. (5.9

Proof The combination of (4.22) and (5.8) gives
< MM
L@ <——E(@), Vt>D0.
c
We integrate the last inequality over (0, 7), and recall that £’ is non-increasing, we obtain
t c [
/ E(s)ds ——/ L' (s)ds,
0 A1 Jo
t Cc -~
/ E(s)ds < —L(0), Vvt > 0.
0 Al

Using the fact tE(t) < fé E(s)ds, we find

IA

IA

20
E@t) < Az?, vt > 0.

Consequently, there exists k» positive such that

kz (E(0) + E2(0)
t 9
This finishes the proof. O

E@) < Vvt > 0.

Remark 5.4 We note here that these results hold even for & = b?. In this case, we have to redefine the energy
as in [10] and adjust our calculations accordingly. In particular, when . = & = b, our system reduces to
Timoshenko system with thermoelasticity type III. This has been discussed and similar stability results have
been established in [20,21].
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6 Numerical tests

To illustrate the theoretical results of this work, we present in this section two numerical tests. We solve the
system (2.1) under the initial and boundary conditions (2.2), (2.3). The system is discritized using a second
order finite difference method in time and space. For more stability, we implement the conservative scheme
of Lax—Wendroff. for more details, we refer to our previous works [1,11,17]. We examine the following two
tests:

e TEST 1: Based on the result (4.21) of our Theorem, we examine the exponential decay of the energy (4.1)
using the equality condition of the parameters x = 0, given by (1.7). Here, we take all parameters of the
system (2.1) equal to 1.

e TEST 2: In Test 2, we examine the polynomial decay of the energy (4.1) using the parameters condition
x # 0, where the parameters of the system (2.1) are taken as follows u =5; p = 1; § = 0.05; J = 1 and
the remaining parameters are equal to 1.

To ensure the numerical stability of the implemented method and the executed code, we use At <<
0.5dx satisfying the stability condition according to the Courant-Friedrichs—Lewy (CFL) inequality, where d¢
represents the time step and dx the spatial step. The spatial interval [0, 1] is subdivided into 200 subintervals
and the temporal interval [0, 7.] = [0, 1] is deduced from the stability condition above. We run our code for
10,000 time steps using the following initial conditions:

u(x,0) =2sin (wx); ¢(x,0) =2xsin(wx); 0(x,0) = %x(l —x) in[O0, 1]. (6.1)

Under the same initial and boundary conditions mentioned above, we show in Fig. 1 the numerical results
of the exponential decay case. Whereas we present in Fig. 2 the results obtained for the polynomial case. We
show three cross section cuts for the numerical solution (u, ¢, ) at x = 0.25, x = 0.5 and at x = 0.75. For all
components of the solution, the decay behavior is clearly demonstrated for both experiments, the exponential
and the polynomial decays. Moreover, it should be stressed that the graphical presentations are normalized to
ensure a clear comparisons. Therefore, we can clearly compare the energy decay obtained in Test 1 and in Test
2. For this, see Fig. 3.

Finally, we noticed that the case x = 0 ensures an exponential energy decay and, therefore, the decay of
all components of the solution (u, ¢, 6). While the case x # 0 ensures the polynomial decay. But for some
special choices of the system parameters generating the damping speed, we could obtain an exponential-like
decay of the energy and a damped waves similar to the exponential case.

; u (0.25,¢t) ; u(0.5,t) ; u(0.75,1)
o) o o) \/\/\/\AN\ANWNVW
-1 -1 -1
o) 0.5 1 o) 0.5 1 ) 0.5 1
) $ (0.25,¢) ) $ (0.5, 1) ) $ (0.75, 1)
o) ) WJ\/\N\AWW—A o)
-1 -1 -1
o) 0.5 1 o) 0.5 1 ) 0.5 1
0(0.25, 1) ; 0(0.5,1) ; 0(0.75, 1)
°\ o ] °
-1 -1 -1
o) 0.5 1 o) 0.5 1 o) 0.5 1

Fig. 1 TEST 1: cross section cuts of the solution for the exponential decay
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; u(0.25,¢) ; u((0.5,¢) 4 u(0.75,¢)
o o o
-1 -1 -1
o 0.5 1 o 0.5 1 o 0.5 1
; ¢ (0.25,¢) ; $ (0.5, 1) ; ¢ (0.75,t)
o o o
-1 -1 -1
o 0.5 1 o 0.5 1 o 0.5 1
; 0(0.25,¢) ; 0(0.5,1) ; 0(0.75, 1)
o »\\ o o
-1 1 Do -1
o 0.5 1 o 0.5 1 o 0.5 1

Fig. 2 TEST 2: cross section cuts of the solution for the polynomial decay

1 T T T T 1

oo f . 09 .
o8 f . o8 1
o7} 1 07 1
06 1 06 1

Sos | Zes ]
0.4 1 04 1
0.3 . 03 1
0.2 1 02 .
0.1 1 b 0.1 g

00 0.2 0.4 0.6 0.8 1 OO 0.2 0.4 0.6 0.8 1
Time Time
A TEST 1: Exponential decay B TEST 2: Polynomial decay

Fig. 3 Energy function for the exponential and polynomial decays
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