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Abstract For arbitrary monoids A and B, in Cevik et al. (Hacet J Math Stat 2019:1–11, 2019), it has been
recently defined an extended version of the general product under the name of a higher version of Zappa
products for monoids (or generalized general product) A⊕B

δ ��ψ B⊕A and has been introduced an implicit
presentation as well as some theories in terms of finite and infinite cases for this product. The goals of this
paper are to present some algebraic structures such as regularity, inverse property, Green’s relations over this
new generalization, and to investigate some other properties and the product obtained by a left restriction
semigroup and a semilattice.

Mathematics Subject Classification 20E22; 20F05 · 20L05 · 20M05

1 Introduction and preliminaries

The notion of Zappa–Szép products generalizes those of direct and semidirect products; the key property is
that every element of the Zappa–Szép product can be written uniquely as a product of two elements, one from
each factor, in any given order. In the literature, there are some key stone studies on the general product which
is also referred as bilateral semidirect products (see [11]), Zappa products (see [7,12,16,18]) or knit products
(see [1,14]). As a next step of general product, in [4], the same authors of this paper have recently introduced
the generalization of the general product under the name of a higher version of Zappa products for monoids
as in the following:

For arbitrary monoids A and B, it is known that the A×B denotes the Cartesian product of the number of B
copies of the monoid A while the set A⊕B denotes the corresponding direct product. Then a generalization of
the general products (both restricted and unrestricted) of the monoid A⊕B by the monoid B⊕A is defined on

A×B × B×A and A⊕B × B⊕A, respectively, with the multiplication ( f, h)
(
f ′, h′) =

(
f h f ′, h f ′

h′
)
, where

f, f ′ ∈ A⊕B , h, h′ ∈ B⊕A, δ : B⊕A −→ τ
(
A⊕B

)
,
(
f ′) δh =h f ′ and ψ : A⊕B −→ τ

(
B⊕A

)
, (h) ψ f ′ = h f ′
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are defined by, for a ∈ A and b ∈ B, h f ′ =(ha) f ′ and h f ′ = h
(
b f ′)

. Also, for x ∈ A and y ∈ B, we define
(x) ha = (ax) h and (y)b f ′ = (yb) f ′ such that, for all c ∈ A, d ∈ B,

(d)(h
a) f ′ = (

dha
)
f ′ and (c) h

(
b f ′) =

(
b f ′c

)
h

are held. Moreover, for all f, f ′ ∈ A⊕B and h, h′ ∈ B⊕A, the following properties are satisfied:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p1• : (hh′) f =h (h
′
f ) , p2• : h( f f ′) = (h f )(h

f
f ′) ,

p3• : (h f ) f
′ = h( f f ′) , p4• : (hh′) f = h(h

′
f )(h′) f ,

p5• : h1 = 1 , p6• : h1 = h ,

p7• : 1̃ f = f , p8• : 1̃ f = 1̃ .

(1)

It is easy to show that (both restricted and unrestricted) the generalized general product A⊕B
δ ��ψ B⊕A is

a monoid with the identity
(
1, 1̃

)
, where 1 : B −→ A, (b) 1 = 1A and 1̃ : A −→ B, (a) 1̃ = 1B , for all

a ∈ A and b ∈ B. We note that throughout this paper all generalized general products will be assumed to be
restricted. We also note that this above definition of the generalized general product should be considered as
the external generalized general product as similar .

In the remaining parts of this paper, we will first investigate the isomorphism between the internal and
external generalized general products as a generalization of the ordinary general products (in Sect. 2) and then
using the result in this section, we will state and prove some results on regularity as well as inverse property (in
Sect. 3). After that, in Sect. 4, we will study on Green’s relations over this new generalization. Additionally,
in Sect. 5, we will investigate some other properties while the generalized general product obtained by a left
restriction semigroup and a semilattice.

2 Correspondence between internal and external cases

Amonoid M is named as the internal Zappa–Szép product of two submonoids if every element of M admits a
unique factorization as the product of one element of each of the submonoids in a given order. This definition
yields actions of the submonoids on each other that must be structure preserving (see details, for instance, in
[6]). In [17], the author made a detailed investigation between the internal and external Zappa–Szép products
(or equivalently, general products) of any two monoids in terms of general products, and then presented
some results dealing with the isomorphism of internal and external cases. Thus, it is natural to transfer these
decompositions into the generalized general products. In fact, by taking into account the main result of this
section (see Theorem 2.2 below) which is about the isomorphism between internal and external cases, we will
state and prove the regularity over generalized general products of monoids in Sect. 3.

A simple calculation shows that the product A⊕B
δ ��ψ B⊕A cannot be a group in general except the cases

A is a group and B is the trivial group which is not useful for studying the group properties on it since it only
becomes the group A up to isomorphism. However, by keeping our mind A and B are any monoids, we expect
to obtain an equivalence between internal and external generalized general product as in the ordinary general
product of monoids. To do that, we will present the following lemma and theorem which are the generalization
of [11, Proposition 2.1].

Lemma 2.1 Suppose that the monoid M is the internal generalized general product M = A⊕B B⊕A of A⊕B

and B⊕A. Then there is an action of B⊕A on the left of A⊕B and an action of A⊕B on the right of B⊕A such
that p1• - p4• hold in (1) and M ∼= A⊕B

δ ��ψ B⊕A.

Proof Since M = A⊕B B⊕A, each element m ∈ M is uniquely expressible as m = f g with f ∈ A⊕B and
g ∈ B⊕A. We must have unique elements g′ ∈ B⊕A and f ′ ∈ A⊕B such that g f = f ′g′. Writing f ′ = g f
and g′ = g f , we have mutual actions defined by the multiplication

B⊕A × A⊕B −→ A⊕B and B⊕A × A⊕B −→ B⊕A

(g, f ) 	−→ g f (g, f ) 	−→ g f

(see [3] for similar actions). Thus, these actions unique subject to the relation g f = (g f )
(
g f

)
which clearly

gives ( f g)
(
f ′g′) = f

(
g f ′) g f ′

g′ for all f, f ′ ∈ A⊕B and g, g′ ∈ B⊕A. Now, according to the associativity of

123



Arab. J. Math. (2020) 9:727–737 729

the monoid M and the uniqueness property of the decomposition, we certainly obtain the properties p1•–p4•
in (1) for these actions. In detail, by the associativity, we have g

(
f f ′) = (g f ) f ′ that implies

g
(
f f ′) = g (

f f ′) (
g f f ′)

and (g f ) f ′ = (g f
) (

g f
f ′) (

g f
) f ′

.

On the other hand, by uniqueness, we have g
(
f f ′) = (g f )

(
g f

f ′
)
and g( f f

′) = (
g f

) f ′
.

Now, we can form the external generalized general product A⊕B
δ ��ψ B⊕A of A⊕B and B⊕A. Let us

define a map α : M −→ A⊕B
δ ��ψ B⊕A by ( f g) α = ( f, g). Clearly α is well defined, one-to-one and onto.

Since
(
( f g)

(
f ′g′))α =

(
f
(g f ′) g f ′

g′)α =
(
f
(g f ′) , g f ′

g′)

= ( f, g)
(
f ′, g′) = ( f g) α

(
f ′g′)α ,

it is also a homomorphism. Hence, M ∼= A⊕B
δ ��ψ B⊕A, as required. 
�

The following theorem is an extended version of Lemma 2.1.

Theorem 2.2 Let M be a monoid and A⊕B, B⊕A be submonoids of M. Suppose that M = A⊕B B⊕A is the
internal generalized general product of A⊕B and B⊕A. Then there is an action of B⊕A on the left of A⊕B and
an action of A⊕B on the right of B⊕A such that p1•-p8• in (1) hold and also M is isomorphic to the external
generalized general product A⊕B

δ ��ψ B⊕A.

Proof Suppose that M = A⊕B B⊕A is the internal generalized general product of A⊕B and B⊕A. Then by
Lemma 2.1, there is an action of B⊕A on the left of A⊕B and an action of A⊕B on the right of B⊕A such
that the properties p1•-p4• are satisfied. Also, since M = A⊕B B⊕A is a monoid and 1M ∈ A⊕B∩ B⊕A, we
certainly have

(1M )g = g = g(1M ) = (g1M
)
g1M and f (1M ) = f = (1M ) f = (1M f

)
(1M ) f .

Therefore, by uniqueness, the properties p5•-p8• are held as well. Thus we obtain themonoid A⊕B
δ ��ψ B⊕A

as the external generalized general product. With the same approach as in Lemma 2.1, by defining a map
β : M −→ A⊕B

δ ��ψ B⊕A with the rule ( f g) β = ( f, g), it is easy to see that M ∼= A⊕B
δ ��ψ B⊕A.

Conversely, let us consider the external generalized general product M = A⊕B
δ ��ψ B⊕A of the monoids

A⊕B and B⊕A. By denoting two submonoids A⊕B = {
( f, 1̃) : f ∈ A⊕B

}
and B⊕A = {

(1, g) : g ∈ B⊕A
}
of

M and taking into account the maps f 	−→ ( f, 1̃) and g 	−→ (1, g), we can easily see that the submonoids
A⊕B and B⊕A are isomorphic to A⊕B and B⊕A, respectively. Additionally, since each element ( f, g) ∈ M can
be written as a unique decomposition ( f, g) = ( f, 1̃)(1, g), we finally obtain the internal generalized general
product M = A⊕B B⊕A of A⊕B and B⊕A.

Hence, the result. 
�
We note that, for semigroups, there is no such a correspondence between the internal and external general-

ized general products (as proved in Lemma 2.1 and Theorem 2.2) and indeed not even for the general product
as remarked by Brin ([3]). In fact, in Sect. 3, we will use this important correspondence to discuss the regularity
for only monoids by considering the internal generalized general product of monoids which will also be true
for the external generalized general product of monoids.

3 Regularity and inverse properties

In this section, we determine the all criterion when the generalized general product A⊕B
δ ��ψ B⊕A to be a

regular and to be an inverse monoid.
First, we will recall some basic definitions as in the following: a semigroup S is called regular if for each

x ∈ S, there exists an element y ∈ S such that xyx = x and yxy = y ([10]) in which the element y is called
the inverse of x . The set of regular elements of S is denoted by Reg (S) while the set of inverses of the element
x is denoted by V (x). (Remind that the inverse element is not unique in semigroups unless the semigroup is

123



730 Arab. J. Math. (2020) 9:727–737

not an inverse semigroup). A simple fact says that, in a semigroup S, if xyx = x , then y = yxy ∈ V (x) and
so to show the regularity of S, we need only to find an element y such that xyx = x . In addition, an idempotent
in S is an element e ∈ S such that e2 = e and the set of all idempotent elements of S is denoted by E(S).
Clearly, if y ∈ V (x) then xy, yx are idempotents. By Hall’s theorem ([9, Theorem 3.3.3]), S is regular if and
only if the product of any two idempotent element is regular.

Proposition 3.1 If A is a regular monoid and B is a group, then A⊕B
δ ��ψ B⊕A is a regular monoid.

Proof Since A is regular, A⊕B is a regular monoid ([15]) and since B is a group, B⊕A is a group ([13]). For
an element ( f, h) ∈ A⊕B

δ ��ψ B⊕A, where f ∈ A⊕B , h ∈ B⊕A, our aim is to find a suitable element
(g, k) ∈ A⊕B

δ ��ψ B⊕A, where g ∈ A⊕B and k ∈ B⊕A, such that the equality ( f, h) (g, k) ( f, h) = ( f, h)
holds.

Set (g, k) =
(
h−1

f ′,
(
h
h−1

f ′
)−1

)

, where f ′ ∈ V ( f ). Then

( f, h) (g, k) ( f, h) = ( f, h)

(
h−1

f ′,
(
h
h−1

f ′
)−1

)

( f, h)

=
(

f h
(
h−1

f ′) , h
h−1

f ′
(
h
h−1

f ′
)−1

)

( f, h)

p1•=
(
f hh−1

f ′, 1B
)

( f, h)
p7•= (

f 1B f ′, 1B
)
( f, h)

= (
f f ′, 1B

)
( f, h)

p8•=
(
f f ′ 1B f, (1B) f h

)

= (
f f ′ f, h

) = ( f, h)

since f ′ ∈ V ( f ). Thus, ( f, h)

(
h−1

f ′,
(
h
h−1

f ′
)−1

)

( f, h) = ( f, h), and so A⊕B
δ ��ψ B⊕A is regular. 
�

The proof of the following result is quite similar as the proof of Zappa–Szép product (i.e ordinary general
product) version which has been done by Wazzan in [17].

Proposition 3.2 Let A⊕B be a left zero semigroup and B⊕A be a regular semigroup. For all g ∈ B⊕A, suppose
there exists some f ∈ A⊕B such that g f = g and, for all t ∈ A⊕B, suppose there exists some g′ ∈ V (g) such
that

(
g′)t = g′. Therefore, A⊕B

δ ��ψ B⊕A is regular.

In the following theorem, we will present necessary and sufficient conditions on regularity of the monoid
A⊕B

δ ��ψ B⊕A using the method sandwich set which was defined by Howie in [10, Proposition 2.5.1].
We should note that, by Theorem 2.2, since there exists an isomorphism between the internal and external
generalized general products, we will use the internal forms in the proofs of some results at the remaining part
of this section.

Theorem 3.3 For regular monoids A and B, the generalized general product A⊕B
δ ��ψ B⊕A is regular if

and only if f h ∈ Reg
(
A⊕B

δ ��ψ B⊕A
)
for all f ∈ E

(
A⊕B

)
and h ∈ E

(
B⊕A

)
.

Proof By the proof of Proposition 3.1, we know that A⊕B and B⊕A are regular since A and B are regular.
Let us prove the sufficiency part. Now let ( f, h) ∈ A⊕B

δ ��ψ B⊕A, where f ∈ A⊕B and h ∈ B⊕A.
Since both A⊕B and B⊕A are regular, there must exist f ′ ∈ V ( f ) and h′ ∈ V (h) having f ′ f ∈ E

(
A⊕B

)

and hh′ ∈ E
(
B⊕A

)
. Then by keeping our minds the assumption

(
f ′ f

) (
hh′) ∈ Reg

(
A⊕B

δ ��ψ B⊕A
)
, the

sandwich set ([10, Proposition 2.5.1]) of the elements f ′ f and hh′ is defined by

S
(
f ′ f, hh′) =

{
g ∈

[
V

((
f ′ f

) (
hh′)) ∩ E

(
A⊕B

δ ��ψ B⊕A
)]

: g
(
f ′ f

) = (
hh′) g = g

}
.

We aim now to show that this set really exists, and then by [10, Proposition 2.5.3], we will say that the
generalized general product A⊕B

δ ��ψ B⊕A is regular.
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By the assumption
(
f ′ f

) (
hh′) ∈ Reg

(
A⊕B

δ ��ψ B⊕A
)
, we definitely have an element k ∈

V
((

f ′ f
) (
hh′)) such that g = (

hh′) k
(
f ′ f

)
. Then

(
f ′ f

) (
hh′) g

(
f ′ f

) (
hh′) = (

f ′ f
) (
hh′) (

hh′) k
(
f ′ f

) (
f ′ f

) (
hh′)

= (
f ′ f

) (
hh′)2 k

(
f ′ f

)2 (
hh′)

since f ′ f ∈ E
(
A⊕B

)
and hh′ ∈ E

(
B⊕A

)

= (
f ′ f

) (
hh′) k

(
f ′ f

) (
hh′) since k ∈ V

((
f ′ f

) (
hh′))

= (
f ′ f

) (
hh′)

and

g
((

f ′ f
) (
hh′)) g = (

hh′) k
(
f ′ f

) ((
f ′ f

) (
hh′)) (

hh′) k
(
f ′ f

)

= (
hh′) k

(
f ′ f

)2 (
hh′)2 k

(
f ′ f

)

= (
hh′) (

k
(
f ′ f

) (
hh′) k

) (
f ′ f

)

since f ′ f ∈ E
(
A⊕B

)
and hh′ ∈ E

(
B⊕A

)

= (
hh′) k

(
f ′ f

)
since k ∈ V

((
f ′ f

) (
hh′))

= g

which yields g ∈ V
((

f ′ f
) (
hh′)). Moreover,

g2 = (
hh′) k

(
f ′ f

) (
hh′) k

(
f ′ f

) = (
hh′) (

k
(
f ′ f

) (
hh′) k

) (
f ′ f

)

= (
hh′) k

(
f ′ f

) = g

and so g ∈ E
(
A⊕B

δ ��ψ B⊕A
)
. Also we obtain g ∈ V

((
f ′ f

) (
hh′)), since

g
(
f ′ f

) = (
hh′) k

(
f ′ f

) (
f ′ f

) = g and
(
hh′) g = (

hh′) (
hh′) k

(
f ′ f

) = g .

Furthermore, we can write

( f h)
(
h′g f ′) ( f h) = f

(
hh′) g

(
f ′ f

)
h

= f gh since g ∈ V
((

f ′ f
) (
hh′))

= f f ′ f ghh′h since f ′ ∈ V ( f ) , h′ ∈ V (h)

= f
(
f ′ f ghh′) h . (2)

Now, in (2), we have f ′ f ghh′ = f ′ f
(
hh′g f ′ f

)
hh′ = (

f ′ f hh′) g
(
f ′ f hh′) = f ′ f hh′ since g ∈

V
((

f ′ f
) (
hh′)). Then

( f h)
(
h′g f ′) ( f h) = f

(
f ′ f hh′) h = f h and

(
h′g f ′) f h

(
h′g f ′) = h′g2 f ′ = h′g f ′,

and so h′g f ′ ∈ V ( f h). Thus, f h is a regular element which implies that A⊕B
δ ��ψ B⊕A is regular.

The necessity part of the proof is clear. 
�
Corollary 3.4 If A and B are regular and E

(
A⊕B

)
and E

(
B⊕A

)
act trivially, then A⊕B

δ ��ψ B⊕A is
regular.

Proof Let us consider an element ( f, h) ∈ A⊕B
δ ��ψ B⊕A with f ∈ E

(
A⊕B

)
and h ∈ E

(
B⊕A

)
. Since

E
(
A⊕B

)
and E

(
B⊕A

)
act trivially, we get

( f, h) ( f, h) =
(
f
(
h f

)
,
(
h f

)
h
)

= ( f f, hh) = ( f, h)

which implies ( f, h) is an idempotent in A⊕B
δ ��ψ B⊕A. Therefore, ( f, h) ∈ Reg

(
A⊕B

δ ��ψ B⊕A
)
, and

hence A⊕B
δ ��ψ B⊕A is regular. 
�
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In the next theorem, we give necessary conditions for A⊕B
δ ��ψ B⊕A to be an inverse monoid.

Theorem 3.5 A⊕B
δ ��ψ B⊕A is an inverse monoid if

(i) A⊕B and B⊕A are inverse monoids,
(ii) E

(
B⊕A

)
and E

(
B⊕A

)
act trivially,

(iii) for each ( f, h) ∈ A⊕B
δ ��ψ B⊕A, where f ∈ A⊕B and h ∈ B⊕A, the elements f and h act trivially on

each other.

Proof By Corollary 3.4, A⊕B
δ ��ψ B⊕A is regular. Since a regular semigroup is an inverse semigroup if

and only if its idempotents commute, it actually suffices to show that the idempotents of A⊕B
δ ��ψ B⊕A

commutes.
Assume that ( f, h), (g, k) are idempotents of A⊕B

δ ��ψ B⊕A. On the other hand, ( f, h) ( f, h) =
( f, h) = (

f
(
h f

)
, h f h

)
and (g, k) (g, k) = (g, k) = (

g
(
kg

)
, kg k

)
which yield f = f

(
h f

)
, h = h f h and

g = g
(
kg

)
, k = kg k. By (i i i), since f and h as well as g and k act trivially on each others, we get f = f 2,

g = g2, h = h2 and k = k2. But, by (i), since A⊕B and B⊕A are inverse monoids, the idempotents commutes
that is f g = g f ∈ A⊕B and hk = kh ∈ B⊕A. Therefore,

( f, h) (g, k) =
(
f
(
hg

)
, hgk

)

= ( f g, hk) since h and g are idempotents,

they act trivially by (i i)

= (g f, kh) = (g
(
k f

)
, k f h)

= (g, k) ( f, h) .

Thus, A⊕B
δ ��ψ B⊕A is an inverse monoid, as required. 
�

Remark 3.6 There also exists a particular class of regular semigroup, namely coregular semigroups.An element
α of a semigroup S is called coregular if there is a β ∈ S such that α = αβα = βαβ as well as the semigroup S
is called coregular if each element of it is coregular ([2,5]). In fact, we leave the coregularity and its properties
over generalized general products as an open problem for the future studies.

4 Some Green’s relations on generalized general product

Green’s relations R and L on Zappa–Szép products (general products) of semigroups have been first investi-
gated in the paper [11]. Nevertheless, Wazzan ([17]) studied some related results on the same topic as well.

As a next step of the studies in [11,17,20], in this section, we will study on some Green’s relations for
generalized general product A⊕B

δ ��ψ B⊕A.
The following proposition is the generalized version of a result in [11] over semigroups.

Proposition 4.1 Let A⊕B
δ ��ψ B⊕A be the generalized general product of semigroups A⊕B and B⊕A. Then

(i) ( f1, g1)L ( f2, g2) ⇒ g1Lg2 in B⊕A ;
(ii) ( f1, g1)R ( f2, g2) ⇒ f1R f2 in A⊕B .

Proof Suppose ( f1, g1)L ( f2, g2) in A⊕B
δ ��ψ B⊕A. Then there exists any two elements (h1, l1) , (h2, l2) ∈

A⊕B
δ ��ψ B⊕A such that (h1, l1) ( f1, g1) = ( f2, g2) and (h2, l2) ( f2, g2) = ( f1, g1). In other words, we

must have
(
h1

(
l1 f1

)
, l f11 g1

)
= ( f2, g2) and

(
h2

(
l2 f2

)
, l f22 g2

)
= ( f1, g1) ,

which imply h1
(
l1 f1

) = f2, l
f1
1 g1 = g2, h2

(
l2 f2

) = f1 and l
f2
2 g2 = g1. It follows that g1Lg2 in B⊕A. Similar

argument can be discussed for the proof of (i i). 
�
Theorem 4.2 Let A⊕B

δ ��ψ B⊕A be the generalized general product of a monoid A⊕B and a group B⊕A.
Then

( f1, g1)R ( f2, g2) ⇐⇒ f1R f2 in A⊕B .
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Proof The necessity part is clear by Proposition 4.1-(ii).
To prove the sufficiency part, let us suppose that f1R f2 in A⊕B . So there must exist t1 and t2 in A⊕B

such that f1t1 = f2 and f2t2 = f1. To show the existence of ( f1, g1)R ( f2, g2), we have to find (h1, l1)
and (h2, l2) in A⊕B

δ ��ψ B⊕A such that ( f1, g1) (h1, l1) = ( f2, g2) and ( f2, g2) (h2, l2) = ( f1, g1), or
equivalently, f1 (g1h1) = f2, g

h1
1 l1 = g2, f2 (g2h2) = f1 and gh22 l2 = g1. Notice that the second and forth

equalities can also be written as

l1 = (gh11 )−1g2 and l2 = (gh22 )−1g1.

In fact, by setting h1 = g−1
1 t1 and h2 = g−1

2 t2, we obtain

( f1, g1) (h1, l1) = ( f1, g1)

(
g−1
1 t1, (g

g−1
1 t1
1 )−1g2

)

=
(
f1

(
g1

(
g−1
1 t1

))
, g

g−1
1 t1
1 (g

g−1
1 t1
1 )−1g2

)

=
(
f1

((
g1g

−1
1

)

t1

)
, g2

)
= ( f1t1, g2) = ( f2, g2) .

With a similar approximation, we also obtain the equality ( f2, g2) (h2, l2) = ( f1, g1). Therefore,
( f1, g1)R ( f2, g2), as required. 
�
Theorem 4.3 If

(
g−1
1 f1

)
L

(
g−1
2 f2

)
such that (g−1

1 ) f1 = g−1
1 and (g−1

2 ) f2 = g−1
2 in B⊕A, then

( f1, g1)L ( f2, g2) in the product A⊕B
δ ��ψ B⊕A, where A⊕B is a monoid and B⊕A is a group.

Proof Suppose
(
g−1
1 f1

)
L

(
g−1
2 f2

)
holds with its conditions. Then there exist t1 and t2 in A⊕B such that

t1
(
g−1

f1
)

= g−1
2 f2 and t2

(
g−1
2 f2

)
= g−1

1 f1, respectively. In here, clearly f2 = (g2 t1)

(
g
t1
2 g−1

1 f1

)
.

We set (h1, l1) =
(
g2 t1, g

t1
2 g

−1
1

)
and (h2, l2) =

(
g1 t2, g

t2
1 g

−1
2

)
. Then we obtain

(h1, l1) ( f1, g1) =
(
h1

(
l1 f1

)
, l f11 g1

)
=

(
(g2 t1)

(
g
t1
2 g−1

1 f1

)
, (gt12 g

−1
1 ) f1g1

)

=
⎛

⎝ f2, g
t1

(
g−1
1 f1

)

2 (g−1
1 ) f1g1

⎞

⎠ =
(
f2, g

g−1
2 f2
2 g−1

1 g1

)

=
(
f2, ((g

−1
2 ) f2)−1

)
= ( f2, g2) .

Similarly, one can obtain (h2, l2) ( f2, g2) = ( f1, g1). Hence, ( f1, g1)L ( f2, g2) in A⊕B
δ ��ψ B⊕A. 
�

Remark 4.4 It is known that there also exist some other types of Green’s relations. One may study those
relations with their properties over generalized general products for a future project.

5 Generalized general product of a left restriction semigroup by a semilattice

In this section, by considering the generalized general product of a left restriction semigroup with a semilattice
of projections, we will determine some algebraic properties of it. Recall that left restriction semigroups are
a class of semigroups which generalize inverse semigroups. A semigroup S is called a semilattice if all its
elements are idempotents and commute. For inverse semigroups A and B, by [13, Proposition 3], if A and B
are semilattices then A⊕B and B⊕A are semilattices, respectively. On the other hand, an inverse semigroup S
is an unary semigroup

(
S, ·,−1

)
, where −1 represents the inverse unary operation on S.
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Definition 5.1 ([19]) A left restriction semigroup S is a unary semigroup
(
S, ·,+ )

, where (S, ·) is a semigroup
and + is an unary operation such that the following identities hold:

a+a = a, a+b+ = b+a+,
(
a+b

)+ = a+b+ and ab+ = (ab)+ a.

Putting E = {a+ : a ∈ S}, it is easy to see that E becomes a semilattice. These idempotents are called
projections of S and we call E is the semilattice of projections of S. If S is a left restriction semigroup with
semilattice of projections E , then a natural partial order on S is defined by the rule

a ≤ b ⇐⇒ a = eb or, equivalently, a ≤ b ⇐⇒ a = a+b

for some e ∈ E and all a, b ∈ S. We refer the reader to [19] for detailed study on left (right, two sided)
restriction semigroups.

If S is a semigroup and E is a non-empty subset of E (S)which is called the distinguished set of idempotents,
then the relations ≤R̃E

and ≤L̃E
are defined by the rules

a ≤R̃E
b ⇐⇒ {e ∈ E : eb = b} ⊆ {e ∈ E : ea = a} and

a ≤L̃E
b ⇐⇒ {e ∈ E : be = b} ⊆ {e ∈ E : ae = a} ,

respectively, for all a, b ∈ S. It is clear that ≤R̃E
and ≤L̃E

are pre-order on S. The associated equivalence

relations are denoted by R̃E and L̃E . Thus, for any a, b ∈ S, we have aR̃Eb if and only if a and b have the
same set of left identities and aL̃Eb if and only if a and b have the same set of right identities in E .

In fact, this section can be thought as a generalization of the results in [8, Lemmas 4.1.1, 4.1.2 and
Proposition 4.1.4]. We will consider a left restriction semigroup B⊕A with semilattice of projections A⊕B .
By defining a left action of B⊕A on A⊕B and a right action of A⊕B on B⊕A, we will see that A⊕B �� B⊕A

becomes a generalized general product. We will also determine the set of idempotents of A⊕B
δ ��ψ B⊕A.

We will actually see that A⊕B
δ ��ψ B⊕A is not itself left restriction but it contains a subsemigroup which is

left restriction.

Lemma 5.2 Let B⊕A be a left restriction semigroup with semilattice of projections A⊕B . Define an action of
B⊕A on A⊕B by f g = ( f g)+ and an action of A⊕B on B⊕A by f g = f g. Then A⊕B

δ ��ψ B⊕A is the
generalized general product of B⊕A and A⊕B.

Proof To proof this lemma, we need to check these two actions whether they actually satisfy the properties
defined in (1).

For f1, f2 ∈ B⊕A and g ∈ A⊕B , since we have

f1
(
f2g

)
= f1 ( f2g)

+ = (
f1 ( f2g)

+)+ = ( f1 ( f2g))
+ = (( f1 f2)g)

+ = f1 f2g,

condition p1• holds.
Let f ∈ B⊕A and g1, g2 ∈ A⊕B . Then

(
f g1

) (
f g1 g2

)
= ( f g1)

+ (
f g1g2

)
= ( f g1)

+ (( f g1) g2)
+

= (( f g1) g2)
+ using (ab)+ ≤ a+ for any a, b ∈ S

= ( f (g1g2))
+ = f (g1g2) .

Thus, p2• holds.
For f ∈ B⊕A and g1, g2 ∈ A⊕B , we have ( f g1)g2 = ( f g1)g2 = ( f g1) g2 = f (g1g2) = f g1g2 . So p3•

holds.
For f1, f2 ∈ B⊕A and g ∈ A⊕B , we get

f
f2 g
1 f g2 = f ( f2g)+

1 ( f2g) = f1 ( f2g)
+ ( f2g) = f1 ( f2g) = ( f1 f2) g = ( f1 f2)

g .

Thus, p4• holds.
Therefore, A⊕B

δ ��ψ B⊕A is the generalizedgeneral product under thebinaryoperation ( f1, g1) ( f2, g2) =(
f (g1 f2)+ , g1 f2g2

)
, as required. 
�
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We now compute the set of idempotents of A⊕B
δ ��ψ B⊕A, where B⊕A is a left restriction semigroup

with semilattice of projections A⊕B .

Lemma 5.3 Let B⊕A is a left restriction semigroup with semilattice of projections A⊕B. Then

E
(
A⊕B

δ ��ψ B⊕A
)

= {
( f, g) : f ≤ g+, f = f g f

}
.

Moreover, A⊕B = {
( f, f ) : f ∈ A⊕B

}
is a semilattice isomorphic to A⊕B, and if E

(
B⊕A

) = B⊕A then

A⊕B = E
(
A⊕B

δ ��ψ B⊕A
)
.

Proof Let ( f, g) ∈ A⊕B
δ ��ψ B⊕A. Then

( f, g) ∈ E
(
A⊕B

δ ��ψ B⊕A
)

⇔ ( f, g)2 = ( f, g) ⇔ ( f, g) ( f, g) = ( f, g)

⇔ (
f (g f )+ , g f g

) = ( f, g)

⇔ f = f (g f )+ and g = g f g.

Now g = g f g �⇒ gRg f R̃A⊕B (g f )+, so that g+ = (g f )+. Hence,

( f, g) ⇐⇒ (
f g+, g f g

) = ( f, g) ⇐⇒ f ≤ g+ and g f g = g.

Clearly A⊕B ⊆ E
(
A⊕B

δ ��ψ B⊕A
)
, and easy to check that A⊕B is a semilattice isomorphic to A⊕B .

Now, if E
(
B⊕A

) = B⊕A then A⊕B = E
(
A⊕B

δ ��ψ B⊕A
)
. Also, if ( f, g) is an element of

E
(
A⊕B

δ ��ψ B⊕A
)
then we obtain g f = g f g f = (g f )+ = g+ by the equality g = g f g. Thus, we

have g = g f g = (g f ) f g = g+ f g = f g which gives g+ ≤ f . So, since f ≤ g+, it follows that g+ = f . As
a result of that g = g f g = g2 = g+ = f . 
�

As a main result of this section, we now record some properties of the generalized general product of a left
restriction semigroup B⊕A with semilattice of projections A⊕B .

Theorem 5.4 Let us consider the product A⊕B
δ ��ψ B⊕A, where B⊕A is a left restriction semigroup with

semilattice of projections A⊕B, and let ( f, g) ∈ A⊕B
δ ��ψ B⊕A. Then the followings hold:

(a) A⊕B = {
( f, f ) : f ∈ A⊕B

}
is a semilattice isomorphic to E

(
B⊕A

)
;

(b) there is a morphism α : (
A⊕B

δ ��ψ B⊕A
) −→ B⊕A separating the idempotents of A⊕B;

(c) (h, h) ( f, g) = ( f, g) if and only if h f = f and f g = g;
(d) ( f, g) has a left identity in A⊕B if and only if f g = g;⌊

in this case ( f, g) R̃
A⊕B ( f, f ) if and only if f g = g

⌋
;

(e) ( f, g) (l, l) = ( f, g) if and only if f ≤ g+, g = gl;
(f) for ( f, g) ∈ A⊕B

δ ��ψ B⊕A, ( f, g) L̃
A⊕B (l, l), where (l, l) ∈ A⊕B if and only if f ≤ g+ and gL̃A⊕B l;

(g) for some g, l ∈ A⊕B, the relations (h, h) R̃
A⊕B ( f, g) L̃

A⊕B (l, l) implies ( f, g) = (
g+, g

)
. Moreover,

there is a canonical imbedding of B⊕A into A⊕B
δ ��ψ B⊕A under g 	→ (

g+, g
)
.

Proof (a) From Lemma 5.3, we know that A⊕B is a semilattice which is isomorphic to E
(
B⊕A

)
.

(b) Define α : (
A⊕B

δ ��ψ B⊕A
) → B⊕A by ( f, g) α = f g. Clearly α is surjective. Also, for any elements

( f, g), (h, l) ∈ A⊕B
δ ��ψ B⊕A, we write

(( f, g) (h, l)) α = (
f (gh)+ , ghl

)
α = f (gh)+ ghl

= f (gh) l = f ghl = ( f, g) α (h, l) α

so α is a homomorphism. Further, for any ( f, f ), (h, h) ∈ A⊕B , since

( f, f ) α = (h, h) α ⇐⇒ f = h ,

the homomorphism α separates idempotents of A⊕B .
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(c) Let ( f, g) ∈ A⊕B
δ ��ψ B⊕A and (h, h) ∈ A⊕B . Then

(h, h) ( f, g) = ( f, g) ⇔ (h (h f ) , h f g) = ( f, g)

⇔ h f = f and h f g = g

⇔ h f = f and f g = g.

(d) Suppose now ( f, g) R̃
A⊕B ( f, f ). By (c), we have f g = g.

Conversely, if f g = g then ( f, f ) is a left identity of ( f, g) since ( f, f ) ( f, g) = ( f, f g) = ( f, g).
Now suppose that (h, h) ∈ A⊕B exists with (h, h) ( f, g) = ( f, g). Then h f = f by (c), so that we have
(h, h) ( f, f ) = ( f, f ) since A⊕B ∼= A⊕B . Hence, ( f, f ) R̃

A⊕B ( f, g).

(e) For ( f, g) ∈ A⊕B
δ ��ψ B⊕A and (h, h) ∈ A⊕B , we get

( f, g) (h, h) = ( f, g) ⇔ (
f (gh)+ , ghh

) = ( f, g)

⇔ f (gh)+ = f and gh = g

⇔ f ≤ g+ and gh = g .

(f) Let ( f, g) L̃
A⊕B (l, l). Then ( f, g) (l, l) = ( f, g) gives f ≤ g+ and gl = g. Now suppose that gh = g

for some h ∈ A⊕B . Thus ( f, g) (h, h) = (
f (gh)+ , gh

) = ( f, g). Moreover, since ( f, g) L̃
A⊕B (l, l) we

actually obtain (l, l) (h, h) = (l, l). On the other hand, by the isomorphism A⊕B ∼= A⊕B , we have lh = l.
So that gL̃A⊕B l.
Conversely, if f ≤ g+ and gL̃A⊕B l, then gl = g �⇒ ( f, g) (l, l) = ( f, g), and if ( f, g) (h, h) = ( f, g)
then gh = g and so lh = l which gives (l, l) (h, h) = (l, l). Therefore, ( f, g) L̃

A⊕B (l, l).

(g) For some g, l ∈ A⊕B , it is a direct proof to show that

(h, h) R̃
A⊕B ( f, g) L̃

A⊕B (l, l) implies ( f, g) = (
g+, g

)

using (c) and (e). Now suppose S = {(
g+, g

) : g ∈ B⊕A
}
. To prove that S is a subsemigroup of A⊕B

δ ��ψ

B⊕A, let
(
g+, g

)
,
(
f +, f

) ∈ S. Then

(
g+, g

)
,
(
f +, f

) = (
g+ (g f )+ , g f + f

) =
((
g+g f

)+
, g f

)
= (

(g f )+ , g f
) ∈ S.

Obviously, B⊕A ∼= S under g 	→ (
g+, g

)
. Therefore, S is a left restriction subsemigroup of A⊕B

δ ��ψ

B⊕A, where
(
g+, g

)+ =
((
g+)+

, g+
)

∈ S.

Hence, the result. 
�

6 Conclusions

In this paper, we investigated some specific theories such as internal, external, regularity, inverse, and Green’s
relations over generalized general products A⊕B

δ ��ψ B⊕A. Of course, there are still so many different
properties that can be checked on this important product. On the other hand, in Remarks 3.6 and 4.4, we
indicated some problems for the future studies.
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