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Abstract Linearization criteria for two-dimensional systems of second-order ordinary differential equations
(ODEs) have been derived earlier using complex symmetry analysis. For such systems, the linearizable form,
linearization criteria and symmetry group classification are presented. In this paper, we extend the complex
approach to obtain a complex-linearizable form of two-dimensional systems of third-order ODEs. This form
leads to a linearizable class and linearization criteria of these systems of ODEs.

Mathematics Subject Classification 34A05 · 35A24 · 76M60 · 93C15

1 Introduction

There are many methods available to solve differential equations analytically, except for some special cases of
nonlinear ones that do not lend themselves to analytic solution. Those special cases often rely on transformations
of the dependent and independent variables so as to cast the nonlinear equations into linear forms. One can
then solve the transformed linear equations and by the inverse transformation obtain solutions of the nonlinear
equations. This procedure was formalized and developed by Sophus Lie, who extended the Galois idea of
using symmetries of the roots of polynomial equations to differentiable equations. Whereas Galois had used
finite groups Lie required continuously infinite differentiable groups, in particular, one parameter Lie groups of
transformations which are now called Lie groups [10]. Such transformations are called point transformations.
It turned out that one did not need to convert to linear form to use symmetry methods to solve the equations.
However, it is obviously more convenient if they can be so cast. Lie demonstrated that a scalar second-order
ordinary differential equation (ODE) can be linearized if and only if there exist eight linearly independent
infinitesimal symmetry generators [11].
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Though there is a unique class of linearizable second-order scalar ODEs, the same cannot be said for nth
(n > 2) order scalar ODEs or m-dimensional (m ≥ 2) systems of nth (n ≥ 2) order ODEs. Mahomed and
Leach [12] showed that for nth-order linearizable ODEs, for n ≥ 3, there are three classes with n + 1, n + 2
or n + 4 symmetry generators. For m-dimensional systems of second-order ODEs, there are m + 3 classes,
for example in case of two-dimensional linearizable systems of second-order ODEs there are five classes with
5, 6, 7, 8 or 15 symmetry generators. However, there is no classification available for linearizable systems of
nth-order (n > 3) ODEs. As such, any progress towards canonically linearizing third-order systems is very
useful, even if it is not a fully general canonical form of these systems of ODEs. In this paper, we present such
a procedure for linearization of two-dimensional systems of third-order ODEs, based on complex methods for
Lie symmetry analysis.

The plan of the paper is as follows. In the next section, a very quick review of linearization of second
and higher order scalar ODEs by point transformations and of complex symmetry analysis is given. In the
third section, complex methods are used to obtain complex linearizable two-dimensional systems of third-
order ODEs that are then linearized. Examples are provided in fourth section. The subsequent section is on
conclusion.

2 Preliminaries

Scalar first-orderODEs can always be linearized by point transformations. However, scalar second-orderODEs
are linearizable if they are at most cubic in the first derivative of the dependent variable, u(x),

u′′ = A(x, u)u′3 + B(x, u)u′2 + C(x, u)u′ + D(x, u) = 0, (1)

where A, B,C, D satisfy (see, e.g [13]) a set of four first-order constraints containing these coefficients and
two auxiliary functions. Tressè [20] reduced them to two second-order conditions

3Axx + 3AxC − 3AuD + 3ACx + Cuu − 6ADu + BCu − 2BBx − 2Bxu = 0,

6Ax D − 3BuD + 3ADx + Bxx − 2Cxu − 3BDu + 3Duu + 2CCu − BxC = 0, (2)

where x and u in the subscripts denote partial derivatives with respect to these variables. We call (1) Lie
linearizable. Chern [5] and Grebot [7] considered scalar third-order ODEs to derive linearizability criteria and
investigate their geometry. To be Lie linearizable scalar second-order nonlinear ODEs must have eight Lie
point symmetries. For scalar linearizable ODEs of order n ≥ 3, it was proved that there are three equivalence
classes with n + 1, n + 2 or n + 4 infinitesimal symmetry generators [12]. Neut and Petitot [16] considered
general third-order ODEs to provide linearization criteria. Ibragimov and Meleshko (IM) [8] used the Lie
procedure [11] of point transformations to determine Lie linearizability criteria for third-order ODEs. They
showed that any third-order ODE u′′′ = f (x; u, u′, u′′), obtained from a linear equation

s′′′(t) + κ(t)s(t) = 0, (3)

by means of point transformations

t = ϕ(x, u), s = ψ(x, u), (4)

must belong to one of the following two types of equations.
Type I: If ϕu = 0, i.e.

t = ϕ(x), s = ψ(x, u), (5)

then the Lie linearizable form of the third-order ODE is

u′′′ + (a1u
′ + a0)u

′′ + b3u
′3 + b2u

′2 + b1u
′ + b0 = 0, (6)

where the coefficients a j , bk for j = 0, 1, k = 0, 1, 2, 3, are functions of x and u. Equation (6) is reducible
to (3) if a j , bk satisfy the following conditions:
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a0u − a1x = 0, (3b1 − a0
2 − 3a0x )u = 0,

3a1x + a0a1 − 3b2 = 0, 3a1u + a1
2 − 9b3 = 0,

(9b1 − 6a0x − 2a0
2)a1x + 9(b1x − a1b0)u + 3b1ua0 − 27b0uu = 0, (7)

where u and x in the subscripts denote partial derivatives.
Type II: If ϕu �= 0, setting λ(x, u) = ϕx/ϕu , leads us to the following linearizable form

u′′′ + 1

u′ + λ
[−3(u′′)2 + (c2u

′2 + c1u
′ + c0)u

′′ + d5u
′5

+ d4u
′4 + d3u

′3 + d2u
′2 + d1u

′ + d0] = 0, (8)

where all coefficients cl , dm for l = 0, 1, 2 andm = 0, 1, . . . , 5, are functions of x and u. Third-order ODEs of
the form (8) are reducible to (3) subject to the linearization constraint requirements given in [8]. Subsequently,
Ibragimov, Meleshko and Suksern [9,19] used point and contact transformations to determine criteria for
linearizability of scalar fourth-order ODEs.

In [4], linearization criteria for a two-dimensional system of second-order ODEs under general point
transformations were obtained. The necessary and sufficient conditions for a system of second-order ODEs
to be equivalent to a linear system with constant coefficients via fibre preserving point transformations were
provided in [17]. Similarly, a few other approaches, e.g. geometric and algebraic methods, etc. have been
adopted to linearize two-dimensional systems of second-order ODEs [14,15,18,21].

Considering the dependent variable as a complex analytic function of a complex independent variable
and writing them in terms of their real and imaginary parts with the Cauchy–Riemann (CR) equations for
analyticity, we could write a scalar ODE of any order as a pair of PDEs of the same order, subject to the two
(CR) first-order constraints. The symmetries of the resulting system are different from the symmetries of the
original ODE. Lie symmetry analysis using this complex splitting has been called complex symmetry analysis
(CSA) [1,2]. Taking x to be real and u(x) = y1(x) + iy2(x), for an nth order scalar ODE

u(n) = ω(x; u, u′, u′′, . . . , u(n−1)), (9)

we obtain the two-dimensional system of ODEs

y(n)
1 = ω1(x; y1, y2, y′

1, y
′
2, . . . , y

(n−1)
1 , y(n−1)

2 ),

y(n)
2 = ω2(x; y1, y2, y′

1, y
′
2, . . . , y

(n−1)
1 , y(n−1)

2 ). (10)

Linearizability of such systems implies linearizability of the complex scalar equation constructed from it; the
converse is not true; linearizability of the complex scalar equation does not imply linearizability of the system
[3]. If the scalar ODE is linearizable and the resulting system is also linearizable, this procedure is called
complex linearization. The complex-linearization criteria for two-dimensional system of second-order ODEs
have been constructed [6]. The major role in the construction is of the real linearizing transformations that
must be of the form

x̂ = φ(x), ŷp = ψp(x; y1, y2, . . . , yn), p = 1, 2, . . . , n, (11)

where the ψ j satisfy the CR conditions. Linearizability of two-dimensional systems of second-order ODEs
cannot be achieved by CSA if the linearizing point transformations are more general than (11). Here, we use
these fibre preserving transformationswithCR structure to obtain the linearizable formand linearization criteria
for two-dimensional systems of third-order ODEs.We exploit complex-linearization for studying linearization
of systems of third-order ODEs, as it provides us means to address those linearization problems which cannot
be dealt with using classical symmetry analysis. Moreover, derivation of the linearization criteria becomes
complicated with an increase in the order of ODEs and dimensions of their systems. In this paper, complex
linearization criteria are derived which led to linearization of a class of systems of third-order ODEs that can
be linearized without the usual cumbersome calculations associated.
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3 Linearization of two-dimensional systems of third-order ODEs

Not all two-dimensional systems of ODEs will correspond to complex scalar equations as the system must
also possess the CR structure. We will use the splitting procedure for the scalar third-order ODE (6). Splitting
the coefficients in that equation as:

a j (x, u) = α j (x, y, z) + iβ j (x, y, z); ( j = 0, 1),

bk(x, u) = γk(x, y, z) + iδk(x, y, z); (k = 0, 1, 2, 3), (12)

converts it to a system of two third-order ODEs. Here, we consider linearization of those systems that are
obtainable from (6). Using u(x) = y(x) + i z(x) and (12) in (6) yields the following system:

y′′′ + (α1y
′ − β1z

′ + α0)y
′′ − (β1y

′ + α1z
′ + β0)z

′′ + γ3y
′3 − 3δ3y

′2z′

−3γ3y
′z′2 + δ3z

′3 + γ2y
′2 − 2δ2y

′z′ − γ2z
′2 + γ1y

′ − δ1z
′ + γ0 = 0,

z′′′ + (β1y
′ + α1z

′ + β0)y
′′ + (α1y

′ − β1z
′ + α0)z

′′ + δ3y
′3 + 3γ3y

′2z′

−3δ3y
′z′2 − γ3z

′3 + δ2y
′2 + 2γ2y

′z′ − δ2z
′2 + δ1y

′ + γ1z
′ + δ0 = 0, (13)

where the coefficients α j , β j ; ( j = 0, 1), γk, δk; (k = 0, 1, 2, 3), satisfy the following CR-equations

α j y = β j z, α j z = −β j y; ( j = 0, 1)

γky = δkz, γkz = −δky; (k = 0, 1, 2, 3). (14)

This procedure leads to the following theorems.

Theorem 1 The system of ODEs (13) with the CR equations (14) represents the most general form of two-
dimensional systems of third-order ODEs that can be a candidate of linearization due to complex symmetry
analysis.

Proof This result follows from [6], that is, by incorporating point transformations

t = ϕ(x), v = ψ1(x, y, z), w = ψ2(x, y, z), (15)

with the CR structure

ψ1y = ψ2z, ψ1z = −ψ2y, (16)

in the system

v′′′(t) + κ1(t)v(t) − κ2(t)w(t) = 0,

w′′′(t) + κ2(t)v(t) + κ1(t)w(t) = 0, (17)

that corresponds to (3) when s(t) = v(t)+ iw(t) and κ = κ1(t)+ iκ2(t), we obtain the most general complex
linearizable form (13). ��
Theorem 2 The sufficient conditions for a two-dimensional system of third-order ODEs of the form (13) to be
linearizable are: the coefficients satisfy CR equations (14) and the following conditions

α0y + β0z − 2α1x = 0, β0y − α0z − 2β1x = 0,

3α1x + α0α1 − β0β1 − 3γ2 = 0, 3β1x + α0β1 + α1β0 − 3δ2 = 0,

3α1y + 3β1z + 2α2
1 − 2β2

1 − 18γ3 = 0, 3β1y − 3α1z + 4α1β1 − 18δ3 = 0,

3γ1y + 3δ1z − 2(α0β0)z − (α0)
2
y + (β0)

2
y − 3β0xz − 3α0xy = 0,

3δ1y − 3γ1z − 2(α0β0)y + (α0)
2
z − (β0)

2
z − 3β0xy + 3α0xz = 0,

4(9γ1 − 6α0x − 2α2
0 + 2β2

0 )α1x − 4(9δ1 − 6β0x − 4α0β0)β1x + 18γ1xy + 18δ1xz − 18(α1γ0)y

+18(β1δ0)y − 18(α1δ0)z − 18(β1γ0)z + 6(γ1yα0 + δ1zα0 + γ1zβ0 − δ1yβ0)

−27(γ0yy + 2δ0yz − γ0zz) = 0,

4(9γ1 − 6α0x − 2α2
0 + 2β2

0 )β1x + 4(9δ1 − 6β0x − 4α0β0)α1x − 18γ1xz + 18δ1xy + 18(α1γ0)z

−18(β1δ0)z − 18(α1δ0)y − 18(β1γ0)y + 6(γ1yβ0 + δ1zβ0 − γ1zα0 + δ1yα0)

−27(δ0yy − 2γ0zy − δ0zz) = 0. (18)
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Proof Linearization criteria for two-dimensional systems of second-order ODEs with CR structure, by point
transformations of the form (15) along with the CR constraints (16), were derived in [6], where it was shown
that splitting the criteria for the base complex equations due to complex transformations (5) into the real and
imaginary parts provides the sufficient conditions for linearization of the corresponding systems. Similarly,
linearization criteria for two-dimensional systems of third-order ODEs (13) along with (14) are provided by
splitting the linearization criteria (7) for the scalar third-order ODEs.

The scalar third-order ODEs of the form (8) and their associated linearization criteria cannot be extended
to linearization criteria of the corresponding system of third-order equations. This class of scalar third-order
ODEs (8) has been derived by exploiting general point transformations (4) that leads to complex linearization
instead of linearization [6]. The linearizing conditions associated with this class of scalar equations reveal
complex linearizability of the corresponding systems rather than ensuring there transformation to linear forms.
However, complex linearizability of systems ensures linearization of the base complex equations. ��

4 Applications

In this section, we present applications of the theory developed, i.e. demonstrate linearization of two-
dimensional systems of third-order ODEs of the form (13) using complex symmetry analysis approach. The
examples are for illustrative purposes to show how the conditions are checked and the solution obtained, and
are not obtained from applications elsewhere.

Example 1 Consider the two-dimensional system of nonlinear third-order ODEs

y′′′ +
(
3y′ + 3

x

)
y′′ − 3z′z′′ + y′3 − 3y′z′2 + 3

x
y′2 − 3

x
z′2 = 0,

z′′′ + 3z′y′′ +
(
3y′ + 3

x

)
z′′ + 3y′2z′ − z′3 + 6

x
y′z′ = 0. (19)

The non-zero coefficients are

α1 = 3, α0 = 3

x
, γ3 = δ3 = 1, γ2 = 3

x
.

The above system is of the form (13) and its coefficients satisfy the CR equations and the constraints (18).
Hence, it is linearizable and transforms to

v′′′ = 0, w′′′ = 0, (20)

where prime denotes differentiation with respect to t , under an invertible transformation of the independent
and dependent variables

t = x, v = xey cos z, w = xey sin z. (21)

The solution of (20) is

v = c1t
2 + c2t + c3, w = c4t

2 + c5t + c6,

where all c1 . . . , c6 are arbitrary constants. Using transformation (21), we obtain the general solution

y = 1

2
ln

[(
c1x + c2 + c3

x

)2 +
(
c4x + c5 + c6

x

)2]
, z = arctan

(
c4x2 + c5x + c6
c1x2 + c2x + c3

)
,

of the nonlinear system (19).

Example 2 The two-dimensional system of nonlinear third-order ODEs

y′′′ +
(
3y′y′′ − 3z′z′′

y2 + z2

)
y +

(
3z′y′′ + 3y′z′′

y2 + z2

)
z = 0,

z′′′ +
(
3z′y′′ + 3y′z′′

y2 + z2

)
y −

(
3y′z′′ − 3z′y′′

y2 + z2

)
z = 0, (22)
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has the same form as given in (13). Moreover, its non-zero coefficients

α1 = 3y

y2 + z2
, β1 = −3z

y2 + z2
,

satisfy the requirements of Theorem 2. So this system is transformable to a linear system

v′′′ = 0, w′′′ = 0. (23)

The linearizing transformations used in this case are

t = x, v = y2 − z2, w = 2yz. (24)

The solution of (23) is given by

v = c1t
2 + c2t + c3, w = c4t

2 + c5t + c6,

where all c1 . . . , c6 are arbitrary constants. By using the transformation (24), we get the general solution of
(22) in the implicit form

y2 − z2 = c1x
2 + c2x + c3, 2yz = c4x

2 + c5x + c6.

It leads us to general solution in the explicit form

y = ±1√
2

√√
(c1x2 + c2x + c3)2 + (c4x2 + c5x + c6)2 + (c1x2 + c2x + c3),

z = ±1√
2

√√
(c1x2 + c2x + c3)2 + (c4x2 + c5x + c6)2 − (c1x2 + c2x + c3).

Example 3 Consider the nonlinear system of third-order ODEs

y′′′ +
(

3yy′

y2 + z2
+ 3zz′

y2 + z2
− 3

)
y′′ −

(
− 3zy′

y2 + z2
+ 3yz′

y2 + z2

)
z′′

− 3yz′2

y2 + z2
− 6zy′z′

y2 + z2
+ 3yz′2

y2 + z2
+ 2y′ + 3y = 0,

z′′′ +
(

− 3zy′

y2 + z2
+ 3yz′

y2 + z2

)
y′′ −

(
3yz′

y2 + z2
+ 3zz′

y2 + z2
− 3

)
z′′

+ 3zy′2

y2 + z2
− 6yy′z′

y2 + z2
− 3zz′2

y2 + z2
+ 2z′ + 3z = 0. (25)

The coefficients

α1 = 3y

y2 + z2
, α0 = −3, β1 = −3z

y2 + z2
, γ2 = −3y

y2 + z2
,

γ1 = 2, γ0 = 3y, δ2 = 3y

y2 + z2
, δ0 = 3z, γ3 = δ3 = δ1 = β0 = 0. (26)

satisfy the CR equations and (18). Hence, (25) is transformable to a linear system of third-order ODEs. It
linearizes to

v′′′ + 6

t3
v = 0, w′′′ + 6

t3
w = 0, (27)

where prime denotes differentiation with respect to t . The linearizing transformations which establish the
above correspondence between the nonlinear and linear systems are

t = ex , v = y2 − z2, w = 2yz. (28)

The solution of (27) is
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v = c1t
−1 + t2

{
c2 cos(

√
2 ln t) + c3 sin(

√
2 ln t)

}
,

w = c4t
−1 + t2

{
c5 cos(

√
2 ln t) + c6 sin(

√
2 ln t)

}
, (29)

where all c1 . . . , c6 are arbitrary constants. By employing transformation (28), the general solution of (25) is
given explicitly by

y = ±1√
2

[√[
c1e−x + e2x {c2 cos(

√
2x) + c3 sin(

√
2x)}

]2 +
[
c4e−x + e2x {c5 cos(

√
2x) + c6 sin(

√
2x)}

]2

+c1e
−x + e2x {c2 cos(

√
2x) + c3 sin(

√
2x)}

] 1
2
,

z = ±1√
2

[√[
c1e−x + e2x {c2 cos(

√
2x) + c3 sin(

√
2x)}

]2 +
[
c4e−x + e2x {c5 cos(

√
2x) + c6 sin(

√
2x)}

]2

−c1e
−x − e2x {c2 cos(

√
2x) + c3 sin(

√
2x)}

] 1
2
.

Example 4 The nonlinear system of ODEs

y′′′ + 3(1 + y′)y′′ − z′z′′ + y′3 − 3y′z′2 + 3y′2 − 3z′2 + 3y′ + (1 + x) = 0,

z′′′ + 3(1 + y′)z′′ + 3z′y′′ + z′3 + 3y′2z′ + 6y′z′ + 3z′ = 0,

satisfies conditions of Theorems 1 and 2, which guarantee its transformation to a linear form. The linearizing
transformation is

t = x, y = 1

2
ln(v2 + w2) − x, z = arctan

(w

v

)
,

that brings the nonlinear system to a linear form

v′′′ + tv = 0 , w′′′ + tw = 0.

5 Conclusion

We have used CSA to linearize a class of two-dimensional systems of third-order ODEs which can be obtained
from a scalar third-order Lie linearizable ODE. This class has a CR structure. The linearization is achieved
fairly trivially this way. Trying to linearizewithout recourse to CSA, the process ismuchmore difficult. It would
be worth exploring the case of systems of non-linearizable third-order ODEs corresponding to a linearizable
third-order scalar ODE. If it behaves in a way similar to the second-order systems of this type, it should lead
to cases where the system has no symmetry but the solution is obtainable by “complex linearization”. It would
also be worth while to extend this analysis to fourth and higher orders.
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