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Abstract In this paper, we investigate the complex dynamics of three-dimensional Ricker-type discrete-
time competition model. We discuss the existence and uniqueness, and find parametric conditions for
local asymptotic stability of positive fixed point of this model. It is also proved that the system under-
goes Neimark–Sacker (NS) and period-doubling bifurcation (PDB) at certain parametric values for posi-
tive fixed point with the help of an explicit criterion for NS and PDB. The system shows chaotic dynamics
at increasing values of bifurcation parameter. To control the chaos, we apply the hybrid control method-
ology. Finally, numerical simulations are provided to illustrate the theoretical discussions. These results
of numerical simulations show chaotic long-term behavior over a broad range of parameters. The com-
putation of the maximum Lyapunov exponents confirms the presence of chaotic behavior in the model.
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Abbreviation

MLE Maximum Lyapunov exponents
PDB Period-doubling bifurcation
NSB Neimark–Sacker bifurcation

1 Introduction

Difference and differential equations have been used to study a wide range of populationmodels. Discrete-time
systems may have favorable properties for simulations and mathematical analysis [1,2]. On the other hand,
continuous systems are more realistic for ecological applications in which there is a strong overlap between
generations (such as in microbial ecosystems). When the population remains constant over a generation or
remains small over a number of generations, it would seem that the dynamics of the population is best described
by discrete-time models [3,4]. Difference equations are used in modeling the interactions of species with non-
overlapping generations which are more suitable to study the behavior of population models [5–8]. Recently,
discrete-time models are frequently implemented to study the complex and chaotic behavior of dynamical
systems. For more detail, we refer the interested readers to [9–13].
Due to extremely complex dynamics, it may be very difficult to predict the comprehensive qualitative behavior
even for single species [14,15]. In this article, we discuss the dynamics of a discrete-time system of three
competing species, which is analogous to theMay–Leonard differential equation model and is given as follows
[16]:

xn+1 = xne
r(1−xn−ayn−bzn),

yn+1 = yne
r(1−yn−azn−bxn),

zn+1 = zne
r(1−zn−axn−byn). (1)

In this symmetric model, three species have the same intrinsic growth rate r > 0. Moreover, we assume that
the competition coefficients a and b for the discrete system (1) satisfy the condition that 0 < a < 1 < b. This
assumption guarantees the competition among the three species.
The general form of symmetric model (1) was proposed by Hofbauer et al. [17]. The aforementioned System
(1) models the scramble competition among the competing species. The exponential terms model the effects
of population density on vital rates. For example, the exponential term of the first equation of (1), that is,
er(1−xn−ayn−bzn), denotes the per unit timeproductionof species xn in the presenceof other species.Competition
comes from the fact that the increase of other species will decrease one species production. When the intrinsic
growth rate r is high, then System (1) shows more complex behavior due to the complicated nature of the
Ricker equations.
To help us understand the biological meaning of the competition parameters a and b of System (1), we consider
B = b − 1 to be the dominant factor and A = 1 − a to be the sub-dominant factor with respect to all three
species. For example, in the first equation of (1), B = b−1 > 0 is the dominant factor of zn with respect to xn
and A = 1 − a > 0 is the sub-dominant factor of yn with respect to xn . Therefore, when the dominant factor
is less than the sub-dominant factor, none of the three species are dominant and the three species approach the
fixed point. On the other hand, if the dominant factor is greater than the sub-dominant factor, the three species
take turns becoming the dominant species.
Our purpose is to study the local asymptotic stability, and NS and PDB of unique positive fixed point of System
(1). To control the chaos due to emergence of PDB and NS bifurcations, hybrid control method is implemented
to System (1).

2 Existence of positive fixed point

In this section, we study the existence and uniqueness of interior fixed point of System (1). First, we consider
the possible fixed points of System (1), which can easily obtained by solving the equations of given system.
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Then, it is easy to see that the discrete system (1) has four boundary fixed points E1 = (0, 0, 0), E2 = (1, 0, 0),
E3 = (0, 1, 0), and E4 = (0, 0, 1). System (1) has no boundary fixed point with two positive components
[16].

Lemma 2.1 There exists a unique positive fixed point E∗ = (x∗, y∗, z∗) of System (1) for 0 < a < 1 < b.

Proof The equilibrium point can be obtained by solving following system:

x∗ = x∗er(1−x∗−ay∗−bz∗),

y∗ = y∗er(1−y∗−az∗−bx∗),

z∗ = z∗er(1−z∗−ax∗−by∗).

Neglecting the trivial and boundary equilibria, we are left with

x∗ + ay∗ + bz∗ = 1,

y∗ + az∗ + bx∗ = 1,

z∗ + ax∗ + by∗ = 1. (2)

From aforementioned system, we get

x∗(1 − ab) + y∗(a − b2) = 1 − b,

x∗(b − a2) + y∗(1 − ab) = 1 − a. (3)

Solving (2) and (3), we obtain x∗ = 1
1+a+b , y

∗ = 1
1+a+b , and z∗ = 1

1+a+b .

Hence, System (1) has a unique positive fixed point given by: E∗ = (x∗, y∗, z∗) = ( 1
1+a+b , 1

1+a+b , 1
1+a+b ).

��

3 Linearized stability of unique positive fixed point

Let E∗ = (x∗, y∗, z∗) be a positive fixed point of System (1). Then the Jacobian matrix for (1) evaluated at
this point is given by

J (x∗, y∗, z∗) =
⎡
⎣
1 − x∗r −x∗ra −x∗rb
−y∗rb 1 − y∗r −y∗ra
−z∗ra −z∗rb 1 − z∗r

⎤
⎦ .

The characteristic polynomial of J (x∗, y∗, z∗) is given by:

P(λ) = λ3 + C1λ
2 + C2λ + C3, (4)

where

C1 = [
r(x∗ + y∗ + z∗) − 3

]
,

C2 = [
r2ab(−x∗y∗ − x∗z∗ − y∗z∗) + r2(x∗y∗ + x∗z∗ + y∗z∗) + 2r(−x∗ − y∗ − z∗) + 3

]
,

C3 = r3x∗y∗z∗(a3 + b3 − 3ab + 1) + r2ab(x∗y∗ + x∗z∗ + y∗z∗) − r2(x∗y∗ + x∗z∗ + y∗z∗)
+r(x∗ + y∗ + z∗) − 1. (5)

To study the linear stability analysis of unique positive fixed point of System (1), we have the following
Theorem 3.1 [18].

Theorem 3.1 [Jury condition] Consider the third-degree polynomial equation:

λ3 + C1λ
2 + C2λ + C3 = 0, (6)
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where C1,C2, and C3 are real numbers. Then, necessary and sufficient conditions that all the roots of Eq. (6)
lie in an open disk|λ| < 1 are:

|C1 + C3| < 1 + C2, |C1 − 3C3| < 3 − C2, and C2
3 + C2 − C3C1 < 1.

Theorem 3.2 The unique positive fixed point E∗ = (x∗, y∗, z∗) = ( 1
1+a+b , 1

1+a+b , 1
1+a+b ) of System (1) is

locally asymptotically stable for 0 < a < 1 < b if the following conditions are satisfied:

|C1 + C3| < 1 + C2,

|C1 − 3C3| < 3 − C2,

C2
3 + C2 − C3C1 < 1, (7)

where

C1 = 3r

1 + a + b
− 3,

C2 = r2

(1 + a + b)2

(
− 3ab − 3 + 6(1 + a + b)

r
− 3(1 + a + b)2

r2

)

and

C3 = r3

(1 + a + b)3

(
a3 + b3 − 3ab + 1

)
+ r2

(1 + a + b)2

(
3ab − 3

)
+ 3r

(1 + a + b)
− 1. (8)

Proof The Jacobian matrix for System (1) evaluated at
( 1
1+a+b , 1

1+a+b , 1
1+a+b

)
is given by:

J (x∗, y∗, z∗) =
⎡
⎢⎣
1 − r

1+a+b
−ra

1+a+b
−rb

1+a+b−rb
1+a+b 1 − r

1+a+b
−ra

1+a+b−ra
1+a+b

−rb
1+a+b 1 − r

1+a+b

⎤
⎥⎦ .

The characteristic polynomial for aforementioned matrix is computed as follows:

P(λ) = λ3 + C1λ
2 + C2λ + C3, (9)

where

C1 = 3r
1+a+b − 3,

C2 = r2

(1+a+b)2

(
− 3ab − 3 + 6(1+a+b)

r − 3(1+a+b)2

r2

)
,

and

C3 = r3

(1 + a + b)3

(
a3 + b3 − 3ab + 1

)
+ r2

(1 + a + b)2

(
3ab − 3

)
+ 3r

(1 + a + b)
− 1. (10)

Now, applying Theorem 3.1, the positive fixed point
( 1
1+a+b , 1

1+a+b , 1
1+a+b

)
is locally asymptotically stable

for 0 < a < 1 < b, if the following conditions are satisfied:

|C1 + C3| < 1 + C2,

|C1 − 3C3| < 3 − C2,

and

C2
3 + C2 − C3C1 < 1.

��
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4 Bifurcation analysis

In this section, we investigate the parametric conditions for the existence of NS and PDB at the positive fixed
point (x∗, y∗, z∗) of System (1). Recently, many authors have discussed similar type of bifurcation analysis
for discrete-time dynamical systems. For more detail on bifurcation analysis, we refer the interested readers
to [19–21].

In dynamical systems, when a particular parameter passes through its critical value, various types of
bifurcations emerge from its fixed point. Many dynamical properties of a system can be discussed owing
to emergence of NS and PDB. Bifurcation usually occurs when the stability of a fixed point changes, i.e.,
qualitative properties of a dynamical system change.

We discuss NS and PDB for the positive fixed point
( 1
1+a+b , 1

1+a+b , 1
1+a+b

)
of System (1) using an explicit

criterion and taking r as a bifurcation parameter. Due to emergence of Neimark–Sacker bifurcation, closed
invariant circles are produced. Equivalently, one can find some isolated orbits of periodic behavior along with
trajectories that cover the invariant circle densely [22]. The bifurcation can be super-critical or sub-critical,
resulting in a stable or unstable closed invariant curve, respectively. A period-doubling bifurcation in a discrete
dynamical system is a bifurcation in which a slight change in a parameter value leads to the system switching
to a new behavior with twice the period of the original system.

4.1 Neimark–Sacker bifurcation

To study the NSB in System (1), we need the following explicit criterion of Hopf bifurcation [23,24].

Lemma 4.1 Consider an n-dimensional discrete dynamical system Xk+1 = fr (Xk), where r ∈ IR is a
bifurcation parameter. Let X∗ be a fixed point of fr and the characteristic polynomial for Jacobian matrix
J (X∗) = (ci j )n×n of n-dimensional map fr (Xk) is given by:

Pr (λ) = λn + c1λ
n−1 + · · · + cn−1λ + cn, (11)

where ci = ci (r, u), i = 1, 2, 3, . . . , n and u is control parameter or another parameter to be determined. Let
�±

o (r, u) = 1, �±
1 (r, u), . . . , �±

n (r, u) be a sequence of determinants defined by �±
i (r, u) = det(M1 ± M2),

i = 1, 2, 3, . . . , n, where

M1 =

⎡
⎢⎢⎢⎢⎣

1 c1 c2 . . . ci−1
0 1 c1 . . . ci−2
0 0 1 . . . ci−3
. . . . . . . . . . . . . . .
0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎦

, M2 =

⎡
⎢⎢⎢⎢⎣

cn−i+1 cn−i+2 . . . cn−1 cn
cn−i+2 cn−i+3 . . . cn 0

. . . . . . . . . . . . . . .
cn−1 cn . . . 0 0
cn 0 . . . 0 0

⎤
⎥⎥⎥⎥⎦

. (12)

Moreover, the following conditions hold:
H1Eigenvalue assignment:�−

n−1(ro, u) = 0,�+
n−1(ro, u) > 0, Pro(1) > 0, (−1)n Pro(−1) > 0,�±

i (ro, u) >
0, i = n − 3, n − 5, , , 1(or 2), when n is even or odd, respectively.

H2 Transversality condition:

[
d
(
�−

n−1(r,u)
)

dr

]

r=ro

�= 0.

H3 Non-resonance condition: cos(2π/m) �= ψ , or resonance condition cos(2π/m) = ψ , where m =
3, 4, 5, . . . , and ψ = −1 + 0.5Pro(1)�

−
n−3(ro, u)/�+

n−2(ro, u). Then, Neimark–Sacker bifurcation occurs
at ro.
The following result shows that System (1) undergoes NSB if we take r as bifurcation parameter.

Theorem 4.1 The unique positive equilibrium point (x∗, y∗, z∗) of System (1) undergoes NSB for 0 < a <
1 < b if the following conditions hold:

1 − C2 + C3(C1 − C3) = 0,

1 + C2 − C3(C1 + C3) > 0,

1 + C1 + C2 + C3 > 0,

1 − C1 + C2 − C3 > 0, (13)

where C1,C2, and C3 are given in (10).
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Proof According to Lemma (4.1), for three-dimensional system (n = 3), we have the characteristic polynomial
(9) of System (1) evaluated at its unique positive equilibrium point (x∗, y∗, z∗). Then we obtain the following
equalities and inequalities:

�−
2 (r) = 1 − C2 + C3(C1 − C3) = 0,

�+
2 (r) = 1 + C2 − C3(C1 + C3) > 0,

Pr (1) = 1 + C1 + C2 + C3 > 0,

(−1)3Pr (−1) = 1 − C1 + C2 − C3 > 0. (14)

��

4.2 Period-doubling bifurcation

An explicit critical criterion for the existence of PDB is proposed for higher dimensional discrete-time systems
[25].
Consider an n-dimensional discrete dynamical system Xk+1 = fr (Xk), where Xk+1, Xk ∈ IRn are the state
vectors, k is the iterative index, and r ∈ IR is a bifurcation parameter. Let X∗ be a fixed point of fr and the
characteristic polynomial for Jacobian matrix J (X∗) = (ci j )n×n of n-dimensional map fr (Xk) is given by:

Pr (λ) = λn + c1λ
n−1 + · · · + cn−1λ + cn, (15)

where ci = ci (r), i = 1, 2, . . . n. Consider a series of determinants: �±
0 (r) = 1, �±

1 (r), . . . , �±
n (r), which

are defined as �±
i (r) = det (M1 ± M2), i = 1, 2, 3, . . . , n, where M1 and M2 are given in (12).

Lemma 4.2 Assume that fr has a fixed point X∗. Then a PDB takes place at r = ro iff the following conditions
(H1) and (H2) are satisfied:
(H1) Eigenvalue assignment: the following inequalities or equalities hold:
Pro(−1) = 0, Pro(1) > 0, �±

n−1(ro) > 0, �±
i (ro) > 0, i = n − 2, n − 4, . . . , 1 (or 2); when n is odd or even;

respectively;
(H2)Transversality condition: ∑n

i=1 c
′
i (−1)n−i

∑n
i=1(n − i + 1)(−1)n−i ci−1

�= 0,

where c
′
i stands for first derivative of c(r) with respect to r at r = ro.

Theorem 4.2 The unique positive fixed point (x∗, y∗, z∗) of System (1) undergoes PDB for 0 < a < 1 < b if
the following conditions hold:

1 − C2 + C3(C1 − C3) > 0,

1 + C2 − C3(C1 + C3) > 0,

1 ± C2 > 0,

1 + C1 + C2 + C3 > 0,

−1 + C1 − C2 + C3 = 0, (16)

where C1,C2, and C3 are given in (10).

Proof According to Lemma (4.2), for three-dimensional system (n = 3), we have the characteristic polynomial
(9) of System (1) evaluated at its unique positive equilibrium point (x∗, y∗, z∗). Then we obtain the following
equalities and inequalities:

�−
2 (r) = 1 − C2 + C3(C1 − C3) > 0,

�+
2 (r) = 1 + C2 − C3(C1 + C3) > 0,

�±
1 (r) = 1 ± C2 > 0,

Pr (1) = 1 + C1 + C2 + C3 > 0,

Pr (−1) = −1 + C1 − C2 + C3 = 0. (17)

��
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Fig. 1 Bifurcation diagrams and MLE for System (1) at a = 0.4, b = 1.5, r ∈ [0.1, 0.9], and initial conditions (xo, yo, zo) =
(0.3, 0.4, 0.5). a Bifurcation diagram for xn . b Bifurcation diagram for yn . c Bifurcation diagram for zn . dMaximum Lyapunov
exponents

5 Chaos control

In dynamical systems, it is desired that the system be optimized with respect to some performance criterion and
chaos be avoided. In recent times, controlling chaos in discrete-time systems is a topic of great interest for many
researchers, and practical methods can be used in many fields such as communications, physics laboratories,
cardiology, and turbulence [26]. In discrete-time models, chaos control can be obtained using various methods,
some of them are the state feedback method, pole-placement technique, and hybrid control method [27–30].
Among all these chaos control methods, hybrid control technique is very simple to implement. Moreover, this
method can be implemented for controlling chaos under the influence of both NS bifurcation and PDB.
To control the chaos in System (1), we apply the hybrid control feedback methodology [31–34]. Assume that
System (1) undergoes NS bifurcation or PDB at unstable fixed point (x∗, y∗, z∗). Then the corresponding
controlled system can be written as:

xn+1 = ρxne
r(1−xn−ayn−bzn) + (1 − ρ)xn,

yn+1 = ρyne
r(1−yn−azn−bxn) + (1 − ρ)yn,

zn+1 = ρzne
r(1−zn−axn−byn) + (1 − ρ)zn, (18)

where 0 < ρ < 1 denotes the control parameter, and in (18), the controlled strategy is a combination of both
parameter perturbation and feedback control. Chaos for controlled system (18) can be delayed, advanced, or
even completely eliminated by suitable choice of controlled parameter ρ.
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Fig. 2 Phase portraits of System (1) for different values of r at a = 0.4, b = 1.5, and initial conditions(xo, yo, zo) =
(0.3, 0.4, 0.5). a Phase portrait for r = 0.28. b Phase portrait for r = 0.29. c Phase portrait for r = 0.34. d Phase portrait
for r = 0.35. e Phase portrait for r = 0.37. f Phase portrait for r = 0.45
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Fig. 3 Plots of all three species xn, yn , and zn at a = 0.4, b = 1.5, r = 0.29, and initial conditions (xo, yo, zo) = (0.3, 0.4, 0.5).
a Plot of xn for System (1). b Plot of yn for System (1). c Plot of zn for System (1)

The Jacobian matrix of controlled system (18) evaluated at E∗ = ( 1
1+a+b , 1

1+a+b , 1
1+a+b ) is given by:

J (x∗, y∗, z∗) =
⎡
⎢⎣
1 − ρr

1+a+b
−ρra
1+a+b

−ρrb
1+a+b−ρrb

1+a+b 1 − ρr
1+a+b

−ρra
1+a+b−ρra

1+a+b
−ρrb
1+a+b 1 − ρr

1+a+b

⎤
⎥⎦ . (19)

The unique positive fixed point (x∗, y∗, z∗) of the controlled system (18) is locally asymptotically stable if
roots of the characteristic polynomial of (19) lie in an open unit disk.

6 Numerical simulations and discussions

Example 6.1 First, we take a = 0.4, b = 1.5, and r ∈ [0.1, 0.9] in System (1) with the initial conditions
(xo, yo, zo) = (0.3, 0.4, 0.5). When r is taken as a bifurcation parameter, then at r = 0.29, the unique
positive fixed point (x∗, y∗, z∗) = (0.35, 0.35, 0.35) becomes unstable and System (1) undergoes NSB. The
characteristic polynomial evaluated at this point is given by:

P(λ) = λ3 − 2.7λ2 + 2.412λ − 0.70936 = 0. (20)
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Fig. 4 Bifurcation diagrams and MLE for System (1) at a = 0.65, b = 0.6, r ∈ [1.8, 3], and initial conditions (xo, yo, zo) =
(0.3, 0.4, 0.5). a Bifurcation diagram for xn . b Bifurcation diagram for yn . c Bifurcation diagram for zn . dMaximum Lyapunov
exponents

The roots of (20) are λ1 = 0.7099999986 and λ2,3 = 0.9949999995 ± 0.09526279388i with
∣∣λ2,3

∣∣ = 1.
Moreover, we have

�−
2 (r) = 1 − C2 + C3(C1 − C3) = 0,

�+
2 (r) = 1 + C2 − C3(C1 + C3) = 0.993532272 > 0,

Pr (1) = 1 + C1 + C2 + C3 = 0.002639 > 0,

(−1)3Pr (−1) = 1 − C1 + C2 − C3 = 6.821361 > 0. (21)

According to Theorem 4.1, the conditions of NSB are satisfied near the fixed point (0.35, 0.35, 0.35) at the
critical value of bifurcation parameter r = 0.29.
Bifurcation diagrams and correspondingmaximumLyapunov exponent are shown in Fig. 1. Figure 1a–c shows
that all three species undergoNSB.MLE confirms the existence of the chaotic sets (Fig. 1d). The phase portraits
corresponding to Fig. 1 for different values of r are shown in Fig. 2, also the plots of xn, yn , and zn are shown
in Fig. 3. Figure 3 shows that the unique positive fixed point (0.35, 0.35, 0.35) is unstable at the critical value
of bifurcation parameter r = 0.29.

Example 6.2 Now, we take a = 0.65, b = 0.6, and r ∈ [1.8, 3] in System (1) with the initial conditions
(xo, yo, zo) = (0.3, 0.4, 0.5). In this case, when r is taken as bifurcation parameter, then at r = 2, the unique
positive fixed point (0.444444, 0.444444, 0.444444) becomes unstable and System (1) undergoes PDB. The
characteristic polynomial evaluated at this point is given by:

P(λ) = λ3 − 0.333336λ2 − 0.887404966λ + 0.445925475 = 0. (22)
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Fig. 5 Phase portraits of System (1) for different values of r at a = 0.65, b = 0.6, and initial conditions(xo, yo, zo) =
(0.3, 0.4, 0.5). a Phase portrait for r = 1.9. b Phase portrait for r = 2. c Phase portrait for r = 2.1. d Phase portrait for
r = 2.4. e Phase portrait for r = 2.6. f Phase portrait for r = 2.8
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Fig. 6 Plots of all three species xn, yn , and zn at a = 0.65, b = 0.6, r = 2, and initial conditions (xo, yo, zo) = (0.3, 0.4, 0.5). a
Plot of xn for System (1). b Plot of yn for System (1). c Plot of zn for System (1)

The roots of (22) are λ1 = −1 and λ2,3 = 0.6666666675 ± 0.03849001803i with
∣∣λ2,3

∣∣ �= 1. Moreover, we
have

�−
2 (r) = 1 − C2 + C3(C1 − C3) = 1.539912423 > 0,

�+
2 (r) = 1 + C2 − C3(C1 + C3) = 0.06238851888 > 0,

�+
1 (r) = 1 + C2 = 0.112595034 > 0,

�−
1 (r) = 1 − C2 = 1.887404966 > 0,

Pr (1) = 1 + C1 + C2 + C3 = 0.225184509 > 0,

Pr (−1) = −1 + C1 − C2 + C3 = 0. (23)

According to Theorem 4.2, the conditions of PDB are satisfied near the unique positive fixed point
(0.444444, 0.444444, 0.444444) at the critical value of bifurcation parameter r = 2.
Bifurcation diagrams and correspondingmaximumLyapunov exponent are shown in Fig. 4. Figure 4a–c shows
that all three species undergo PDB.MLE confirms the existence of the chaotic sets (Fig. 4d). The phase portraits
corresponding to Fig. 4 of System (1) for different values of r are shown in Fig. 5; also the plots of xn, yn
and zn are shown in Fig. 6. Figure 6 shows that the fixed point (0.444444, 0.444444, 0.444444) is unstable at
the critical value of bifurcation parameter r = 2 and System (1) switched to the new behavior with twice the
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Fig. 7 Plots of all three species xn, yn , zn , and phase portrait for the controlled system (24) at a = 0.4, b = 1.5, r = 0.35, and
initial conditions (xo, yo, zo) = (0.3, 0.4, 0.5). a Plot of xn for system (24). b Plot of yn for system (24). c Plot of zn for system
(24). d Phase portrait for system (24)

period of the original system. Often, the fixed point loses its stability and a stable cycle of period 2 appears.
Continued parameter changes may result in a cascade of PDB and the onset of chaos.

Example 6.3 Choosing the parametric values a = 0.4, b = 1.5, r = 0.35, and initial conditions (xo, yo, zo) =
(0.3, 0.4, 0.5) in System (1), then the fixed point (0.35, 0.35, 0.35) is unstable and System (1) undergoes NSB.
Figure 2c shows that closed invariant circles appear at r = 0.35 enclosing this unstable fixed point.
The controlled system (18) can be rewritten as:

xn+1 = ρxne
r(1−xn−ayn−bzn) + (1 − ρ)xn,

yn+1 = ρyne
r(1−yn−azn−bxn) + (1 − ρ)yn,

zn+1 = ρzne
r(1−zn−axn−byn) + (1 − ρ)zn . (24)

The Jacobian matrix of above system evaluated at a = 0.4, b = 1.5, r = 0.35, and (0.35, 0.35, 0.35) is given
by:

J (x∗, y∗, z∗) =
⎡
⎣
1 − 0.12069ρ − 0.04828ρ − 0.18103ρ
− 0.18103ρ 1 − 0.12069ρ − 0.04828ρ
− 0.04828ρ − 0.18103ρ 1 − 0.12069ρ

⎤
⎦ . (25)

The characteristic polynomial of (25) is given by:

P(λ) = λ3 + (0.36207ρ − 3)λ2 + (0.01748ρ2 − 0.72414ρ + 3)λ

+0.00464ρ3 − 0.01748ρ2 + 0.36207ρ − 1 = 0. (26)

According to the Jury condition (Theorem3.1), the roots of (26) lie in an open disk|λ| < 1, iff 0 < ρ < 0.99683.
For ρ = 0.5, the plots for all three species and phase portrait of the controlled system (24) are shown in Fig.(7).
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Fig. 8 Plots of all three species xn, yn , zn , and phase portrait for the controlled system (24) at a = 0.65, b = 0.6, r = 2, and
initial conditions (xo, yo, zo) = (0.3, 0.4, 0.5). a Plot of xn for system (24). (b) Plot of yn for system (24). c Plot of zn for system
(24). d Phase portrait for system (24)

Example 6.4 Now, if we choose the parametric values a = 0.65, b = 0.6, r = 2, and initial conditions
(xo, yo, zo) = (0.3, 0.4, 0.5) in System (1), then the fixed point (0.444444, 0.444444, 0.444444) is unstable
and System (1) undergoes PDB.
The Jacobian matrix of controlled system (24) evaluated at a = 0.65, b = 0.6, r = 2, and (x∗, y∗, z∗) =
(0.444444, 0.444444, 0.444444) is given by:

J (x∗, y∗, z∗) =
⎡
⎣
1 − 0.88889ρ − 0.57778ρ − 0.53333ρ
− 0.53333ρ 1 − 0.88889ρ − 0.57778ρ
− 0.57778ρ − 0.53333ρ 1 − 0.88889ρ

⎤
⎦ . (27)

The characteristic polynomial of (27) is given by:

P(λ) = λ3 + (2.66667ρ − 3)λ2 + (1.44592ρ2 − 5.33333ρ + 3)λ

+0.22518ρ3 − 1.44592ρ2 + 2.66666ρ − 1 = 0. (28)

According to the Jury condition, the roots of (28) lie in an open disk|λ| < 1, iff 0 < ρ < 0.99683. For ρ = 0.9,
the plots for all three species and phase portrait of the controlled system (24) are shown in Fig. 8.

7 Conclusion

Westudy the dynamics of three-dimensional discrete-timemodel of three competing species.Wefind the results
about the existence, uniqueness, and conditions for local asymptotic stability of positive fixed point using the
Jury condition. To confirm the complex and chaotic behavior in System (1), existence of Neimark–Sacker
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and period-doubling bifurcations for the positive fixed point is proved mathematically, as well as numerical
simulations are provided. The computation of the maximum Lyapunov exponents confirms the presence of
chaotic behavior in the model. Chaotic behavior is successfully controlled using the hybrid control strategy.
From our numerical investigation, it is clear that the hybrid control method based on feedback control and
parameter perturbation works effectively. To study PDB and NS bifurcation, intrinsic growth rate r is taken as
bifurcation parameter. From our investigation, it is clear that the intrinsic growth rate r for species has strong
stability effects or vice versa.Moreover, it is observed that System (1) exhibits chaotic trajectories, and intrinsic
growth rate parameter r leading to extinction of three species, or coexistence of one or three species. This
gives a high sensitivity of biodiversity with respect to parameter variations in the chaotic regions. Numerical
simulations show that the feedback control law can suppress chaos to unstable equilibrium points successfully.
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