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Abstract In this paper, we prove the existence of at least one periodic solution for some nonlinear parabolic
boundaryvalue problems associatedwithLeray–Lions’s operatorswith variable exponents under the hypothesis
of existence of well-ordered sub- and supersolutions.
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1 Introduction

Let � be a bounded open set of RN (N ≥ 1) with a smooth boundary ∂�, and fixed T > 0. Our aim here is
to prove the existence of periodic solutions for the following nonlinear parabolic problem

(P)

⎧
⎪⎨

⎪⎩

∂t u + Au = f (x, t, u, ∇u) in � × (0, T ),

u = 0 on ∂� × (0, T ),

u(0) = u(T ) in �,

whereAu = −div(A(·, ·, u, ∇u)) is a Leray–Lions’s type operator with variable exponents acting from some
functional space V0 into its topological dual V ′

0 and where f is a nonlinear Carathéodory function, whose
growth with respect to |∇u| is at most of order p(x) in the sense defined below (Hypothesis A4).

The suitable functional spaces to deal with in this type of problems are generalized Lebesgue and Sobolev
spaces L p(x)(�) and W 1,p(x)(�), respectively. There are many differences between Lebesgue and Sobolev
spaces with constant exponents and those with variable exponents. For instance, p(x) needs to satisfy the
log-Höder condition (see [10,12]) in order that the Poincaré’s inequality and the density of smooth functions
in W 1,p(x)(�) hold. Many difficulties arise in the case of variable exponents. One typical difficulty when
dealing with problems like (P) is to define adequate functional spaces for solutions. When p(x) = p is a
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constant, it is well known that L p(0, T ;W 1,p
0 (�)) can be taken as a space of solutions. However, when p(x)

is nonconstant, then nor L p(x)(0, T ;W 1,p(x)
0 (�)) neither L p−(0, T ;W 1,p(x)

0 (�)), where p− = min� p(x),
constitute a suitable space of solutions (see [5].) Henceforth, to overcome this difficulty, we shall define below
our functional space of solutions V0 as it was done by Bendahmane in [5].

Nonlinear problems defined by (P) arise in many applications; for instance, in electrorheological fluids
(see [18]), where the essential part of the energy is given by

∫

�
|Du(x)|p(x)dx (Du being symmetric part of

∇u). This type of fluids has the ability to change its mechanical properties (for example becoming a solid
gel) when an electric field is applied. Another important application is when f depends only on (x, t) and
A(x, t, s, ξ) = |ξ |p(x)−2ξ ; then the problem (P) can be seen as a sort of nonlinear diffusion equation whose
coefficient of diffusion takes the form |∇u|p(x)−2 by analogy with Fick’s diffusion model (see [2]). For other
applications, we refer the reader to [7,21].

There is by now an extensive literature on the existence of solutions for problem (P). Let us recall some
known results in the case where p(x) := p is a real constant. In [9], by applying a penalty method to an
appropriately associated auxiliary parabolic variational inequality, J. Deuel and P. Hess proved the existence
of at least one periodic solution for problem (P) in the case where the natural growth of f with respect
to |∇u| is of order less than p, that means | f (x, t, u, ∇u)| ≤ k(x, t) + c|∇u|p−δ for some δ > 0 and
k(x, t) ∈ L1+δ(� × (0, T )), c being a positive constant. In [14], N. Grenon extends the result of [9] to the
case where the natural growth of f with respect to |∇u| is at most of order p; but instead of a periodicity
condition the author considered an initial one. The proof therein is based on some regularization techniques
used in [6,17].

Let us point out that in the two previous works, the hypothesis of existence of well-ordered sub- and
supersolutions is supposed. Following [9], the results in [14] were extended by El Hachimi and Lamrani in
[11], where the authors obtained the existence of periodic solutions, under the same hypotheses as in [14]. For
variable exponents, this kind of problems has been studied by many authors [2,5,13,20], by means of different
methods such as: subdifferential operators, Galerkin scheme, semigroup theory, etc.

The main goal of this paper is to extend the results in [11] to the variable exponents case under the
hypothesis of existence of well-ordered sub- and supersolutions. It is well known that this method, when it is
applicable, has more advantages compared to other methods. For example, we can give some order properties
of the solutions. Nevertheless, this method is quite complicated because it requires well-ordered sub- and
supersolutions, which is not usually easy to get. Indeed, in many application cases, sub- and supersolutions
are obtained from eigenfunction associated with the first eigenvalue of some operators (say the p-Laplacian.)
But, when dealing with variable exponents, it is well known that the p(x)-Laplacian does not have in general
a first eigenvalue (see [12]) and therefore, we have to find sub- and supersolution by means of other ideas (see
our application example in Sect. 5).

Now, we explain how this paper is organized. In Sect. 2 we introduce some notations and properties of
Lebesgue–Sobolev spaces with variable exponents. Then, we give in Sect. 3 the main result, Theorem 3.2.
Section 4 is devoted to prove the main result. Finally, in Sect. 5 we give an application of our main result.

2 Preliminaries

In this section, we briefly recall some definitions and basic properties of the generalized Lebesgue–Sobolev
spaces L p(x)(�), W 1,p(x)(�) and W 1,p(x)

0 (�), when � is a bounded open set of RN (N ≥ 1) with a smooth
boundary. For the details see [8,10,12].

Let p : � �→ [1, +∞) be a continuous, real-valued function. Denote by p− = minx∈� p(x) and p+ =
maxx∈� p(x).

We introduce the variable exponents Lebesgue space

L p(x)(�) =
{

u : � �→ R; u is measurable with
∫

�

|u(x)|p(x)dx < ∞
}

,

endowed with the Luxemburg norm

‖u‖L p(x)(�) = inf

{

λ > 0 :
∫

�

∣
∣
∣
∣
u(x)

λ

∣
∣
∣
∣

p(x)

dx ≤ 1

}

.
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The following inequality will be used later

min
{
‖u‖p−

L p(x)(�)
, ‖u‖p+

L p(x)(�)

}
≤

∫

�

|u(x)|p(x)dx ≤ max
{
‖u‖p−

L p(x)(�)
, ‖u‖p+

L p(x)(�)

}
. (2.1)

Lemma 2.1 [8,10,12]

• (L p(x)(�), ‖ · ‖L p(x)(�)) is a Banach space.

• If p− > 1, then L p(x)(�) is reflexive and its conjugate space can be identified with L p′(x)(�), where
1

p(x) + 1
p′(x) = 1. Moreover, for any u ∈ L p(x)(�) and v ∈ L p′(x)(�), we have the Hölder inequality

∫

�

|uv|dx ≤
(

1

p−
+ 1

(p′)−

)

‖u‖L p(x)(�)‖v‖L p′(x)(�)
≤ 2‖u‖L p(x)(�)‖v‖L p′(x)(�)

.

• If p+ < +∞, then L p(x)(�) is separable.
• The inclusion between Lebesgue spaces also generalizes naturally; if 0 < |�| < ∞ and p1, p2 are

variable exponents so that p1(x) ≤ p2(x) almost everywhere in �, then we have the following continuous
embedding L p2(x)(�) ↪→ L p1(x)(�).

Now, we define also the variable Sobolev space by

W 1,p(x)(�) = {u ∈ L p(x)(�); |∇u| ∈ L p(x)(�)},
endowed with the following norm

‖u‖W 1,p(x)(�) = ‖u‖L p(x)(�) + ‖∇u‖L p(x)(�).

Definition 2.2 Thevariable exponents p : � �→ [1, +∞) is said to satisfy the log-Hölder continuous condition
if

∀ x, y ∈ �, |x − y| < 1, |p(x) − p(y)| < ω(|x − y|),
where ω : (0,∞) �→ R is a nondecreasing function with lim supα→0 ω(α) ln

( 1
α

)
< ∞.

Lemma 2.3 [8,10,12]

• If 1 < p− ≤ p+ < ∞, then the space (W 1,p(x)(�), ‖ · ‖W 1,p(x)(�)) is a separable and reflexive Banach
space.

• If p(x) satisfies the log-Hölder continuous condition, then C∞(�) is dense in W 1,p(x)(�). Moreover, we
can define the Sobolev space with zero boundary values, W 1,p(x)

0 (�) as the completion of C∞
0 (�) with

respect to the norm ‖ · ‖W 1,p(x)(�).

• For all u ∈ W 1,p(x)
0 (�), the Poincaré inequality

‖u‖L p(x)(�) ≤ C‖∇u‖L p(x)(�),

holds. Moreover, ‖u‖
W 1,p(x)

0 (�)
= ‖∇u‖L p(x)(�) is a norm in W 1,p(x)

0 (�).

Throughout this paper, we shall assume that the variable exponents p(x) satisfy the log-Hölder condition and
that 1 < p− ≤ p+ < ∞.

3 Hypotheses and main result

We suppose that � is a bounded open set of RN (N ≥ 1) with a smooth boundary ∂�, Q = � × (0, T ) where
T > 0 is fixed and 
 = ∂� × (0, T ).
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Let

V0 = { f ∈ L p−(0, T ;W 1,p(x)
0 (�)); |∇ f | ∈ L p(x)(Q)},

endowed with the norm

‖ f ‖V0 = ‖∇ f ‖L p(x)(Q),

or, the equivalent norm

‖ f ‖V0 = ‖ f ‖
L p− (0,T ;W 1,p(x)

0 (�))
+ ‖∇ f ‖L p(x)(Q).

The equivalence of the two norms comes from Poincaré’s inequality and the continuous embedding
L p(x)(Q) ↪→ L p−(0, T ; L p(x)(�)).

We set

V = { f ∈ L p−(0, T ;W 1,p(x)(�)); |∇ f | ∈ L p(x)(Q)}.
We state some further properties of V0 in the following lemma.

Lemma 3.1 [5]We denote by V ′
0 the dual space of V0. Then

• We have the following continuous dense embeddings:

L p+(0, T ;W 1,p(x)
0 (�))

d
↪→ V0

d
↪→ L p−(0, T ;W 1,p(x)

0 (�)).

In particular, sinceD(Q) is dense in L p+(0, T ;W 1,p(x)
0 (�)), it is also dense in V0 and for the correspond-

ing dual spaces we have

L(p−)′(0, T ; (W 1,p(x)
0 (�))′) ↪→ V ′

0 ↪→ L(p+)′(0, T ; (W 1,p(x)
0 (�))′).

• One can represents the elements of V ′
0 as follows: let G ∈ V ′

0, then there exists F = ( f1, f2, · · · , fN ) ∈
(L p′(x)(Q))N such that G = −div(F) and

〈G, u〉V ′,V0 =
∫ T

0

∫

�

F · ∇u dxdt,

for any u ∈ V0.

Now, let us give the hypotheses which concern A and f .

(A1) A is a Carathéodory function defined on Q × R × R
N , with values in R

N such that there exist λ > 0,
and l ∈ L p′(x)(Q), l ≥ 0, so that for all s ∈ R and for all ξ ∈ R

N : (say growth condition of A)

|A(x, t, s, ξ)| ≤ λ(l(x, t) + |s|p(x)−1 + |ξ |p(x)−1), a.e. in Q.

(A2) For all s ∈ R and for all ξ, ξ ′ ∈ R
N , with ξ �= ξ ′: (say monotonicity condition of A )

(A(x, t, s, ξ) − A(x, t, s, ξ ′)) · (ξ − ξ ′) > 0, a.e. in Q.

(A3) There exists α > 0, so that for all s ∈ R and for all ξ ∈ R
N : (say coercivity condition of A)

A(x, t, s, ξ) · ξ ≥ α|ξ |p(x), a.e. in Q.

(A4) f is a Carathéodory function on Q × R × R
N , and there exist a function b : R+ −→ R

+ increasing,
and h ∈ L1(Q), h ≥ 0, such that: (say natural growth condition on f respect to |ξ | of order p(x))

| f (x, t, s, ξ)| ≤ b(|s|)(h(x, t) + |ξ |p(x)), for (x, t, s, ξ) ∈ Q × R × R
N .

Remark 3.2 If u ∈ V0 ∩ L∞(Q), then under the assumptions (A1), (A2), and (A3) we have Au ∈ V ′
0.

Moreover, under the assumption (A4) we have f (x, t, u, ∇u) ∈ L1(Q).
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Definition 3.3 A periodic solution for problem (P) is a measurable function u : Q �→ R satisfying the
following conditions

u ∈ V0 ∩ L∞(Q), ∂t u ∈ V ′
0 + L1(Q), (3.1)

〈∂t u, φ〉V ′
0+L1(Q),V0∩L∞(Q)+

∫

Q
A(x, t, u, ∇u) · ∇φ =

∫

Q
f (x, t, u, ∇u)φ for all φ∈V0 ∩ L∞(Q), (3.2)

u(x, 0) = u(x, T ) for all x ∈ �. (3.3)

Thanks to the previous remark and (3.2), we have ∂t u ∈ V ′
0 + L1(Q). Moreover, the periodicity condition

(3.3) makes sense according to the following lemma.

Lemma 3.4 [5]We set W := {u ∈ V0; ∂t u ∈ V ′
0 + L1(Q)}. Then, we have the following embedding

W ∩ L∞(Q) ↪→ C([0, T ]; L2(�)).

Now, we can ensure that all terms of (P) have a meaning.

Definition 3.5 A subsolution (in the distributional sense) of problem (P) is a function ϕ ∈ V ∩ L∞(Q) such
that ∂tϕ ∈ V ′

0 + L1(Q) and

⎧
⎪⎨

⎪⎩

∂tϕ + Aϕ ≤ f (x, t, ϕ, ∇ϕ) in Q,

ϕ ≤ 0 on 
,

ϕ(0) ≤ ϕ(T ) in �,

A supersolution of problem (P) is obtained by reversing the inequalities.

We can now state the main result of this paper.

Theorem 3.6 Suppose that A verifies the hypotheses A1), A2), A3), and that f satisfies A4). Moreover,
assume the existence of a subsolution ϕ, and a supersolution ψ , such that ϕ ≤ ψ a.e. in Q. Then, there exists
at least one periodic solution u of problem (P), such that ϕ ≤ u ≤ ψ a.e. in Q.

Before we start the proof, we give some technical lemmas which will be used later.

Lemma 3.7 [15] Let π : R → R be a C1 piecewise function with π(0) = 0 and π ′ = 0 outside a compact
set. Let �(s) = ∫ s

0 π(σ)dσ . If u ∈ V0 ∩ L∞(Q) with ∂t u ∈ V ′
0 + L1(Q), then

∫ T

0
〈∂t u, π(u)〉 = 〈∂t u, π(u)〉V ′

0+L1(Q),V0∩L∞(Q) =
∫

�

�(u(T ))dx −
∫

�

�(u(0))dx .

Lemma 3.8 [1] Assume that (A1), (A2), and (A3) are satisfied and let (un) be a sequence in V0 which
converges weakly to u in V0, and

lim sup
n→∞

∫

Q
(A(x, t, un, ∇un) − A(x, t, un,∇u)) · (∇un − ∇u) ≤ 0.

Then,

un → u strongly in V0.

4 Proof of Theorem 3.6

4.1 Truncation of problem (P)

Let ϕ be a subsolution and ψ a supersolution of problem (P), such that ϕ ≤ ψ a.e. in Q. Let us define for
u ∈ V the truncation function T (u) by
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T (u) = u − (u − ψ)+ + (ϕ − u)+.

We shall denote by

A(u, ∇u)(x, t) = A(x, t, u(x, t), ∇u(x, t)) and F(u, ∇u)(x, t) = f (x, t, u(x, t),∇u(x, t)),

the Nemyskii operators associated, respectively, with the functions A and f .
For almost everywhere (x, t) in Q, we define

A�(u, ∇u)(x, t) = A(Tu, ∇u)(x, t), and F�(u, ∇u)(x, t) = F(Tu, ∇Tu)(x, t).

Note that the F� is not a Carathéodory function since it is not continuous with respect to ∇u. This constraint
will be overcome thanks to the following lemma.

Lemma 4.1 The operator F� : u → F�(u, ∇u) is defined and continuous from V into L1(Q). Moreover,
there exists a constant C > 0 such that

|F�(u, ∇u)(x, t)| ≤ C(h�(x, t) + |∇u|p(x)), a.e. in Q, (4.1)

where h� is a nonnegative function in L1(Q).

Proof The proof of this lemma is similar to the case when p(x) is a constant (see [14].) ��
Denote by A�u = −div(A�(u, ∇u)); then A� is a Leray–Lions’s type operator from V0 into its dual V ′

0,
that means A� satisfies the assumptions A1), A2) and A3).

4.2 Penalization and regularization of problem (P)

Let k > 0 be a constant such that

−k ≤ ϕ − 1 ≤ ψ + 1 ≤ k a.e. in Q.

We set

K = {v ∈ V0,−k ≤ v ≤ k a.e. in Q}.
Then, K is a closed convex set of V0 . For u ∈ V , we define

β(u) = [(u − k)+](p−)−1 − [(u + k)−](p−)−1.

Let η > 0, the penalization operator related to K is defined by 1
η
β(u). Moreover, it is clear that

β(u)u ≥ 0 a.e. in Q, and K ≡ {v ∈ V0, β(v) = 0 a.e. in Q}.
Let ε > 0, for u ∈ V , and for almost everywhere (x, t) in Q we set

F�
ε (u, ∇u)(x, t) = |F�(u, ∇u)(x, t)|

1 + ε|F�(u, ∇u)(x, t)| .

It is clear that F�
ε (u, ∇u) ∈ L∞(Q) for all u ∈ V . Moreover, the mapping u → F�

ε (u, ∇u) is continuous from
V into L1(Q), and from (4.1) we can easily verify that

|F�
ε (u, ∇u)(x, t)| ≤ C(h�(x, t) + |∇u|p(x)), a.e. in Q. (4.2)

where C is a constant which is independent of ε.
We will now consider the following penalized–regularized problem

(P�
η,ε)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uη,ε ∈ V0, ∂t uη,ε ∈ V ′
0,

∂t uη,ε + A�uη,ε − F�
ε (uη,ε, ∇uη,ε) + 1

η
β(uη,ε) = 0 in Q,

uη,ε = 0 in
,

uη,ε(0) = uη,ε(T ) in�.

By application of Theorem 1.2, p.319 in [16] we can ensure the existence of a solution of problem (P�
η,ε).

Indeed, we have:
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Proposition 4.2 Let D = {u ∈ V0, suchthat∂t u ∈ V ′
0andu(0) = u(T )}. Then, the operator Nu = A�u −

F�
ε (u, ∇u)+ 1

η
β(u) defined from D into V ′

0 is bounded, coercive and pseudo-monotone. Moreover, there exists
at least one solution (uη,ε) of problem (P�

η,ε).

Proof Boundedness of N . From the assumption A1) and the definition of N , we have

|〈Nu, v〉| ≤ λ

(∫

Q
l(x, t)|∇v| +

∫

Q
|Tu|p(x)−1|∇v| +

∫

Q
|∇u|p(x)−1|∇v|

)

+
∫

Q
|F�

ε (u, ∇u)||v| + 1

η

∫

Q
|β(u)||v|. (4.3)

We treat each integral in the right-side member of (4.3).
By Remark 3.2 (recall that ϕ, ψ are in the L∞(Q)), we have

∫

Q
l(x, t)|∇v| +

∫

Q
|Tu|p(x)−1|∇v| ≤ C‖v‖V0 .

By using Hölder’s inequality, we get
∫

Q
|∇u|p(x)−1|∇v| ≤ c2‖|∇u|p(x)−1‖L p′(x)(Q)

‖v‖V0 .

Then, if ‖|∇u|p(x)−1‖L p′(x)(Q)
≤ 1, it’s over. Otherwise, from inequality (2.1), we have

‖|∇u|p(x)−1‖(p′)−
L p′(x)(Q)

= ‖|∇u|p(x)−1‖p′+
L p′(x)(Q)

≤
∫

Q

(
|∇u|p(x)−1

)p′(x)
,

and
∫

Q

(
|∇u|p(x)−1

)p′(x) ≤ max
{
‖∇u‖p−

L p(x)(Q)
, ‖∇u‖p+

L p(x)(Q)

}
= max

{
‖u‖p−

V0
, ‖u‖p+

V0

}
.

Hence,
∫

Q
|∇u|p(x)−1|∇v| ≤ cmax

{

‖u‖
p−
p′+
V0

, ‖u‖(p+)−1
V0

}

‖v‖V0 .

Since |F�
ε | ≤ 1

ε
and V0 ↪→ L1(Q), then we get

∫

Q
|F�

ε (u, ∇u)||v| ≤ (c1/ε)‖v‖V0 .

Moreover, we have

1

η

∫

Q
|β(u)||v| ≤ 1

η

(∫

Q
|(u − k)+|(p−)−1|v| +

∫

Q
|(u + k)−|(p−)−1|v|

)

. (4.4)

Now, since u ∈ V0 ↪→ L p−(Q), we get ((u − k)+)(p−)−1 ∈ L(p−)′(Q). Then, by using Hölder’s inequality in
(4.4), we obtain

∫

Q
|(u − k)+|(p−)−1|v| ≤ c3‖(u − k)+‖(p−)−1

V0
‖v‖V0 ≤ c3‖u‖(p−)−1

V0
‖v‖V0 .

Similarly, we obtain
∫

Q
|(u + k)−|(p−)−1|v| ≤ c4‖u‖(p−)−1

V0
‖v‖V0 .

Whence,

‖Nu‖V ′
0

≤ γ

(

1 + ‖u‖(p−)−1
V0

+ max

{

‖u‖
p−
p′+
V0

, ‖u‖(p+)−1
V0

})

.

where γ is a positive constant.
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Coercivity of N . From the definition of N , we have

〈Nu, u〉 = 〈A�u, u〉 − 〈F�
ε (u, ∇u), u〉 +

〈
1

η
β(u), u

〉

.

Furthermore, we have

〈A�u, u〉 =
∫

Q
A�(u, ∇u) · ∇u ≥ α

∫

Q
|∇u|p(x) ≥ αmin

{
‖u‖p−

V0
, ‖u‖p+

V0

}
,

〈F�
ε (u, ∇u), u〉 =

∫

Q

F�(u, ∇u)

1 + ε|F�(u, ∇u)|u ≤
∫

Q

|F�(u, ∇u)|
1 + ε|F�(u, ∇u)| |u| ≤ 1

ε
‖u‖L1(Q) ≤ c

ε
‖u‖V0 ,

and
〈
1

η
β(u), u

〉

= 1

η

∫

Q
β(u)u ≥ 0.

Hence,

〈Nu, u〉
‖u‖V0

≥ αmin
{
‖u‖(p−)−1

V0
, ‖u‖(p+)−1

V0

}
− c

ε
.

Whence,

〈Nu, u〉
‖u‖V0

→ +∞, when ‖u‖V0 → +∞.

Pseudo-monotonicity of N .

Let (un) ∈ D and u ∈ D, such that un converges weakly to u in V0 (then un converges weakly to u in
L p−(0, T ;W 1,p(x)

0 (�)), see Lemma 3.1), and ∂t un converges weakly to ∂t u in V ′
0 (then ∂t un converges weakly

to ∂t u in L(p+)′(0, T ;W−1,p′(x)(�)) see Lemma 3.1 again).
Moreover, we suppose that

lim
n→∞ sup〈Nun, un − u〉 ≤ 0. (4.5)

We shall prove that

lim
n→∞ inf〈Nun, un − v〉 ≥ 〈Nu, u − v〉 for all v ∈ V0. (4.6)

Choose s > N
2 + 1 such that W−1,p′(x)(�) ↪→ H−s(�); then ∂t un converges weakly to ∂t u in

L(p+)′(0, T ; H−s(�)).
We set B0 = W 1,p(x)

0 (�), B = L p(x)(�) and B1 = H−s(�). We have the following embeddings

B0
c

↪→ B ↪→ B1, (4.7)

where B0
c

↪→ B means that B0 is compactly embedded in B.
By a theorem of Aubin–Lions’s, pp. 57–58 in [16], we deduce that un converges strongly to u in

L p−(0, T ; L p(x)(�)), which embedded into L p−(Q).
Furthermore, we have

1

η

∫

Q
|β(un)||un − u| ≤ 1

η

[∫

Q
|(un − k)+|(p−)−1|un − u| +

∫

Q
|(un + k)−|(p−)−1|un − u|

]

. (4.8)

By using Hölder’s inequality and the embedding of V0 into L p−(Q) in (4.8), we get

1

η

∫

Q
|β(un)||un − u| ≤ c

η

(
‖un‖(p−)−1

V0
‖un − u‖L p− (Q)

)
.
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Since (un) is bounded in V0 and un converges strongly to u in L p−(Q), we obtain

1

η

∫

Q
|β(un)||un − u| → 0 when n → +∞. (4.9)

On the other hand, since |F�
ε | ≤ 1

ε
and L p−(Q) is embedded in L1(Q), we get

∫

Q
|F�

ε (un, ∇un)||un − u| ≤ c

ε
‖un − u‖L p− (Q) → 0 when n → ∞. (4.10)

We develop each term of 〈Nun, un − u〉 and use (4.5), (4.9) and (4.10), to obtain

lim
n→∞ sup〈Nun, un − u〉 = lim

n→∞ sup
∫

Q
A(Tun, ∇un) · ∇(un − u) ≤ 0. (4.11)

Applying Vitali’s theorem and weak convergence of A(Tun, ∇u) in (L p′(x)(Q))N , we obtain

lim
n→∞

∫

Q
A(Tun, ∇u) · ∇(un − u) = 0. (4.12)

By using (4.11) and (4.12), then we obtain

lim
n→∞

∫

Q
[A(Tun, ∇un) − A(Tun, ∇u)] · (∇un − ∇u) ≤ 0.

Now, thanks to Lemma 3.8, we get

un → u strongly in V0 that means ∇un → ∇u strongly in (L p(x)(Q))N .

Hence, the inequality (4.6) desired.
Finally, by Theorem 1.2, p. 319 in [16], we deduce the existence of at least one solution (uη,ε) of problem

(P�
η,ε). ��

4.3 A-priori-estimates

In this section, we are going to obtain some estimations on the sequence solutions (uη,ε) of problem (P�
η,ε)

independently of η and ε.

4.3.1 Estimates on (uη,ε)η in V0 and L∞(Q)

Let us fix ε, and denote by (uη) ≡: (uη,ε).

Lemma 4.3 The sequences
( 1

η
β(uη)

)

η
and (uη)η are bounded respectively in L(p−)′(Q) and V0 .

Proof From the definition of 1
η
β(uη), we deduce that

∥
∥
∥
∥
1

η
β(uη)

∥
∥
∥
∥
L(p−)′ (Q)

≤
∥
∥
∥
∥
∥

(uη − k)+

η
1

(p−)−1

∥
∥
∥
∥
∥

(p−)−1

L p− (Q)

+
∥
∥
∥
∥
∥

(uη + k)−

η
1

(p−)−1

∥
∥
∥
∥
∥

(p−)−1

L p− (Q)

.

Then, we only need to show that:
(

(uη − k)+

η
1

(p−)−1

)

η

and

(
(uη + k)−

η
1

(p−)−1

)

η

are bounded in L p−(Q).

Since (uη − k)+ ∈ V0, then by multiplying (P�
η,ε) by (uη − k)+, we get

〈∂t uη, (uη−k)+〉+
∫

Q
A�(uη, ∇uη) · ∇(uη − k)+−

∫

Q
F�

ε (uη, ∇uη)(uη − k)+ + 1

η

∫

Q
((uη − k)+)p− = 0.
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Since uη(0) = uη(T ), then from Lemma 3.7, we deduce that 〈∂t uη, (uη − k)+〉 = 0. Hence

1

η

∫

Q
((uη − k)+)p− =

∫

Q
F�

ε (uη, ∇uη)(uη − k)+ −
∫

Q
A�(uη, ∇uη) · ∇(uη − k)+. (4.13)

Under the assumption A3), the second integral in the right-hand side of equality (4.13) is nonnegative. On
the other hand, we have |F�

ε | ≤ 1/ε. Let us divide both sides of equality (4.13) by η1/(p−1)−1. By Hölder’s
inequality, we obtain

∫

Q

((uη − k)+)p−

η(p−)′ ≤ C

[∫

Q

((uη − k)+)p−

η(p−)′

]1/p−
, where C is indepedent on η,

whence

(

(uη−k)+

η
1

(p−)−1

)

η

is bounded in L p−(Q).

Using (−(uη + k)−) as a test function, we prove in the same way that

(

(uη+k)−

η
1

(p−)−1

)

η

is bounded in L p−(Q).

Now we prove that (uη)η is bounded in V0. Multiplying (P�
η,ε) by uη and using the assumption A3),

Lemma 3.7, and the fact that β(uη)uη ≥ 0, we obtain

α

∫

Q
|∇uη|p(x) ≤

∫

Q
A�(uη, ∇uη) · ∇uη ≤

∫

Q
F�

ε (uη, ∇uη)uη ≤ c

ε
‖uη‖V0 .

By using the inequality (2.1), hence, we get

min
{
‖uη‖(p−)−1

V0
, ‖uη‖(p+)−1

V0

}
≤ c(ε, α).

Since (p−) − 1 and (p+) − 1 are strictly greater than 0, we deduce that (uη)η is bounded in V0. ��
Lemma 4.4 The sequence (∂t uη)η is bounded in V ′

0.

Proof Let v ∈ V0, from the first equation of problem (P�
η,ε), we get

〈∂t uη, v〉 = −〈A�uη, v〉 + 〈F�
ε (uη, ∇uη), v〉 −

〈
1

η
β(uη), v

〉

.

Thus,

|〈∂t uη, v〉| ≤
∫

Q
|A�(uη, ∇uη)||∇v| +

∫

Q
|F�

ε (uη, ∇uη)||v| +
∫

Q

1

η
|β(uη)||v|. (4.14)

We treat each integral in the right-hand side of (4.14). We claim first that A�(uη, ∇uη) is bounded in
(L p′(x)(Q))N . Indeed, if ‖A�(uη, ∇uη)‖L p′(x)(Q)

≤ 1, the claim is obvious. Otherwise, we have

‖A�(uη, ∇uη)‖(p′)−
L p′(x)(Q)

≤
∫

Q
|A�(uη, ∇uη)|p′(x),

since p′(x) ≤ (p′)+, and (a + b)p ≤ 2p−1(a p + bp) for all a, b ≥ 0 and p > 1, then according to the
assumption A1), we get

∫

Q
|A�(uη, ∇uη)|p′(x) ≤ c(λ, (p′)+)

[∫

Q
l(x, t)p

′(x) +
∫

Q
|Tuη|p(x) +

∫

Q
|∇uη|p(x)

]

. (4.15)

By the inequality (2.1) for the third integral in the right-hand side of (4.15), and the fact that (uη) is bounded
in V0 (by Lemma 4.3), we can deduce the boundedness of A�(uη, ∇uη) in (L p′(x)(Q))N .

Since |F�
ε | ≤ 1

ε
, 1

η
β(uη) is bounded in L(p−)′(Q) (by Lemma 4.3) and v ∈ V0 ↪→ L p−(Q) ↪→ L1(Q),

then we use Hölder’s inequality in (4.14), to obtain the desired result. ��
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As in (4.7), by Aubin–Lions’s theorem, we can extract a subsequence, still denoted by (uη) which is
relatively compact in L p−(0, T ; L p(x)(�)) ↪→ L p−(Q). Furthermore, there exists uε ∈ V0 such that: for all
ε > 0 fixed, we have as η → 0

uη → uε strongly in L p−(Q) and a.e. in Q, (4.16)

uη ⇀ uε weakly in V0, (4.17)

∂t uη ⇀ ∂t uε weakly in V ′
0. (4.18)

Now, as F�
ε (uη, ∇uη) and 1

η
β(uη) are bounded in L(p−)′(Q), independently of η, then there exist βε and

Fε in L(p−)′(Q), such that

1

η
β(uη) ⇀ βε in L(p−)′(Q), (4.19)

and

F�
ε (uη, ∇uη) ⇀ Fε in L(p−)′(Q). (4.20)

In addition, as A�(uη, ∇uη) is bounded in (L p′(x)(Q))N , then there exists χε in (L p′(x)(Q))N such that

A�(uη, ∇uη) ⇀ χε in (L p′(x)(Q))N ↪→ (L(p−)′(Q))N . (4.21)

The estimations in V0 and L∞(Q) obtained above do not allow us to pass directly to the limit in the problem
(P�

η,ε), because we can not pass to the limit in the term F�
ε (uη, ∇uη) (which is bounded only in L1(Q), see

(4.2).) To overcome this difficulty we need the strong convergence in V0 of the sequence solutions (uη). To
this end, we shall prove the following lemma.

Lemma 4.5 (uη) converges strongly to (uε) in V0, when η tends to zero.

Proof The proof is almost the same as in the case when the exponents p(x) = p is a constant(see [14]).
Thus, we give here only a sketch. The general idea is to use Lemma 3.8, since A� satisfies the hypothesis
A1), A2), A3), and the weak convergence of uη to uε in V0. Hence, it suffices to show that

lim sup
η→0

∫

Q

(
A�(uη, ∇uη) − A�(uη, ∇uε)

) · (∇uη − ∇uε

) = 0. (4.22)

We consider μ > 0 and we subtract (P�
η,ε) from (P�

μ,ε), we get

∂t uη − ∂t uμ + A�uη − A�uμ − F�
ε (uη, ∇uη) + F�

ε (uμ, ∇uμ) + 1

η
β(uη) − 1

μ
β(uμ) = 0.

We multiply this equation by uη − uμ, and use Lemma 3.7, to obtain
∫

Q

(
A�(uη,∇uη) − A�(uμ, ∇uμ)

) · (∇uη − ∇uμ) −
∫

Q

(
F�

ε (uη, ∇uη) − F�
ε (uμ, ∇uμ)

)
(uη − uμ)

+
∫

Q

(
1

η
β(uη) − 1

μ
β(uη)

)

(uη − uμ) = 0. (4.23)

Firstly, we take the lim sup when η tends to 0 and secondly the lim sup when μ tends to 0 in (4.23). By using
(4.16), (4.17), (4.18), (4.19) and (4.20), we obtain

lim sup
η→0

∫

Q
A�(uη, ∇uη) · ∇uη −

∫

Q
χε∇uε −

∫

Q
χε∇uε + lim sup

μ→0

∫

Q
A�(uμ, ∇uμ) · ∇uμ = 0.

So, for μ = η, we get

lim sup
η→0

∫

Q
A�(uη, ∇uη) · ∇uη =

∫

Q
χε∇uε . (4.24)
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On the other hand, since uη converges to uε a.e. in Q, by assumption A1), we get

A�(uη, ∇uε) → A�(uε, ∇uε), strongly in (L p′(x)(Q))N .

Moreover, from (4.16) and (4.17), we obtain
∫

Q
A�(uη, ∇uε) · ∇(uη − uε) → 0, when η → 0. (4.25)

Finally, we use (4.24) and (4.25) to obtain (4.22). ��
Now, since the mapping u → F�

ε (u, ∇u) is continuous from V into L1(Q), the previous lemma permits to
pass to the limit in the term F�

ε (uη, ∇uη) which converges to F�
ε (uε, ∇uε) in L1(Q). Moreover, we can also

deduce the strong convergence of A�uη to A�uε in V ′
0.

Furthermore, since 1
η
β(uη) is bounded in L(p−)′(Q), and uη converges strongly to uε in V0, then β(uε) = 0

a.e. in Q, which implies that uε is in K . Thus, uε is in L∞(Q), this is a fundamental difference with uη (the
role of the penalty operator 1

η
β(uη).)

Finally, we pass to the limit in (P�
η,ε), when η tends to zero, to obtain the following problem

(P�
ε )

⎧
⎪⎨

⎪⎩

uε ∈ V0 ∩ L∞(Q), ∂t uε ∈ V ′
0 + L1(Q),

∂t uε + A�uε − F�
ε (uε, ∇uε) + βε = 0 inQ,

uε(0) = uε(T ) in�,

and one can easily deduce that

∀ v ∈ K , 〈∂t uε, v − uε〉 +
∫

Q
A�(uε, ∇uε) · ∇(v − uε) −

∫

Q
F�

ε (uε, ∇uε)(v − uε) ≥ 0. (4.26)

4.3.2 Estimates on (uε)ε in V0

At this stage, we got a nonlinear problem (P�
ε ) which only depends on the parameter ε. So, to pass to the limit

when ε tends to zero, we need some a priori estimates in V0.

Lemma 4.6 The sequence (uε) is bounded in V0.

Proof We prove this result by using the test function zs(uε) = exp(su2ε)uε , where s is such that

αz′s(uε) − C |zs(uε)| ≥ α

2
, (4.27)

where α is defined in A3) and C in (4.2). As uε is in V0 ∩ L∞(Q), then zs(uε) is in V0 ∩ L∞(Q).
By multiplying (P�

ε ) by zs(uε), we obtain

〈∂t uε, zs(uε)〉 +
∫

Q
A�(uε, ∇uε) · ∇zs(uε) +

∫

Q
βεzs(uε) =

∫

Q
F�

ε (uε, ∇uε)zs(uε). (4.28)

From the periodicity condition of uε , the first term in the left-hand side of (4.28) equals zero. We use (4.16),
(4.19) and the sign condition of β, we get

∫

Q βεzs(uε) ≥ 0. Moreover, by (4.2), the coercivity assumption
A3), and the fact that uε is in K , we obtain

α

∫

Q
z′s(uε)|∇uε |p(x) ≤ C

(

1 +
∫

Q
|zs(uε)||∇uε |p(x)

)

.

Now, by the (4.27) and the inequality (2.1), we get

min
{
‖uε‖p−

V0
, ‖uε‖p+

V0

}
≤ 2C

α
,

where C is independent of ε. Hence, (uε) is bounded in V0. ��

123



Arab. J. Math. (2017) 6:263–280 275

Lemma 4.7 The sequence (∂t uε) is bounded in V ′
0 + L1(Q).

To prove this lemma, it suffices to show from the problem (P�
ε ) that βε is bounded in L1(Q). In other

words, we need the following estimate, whose proof is similar to that in [14, p. 296]

‖1
η
β(uη,ε)‖L1(Q) ≤ C1 +

∫

Q
C(h�(x, t) + |∇uη,ε |p(x)), (4.29)

where C1 is independent of η and ε, and where C is defined in (4.2).

Proof Let v ∈ V0 ∩ L∞(Q), then from the equation of problem (P�
ε ), we have

|〈∂t uε, v〉| ≤
∫

Q
|A�(uε, ∇uε)||∇v| +

∫

Q
|F�

ε (uε, ∇uε)||v| +
∫

Q
|βε ||v|. (4.30)

In a similar way as in the proof of Lemma 4.4, and since (uε) is bounded in V0, we obtain

∫

Q
|A�(uε, ∇uε)||∇v| ≤ C‖v‖V0 .

We use (4.2), inequality (2.1) and the boundedness of (uε) in V0, to obtain

∫

Q
|F�

ε (uε, ∇uε)||v| ≤ C ′‖v‖V0 .

Now, by using (4.29) and since v ∈ L∞(Q), we obtain

∫

Q
|βε ||v| ≤ C ′′‖v‖L∞(Q).

Finally, we have

‖∂t uε‖V ′
0+L1(Q) ≤ C, where C is independent of ε.

��
Passage to the limit in ε.

We fix s > N
2 + 1, so that Hs

0 (�) ↪→ L∞(�), and then L1(�) ↪→ H−s(�). We have also,

Hs
0 (�) ↪→ W 1,p(x)(�), and consequently, W−1,p′(x)(�) ↪→ H−s(�). From Lemma 3.1 we have V ′

0 ↪→
L(p+)′(0, T ; (W 1,p(x)

0 (�))′). Thus, from the previous lemma (∂t uε) is bounded in L1(0, T ; H−s(�)). More-
over, from the compactness theorem of [19] (p. 85, Corollary 4) and (4.7), the sequence (uε) is relatively
compact in L p−(Q). So, we can extract a subsequence still denoted by (uε), such that, when ε tends to zero
we have

uε → u strongly in L p−(Q), and a.e. in Q, (4.31)

uε → u weak∗in L∞(Q), (4.32)

∂t uε ⇀ ∂t u weakly in V ′
0 + L1(Q). (4.33)

Now, as A�(uε, ∇uε) is bounded in (L p′(x)(Q))N , there exists χ in (L p′(x)(Q))N such that

A�(uε,∇uε) ⇀ χ in (L p′(x)(Q))N ↪→ (L(p−)′(Q))N . (4.34)

In addition, by using (4.31), it is clear that u is in K .

Lemma 4.8 The sequence (uε) converges strongly to some u in V0.
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Proof The idea of proof is to apply the Lemma 3.8, since uε converges weakly to u in V0 and A� satisfies
A1), A2) and A3).

We consider ε′ > 0 and we subtract (P�
ε ) from (P�

ε′), we obtain

∂t (uε − uε′) + A�uε − A�uε′ − F�
ε (uε, ∇uε) + F�

ε′(uε′, ∇uε′) + βε − βε′ = 0. (4.35)

Now, we multiply (4.35) by the same type of test function zs(uε −uε′) used in the proof of Lemma 4.6, we get

〈∂t (uε − uε′), zs(uε − uε′)〉 +
∫

Q
(A�(uε,∇uε) − A�(uε′, ∇uε′)) · ∇(uε − uε′)z′s(uε − uε′)

+
∫

Q
(F�

ε′(uε′, ∇uε′) − F�
ε (uε, ∇uε))zs(uε − uε′) +

∫

Q
(βε − βε′)zs(uε − uε′) = 0. (4.36)

Thanks to the periodicity condition of uε , the first term of (4.36) equals zero. By (4.16), (4.19) and the sign
condition of β, the last term of (4.36) is nonnegative. By (4.2), the Eq. (4.36), then implies that

∫

Q
(A�(uε, ∇uε) − A�(uε′, ∇uε′)) · ∇(uε − uε′)z′s(uε − uε′) ≤ C

∫

Q
(h�(x, t) + |∇uε |p(x))|zs(uε − uε′)|

+ C
∫

Q
(h�(x, t) + |∇uε′ |p(x))|zs(uε − uε′)|. (4.37)

Using the coercivity condition A3), we get

∫

Q
(A�(uε, ∇uε) − A�(uε′, ∇uε′)) · ∇(uε − uε′)z′s(uε − uε′) ≤ 2C

∫

Q
h�(x, t)|zs(uε − uε′)|

+C

α

∫

Q
A�(uε, ∇uε) · ∇uε |zs(uε − uε′)| + C

α

∫

Q
A�(uε′, ∇uε′) · ∇uε′ |zs(uε − uε′)|

≤ 2C
∫

Q
h�(x, t)|zs(uε − uε′)| + C

α

∫

Q
A�(uε, ∇uε) · ∇(uε − uε′)|zs(uε − uε′)|

+C

α

∫

Q
A�(uε, ∇uε) · ∇uε′ |zs(uε − uε′)| − C

α

∫

Q
A�(uε′, ∇uε′) · ∇(uε − uε′)|zs(uε − uε′)|

+C

α

∫

Q
A�(uε′, ∇uε′) · ∇uε |zs(uε − uε′)|. (4.38)

By condition (4.27), we deduce that

1

2

∫

Q
(A�(uε, ∇uε) − A�(uε′, ∇uε′)) · ∇(uε − uε′) ≤ 2C

∫

Q
h�|zs(uε − uε′)|

+C

α

∫

Q
A�(uε,∇uε) · ∇uε′ |zs(uε − uε′)| + C

α

∫

Q
A�(uε′, ∇uε′) · ∇uε |zs(uε − uε′)|. (4.39)

Following the same steps of Lemma 4.5, we obtain the desired result, namely

lim sup
ε→0

∫

Q

(
A�(uε, ∇uε) − A�(uε, ∇u)

) · (∇uε − ∇u) ≤ 0.

��
Now, we prove that u is between ϕ and ψ almost everywhere in Q, where ϕ and ψ are, respectively, sub-

and supersolution of problem (P) with ϕ ≤ ψ a.e. in Q.

Proposition 4.9 We have ϕ ≤ u ≤ ψ a.e. in Q.
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Proof We shall prove that ϕ ≤ u a.e. in Q. One can verify easily that: v = uε + (ϕ − uε)
+ is in K . Then, we

can take it as a function test in (4.26). Hence, we obtain

〈∂t uε, (ϕ − uε)
+〉 +

∫

Q
A�(uε, ∇uε) · ∇(ϕ − uε)

+ −
∫

Q
F�

ε (uε, ∇uε)(ϕ − uε)
+ ≥ 0. (4.40)

Since ϕ is a subsolution, and (ϕ − uε)
+ in V0 ∩ L∞(Q), we obtain

〈∂tϕ, (ϕ − uε)
+〉 +

∫

Q
A�(ϕ, ∇ϕ) · ∇(ϕ − uε)

+ −
∫

Q
F(ϕ, ∇ϕ)(ϕ − uε)

+ ≤ 0. (4.41)

By subtracting (4.40) from (4.41), and by Lemma 3.7, we get
∫

Q
(A(ϕ, ∇ϕ) − A�(uε, ∇uε)) · ∇(ϕ − uε)

+ +
∫

Q
(F�

ε (uε,∇uε) − F(ϕ,∇ϕ))(ϕ − uε)
+ ≤ 0. (4.42)

Thanks to Lemma 4.8, we pass to the limit when ε tends to zero in (4.42) and get
∫

Q
(A(ϕ, ∇ϕ) − A�(u, ∇u)) · ∇(ϕ − u)+ +

∫

Q
(F�(u, ∇u) − F(ϕ,∇ϕ))(ϕ − u)+ ≤ 0. (4.43)

Furthermore, from the definition of A� and F�, we have

(F�(u, ∇u) − F(ϕ,∇ϕ))(ϕ − u)+ = 0 a.e.in Q and A�(u, ∇u) · ∇(ϕ − u)+ = A(ϕ, ∇u) · ∇(ϕ − u)+.

Therefore, we obtain
∫

Q
(A(ϕ, ∇ϕ) − A(ϕ, ∇u)) · ∇(ϕ − u)+ ≤ 0,

that is
∫

{ϕ≥u}
(A(ϕ, ∇ϕ) − A(ϕ, ∇u)) · ∇(ϕ − u) ≤ 0.

According to A2), this implies that ∇(ϕ − u) = 0 a.e. in {(x, t) ∈ Q, ϕ ≥ u}. Then, ϕ − u = 0 a.e. in
{(x, t) ∈ Q, ϕ ≥ u} which means that ϕ ≤ u a.e. in Q. By a similar proof, we can obtain u ≤ ψ a.e. in Q. ��

To complete the proof of Theorem 3.6 we need the following lemma.

Lemma 4.10 βε tends to zero in L1(Q).

Proof By taking (uε − k + 1)+ ∈ V0 ∩ L∞(Q) as a test function in (P�
ε ), and using the periodicity condition

of uε and assumption A3), we obtain
∫

Q
βε(uε − k + 1)+ ≤ F�

ε (uε, ∇uε)(uε − k + 1)+. (4.44)

On the other hand, we have
∫

Q
|βε | =

∫

{|uε |<k}
|βε | +

∫

{uε=k}
|βε | +

∫

{uε=−k}
|βε |. (4.45)

The definition of β gives β(uε,η) = 0 if |uε,η| ≤ k, hence, 1
η
β(uε,η) tends to 0, when η tends to 0 that is

1

η
β(uε,η)χ{|uε |<k} → 0 a.e. in Q. (4.46)

From (4.46), the boundedness of 1
η
β(uε,η)χ{|uε |<k} in L(p−)′(Q) (see Lemma 4.3) and by using Lemma 4.2 of

[3], we get

1

η
β(uε,η)χ{|uε |<k} → 0 when η → 0 in L(p−)′(Q) weakly. (4.47)
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By (4.19), we deduce that

βε = 0 a.e. in {|uε | < k}. (4.48)

Since |uε | < k a.e. in Q, then from (4.48), we obtain
∫

Q
βε(uε − k + 1)+ =

∫

{uε=k}
|βε |.

So, (4.44) becomes
∫

{uε=k}
|βε | ≤ F�

ε (uε, ∇uε)(uε − k + 1)+. (4.49)

Since −k + 1 ≤ ϕ ≤ u ≤ ψ ≤ k − 1, (uε − k + 1)+ tends to 0 almost everywhere in Q and in L∞(Q) weak�,
and F�

ε (uε, ∇uε) converges strongly to F(u, ∇u) in L1(Q). Then, we can deduce from (4.49) that

lim
ε→0

∫

{uε=k}
|βε | = 0.

In the same way, we show that limε→0
∫

{uε=−k} |βε | = 0. Whence, the desired result. ��

4.3.3 Conclusion

Now, we can pass to the limit in each term of problem (P�
ε ). In other words, we have

A�(uε, ∇uε) → A�(u, ∇u) in V ′
0 strongly,

F�
ε (uε, ∇uε) → F�(u, ∇u) in L1(Q) strongly,

βε → 0 in L1(Q) strongly,

∂t uε → ∂t u in V ′
0 + L1(Q) strongly.

Therefore, u satisfies

∂t u + A�(u, ∇u) − F�(u, ∇u) = 0.

From Proposition 4.9 we have ϕ ≤ u ≤ ψ . Then, we getA�(u, ∇u) = A(u, ∇u) and F�(u, ∇u) = F(u, ∇u).
Concerning the periodicity condition, since (uε) is bounded in V0 ∩ L∞(Q) and (∂t uε) is bounded in

V ′
0 + L1(Q), then (∂t uε) is bounded in L1(0, T ; H−s(�)). So, (uε) is relatively compact in L p−(Q). Hence,

uε(0) → u(0) in L p−(Q) and uε(T ) → u(T ) in L p−(Q). As uε(0) = uε(T ), then we deduce that u(0) =
u(T ).

Finally, u is a periodic solution of problem (P).

5 Applications

In this section, we construct a subsolution and a supersolution for the following nonlinear parabolic problem
associated with p(x)-Laplacian (concerning their physical interpretation see our introduction or [2] for more
details):

(P)

⎧
⎪⎨

⎪⎩

∂t u − �p(x)u = f (x, t) in Q,

u = 0 on 
,

u(0) = u(T ) in �,

where � ≡ B(0, R) = {x ∈ R
N | |x | < R} is the unit ball, with R > 0 large enough. Moreover, assume that

p(x) ∈ C1(RN ) is radial, that means p(x) = p(|x |) = p(r), with |x | = r < R, and satisfies the assumptions
of Sect. 2.
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Let M = ‖ f ‖L∞(Q) < ∞. We set

ψ(r) =
∫ R

r

[
M

N
t

] 1
p(t)−1

dt, and ϕ(r) = −ψ(r).

It is clear that ϕ(r) ≤ 0 ≤ ψ(r). Moreover,ψ and ϕ are supersolution and subsolution, respectively of problem
(P). Indeed, we have

−�p(r)ψ(r) = − 1

r N−1 (r N−1|ψ ′(r)|p(r)−2ψ ′(r))′.

Since

ψ ′(r) = −
(
M

N
r

) 1
p(r)−1

,

then

|ψ ′(r)|p(r)−2ψ ′(r) = −M

N
r.

Now, since ψ(r) is independent of t , then we obtain

∂tψ(r) − �p(r)ψ(r) = −�p(r)ψ(r) = M = ‖ f ‖L∞(Q) ≥ f (x, t).

Moreover, if r ∈ ∂� (ie. r = R), then ψ(r) = 0. Hence, ψ is a supersolution of problem (P) in the sense of
Definition 3.5.

We repeat the same previous calculations, to obtain

∂tϕ(r) − �p(r)ϕ(r) = −�p(r)ϕ(r) = −M = −‖ f ‖L∞(Q) ≤ f (x, t),

as far as ϕ(r) = 0 if r ∈ ∂�. Hence, ϕ is a subsolution of problem (P) in the sense of Definition 3.5.
Hence, applying our main result, Theorem 3.6, we deduce the existence of at least one periodic solution

u(x, t) of problem (P) such that ϕ ≤ u ≤ ψ a.e. in Q.
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